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Abstract. Let G be a finite-dimensional Poisson algebraic, Lie or formal group. We
show that the center of the quantization of G provided by an Etingof–Kazhdan functor is
isomorphic as an algebra to the Poisson center of the algebra of functions on G. This recovers
and generalizes Duflo’s theorem which gives an isomorphism between the center of the
enveloping algebra of a finite-dimensional Lie algebra a and the subalgebra of ad-invariant
in the symmetric algebra of a. As our proof relies on Etingof–Kazhdan construction it
ultimately depends on the existence of Drinfeld associators, but otherwise it is a fairly simple
application of graphical calculus. This shed some lights on Alekseev–Torossian proof of the
Kashiwara–Vergne conjecture, and on the relation observed by Bar-Natan–Le–Thurston
between the Duflo isomorphism and the Kontsevich integral of the unknot.
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1 Introduction

Let K be a field of characteristic 0 andG be a Lie, algebraic or formal group over K. A multiplica-
tive Poisson structure on G is a Poisson structure such that the multiplication map G×G→ G
is a Poisson map. This leads to the notion of Poisson Lie, Poisson algebraic or Poisson formal
group depending on the context. If O(G) is the Hopf algebra of C∞, regular or formal functions
on G then a multiplicative Poisson structure on G turns O(G) into a Poisson Hopf algebra.

A quantization of G is a Hopf algebra which is a quantization of O(G) as a Poisson algebra
and whose coproduct reduces to the one of O(G) at } = 0.

In [11] Etingof–Kazhdan associate to any Drinfeld associator a functorial way to quantize
Lie bialgebras and Poisson formal groups. Their construction can be applied to Poisson Lie and
algebraic groups as well. Our main result is the following (Theorem 4.2 below):

Theorem 1.1. Let O}(G) be the quantization of a finite-dimensional Poisson group G obtained
from an Etingof–Kazhdan functor. Then the center of O}(G) is isomorphic as an algebra to the
trivial K[[}]] extension of the Poisson center of O(G).

If a is a finite-dimensional Lie algebra, then G = a∗ as an abelian group is a Poisson algebraic
group, the Poisson structure on O(G) = S(a) being induced by the Lie bracket of a. The Poisson
center is identified with the sub-algebra of invariant S(a)a. On the other hand one can show
that the quantization of G = a∗ can be specialized at } = 1, and becomes isomorphic to the
enveloping algebra of a. Hence we get Duflo’s theorem [9] as a corollary:

Corollary 1.2. Let a be a finite-dimensional Lie algebra, then there is an isomorphism of
algebras

S(a)a ∼= U(a)a.
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In fact there are two constructions of a quantization of G in [11]: the first one comes from
a natural construction of a certain fiber functor out of a coalgebra in a braided monoidal category
constructed from a Drinfeld associator. This construction is not, however, functorial, and the
authors then modify it in an appropriate way to make it so.

Our first result (Theorem 4.1) is a fairly simple graphical proof that the restriction of the star
product of the first construction to the Poisson center of O(G) is undeformed, i.e., the same as
the original product. This result alone guarantee the existence of a quantization of G fulfilling
the conclusion of Theorem 1.1.

The second step is to show that the two constructions yields isomorphic algebras (and in fact,
isomorphic Hopf algebras). This isomorphism is higly non-trivial and depends on the underlying
associator. Its existence relies on the fact that the two fiber functors at hand are isomorphic
as monoidal functors. However, the proof of this fact given in [11] appears to be incorrect: the
isomorphism between those functors given there is not monoidal due to the contribution of cer-
tain non-trivial associativity constraints. Taking the associativity constraints into account and
correcting this construction requires a detailed discussion of dualities in categories constructed
from Drinfeld associators and a generalization of a result by Le–Murakami on the behaviour of
the Kontsevich integral under taking parallels of tangles (Proposition 3.4). In particular, one has
to modify the ordinary coevaluation map in the Drinfeld category using a very specific element
closely related to the Kontsevich integral of the unknot, which explains its relation with the
diagrammatic Duflo isomorphism of [3].

For the sake of concreteness we work with Lie bialgebras in the category of vector spaces,
but our proof also applies in the following situation: if g is a Lie bialgebra in a linear symmetric
monoidal category S which is dualizable as an object of S, then one can define the algebra of
functions over the Poisson formal group of g as the object Ŝ(g∗) equipped with its standard
multiplication and the coproduct induced by the Baker–Campbell–Hausdorff formula. Then
Theorem 1.1 is also valid in this setting. In particular we get a version of the Duflo Theorem
for dualizable Lie algebras in arbitrary symmetric monoidal categories.

