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Abstract. Identifying when different images are of the same object despite changes caused
by imaging technologies, or processes such as growth, has many applications in fields such as
computer vision and biological image analysis. One approach to this problem is to identify
the group of possible transformations of the object and to find invariants to the action of
that group, meaning that the object has the same values of the invariants despite the action
of the group. In this paper we study the invariants of planar shapes and images under the
Mébius group PSL(2,C), which arises in the conformal camera model of vision and may
also correspond to neurological aspects of vision, such as grouping of lines and circles. We
survey properties of invariants that are important in applications, and the known Mdobius
invariants, and then develop an algorithm by which shapes can be recognised that is Mobius-
and reparametrization-invariant, numerically stable, and robust to noise. We demonstrate
the efficacy of this new invariant approach on sets of curves, and then develop a Mobius-
invariant signature of grey-scale images.
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1 Introduction

Lie group methods play a fundamental role in many aspects of computer vision and image
processing, including object recognition, pattern matching, feature detection, tracking, shape
analysis, tomography, and geometric smoothing. We consider the setting in which a Lie group G
acts on a space M of objects such as points, curves, or images, and convenient methods of
working in M /G are sought. One such method is based on the theory of invariants, i.e., on the
theory of G-invariant functions on M, which has been extensively developed from mathematical,
computer science, and engineering points of view.

When M is a set of planar objects the most-studied groups are the Euclidean, affine, simi-
larity, and projective groups. In this paper we make a first study of invariants of planar objects
under the Mébius group PSL(2,C), which acts on the Riemann sphere C = C U oo by

e az+b
¢: C— C, qﬁ(z)—m, a,b,c,d e C, ad — be # 0.

We work principally in the school of invariant signatures, developed by (amongst others) Olver
and Shakiban [4, 9, 18, 30, 35, 36], and widely used for Euclidean object recognition (see,

e.g., [2]).
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PSL(2,C) is a 6-dimensional real Lie group. It forms the identity component of the inversive
group, which is the group generated by the Mobius transformations and a reflection. In addition
to its importance on fundamental grounds — it is one of the very few classes of Lie groups that
act on the plane, it crops up in numerous branches of geometry and analysis, it is the smallest
nonlinear planar group that contains the direct similarities, and it is the set of biholomorphic
maps of the Riemann sphere — it also has direct applications in image processing since it arises
in the conformal camera model of vision, in which scenes are projected radially onto a sphere
[20, 39, 40]. It may also correspond to neurological aspects of vision, such as grouping of lines
and circles (which are equivalent under Mébius transformations) [41].

From an applications point of view, different objects may be related by Mobius transforma-
tions, as is explored by Petukhov [34] for biological objects in fascinating detail in the context of
Klein’s Erlangen program', giving examples of many body parts that are loxodromic to high ac-
curacy (loxodromes have constant Mobius curvature and play the role in Mobius geometry that
circles do in Euclidean geometry), that change shape by Mébius and other Lie group actions, and
that grow via Mobius transformations (including 2D representations of the human skull). Other
examples of 1-dimensional growth patterns, such as antenatal and postnatal human growth, ap-
pear to be well modelled by 1-dimensional linear-fractional transformations x +— (ax+0b)/(cz+d).
Discussing this work, Milnor [25] argued that “The geometrically simplest way to change the
relative size of different body parts would be by a conformal transformation. It seems plausible
that this simplest solution will often be the most efficient, so that natural selection tend to
choose it”. (Milnor was thinking of 3D conformal transformations, whose restriction to 2D is
the Mobius transformations.)

In this paper we present an integral invariant for the 2D Mobius group that is reparame-
terization independent, and demonstrate its use to identify curves that are related by Mobius
transformations. We then consider the case of images, and describe an invariant signature by
which Mo6bius transformed images can be recognised. We begin in Section 2 by discussing the
desirable properties of invariants for object classification, and introduce the property of bounded
distortion, which subsumes most of the requirements identified in the literature. This is followed
by an overview of the methods that have been used to give object classification invariants for
curves and images (most often with respect to the Euclidean, similarity, and affine groups).

In Section 3 we present the classical M6bius invariants and discuss their utility with respect
to the properties identified in Section 2, before using a numerical example based on an ellipse to
demonstrate the difference between them. This is followed by the introduction of the invariant
that we have identified as the best behaved for curves with respect to the requirements previously
discussed. In order to demonstrate its utility, we present an experiment where a set of smooth
Jordan curves are created, and then the invariant distance is computed, and compared with
direct registration of each pair of curves in the Mdbius group using the H' similarity metric.
The results show that the invariant is well-behaved with respect to noise, and can be used to
separate all but the most similar shapes.

In Section 4 we move on to images and demonstrate the use of a 3D Mdbius signature that is
very sensitive and relatively cheap to compute, while still being more robust than the analogous

'D’Arcy Wentworth Thompson [38] famously deformed images of one species to match those of another; his
theory of transformations is reviewed and interpreted in light of modern biology in [43]. In particular, it has given
rise to image processing techniques such as Large Deformation Diffeomorphic Metric Mapping (LDDMM) [15],
in which images are compared modulo infinite-dimensional groups such as the diffeomorphism group. Petukhov
writes that Thompson “did not use the Erlanger program as the basis in this comparative analysis.” However,
the totality of Thompson’s examples and the explanations in his text do indicate that in all cases he selected his
transformations from the simplest group that would do an (in his view) acceptable job. Eight different groups
are identified in [22, Table 1]; four are finite-dimensional. Thus, whether consciously or not, Thompson’s work
was fully consistent with the Erlangen program. Of relevance to the present paper is that many of his examples
use conformal mappings, and thus may be approximated (or even determined by) Mé&bius transformations.
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signature for curves. As far as we know, such differential invariant signatures (in the sense of
Olver [30]) for images have not been considered previously.

