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Abstract. We apply the Born–Jordan and Weyl quantization formulas for polynomials in
canonical coordinates to the constants of motion of some examples of the superintegrable
2D anisotropic harmonic oscillator. Our aim is to study the behaviour of the algebra of the
constants of motion after the different quantization procedures. In the examples considered,
we have that the Weyl formula always preserves the original superintegrable structure of the
system, while the Born–Jordan formula, when producing different operators than the Weyl’s
one, does not.
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1 Introduction

Max Born and Pascual Jordan proposed a first model of quantization in [3], restricted to
one-dimensional systems, a model generalized to n-dimensional systems, together with Werner
Heisenberg, in [4]. Hermann Weyl introduced in [14, 15] a general quantization scheme based
on the Fourier transform formula. The Born–Jordan and Weyl quantizations produce in general
different operators from the same classical function of momenta and coordinates. The two quan-
tization methods, however, coincide on natural Hamiltonians in n-dimensional Euclidean spaces.
This property and many others of the two quantizations are studied in the recent book [9], that
is our main source for the following discussion.

We consider here the Born–Jordan and Weyl quantizations applied to the algebra of constants
of motion of the 2D anisotropic harmonic oscillator. This system admits the maximal number
of three functionally independent constants of motion (and it is said to be superintegrable)
whenever the ratio of the parameters is a rational number. Otherwise, the independent constants
of motion are just two.

Our aim here is to check the behaviour of the Born–Jordan and Weyl quantizations of the
anisotropic harmonic oscillator with respect to the integrability and superintegrability of the
resulting quantum system for some particular choice of the ratio of the parameters. This aspect
of the two quantization procedures is not considered in [9].

We use here the same expression for the classical 2D anisotropic harmonic oscillator and its
independent constants of motion that is employed in [7]. The nD anisotropic harmonic oscillator
is there considered as an “extended system”, a particular structure of some natural Hamiltonians
that allows the existence of polynomial constants of motion of higher degree, described in [7, 8].
The interest in using such a construction here comes from other our studies in progress on the
quantization of extended systems (see for example [6]).

We consider briefly also the factorization in annihilation-creation operators for the 2D aniso-
tropic harmonic oscillator as given in [11], to check how the corresponding classical integrals are
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quantized by applying again Born–Jordan and Weyl procedures. The examples are confronted
with those arising from the extension procedure.

We can apply here the simpler formulas for Born–Jordan and Weyl quantizations for mono-
mials in coordinates and momenta discussed in [9].

The quantization procedures of classical quantities are not exhausted by Born–Jordan’s and
Weyl’s approaches. Several techniques have been developed since the beginning of the quantum
era, many of them specific for the particular system considered.

Indeed, there is no unique way to assign quantum operators to classical quantities in a mea-
ningful way. Hermiticity of the operator is, usually, a necessary requirement and it is obtained
by some symmetrization procedure, however not uniquely determined, see for example [13].

The problem of preserving the algebra of the constants of motion of a Hamiltonian system
after quantization is object of many recent studies, see for example [1, 5, 10, 12] and references
therein, for solutions in flat and non-flat manifolds.

For superintegrability and quantization in classical and quantum systems see also [12], in
particular for the definition of quantum superintegrable systems, and [5].

2 Born–Jordan and Weyl quantizations of monomials

In [3, 4, 9] the Born–Jordan quantization of monomials in coordinates (xi, pi) is determined by
the following general rules,

[x̂i, p̂j ] = i~δij , [x̂i, x̂j ] = 0, [p̂i, p̂j ] = 0,

where δij = 1 for i = j and zero otherwise, for any quantization of the coordinates xi → x̂i and
of the momenta pi → p̂i, and by

xri p
s
i →

1

s+ 1

s∑
k=0

p̂s−k
i x̂ri p̂

k
i , (1)

for the monomials with same indices. When the indices are different, the operators commute
by the general quantization rules of above and their quantization is therefore straightforward.

For the Weyl quantization [9, 14], the general rules are the same of above and, for the
monomials, we have instead

xri p
s
i →

1

2s

s∑
k=0

(
s

k

)
p̂s−k
i x̂ri p̂

k
i . (2)

The standard realization of the operators x̂i and p̂i, at least for Cartesian coordinates, are

x̂iφ = xiφ, p̂iφ = −i~ ∂

∂xi
φ,

for any function φ(xj). We employ in the following this standard quantization of the canonical
coordinates.

It is easy to check that for r = s = 1 the Born–Jordan and Weyl quantizations of monomials
coincide, but differ for r, s ≥ 2.

Many properties of the Born–Jordan quantization, generalized to any function of coordinates
and momenta, and of the Weyl quantization are considered into details in [9] and the different
characteristics are discussed.