We note that an analog of Theorem 1.1 holds for Kontsevich’s deformation quantization of
an arbitrary Poisson manifold M , which also implies Duflo’s theorem [5, 13, 17]. While it is
true for duals of finite-dimensional Lie algebras, to the best of the author’s knowledge it is
not known whether Kontsevich’s star product on a Poisson group seen as a Poisson manifold
is isomorphic to the one coming from Etingof–Kazhdan construction (if for the former one
uses Tamarkin’s construction [20, 21], and if one chooses the same associator in both cases).
An affirmative answer to this question would thus give another proof of our result. Another
motivation for this paper is Alekseev–Torrossian proof of the Kashiwara–Vergne conjecture [2].
Roughly speaking they show that solutions of this conjecture are essentially the same as universal
twist-quantization à la Drinfeld of duals of finite-dimensional Lie algebras. The Kashiwara–
Vergne conjecture implies (but is much stronger than) Duflo’s theorem. This raises the question
of whether there is a direct proof of Duflo’s theorem in Etingof–Kazhdan formalism and whether
it can be generalized to other Poisson groups. This paper is thus an affirmative answer to this
question.

2 Poisson groups

To any finite-dimensional Lie algebra g over K is associated a formal group, whose algebra of
functions is by definition the dual U(g)∗ of the enveloping algebra. This is a topological Hopf
algebra, which as an algebra is identified with the degree completion Ŝ(g∗) of the symmetric
algebra of g∗, and whose coproduct

∆0 : Ŝ(g∗) −→ Ŝ(g∗)⊗̂Ŝ(g∗) := Ŝ(g∗ × g∗)
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is given by

∆0(f)(x, y) := f(BCH(x, y)),

where BCH is the Baker–Campbell–Hausdorff series.
If G is a Lie or algebraic group with Lie algebra g then the algebra O(G) of C∞ or regular

functions on G is a Hopf algebra with coproduct1

∆0(f)(X,Y ) := f(XY ).

Let I be the augmentation ideal of O(G), i.e., the ideal of functions vanishing at the identity.
Then the Hopf algebra of functions on the formal group associated with g is isomorphic to the
I-adic completion of O(G).

A multiplicative Poisson structure on a formal, Lie or algebraic group G is a Poisson bracket
on O(G) for which the coproduct is a map of Poisson algebra. In that case we say that O(G)
is a Poisson-Hopf algebra. A quantization of G is an Hopf algebra (O}(G), ?},∆}) over the ring
of formal power series K[[}]] such that:

• O}(G) ∼= O(G)[[}]] as a K[[}]]-module,

• ∀ f, g ∈ O}(G), f ?} g − g ?} f = }{f, g}+O(}2),

• ∆} = ∆0 +O(}).

A Lie bialgebra structure on g is a linear map δ : g → ∧2g such that the dual map is a Lie
bracket on g∗ and

δ([a, b]) = [a⊗ 1 + 1⊗ a, δ(b)] + [δ(a), b⊗ 1 + 1⊗ b].

A multiplicative Poisson structure on G induces a Lie bialgebra structure on g, and conversely
if g is a Lie bialgebra then the cobracket induces a multiplicative Poisson structure on G [6].

Let d be the double of g. As a vector space this is g ⊕ g∗ and its Lie bracket is determined
by the following conditions:

• the inclusions g→ d and g∗ → d are Lie algebra maps,

• the canonical pairing on d is ad-invariant.

By the PBW theorem, there is a vector space isomorphism

U(g) ∼= U(d)/U(d)g∗,

which turns U(g) into a d-module (this coincides with the universal Verma module M− of the
next section) hence d acts on the algebra of function on the formal group of g. If g is the Lie
algebra of a Lie or algebraic group G, then this action is by vector fields on G, hence it can be
globalised to an action of d on O(G) is the Lie and algebraic setting as well (this is the so-called
dressing action [18]). A key fact for the constructions in the next sections is that the Poisson
bracket on O(G) can be expressed as follows: let xi be a basis of g and xi be the dual basis
of g∗, then

∀ f, g ∈ O(G), {f, g} =
∑
i

(
xi · f

)
(xi · g).