2 Invariants of shapes and images

2.1 Computational requirements of invariants for object classification

The mathematical definition of an invariant, namely, a G-invariant function on M, is not
sufficiently strong for many computational applications. For example, object classification via
invariants involves comparing the values of the invariant on different GG-orbits, and the definition
says nothing about this. Recognising this, Ghorbel [14] has given the following partial list of
qualities needed for object recognition:

(i) fast computation;

(ii) good numerical approximation;

(iii) powerful discrimination (if two objects are far apart modulo G, their invariants should be
far apart);

(iv) completeness (two objects should have the same invariants iff they are the same modulo G);
(v) provide a G-invariant distance on M; and
(vi) stability (if two objects have nearby invariants, they should be nearby modulo G).

Calabi et al. [9] include in (ii) the requirement that the numerical approximation itself should
be G-invariant, while Abu-Mostafa et al. [1] add the further desirable qualities of:

(vii) robustness (if two objects are nearby modulo G, especially when one is a noisy version of
the other, their invariants should be nearby);

(viii) lack of redundancy (i.e., all invariants are independent); and

(ix) lack of suppression (in which the invariants are insensitive to some features of the objects).
Manay [21] includes, in addition:
(x) locality (which allows matching subparts and matching under occlusion).
To this already rather demanding list we add one more, that the set of invariants should be:
(xi) small.

The motivation for this last is purely a parsimony argument; it is easy to produce large sets
of invariants without adding much utility, and smaller sets of easily computable invariants are
to be preferred. This is particularly the case since some of these criteria are in conflict, so
there will usually not be one invariant that is preferred for all applications; instead, the best
choice will depend on the dataset and the particular application. Others are closely related,
especially discrimination, distance, stability, robustness, and suppression; these all depend on
which features of the objects are deemed to be signal and which are deemed to be noise.

These criteria can be unified and quantified in the following way: suppose that a distance
on objects has been chosen that measures the features that we are interested in (the signal),
and that is small for differences that we are not interested in (the noise). This distance induces
a distance on objects modulo G by (where || - || is some appropriately chosen norm):

d = inf |lg- 2 —yllg, inf lg-y - z]q)-
6(z,y) = max (inf llg-z —yla, inf lg-y - zlla)
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Figure 1. Sketch of the approximate relationships between dg(z,y), which measures the distance be-
tween two objects z and y modulo a symmetry group G, and ||I(x) — I(y)||, which measures the distance
between their invariants, illustrating the role of the desired properties of completeness, robustness, sta-
bility, and discrimination. In object recognition, ‘good discrimination’ is sometimes taken to mean the
avoidance of type I errors (relative to the null hypothesis that two objects are in the same group orbit, so
that in a type I error dissimilar objects are classified as similar), the avoidance of type II errors (similar
objects being classified as dissimilar), or is not specified; we take it to mean that both type I and type II
errors are avoided.

(In principle one can compute dg(x,y) by optimizing over G, and indeed this is done in many
applications. However, optimization is relatively difficult and unreliable, and becomes imprac-
tical on large sets of objects; this is the step that invariants are intended to avoid.) Suppose
that a norm on invariants I: M — R has been chosen. Then we can express the criteria as
follows:

(iii) discrimination: dg(z,y) > ¢ < ||[I(z) — I(y)| > e,
(iv) completeness: ||I(x) — I(y)|| =0 = dg(z,y) =0,
(vi) stability: 7(z) — I()]| S = = da(z) S

(vii) robustness: dg(z,y) Se=||I(x) — I(y)]| Se.

These may be subsumed and strengthened by the property of bounded distortion: an invariant
has bounded distortion with respect to d¢ if there exist positive constants c¢1, cg such that for
all z,y € M we have

crdg(x,y) < [1(z) = I(y)|| < cada(x, y). (2.1)

Suppose the invariant is to be used to test the hypothesis that two objects are the same
modulo symmetry group G. The situation is illustrated in Fig. 1, which plots the distance
between the invariants of two objects against the distance between the objects modulo G. The



Mobius Invariants of Shapes and Images 5

smaller the value of ¢y, the more robust the invariant is, and the fewer false positives will be
reported. The larger the value of ¢1, the more stable the invariant is, the better its discrimination,
and the fewer false negatives will be reported. If (2.1) holds only with ¢; = 0, the invariant is
neither stable nor complete; if there is no cg such that (2.1) holds, the invariant is not robust.
In addition, in some applications one may be more interested in some parts of the space shown
in Fig. 1 than others: for example, in discriminating very similar or very dissimilar objects.

In practice, bounded distortion may not be possible. Even completeness, the centrepiece
of the mathematical theory of invariants, can be very demanding. It turns out that many
invariants that are roughly described as ‘complete’ are not fully complete, that is, they do not
distinguish all group orbits, but only distinguish almost all group orbits. For example, Ghorbel’s
Euclidean invariants of grey-level images [14] only distinguish images in which two particular
Fourier coefficients are non-zero. Thus, it will be stable only on images in which these two
Fourier coefficients are bounded away from zero. The most commonly-used Euclidean signature
of curves, (k, ks), is complete only on nondegenerate curves [17]. The fundamental issue is that
even for very simple group actions, the space of orbits can be very complicated topologically,
and thus very difficult (or even impossible) to coordinatize via invariants. We illustrate these
ideas via an example:

Example 2.1. Consider n points 21, ..., 2, in the complex plane. Let G = S! act by rotating
the points, i.e., € (21,...,2,) = (e?21,...,¢"2,). Then {Zizj: 1 <i < j < n} forms a complete
set of invariants. It is very large (there are n? real components) compared to the dimension 2n—1
of the space, C"/S!, in which we are trying to work. However, if any one real component of the
set is omitted, the resulting set is not complete. For example, if |21|? is omitted, then the points
(1,0,...,0) and (2,0,...,0) have the same invariants, but do not lie on the same orbit. This is
the situation considered in the problem of phase retrieval [6]. By choosing combinations of {Z;z;}
it is possible to create smaller sets of complete invariants, but the computational complexity of

calculating the description of the n points is still O(n?) [6].