We focus here our analysis on the effect of the two quantizations on the first integrals of
a particular superintegrable system. We check in some examples if the quantized first integrals
commute with the Hamiltonian operator, that is, if the algebraic structure of the constants of
motion is preserved by the different formulas of quantization, an issue not considered in [9].
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3 The superintegrable 2D anisotropic harmonic oscillator

In order to express the first integrals of the system, we can write the Hamiltonian of the su-
perintegrable 2D anisotropic harmonic oscillator in the form of an extended Hamiltonian [7] as
follows

Hm,n =
1

2

(
p2u +

(m
n

)2
p2x

)
+ ω2

(m
n

)2 (
x2 + u2

)
, (3)

where (x, u) are coordinates in the Euclidean plane, ω ∈ R and m,n ∈ N \ {0}.
Two independent first integrals of Hm,n are Hm,n itself and

L =
1

2
p2x + ω2x2,

that is associated with the separability of the Hamilton–Jacobi equation of Hm,n in coordina-
tes (u, x).

If we put

Gn =

[n−1
2 ]∑

k=0

(
n

2k + 1

)(
−2ω2

)k
x2k+1pn−2k−1

x , (4)

where [a] denotes the integer part of a, and XL is the Hamiltonian vector field of the function L,
then, adapting to our case the more general theorem proved in [7], we have

Proposition 1. For any couple of positive integers (m,n), the function Km,n is a first integral
of Hm,n, where

Km,n = Pm,nGn +Dm,nXL(Gn),

with

Pm,n =

[m/2]∑
k=0

(
m

2k

)(
−m
n
u
)2k

pm−2k
u

(
−2ω2

)k
,

Dm,n =
1

n

[(m−1)/2]∑
k=0

(
m

2k + 1

) (
−m
n
u
)2k+1

pm−2k−1
u

(
−2ω2

)k
, m > 1,

and D1,n = −m
n2u.

We can introduce the usual Cartesian coordinates (x, y) by leaving x, px unchanged and
putting

u =
n

m
y, pu =

m

n
py, (5)

so that

Hm,n =
(m
n

)2(1

2

(
p2x + p2y

)
+ ω2

(
x2 +

( n
m

)2
y2
))

.

In the following, we consider the Hm,n of above by dropping the negligible overall factor
(
m
n

)2
.

The classical and quantum superintegrability of the nD anisotropic harmonic oscillator has
been studied in [11]. The quantization of the classical system is there obtained by introdu-
cing creation and annihilation operators. This technique is widely in use today (see for exam-
ple [5] and [2], where the anisotropic harmonic oscillator is generalized to 2D constant-curvature
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manifolds obtaining new classical and quantum superintegrable systems) and can have some
application towards the quantization of extended systems.

The Jauch–Hill Hamiltonian of the anisotropic harmonic oscillator is

HJH =
1

2

(
p21
M1

+
p22
M2

+M1ω
2
1q

2
1 +M2ω

2
2q

2
2

)
,

and coincide with Hm,n if we put

x =
√
M1q1, p1 =

√
M1px, y =

√
M2q2, p2 =

√
M2py,

with

mω2 = nω1, ω1 =
√
2ω.

The classical first integrals given in [11] become

F1(m,n) =
1

2

(
bn1b

∗m
2 + b∗n1 b

m
2

)
, F2(m,n) = −

i

2

(
bn1b

∗m
2 − b∗n1 bm2

)
, (6)

where

b1 =
1√
2ω1

(px − iω1x) , b∗1 =
1√
2ω1

(px + iω1x) ,

and similarly b2, b
∗
2 in function of y, py, ω2. The corresponding quantum operators are obtained

simply by substituting px, py with p̂x, p̂y in the expressions of above.

The first integrals obtained with the two methods of above are different, having for example,
up to constant factors,

K1,1 = xpy − ypx, F1(1, 1) = pxpy + ω2xy.

4 The two quantizations of the constants of motion
of the oscillator

The Born–Jordan and Weyl quantizations of both Hm,n and L clearly coincide, being in both
cases

Hm,n → Ĥm,n = −~2

2

(
∂2

∂x2
+

∂2

∂y2

)
+ ω2

(
x2 +

( n
m

)2
y2
)
,

L→ L̂ = −~2

2

∂2

∂x2
+ ω2x2.

The operators are clearly independent and commuting, so that the integrability of the system
is preserved by both the quantizations.