In particular, the following holds [18]:

Proposition 2.1. The Poisson center of O(G) coincides with the subalgebra O(G)g
∗

of invariant
under the dressing action of g∗ ⊂ d.

1In the Lie case, the tensor product is the completed one: O(G)⊗̂O(G) := O(G×G).
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3 Two quantizations of G

In this section we recall the main construction of [11], in a slightly different form inspired by [19].
Let G be a Poisson group, g its Lie bialgebra and d the Drinfeld double of g and t ∈ d⊗2 the
canonical element.

3.1 The Drinfeld category

Let A be the category whose objects are d-modules and whose morphisms are defined by

HomA(U, V ) := Homd(U, V )[[}]].

Let Φ be a Drinfeld associator over K. Recall that this is a group-like element of the formal
completion K〈〈X,Y 〉〉 of the free associative algebra on two generators, satisfying the pen-
tagon and the hexagon equation [8]. Let Φ̃ be the image of Φ through the algebra morphism
K〈〈X,Y 〉〉 → U(d)⊗3[[}]] induced by X 7→ }t⊗ 1 and Y 7→ 1⊗ }t.

Theorem 3.1 ([7, 8]). For any U, V,W ∈ A define a map

αU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

by the action of Φ̃ and a map

βU,V : U ⊗ V → V ⊗ U

by βU,V = exp(}t/2)◦PU,V where PU,V (u⊗v) = v⊗u. Then A with its ordinary tensor product,
associativity constraint α and commutativity constraint β is a braided tensor category.

We will need a few results about duality in A. Note that A is not a rigid category since
we allow infinite-dimensional modules, for which the coevaluation involves infinite sums, and
in particular not every map in A has a well defined transpose. However, it is easily checked
that in all our computations involving duality, only finitely many terms of the coevaluation map
will contribute. The existence of a suitable rigid structure on the sub-category of A consisting
of finite-dimensional modules is discussed in [4, 7, 12], and in a different language but using
a different normalization that we will need in [14, 16].

Note that for a d-module V , the ordinary evaluation and coevaluation are morphisms in A
but the presence of the non-trivial associativity constraints implies that they fail to satisfy the
zig-zag identity required in order to define a duality in a monoidal category. Namely, write
Φ̃ =

∑
i xi ⊗ yi ⊗ zi and set

ν =

(∑
i

xiS(yi)zi

)−1

∈ U(d)d[[}]],

where S is the antipode of U(d). Then the action of ν induces an automorphism of the identity
functor in A so that for any V ∈ A

(id⊗ ev) ◦ αV,V ∗,V ◦ (coev⊗ id) = ν−1
V ,

where ev (resp. coev) is the K[[}]]-linear extension of the standard map V ∗ ⊗ V → K (resp.
K→ V ⊗ V ∗).

Remark 3.2. The element ν is essentially a specialization of the Kontsevich integral of the
unknot, and can be shown to be independent of the choice of the associator Φ [15].
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For any α, β ∈ U(d)d[[}]] of the form 1 +O(}) and such that αβ = ν the maps

:= ev ◦(id⊗αV ), := coev ◦(βV ⊗ id)

induces a duality in A. Note that for any choice of α, β the dual of V is its dual as a d-module
and the dual of a map is also its ordinary dual. As objects in A we have

(V ⊗W )∗ = W ∗ ⊗ V ∗

but both sides are dual to V ⊗W in an a priori different way. In other words, the chosen duality
induces a canonical automorphism

(V ⊗W )∗ = W ∗ ⊗ V ∗ −→W ∗ ⊗ V ∗

given by

W ∗ ⊗ V ∗

(V ⊗W )∗

W ∗ V ∗

which fails to be the identity in general. This fact is closely related to the failure of the Kontsevich
integral to be compatible with the operation of taking parallel for arbitrary tangles, which has
been investigated by Le–Murakami [16], who show the following result: since ν = 1 + O(}) it

has a unique square root ν
1
2 of the same form. Recall that an associator Φ is called even if it

satisfies

Φ(−X,−Y ) = Φ(X,Y ).

Theorem 3.3 (Le–Murakami). If one uses an even associator in the construction of A, and set

α = β = ν
1
2 , then the canonical isomorphism

(V ⊗W )∗ ∼= W ∗ ⊗ V ∗

is the identity.

Using this result, we prove:

Proposition 3.4. For any choice of an associator, there exists α, β such that for the corre-
sponding duality, the canonical isomorphism

(V ⊗W )∗ ∼= W ∗ ⊗ V ∗

is the identity.