In cases where one settles for an incomplete set of invariants, or a set that is not of bounded
distortion — so that the worst-case behaviour of the invariants is arbitrarily poor — it can make
sense instead to study the average-case behaviour of the invariants over some distribution of
the objects. This is analogous to the role that ill-posed and ill-conditioned problems play
in numerical linear algebra, although in that case the ill-conditioning is intrinsic rather than
imposed by considerations of computational complexity. Indeed, one can sometimes very usefully
describe objects based on an extremely small number of invariants, for example, describing planar
curves by their length and enclosed area, or by the first few Fourier moments of their curvature.
What is wanted is to optimize the behaviour of the invariants, over some distribution of the
objects, with respect to their time and/or space complexity. However, we know of no genuine
cases in which such a program has been carried out.

2.2 Invariants of curves

There is a large literature concerning invariants to the Euclidean and similarity groups for both
curves and images. The purpose of this section is to provide an overview of the dominant themes
within that work that are relevant to our goal of identifying invariants for the Mobius group
that satisfy at least some of the criteria listed in the previous section.

We define a (closed) shape as the image of a function ¢: S' — R2. For different restrictions
on ¢ this defines different spaces: if ¢ is a continuous injective mapping then this defines simple
closed curves, while if ¢ is differentiable and ¢'(t) # 0 for all ¢ this defines the ‘shape space’
Imm(S?, R?)/ Diff(S1) [26], while if ¢ is an immersion and ¢(S') is diffeomorphic to S!, we
obtain the shape space Emb(S!, R?)/Diff(S') (roughly, the curve has no self-intersections).
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There are also smooth (C*°) versions of these, piecewise smooth versions, shapes of bounded
variation, and so on. The geometry of these shape spaces is now studied intensively in its own
right [23, 24] as well as as a setting for computer vision; see [8] for a recent review.

The quotient by Diff(S!) in the shape spaces has the effect of factoring out the dependence
on the parameterization. Various methods have been used to achieve this, including:

1. Using a standard parameterization, such as Euclidean arclength. This leaves a dependence
on the choice of starting point, i.e., the subgroup of Diff(S!) consisting of translations is
not removed.

2. Moment invariants, fOL f(é(s))ds, where L is the length of the curve, s is Euclidean
arclength and f ranges over a set of basis functions, such as monomials or Fourier modes [1].

3. Currents | g1 ¢*a, where a ranges over a set of basis 1-forms on R?, such as monomials
times dz and monomials times dy [15].

The next step is to consider a Lie group G acting on R? that induces an action on the shape
space. Here, many methods and types of invariants have been investigated (see, e.g., [42]).

The moving frame method is a general approach to constructing invariants. Objects are put
into a reference configuration and their resulting coordinates are then invariant. The mo-
ving frame or reference configuration method was developed as a way of finding differential
invariants and variants of them (see [31] for an overview). A simple application of the
method is the situation considered in Example 2.1, of n points in the plane under rotations.
Consider configurations with z; # 0, |argz;| < 7. Rotate the configuration so that z;
lies on the positive real axis. The coordinates of the resulting reference configuration,
z1z;/|z1)?, are invariant. In this case, the invariants are well behaved as | arg 21| — , but
not as z; — 0.

Joint invariants are functions of several points; for example, pairwise distances for a complete
set of joint invariants for the action of the Euclidean group on sets of points in the plane.

Differential invariants are functions of the derivatives of a curve at a point. There exist
algorithms to generate all differential invariants [31]. For the action of the Euclidean
group on planar curves, the Euclidean curvature k = ¢’ x ¢"/||¢/||® is E(n) invariant (and
parameterization invariant), and its derivatives d"x/ds"™ with respect to arclength form
a complete set of differential invariants.

Semi-differential invariants (also known as joint differential invariants [29]) of a curve are
functions of several points and derivatives.

Integral invariants are formed from the moments or the partial moments f:o f(o(t)) dt. With
some care they can be made parameterization- and basepoint-independent [11, 21]. Ini-
tially, these invariants appear to have some advantages, being relatively robust and often
including some locality. However, they are not always applicable; for example [21], which
used regional integral invariants, still requires a point correspondence optimization in or-
der to get a distance between shapes. In addition, groups such as the projective group
do not act on any finite subset of the moments [42]. Astrom [5] shows that there are no
stable projective invariants for closed planar curves. While local integral invariants are
promising, as reported by [16], there may be analytic difficulties in deriving them.

Another example of the moving frame method, which is common in image processing and
shape analysis, is centre of mass reduction. The centre of mass of a shape may be moved
to the origin in order to remove the translations. This may be calculated by, for example,
f¢(51)(x2/2,:cy)dy = ffinw(sl)(x,y)dxdy. However, the shapes © = a + sint, y = 0 have centre
of mass equal to 0 for all values of a, even though they are related by translations. Thus, this
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method would not be robust on any dataset that contained shapes approaching such degenerate
shapes. For rotations, the reference configuration method will not be robust if there are objects
close to having a discrete rotational symmetry. The underlying problem with the reference
configuration approach is that it is attempting to use a set of invariants equal to the dimension
of the desired quotient space M/G. This space is almost always non-Euclidean, so such a set
can only be found on some subset of M /G of Euclidean topology. The set is then robust only
on datasets that are bounded away from the boundary of this subset.

Calabi et al. [9] propose the use of differential invariant signatures for shape analysis, and fur-
ther argue that these should be approximated in a group-invariant way. For example, for the Eu-
clidean group, the signature is the shape (k, k) regarded as a subset of R?. The claimed advan-
tages of the approach are that the signature determines the shape; that it does not depend on the
choice of initial point on the curve or on parameterization by arclength, and that its G-invariance
makes it robust; and that it is based on a general procedure for arbitrary objects and groups.
See [2, 4, 9, 18, 30, 35, 36] for further developments and applications of the invariant signature.

Although the signature at first sight appears to be complete (e.g., Theorem 5.2 in [9]),
a more detailed treatment (e.g., [17, 28]) highlights the fact that it is not complete on shapes
that contain singular parts — straight and circular segments in the Fuclidean case. For these
parts, the signature reduces to a point. Thus, for shapes that have nearly straight or nearly
circular segments, the signature cannot be robust. In addition, while the signature does not
depend on the starting point or the parameterization, it takes values in a very complicated set,
namely, the planar shapes. To compare the invariants of two shapes requires comparing two
shapes. Essentially, the parameterization-dependence has only been deferred to a later stage
of the analysis (unless one is content to compare shapes visually). One approach to this is to
weight the signature, see [32] for more details.