The Born–Jordan and Weyl quantizations of K1,1, K2,1 and K3,1 coincide and commute with
the corresponding Hamiltonian operators Ĥm,n. Things become different for (m,n) = (4, 1).
Indeed

Proposition 2. The first integral K4,1 of H4,1 is

K4,1 = 256

(
xp4y − ypxp3y −

3

4
ω2xy2p2y +

ω2

8
y3pxpy +

ω4

64
xy4
)
. (7)
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By applying to K4,1 the Weyl quantization formula (2), we have the Weyl operator

K̂W
4,1 = 256

(
~4
(
x
∂4

∂y4
− y ∂4

∂x∂y3

)
− 3~4

2

∂3

∂x∂y2
+

~2ω2

8

(
6xy2

∂2

∂y2
− y3 ∂2

∂x∂y

)
+ ~2ω2y

(
3

2
x
∂

∂y
− 3

16
y
∂

∂x

)
+
ω4

64
xy4 +

3~2ω2

8
x

)
, (8)

and, by applying to K4,1 the formula (1), we get the Born–Jordan operator

K̂BJ
4,1 = K̂W

4,1 + 32~2ω2x. (9)

The computation of the commutators gives

[
Ĥ4,1, K̂

W
4,1

]
= 0,

[
Ĥ4,1, K̂

BJ
4,1

]
= −32~4ω2 ∂

∂x
. (10)

Proof. We have from (4) G1 = x, therefore XLG1 = px. The application of Proposition 1
to (3) with (m,n) = (4, 1) followed by the transformation of coordinates (5) gives

P4,1 = 256p4y − 192ω2y2p2y + 4ω2y, D4,1 = −256yp3y + 32ω2y3py,

and we get (7). We observe now that, both for Born–Jordan and Weyl quantizations, we have

K̂4,1 = P̂4,1x̂+ D̂4,1p̂x,

where the order of the operators is immaterial, because P4,1 and D4,1 depend uniquely on (py, y).
Therefore, we need to apply the two quantizations to P4,1 and D4,1 only, since the quantizations
coincide on x and px. By applying (1) and (2) to the monomials y2p2y, yp

3
y and y3py, we have

P̂4,1 = 256p̂4y − 192ω2Q̂1 + 4ω2ŷ, D̂4,1 = −256Q̂2 + 32ω2Q̂3,

where

Q̂2 = i
~3

2

(
2y

∂3

∂y3
+ 3

∂2

∂y2

)
, Q̂3 = −i

~
2
y2
(
2y

∂

∂y
+ 3

)
,

coincide for both quantizations, and, for the Weyl case,

Q̂1 = −
~2

2

(
2y2

∂2

∂y2
+ 4y

∂

∂y
+ 1

)
,

while, for the Born–Jordan case,

Q̂1 = −
~2

3

(
3y2

∂2

∂y2
+ 6y

∂

∂y
+ 2

)
.

We obtain in this way (8) and (9).

We can finally compute the commutators of Ĥ4,1 with K̂W
4,1 and K̂BJ

4,1 with the help of the
formula[

Ĥ4,1, K̂4,1

]
= p̂x

(
−i~P̂4,1 +

[
Ĥ4,1, D̂4,1

])
+ x̂
(
2ω2i~D̂4,1 +

[
Ĥ4,1, P̂4,1

])
,

after making the suitable substitutions, obtaining the (10). �
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We computed the quantizations for several other values of (m,n), for example (5, 1), (6, 1),
(1, 4), (3, 4), such that K̂BJ

m,n 6= K̂W
m,n, obtaining always commutation with Ĥm,n for K̂W

m,n and

no commutation with Ĥm,n for K̂BJ
m,n. In these last cases, it can be observed that both ω and ~

always appear as factors in the commutator, meaning that for ω = 0 and for ~→ 0 the operators
commute.

Analogous results are obtained from the quantizations of the first integrals F1(m,n) or
F2(m,n) given in (6) for several values of (m,n): the Weyl formula produces symmetry operators
of the Hamiltonian, the Born–Jordan one, when giving different operators, does not.

Actually, one can conjecture that the Weyl quantizations of Km,n and Fi(m,n) always com-
mute with the Hamiltonian operator Ĥm,n.

It can be observed, as one of the referees of this article pointed out, that “for the Jauch–
Hill approach the quantization using creation and annihilation operators shows very easily that
the quantum extensions of F1 and F2 are still integrals. It is less obvious to prove that this
quantization is nothing but Weyl’s one”.

Remark 3. The failure of the Born–Jordan quantization formula in reproducing the algebra of
constants of motion at the quantum level is, actually, restricted to the particular set of generators
of the algebra that we choose. We do not know in general if another choice of independent first
integrals can lead to different results.

Remark 4. The failure in reproducing the algebra of the constants of motion after quantization
appears also in the case of natural Hamiltonian systems on curved manifolds. In these cases,
quantum corrections of the Hamiltonian operator are necessary in order to preserve the integrable
or superintegrable algebraic structure [1, 10].

5 Conclusions

From the examples computed, it appears that the Born–Jordan quantization formula fails in
preserving the high-degree constants of motion of the 2D anisotropic harmonic oscillator, and
therefore its superintegrability, to the quantum level, differently from the Weyl formula. A study
of this problem in full generality is then desirable.
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