Proof. Let Φ, Φ′ be two associators and A, A′ the braided monoidal categories constructed
from them. By [8, 15] there exists a strong monoidal structure J on the identity functor inducing
a braided monoidal equivalence

A′ ' A.
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The morphism J is given by the action of a symmetric, d-invariant element in U(d)⊗2[[}]], still
denoted by J , which is given by a universal formula, i.e., can be chosen independently of d.

In particular, if one chooses any even associator Φ′ one can transport the duality from A′
to A using this equivalence. Namely we define

:= ev ◦JV ∗,V ◦
(

id⊗ν
1
2
V

)
, := coev ◦J−1

V,V ∗ ◦
(
ν

1
2
V ⊗ id

)
.

Write

J =
∑

fi ⊗ gi, J−1 =
∑

f̄i ⊗ ḡi,

then this duality corresponds to the choice

αF =
∑

S(fi)ν
1
2 gi

and

βF =
∑

f̄iν
1
2S(ḡi)

(see, e.g., [7]).
For this choice of duality, the isomorphism W ∗ ⊗ V ∗ → (V ⊗W )∗ is given by

(JV,W )∗JW ∗,V ∗ , (3.1)

where we used the fact that by Theorem 3.3 the analog morphism is the identity in A′. Now
since any associator Φ is group-like, we have (S ⊗ S ⊗ S)(Φ) = Φ−1. Therefore, the element
(S⊗S)(J−1) satisfies the same twist equation as J , and since we choose J to be the specialization
of an universal twist it follows from [8] that there exists an invertible central element u ∈ U(d)[[}]]
such that

(S ⊗ S)(J) =
(
u−1 ⊗ u−1

)
∆(u)J−1.

Now by definition (JV,W )∗ is given by the action of (S ⊗ S)(J), and using the fact that J is
symmetric, the map (3.1) is given by the action of (u−1 ⊗ u−1)∆(u). Finally, setting

α = αFu, β = βFu
−1

makes this map trivial. �

3.2 Two fiber functors

Let M+ = Indd
g 1 and M− = Indg

g∗ 1 be the universal Verma modules. By the PBW theorem as
vector spaces M+

∼= U(g∗) and M− ∼= U(g), which implies that M± are coalgebras. We denote
by 1± the image of 1 through those isomorphisms. Define functors F	 and F from A to the
category vect} of topologically free K[[}]] modules by

F	(V ) = HomA(M+ ⊗M−, V ), F (V ) = HomA(M+, V ⊗M∗−).

Proposition 3.5. The functors F	 and F are naturally isomorphic to the forgetful functor
sending a d-module V to V [[}]] via

f 7−→ f(1+ ⊗ 1−)

and

f 7−→ (id⊗1−)f(1+)

respectively.
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The following observation is key to the present construction:

Proposition 3.6. Equipped with their original coproduct and counit, M± are cocommutative
coalgebras in A.

Recall that if A is any tensor category, a coalgebra structure on an object C turns the functor
HomA(C,−) into a monoidal functor. If A is braided and if C1, C2 are two coalgebras in A,
then the tensor product C1⊗C2 has a natural coalgebra structure (the braided tensor product)
given by

C1 C2

Hence, the functor F	 has a natural monoidal structure which we denote by J	. One checks
that J	 is actually invertible, i.e., the functor F	 is strong monoidal. One can then formally
dualize this structure to obtain a monoidal structure on F . Namely, let J be the map

F (V )⊗ F (W )→ F (V ⊗W )

defined by

x ⊗ y 7−→
x y

Let M∗− be equipped with the multiplication dual (in vect) to the comultiplication of M−. We
then have:

Proposition 3.7. The object M∗− is an algebra in A, and J induces a strong monoidal structure
on F .

We stress the fact that it is not straightforward that the coalgebra M− and the algebra M∗−
are dual as objects in A. However this follows from Proposition 3.4:

Proposition 3.8. If one chooses the duality in A as in Proposition 3.4, then the multiplication
of M∗− is dual in A to the comultiplication of M−.

Proof. Let ∆ be the comultiplication of M−. Then by definition the multiplication it induces
on the object M∗− in A is given by the composition

M∗− ⊗M∗−
∼=−→ (M− ⊗M−)∗

∆∗−−→M∗−.