The claim in [9] that the method’s G-invariance makes it robust should be assessed through
further analysis and experiment. It would appear to be most relevant for datasets in which the
errors due to the presentations of the shapes are comparable to those resulting from the errors in
the shapes themselves (i.e., noise) and from the distribution of the objects in a classification prob-
lem. Their final point, that the method is extremely general, is a powerful one. Calabi [9] carry
out the procedure for the Euclidean and for the 2D affine group. However in Section 6.7 they re-
port that “the interpolation equations in general are transcendentally nonlinear and do not admit
a readily explicit solution”, indicating that the method may not succeed for all group actions.

It is also possible to represent the shape as a binary image and apply image-based invariants
(which are described next). This has the advantage of working directly in the space R? on which
the group acts, and avoiding all questions of parameterization, etc., but it does sacrifice a lot
of information about the shape. A related approach, which is popular in PDE-based method
for curves, is to represent the shape as the level set of a smooth function ¢: R? — R. This is
also parameterization-independent, and retains smoothness, but we have never seen it used in
for constructing invariants.

2.3 Invariants of images

Most studies of image invariants has been based on grey-level images f: Q@ — [0,1], where
Q2 C R2. The methods are primarily based on moments [1] or Fourier transforms [14, 19] of the
images, and have been highly developed for the translation, Euclidean, and similarity groups,
where the linearity of the action and the special structure of these Lie groups means that the
approach is particularly fast and robust. Attempts have been made to extend the method of
Fourier invariants to other groups. There is an harmonic analysis for many non-Abelian Lie
groups, including, in fact, the Mdbius group [37], as well as a general theory for compact non-
commutative groups [13]. There are some applications of this theory to image processing [19, 41]
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and to other problems in computational science. Fridman [12] discusses a Fourier transform for
the hyperbolic group, the 3-dimensional subgroup of the Mobius group that fixes the unit disc.
However, the theory appears not to have been developed to the point where it can be used as
effectively as the standard Fourier invariants. Therefore, in this paper, in Section 4, we develop
a Mobius invariant of images, based on a differential invariant signature of the image.

3 Mobius invariants for curves

In this section we consider invariants of curves for the Mdobius group, and derive one suitable
for practical computation, demonstrating its application for a set of simple closed curves.
3.1 Known Moaobius invariants

The most well-known invariant of the Mobius group is the cross-ratio, also known as the wurf,
which is based on the ratio of the distances between a set of 4 points:

(21 — 23) (22 — 24)
(22 — 23)(21 — 21)’

CR(z1, 22, 23, 24) :=

where the invariance means that CR(T'z1,Tz2,Tz3,T24) = CR(21, 22, 23, 24) for Mobius trans-
formation 7.

Since the Mdbius group can send any triple of distinct points in C into any other such triple,
there are no joint invariants of 2 or 3 points; the orbits are the configurations consisting of 1, 2,
and 3 distinct points. When n > 4, the set of cross-ratios of any four of the points forms
a complete invariant.

For large numbers of points, this set of all cross-ratios has cardinality O (n*) which is imprac-
tically large (although some may be eliminated using functional relations amongst the invariants,
known as syzygies [29]). However, if the dataset of shapes or images is tagged with a small num-
ber of clearly-defined landmarks, then some subset of the set of cross-ratios may form a useful
invariant. This is the method by which Petukhov [34] was able to identify linear-fractional,
Mobius, and projective relationships in biological shapes. For untagged objects, automatic tag-
ging may be possible using critical points (e.g., maxima and minima) of images, and their values;
these are homomorphism- and hence Mobius-invariant, and can be identified, even in the pre-
sence of noise, by the method of persistent homology [10]. However, such invariants are clearly
highly incomplete for shapes and images, and we do not study them further here.

In order to derive differential invariants for the Md6bius group, the most useful starting point
is the Schwarzian derivative

sa0=(2) 3 (5) =22 (Z) 6.

By an abuse of notation, which is standard in the literature (see, for example, the very read-
able [3]), the same formula (3.1) is used in three different situations: when z: R — R (used in
studying linear-fractional mappings in real projective geometry); when z: C — C (used in stu-
dying complex analytic mappings); and when z: M — C, M a real 1-dimensional manifold (used
in studying the Mobius geometry of curves). We adopt the latter setting so that 2’ is the tangent
to the curve. The Schwarzian derivative is then invariant under Mobius transformations ¢:

S(do2)(t) = S(9)(t)

and under reparameterizations ¢: M — M transforms as

S(zo9) = (S(2) o) - ()7 + S(¥),
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where the last term is the real Schwarzian derivative. Therefore (where Im represents the
imaginary part of a complex number)

Im §(z 04) = (Im S(2) 0 ) - ()7

This can be used to construct a distinguished Mdébius-invariant parameterization of the curve.
Let Z(A\) = z(t) where A = 9(t). The parameter A will be chosen so that Im S(Z) = 1. This
gives

Im S(z) = Im S(2 0 ) = Im S(2) 0 ¥) - () = ()%

The choice ¢'(t) = /|Im S(z)(t)| achieves this while preserving the sense of the curve, while
the choice ¢'(t) = —/|Im S(z)(t)| achieves it while reversing the sense. Put another way, the
parameter

| VITmSE)()]

is invariant under Mobius transformations and almost invariant under sense-preserving repa-
rameterizations of ¢, which act as translations in A (because of the freedom to choose tp).
Equivalently, the 1-form

= V[Im 5(2)(t)|dt,

known as the Mdobius or inversive arclength, is M6bius- and sense-preserving parameterization-
invariant.

This is often stated in a form (originally due, according to Ahlfors [3], to Georg Pick) using
the Euclidean curvature k. If the curve is parameterized by Euclidean arclength s, then its
tangent 0(s) = 2/(s)/||'(s)|| and k(s) = 0'(s). Differentiating again leads to Im S(z)(s) = k(s),
or

A= /|K'(s)|ds.

The 1-form dA provides a useful discrete invariant, the Mobius length L of the curve

:/d)\.
M

The real part of S(Z)(\) is now a parameterization-invariant Mobius invariant known as the
inversive or Mébius curvature [33]

B 41%/(’%/// _ HQH/) _ 5(,4/)2
Kmsp = 8(/4)3 )

where ” denotes differentiation with respect to arclength s.

The set of all differential Mobius shape invariants is then d"kys,/dA™, n > 0. Following
Calabi et al. [9], two possible candidate invariants that could be used to recognize Mébius shapes
are the function rys,(\) modulo translations and the signature (kyg,, dryes,/dA)(ST) € R2.
These are complete on sections of shapes with no vertices (points where x/(s) = 0). However,
since Ky, requires the 5th derivative of the curve (third derivative of the curvature), it is not
robust in the presence of noise, and we do not explore it further.

There are also invariants based on forms of higher degree. We give just one example, the
Mdbius energy

// sin 6,, sin 8, sinbusinfy 4 g, (3.2)
MxM U—U|2
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introduced by O’Hara and Solanes [27], see also the related Kerzman—Stein distance [7]. Here
du, dv are Euclidean arclength and 6,, (resp. 6,,) is the angle between v — u and 2’(u) (resp. v).
It represents a renormalization of the energy of particles on the curve, distributed evenly with
respect to Euclidean arclength and interacting under an r~* potential. (The authors of [27]
comment that “due to divergence problems, almost nothing is known about integral geometry
[i.e., about invariant differential forms] under the M&bius group”.) The Mobius energy has one
distinguishing feature compared to the other invariants: its definition depends only on the first
derivative of the curve. The singularity at u = v is removable, since the integrand obeys

sinfy sinf, 1

v iﬁ(u)n(v) + O(Jv — ul).

Thus, the energy is defined for C? curves, and even near the singularity it depends only on the
curvature of the curve.

However, in numerical experiments we found the integrand of (3.2) difficult to evaluate accu-
rately and invariantly, particularly near the diagonal, while the double integral generated little
improvement in robustness. The most negative feature of the energy is its cost: its evalua-
tion apparently requires considering all pairs of points on a discrete curve. There is another
reason why invariant 2-forms are less useful than invariant 1-forms like d\: invariant k-forms
distinguish coordinates on M* only up to k-form- (i.e., volume-) preserving maps. These are
infinite-dimensional for k£ > 1, but 1-dimensional for £ = 1: the coordinates are determined up
to translations. For these reasons, we do not consider the energy, or related invariant 2-forms,
any further.

Finally, M6bius transformations map circles to circles, and thus critical points of Euclidean
curvature (the ‘vertices’ of the shape) are Mobius invariants. The four vertex theorem states
that all smooth curves have at least four vertices. The number of vertices is a discrete Mdbius
invariant. Consequently, sections of shapes on which the Euclidean curvature is monotonic, and
their Mobius lengths, are Mobius invariant.

3.2 Example: Evaluating the Mobius length of an ellipse

Having described a number of possible invariants, and ruled many of them out based on the
criteria discussed in Section 2.1, we now provide a concrete example, illustrating and testing
some of these constructions on the ellipse z(t) = cos 27t + 2isin27t, 0 < ¢t < 1. The ellipse is
discretized at t; = (i + 1/4)h, i = 0,...,n, giving points z; = z(t;), and the M&bius arclength
d\ is calculated in two ways:

e From the curvature method, in which the Euclidean curvature s is calculated in a Eucli-
dean-invariant way? by interpolating a circle through 3 adjacent points, and dx/ds by
a finite difference, giving

dA(tiva/2) = |K6(ziv1s 2ig2, 2igs) — 6(2, Ziv1, zie2) | (|22 — zigal)- (3.3)
e From the cross-ratio method, using

dA(ti+372) = v/6|Im(log(CR(2, zit1, zit2, 2i43)))|. (3.4)

2Following Calabi et al. [9], let A, B, C be three points on a curve, and let a = d(A, B), b = d(B,C), and
c = d(C, A) be the Euclidean distances between them. Then the curvature of the circle interpolating A, B, and C
is

s(s—a)(s=b)(s—c)
abc '

k(A,B,C) = Y
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Figure 2. The ellipse used as a test case, showing 50 points equally spaced with respect to Mobius
arclength.
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Figure 3. The MGdbius arclength density, dA/dt, for the ellipse, and its errors when calculated by the
two approximations (3.3) and (3.4).

Away from vertices (points where dA = 0), both of these are second-order finite difference
approximations to the Mobius length fé’f dA of the arc z([ti+1,tit2]), or, dividing by h, to its
arclength density dA/dt¢. This can be established by expanding the approximations in Taylor
series®. We test their accuracy as a function of the step size h. The total M&bius length of the
curve is

127+/| sin 47t |sm47r |
L —/ d\ = / 5+ 3008 dnt dt =6.86 (to 2 d.p.).

The arclength density d\/dt is shown in Fig. 3, showing its 4 zeros at the vertices of the ellipse,
where the ellipse is approximately circular, and its square-root singularities at the vertices. The

n
Mébius length is approximated by the trapezoidal rule, i.e., by Ly := Y dA(ti11/2). The error
i=1

3A related approximation is dA(t;j3/2) =~ \/gﬂm(CR(zi,ziH,zi+2,z,~+3))|. This is given in [7] but with an

apparent error (g replaced by 6).
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Figure 4. The error in the two approximations of the total Mdobius length of the ellipse. Here there are
n := 25 - 27 points on the ellipse.

L — Ly, is expected to have dominant contributions of order h3/2, due to the singularities at the
vertices, and of order h?, due to the finite differences used to approximate dA.

In this example, the cross-ratio approximation has errors approximately 0.176 times those of
the curvature approximation (see Fig. 3). However, due to some cancellations in this particular
example, the curvature approximation actually gives a slightly more accurate approximation to
the Mé&bius length (see Fig. 4). The dominant sources of error can be eliminated by two steps
of Richardson extrapolation, first to remove the O(h%/?) error, and then to remove the O(h?)
error. This is highly successful and allows the calculation of the Mobius length with an error of
less than 10719, even though it is singular and involves a 3rd derivative.