By Proposition 3.4 the first map is trivial, and since M− is cocommutative in A the result
follows. �
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Remark 3.9. If one chooses a different duality, then it still follows from Proposition 3.4 that
these two algebra structures are isomorphic.

Finally, we obtain

Proposition 3.10. The map given by

x 7−→
x

induces a natural monoidal isomorphism between F	 and F .

Proof. As in [11, Proposition 9.7] this follows from the identity

=

which holds thanks to Proposition 3.8. We note that this in [11] this identity is claimed to be
true with the ordinary coevaluation instead of the one coming from Proposition 3.4, which is
not correct. �

3.3 Quantization of G

The same proof as for Proposition 3.7 implies:

Proposition 3.11. The algebra of function on G equipped with the dressing action of d and its
original algebra structure, is a commutative algebra in A.

Hence, let O}(G) = F (O(G)) and O	
} (G) = F	(O(G)). Since both functors are monoidal

those are algebras in vect}, and since those functors are monoidally equivalent these algebras
are isomorphic. The main result of [11, 19] is:

Theorem 3.12. The following holds true:

• The algebras O}(G) and O	
} (G) are Hopf algebras quantizing G. The coproduct on O}(G)

is given by2

F (O(G))
id⊗1O(G)−−−−−−→ F (O(G)⊗O(G))

∼=−→ F (O(G))⊗ F (O(G)).

• The map of Proposition 3.10 induces an isomorphism of Hopf algebras O}(G) ∼= O	
} (G).

• The assignment G 7→ O}(G) induces a contravariant functor from the category of finite-
dimensional Poisson (Lie, algebraic or formal) groups over K to the category of Hopf
algebras over K[[}]].

Remark 3.13. We stress the fact that the construction of O}(G)	 is not functorial.

2Once again for G a Lie or formal group, those are topological Hopf algebras, i.e., the coproduct takes values
in the completed tensor product.
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Remark 3.14. It is of course important that the algebra structure that we consider is part of
a Hopf algebra structure, i.e., that we consider quantizations of G as a Poisson group and not
just as a Poisson manifold. Yet it is sufficient for our purpose that the coproduct exists, which
is why we refer the reader to [11, 19] for its construction.

Remark 3.15. To be precise, the construction of [11] uses the functor

HomA(M−,M
∗
+ ⊗−)

applied to the coalgebra M−. The authors then show that this defines a functorial quanti-
zation of the Lie bialgebra g and then define the quantization of the formal group of g as
HomA(M−,M

∗
+ ⊗M−)∗. The construction presented here is the correct way of dualizing the

whole construction in order to obtain O}(G) as the image of an algebra in A, and coincides
with the one given in [19]. Indeed, in loc. cit. the author starts with the braided tensor product
of two copies of O(G), and then applies the monoidal functor V 7→ V g to it. By Frobenius
reciprocity this is

HomA(M+,O(G)⊗O(G)).

Replacing the second copy of O(G) by its formal completion which, as an algebra in A is by
definition M∗− one sees that the two constructions are the same.

Remark 3.16. Strictly speaking, what is claimed in [11] is the existence of an Hopf algebra
isomorphism between F	(M−) and

HomA(M−,M
∗
+ ⊗M−).

Once again, this claim is valid if one uses the modified coevaluation of Proposition 3.4 instead
of the ordinary one in the construction of an isomorphism between these functors. The proof of
this claim can then be adapted to our setting in a straightforward way.

4 The center of O}(G)

In this section we show the following:

Theorem 4.1. The canonical inclusion of the K[[}]]-linear extension of the Poisson center
of O(G) into O}(G)	 is an algebra morphism, and its image coincides with the center of O	

} (G).

Combined with the Hopf algebra isomorphism O	
} (G) ∼= O}(G) it implies the main result of

this paper:

Theorem 4.2. The center of O}(G) is isomorphic as an algebra to the Poisson center of
O(G)[[}]].

The rest of this section is devoted to the proof of Theorem 4.1. We start with a few general
facts about coalgebras in a braided monoidal category.

Lemma 4.3. Let C1, C2 be two coalgebras in a braided tensor category A. Then the counit
of C1 induces a coalgebra morphism from the braided tensor product C1 ⊗ C2 to C2.

Proof. We have:

C1 C2

=

C2C1

�



10 A. Brochier

Therefore, the counit of C1 induces a monoidal natural transformation from the functor
HomA(C2,−) to the functor HomA(C1 ⊗ C2,−), hence for every algebra A in A an algebra
morphism

ρ : HomA(C2, A) −→ HomA(C1 ⊗ C2, A).