Next, we subject the ellipse to a variety of Mobius transformations. The resulting shapes
and errors are shown in Fig. 5. The errors increase markedly for the curvature method, which is
not Mobius invariant, but are unchanged for the cross-ratio method, which is Mobius invariant.
Thus, this experiment supports the argument of [9] that numerical approximations of invariants
should themselves be invariant.

3.3 The Mobius invariant CR(A; z, 6)

The method proposed in this paper for closed curves is to parameterize the curve by Mobius
arclength, giving z(\), and to use as an invariant the cross-ratio of all sets of 4 points a distance §
apart. We call this the Shape Cross-Ratio, or SCR.

Definition 3.1. Let z: S' — C be a smooth curve. Let L be its Mobius length, and let
z: R — C be an L-periodic function representing the curve parameterized by Mobius arclength.
The shape cross-ratio of z is the L-periodic function SCR: R — C defined by

SCR(A; 2,8) = CR((A), Z(A + 6), 2(A + 28), (A + 36)).

The shape cross-ratio signature of z is the shape SCR(R; z,0) C C
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Figure 5. The ellipse subjected to 16 different Mobius transformations z — ﬁ. 10 landmarks,
equally spaced in A, are shown. Next to each shape is given the error in its Mobius length as calculated
by the curvature method. The error in the cross-ratio method is 0.005 for all shapes, because it is Mobius
invariant. (The other M&bius transformations are the Euclidean similarities, which are easy to visualize.
Figures not to scale.)

The shape cross-ratio is invariant under the Mobius group, and sense-preserving reparame-
terizations of the curve act as translations in A. (Reversals of the curve will be considered in
Section 3.5.) The shape cross-ratio signature is invariant under the Mo6bius group and under
reparameterizations of the curve.

For an L-periodic function f: R — C we will denote its Fourier coefficients by

=g [ roeta

The translation ¢ ~ t + ¢ acts on the Fourier coefficients as F(f), +— e 2M/LF(f),. The
Fourier amplitudes |F(f),|? are invariant under translations, and can be used to recognize
functions up to translations, but are clearly not a complete invariant: for a function discretized
at N equally-spaced points, and using the DFT, the space of orbits has dimension 2N —1 and we
have only N invariants. The bispectrum [19] F(f)mF (f)nF (f)—m—n is better, being complete
on functions all of whose Fourier coefficients are non-zero, but it is a very large set of invariants.
Other invariants are F(¢1 o f)nF(¢2 o f)—y for any functions ¢q2. Each such choice provides
2N invariants. The choice of ¢1 and ¢o determines which aspects of f are measured by the
invariant. If necessary, several such pairs may be used.

Definition 3.2. The Fourier cross-ratio of the shape z is
FCR‘(? Z, 5) /R (Ca FCR,(TL, Z, 5) - -F((bl o SCR(7 Z, 5))nf(¢2 o SCR(7 Z, 5))—717 (35>

where the Fourier transforms are based on the Mobius length L of z.
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In the numerical illustrations we use

- v w) = w)? .

and the distance between the invariants of two shapes z; and z given by
HFCR(-;Zl,(S) —FCR(~;22,5)H2. (3.7)

The motivation here is that the cross-ratio becomes arbitrarily large when two different parts
of the curve approach one another. If left untouched (i.e., if we use just ¢1(w) = w), then these
large spikes in SCR(A; z,4) will dominate all other contributions to the shape measurement. By
scaling them using (3.6), they will still contribute to the description of the shape, but in a way
that is balanced with respect to other parts of the shape. ¢; and ¢o take values in the unit
disk and ¢5 is sensitive to the main range of features of shapes; only values of SCR near 0 are
suppressed, and these are rare.

The invariant SCR(\; z,d) is smooth on simple closed curves, and also on most curves with
self-intersections (blow-up requires the close approach of two points Mébius distance nd apart).
It is locally complete, as given z([a, a+34]), the invariant SCR(A) determines z. We do not know
if it is globally complete, i.e., if, given SCR(A) which is the invariant of some shape, the shape
can be determined up to Mobius transformations, because this requires solving a nonlinear
functional boundary value problem. Subject to this restriction, the invariant FCR(n; z,d) is
complete except on a residual set of shapes (those for which enough Fourier coefficients in (3.5)
are zero).

We will first study the numerical approximation of SCR and then study its use in recognizing
shapes modulo Mobius transformations.

The numerical experiments in Section 3.2 convinced us to approximate the Mobius ar-
clength using the cross-ratio. However, when combined with piecewise linear interpolation to
locate points on the curve the required distance § apart, we found that the resulting values of
SCR(\; z,9) did not converge as h — 0. This is due to accumulation of errors along the curve,
which arise particularly at the vertices due to the singularities there. This prompted us to de-
velop a more refined interpolation method that takes into account the singularities of dA/d¢ at
the vertices. We call it the modified cross-ratio method:

1. Calculate the square of the Mobius arclength density at the centre of each cell, as

dx\?
E =6 Im(log(CR(zZ, Zi+15 Zi+2, Zi+3))).
i+3/2

If the curve is smooth, this is a smooth function.
2

2. Let f(t), 0 <t <1, be the piecewise linear interpolant of (Q)Hg/?

dt

3. Calculate \(t) = fg V|f (1) d7 and its inverse, t()), used in locating the parameter values
at which points a desired length apart are located, exactly (we omit the formulas).

4. The desired points z(¢(A + nd)) are calculated using linear interpolation from the known
values z(ih).

5. The cross-ratio is evaluated at N points equally spaced in A, giving SCR(¢L/N;z, ) for
i=1,..., N, and the Fourier invariant FCR evaluated using two FFTs.

The resulting cross-ratio is globally second-order accurate in h. Its accuracy could be increased
for smooth curves using higher order interpolation, but the calculation of the inverse ¢(\) would
be much more complicated and the method would be less robust.
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Figure 6. Average error in L (left) and FCR (right) for the ellipse shown in Fig. 2 as a function of the
number of points N and noise level ¢.

The error in the length L of the ellipse used in Section 3.2 as calculated by this method is
shown in Fig. 4. It behaves extremely reliably over a wide range of scales of h; its error after
one Richardson extrapolation is observed to be O(h*), which indicates that the singularities at
the vertices have been completely removed.

The parameter ¢ is the length scale on which SCR(\; z,d) describes the shape. However,
if 6 — 0 then SCR(A;2,0) — Kye, £ 1t the real part becomes extremely nonrobust and the
imaginary part yields no information [33]. In the experiments in this paper we have used
d = L/8. Choosing L/§ € Z seems to yield somewhat improved accuracy, as the same values
of z are used repeatedly.

As the method relies on parameterization by Mobius arclength, it is unavoidably sensitive to
noise in the data. We test its sensitivity for a noise model in which each point on the discrete
curve is subject to normally distributed noise of standard deviation €. The dependence of the
error on € and N is shown for length and cross-ratio invariants in Fig. 6. Clearly, both are
sensitive to relatively small amounts of noise. However, some positive features can also be seen:

(i) The errors in L and FCR(n; z,6) are both O(h?) in the absence of noise.

(ii) The errors in FCR(n; z,0) are much smaller than those in L — their relative errors are
about 8 times smaller. (For the ellipse, L ~ 6.86 and ||SCR(+; z,0)]||2 =~ 0.65.)

(iii) The error in FCR(n;z,J) appears to saturate at about 13% as e increases and as N
increases.

Point (iii) is particularly striking. It appears to hold because (a) d is chosen to be proportional
to L, and thus when the noise is high, the chosen points stay roughly in their correct places; and
(b) noise in the chosen points is averaged out by the Fourier transform, which remains dominated



16

S. Marsland and R.I. McLachlan

¢ = 0e+00, error = 0.0001

N/
N/
N/
-

¢ = 2e-05, error = 0.0037

v/
™/

¢ = 2e-04, error = 0.0409

Y

¢ = 2e-03, error = 0.0593

¥
\J
¥/
v

¢ = 3e-06, error = 0.0007

¢ = 3e-05, error = 0.0130

¢ = 3e-04, error = 0.0669

>/
¥/
Y

¢ = 3e-03, error = 0.0643

¢ = 6e-06, error = 0.0003

¢ = 6e-05, error = 0.0191

V/
7

¢ = 6e-04, error = 0.0502

¢ = 6e-03, error = 0.0525

¢ = 1e-05, error = 0.0018

¢ = 1e-04, error = 0.0406

¢ = 1e-03, error = 0.0696

¢ = 1e-02, error = 0.0633

Figure 7. The cross-ratio signature SCR: S* — C (blue), and the error in its Fourier invariant FCR, is
shown for the ellipse discretized with N = 128 points and various levels of noise. The exact signature is
shown in red.

by its first few terms. This effect is illustrated in Fig. 7 in which a single noise realization is
illustrated for value of € from 0 to 1072, Even though L is overestimated by a factor of 100, the
signature cross-ratio SCR(\; z, d) is still recognizable.

3.4 Comparison with shape registration

We now compare the results of the Mdbius invariant FCR(n; z,0) with direct registration of
shapes. Given two shapes z and w we define the G-registration of z onto w as

rg(z,w)= min |jpozoy —w|. (3.8)
peG

YeDifft+(s1)

Different choices of norm in (3.8) will give different registrations; we have used the H' norm

HzHip=/0 2O + a2/ () dt, (3.9)

where the constant « was chosen as 0.1, a value which made both contributions to the norm
roughly equal. One of the peculiarities of the Mobius group is that z may register very well
onto w while w registers poorly onto z. This happens when z has a distinguished feature which
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Figure 8. The set of 16 shapes used in the numerical experiments. The shapes are shown to scale with
the shape number marking the origin, along with the shape’s M&bius length L and number of vertices V.

can be squashed, thus minimizing its contribution to r¢(z,w). Therefore in our experiments we
use the ‘distance’

da(z,w) = max(rg(z,w), ra(w, 2)). (3.10)

Note that this should not be regarded as any kind of ‘ground truth’ for the G-similarity of z
and w. It is not G-invariant. However, as we shall see, it does correspond remarkably well to
the Mo6bius invariants described earlier.

To calculate dg(z,w) numerically, we discretize Difft(S!) by piecewise linear increasing
functions with 16 control points and perform the optimization using Matlab’s 1sqnonlin, with
initial guesses for ¢ chosen to be each of 4 rotations and 3 scale factors for ¢, and initial ¢
chosen to be the identity.

We generated 16 random shapes from a 14-dimensional distribution that favours smooth
Jordan curves of similar sizes (where U(0, 27) denotes uniform random numbers in the range 0
to 2m):

4
z(t) = Z ane™int Re(ay), Im(a,) € N(O, 1/(1 + |n]3)), n# +1,

n=—4

arga; € U(0,2m), la1]| =1, a_1/a; € U(0,0.6).

The shapes are shown in Fig. 8. They are all simple closed curves, which we take to be posi-
tively oriented. The 120 pairs of distinct shapes are registered in both directions, and the scatter
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Figure 9. Scatter plot of distance between all 120 pairs of 16 shapes with respect to (i) the H! distance
between the shapes, as defined in (3.8)—(3.10), and (ii) the distance between their Mdbius invariants,
defined in (3.5)—(3.7). The correlation coefficient is 0.85. The registration between the 4 pairs marked
with circles is illustrated in Figs. 10-13.