Indeed, for all f, g ∈ HomA(C2, A)

ρ(f) ? ρ(g) =

f g

= f g = ρ(f ?′ g),

where ? is the product in HomA(C1⊗C2, A) induced from the monoidal structure on HomA(C1⊗
C2,−) and from the product of A, and where ?′ is defined similarly for HomA(C2, A).

Lemma 4.4. If C2 is cocommutative and A is commutative, then the image of ρ is in the center
of HomA(C1 ⊗ C2, A).

Proof. Let f ∈ HomA(C2, A) and g ∈ HomA(C1 ⊗ C2, A). Then

ρ(f) ? g =

f g

Using the commutativity of A and the cocommutativity of C2 this equals

g f

Then, by definition of the counit one obtains

g f

= g ? ρ(f). �
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We now prove Theorem 4.1. By Proposition 2.1 the Poisson center of O(G) coincides with
its subspace of g∗-invariants. Therefore, by Frobenius reciprocity the K[[}]]-extension of the
Poisson center of O(G) coincides with HomA(M−,O(G)). Since M− is a coalgebra, the functor
HomA(M−,−) is monoidal, and it is easily checked that this monoidal structure coincides with
the canonical inclusion V g∗ ⊗W g∗ ⊂ (V ⊗W )g

∗
. In the same way the map

HomA(M−,O(G))→ HomA(M− ⊗M+,O(G))

induced by the counit of M+ coincides with the inclusion O(G)g
∗ ⊂ O(G). By Lemmas 4.3

and 4.4, this is an algebra morphism whose image lies in the center of O	
} (G).

On the other hand, observe that any central element of O	
} (G) belongs to the Poisson center

of O(G)[[}]]: if f is central then for any function g one has

[f, g] = 0 = }{f, g}+O
(
}2
)
,

where [f, g] is the commutator in the deformed algebra O	
} (G). This completes the proof of

Theorem 4.1.

Remark 4.5. It is worth emphasizing that the map from the Poisson center of O(G) to O}(G)
is not the standard inclusion. Indeed,, it relies on the isomorphism of Proposition 3.10, which
itself relies on the element β chosen in Proposition 3.4, which thus plays the role of the Duflo
element. Hence we expect β to be closely related to the Duflo function associated with Φ in the
sense of [1], also known as the Gamma function of Φ.

5 The Duflo isomorphism

In this section we show that applying Theorem 4.2 to the case where G = a∗ for a finite-
dimensional Lie algebra a, one recovers the Duflo isomorphism. Let a} be the Lie algebra
over K[[}]] which is a[[}]] as a module, and whose bracket is } times the bracket of a. Let U(a})
be its enveloping algebra. By the PBW theorem, there is a coalgebra isomorphism

S(a)[[}]] ∼= U(a}).

Pulling back the product of U(a}) through this isomorphism, one gets an algebra structure ?PBW

on S(a)[[}]] compatible with the standard coproduct. It is easily seen that this is a quantization
of the Poisson algebraic group a∗. By [10, Lemma 3.2] this is the only functorial quantization
of this Poisson group. This implies

Proposition 5.1. The Hopf algebra O}(a∗) is canonically, naturally isomorphic to

(S(a)[[}]], ?PBW,∆0).

By construction the product ?PBW can be restricted to the subspace S(a)[}] of polynomials
in }. This restriction can then be specialized at } = 1 and the resulting algebra is clearly the
enveloping algebra of a. On the other hand, the Poisson center of O(a∗) = S(a) coincide with the
invariant under the adjoint action S(a)a. This is well-known, and consistent with Proposition 2.1
since in that case the dressing action of g∗ = a coincides with the adjoint action of a on S(a).
One check that the isomorphism

ρ : O}(a∗)	 ∼= O}(a∗)

coming from Theorem 3.12 also preserves the sub-space of polynomials in }. Hence we get:
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Corollary 5.2 (Duflo isomorphism). The isomorphism

S(a) ∼= U(a)

given as the composition of ρ with the PBW isomorphism, restricts to an algebra isomorphism

S(a)a ∼= U(a)a.

Remark 5.3. It is known that the even part of a universal Duflo isomorphism for Lie algebras
is uniquely determined and coincide with the original Duflo element introduced in [9]. Hence,
in the case of an even associator one recovers the original Duflo isomorphism.
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