), d =5.29 (b), d = 4.59
d=185 d=1.63

RS

Figure 10. Registration of shapes 12 (blue) & 13 (red). This pair has the closest Mobius invariants
(distance 0.0426, see (3.7)), is 9th closest after Mobius registration, and 96th closest after similarity
registration. (a) Similarities act on blue shape; (b) Similarities act on red shape; (c¢) Mdbius acts on
blue shape; (d) Mdobius acts on red shape. Here d = rg(z,y) where z and y are the two shapes, see
equation (3.8).

plot between this distance and the 2-norm of the distance between their invariants is shown in
Fig. 9. The correlation (0.85) is extremely striking, and suggests that this pair of measures
may be related by bounded distortion (2.1), implying that they meet many of the requirements
that we identified in Section 2.1; they are also quick to compute and provide a good numerical
approximation.
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Figure 11. Registration of shapes 2 (blue) & 16 (red). This pair has the 2nd closest Mébius invariants
(distance 0.0697), see (3.7)), is 3rd closest after Mobius registration, and 42rd closest after similarity
registration. (a) Similarities act on blue shape; (b) Similarities act on red shape; (¢) Mdbius acts on
blue shape; (d) Mdobius acts on red shape. Here d = rg(z,y) where z and y are the two shapes, see
equation (3.8).
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Figure 12. Registration of shapes 8 (blue) & 10 (red). This pair is closest after M&bius registration.
It has the 11st closest Mobius invariants (distance 0.1165) and is the closest pair after similarity registra-
tion. (a) Similarities act on blue shape; (b) Similarities act on red shape; (¢) Mobius acts on blue shape;
(d) Mébius acts on red shape. Here d = rg(z,y) where x and y are the two shapes, see equation (3.8).

Some examples of the registrations in the similarity and Md&bius groups are shown for four
close pairs in Figs. 10-13. Including the invariants L and V in the list of invariants did not
improve the correlation. Note that the errors in ||[FCR(:; z,0)| observed in Fig. 4 are small
enough to allow the separation of all but the closest pairs of shapes, regardless of the level of
noise €.
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(a),d =3.72 (b), d = 2.62
(c),d=165 (d),d=2.12

Figure 13. Registration of shapes 9 (blue) & 11 (red). This pair has the 3rd closest Mdbius invariants
(distance 0.0798), is 9th closest after Mdbius registration, and 96th closest after similarity registration.
(a) Similarities act on blue shape; (b) Similarities act on red shape; (c) M&bius acts on blue shape;
(d) Mdébius acts on red shape. Here d = rg(z,y) where 2 and y are the two shapes, see equation (3.8).

3.5 Reversals and reflections

Orientation reversals and reflections are examples of actions of discrete groups and can, in theory,
be handled by any of the approaches in Section 2.2. First, consider the sense-reversing repara-
meterizations, z(t) — z(—t). These map the SCR invariant as SCR(A; z,9) — SCR(—A; z,0)
and hence FCR(n) — FCR(—n). It is convenient to pass to the equivalent invariants:

FCR(n) — FCR(—n), n >0,
Ty, =
FCR(n) + FCR(—n), n <0,

for which z,, is invariant for n < 0 and z,, — —x_, for n > 0. Suppose that we wish to
identity curves with their reversals, that is, to work with unoriented shapes. Some options are
the following:

1. The moving frame method: the shapes are put into a reference orientation first. This is
only possible if the problem domain is restricted suitably; in this case, for example, to
simple closed curves, which can be taken to be positively oriented. This is the approach
that we have taken in Sections 3.3 and 3.4. If the problem domain includes non-simple
curves this approach may not be possible. For example, in the space of plane curves with
the topology of a figure 8, each such shape can be continuously deformed into its reversal;
thus we cannot assign them orientations, since they vary continuously with the shape.

2. Finding a complete set of invariants: this is x,, for n < 0 and z;2; for 7,j > 0. Again we see
that the quotient by a relatively simple group action is expensive to describe completely
using invariants.

3. Use an incomplete set of invariants that is “good enough”: here, using z,, for n < 0 and
TpZny1 for n > 0 is a possibility. This creates a complicated effect on the metric used to
compare invariants.
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4. As the group action is of a standard type, one can work in unreduced coordinates (x,)
together with a natural metric induced by the quotient, such as some function of ||z|| — ||y||
and the Fubini-Study metric on projective space, cos~(|z7y|/||z|l||yl|)-

5. Finally, and most easily in this case, for finite groups one can represent points in the
quotient as entire group orbits. A suitable metric is then

d — min ||z — g -
(z,y) ggg\\w g-yl,

where G is the group. Although this is impractical for large finite groups, here G is Zo.

Similar considerations apply to recognizing shapes modulo the full inversive group, generated by
the M&bius group together with a reflection, say z + z. The reflection maps FCR(n) — FCR(n)
and hence is an action of the same type as reversal (a sign change in some components). The
reflection symmetry of the ellipse in Fig. 2, for example, can be detected by the reflection
symmetry of the cross-ratio signature SCR()) in Fig. 7. (Its second discrete symmetry, a rotation
by 7, is manifested in Fig. 7 by the signature curve retracting itself twice.)

The invariants developed here are for closed shapes. They can be adapted for other types
of shapes (for example, shapes with the topology of two disjoint circles), but as the topology
gets more complicated (for example, shapes consisting of many curve segments) the problem
becomes significantly more difficult.

4 Mobius invariants of images

Let f: C — [0,1] be a smooth grey-scale image. Diffeomorphisms act on images by ¢ - f :=
fop~!. Tt is easy, in principle, to adapt the Mobius shape invariant SCR to images by computing
level sets of f, each of which is an invariant shape for which SCR can be calculated. In addition,
if ¢ is conformal, the orthogonal trajectories of the level sets, i.e., the shapes tangent to V f, are
also invariant shapes. In the neighbourhood of a simple closed level set, coordinates (A, u) can
be introduced, where A is Mobius arclength along the level set and p is Mobius arclength along
the orthogonal trajectories. The quantity

CR(z(A, ), z(A, e+ 6), 2(A+ 0, +0), z(A+ 9, b)), (4.1)

calculated from the cross-ratio of 4 points in a square, is then invariant under the Mobius group,
and reparameterizations of the level set act as translations in A.

In practice, however, the domain of this invariant is quite restricted. The topology of level
sets is typically very complicated and the domain of f may be restricted, so that level sets
can stop at the edge of the image. Restricting to level sets of grey-scales near the maximum
and minimum of f helps, but this is a severe restriction. Instead, we shall show that the
extra information provided by an image, as opposed to that provided by a shape, determines
a differential invariant signature using only 3rd derivatives, compared to the 5th derivatives
needed for differential invariants of shapes. Because of this, we do not develop the cross-ratio
invariant (4.1) any further here.

Proposition 4.1. Let f: C — R be a smooth grey-scale image. Let R C C be the regular points
of f. Identify x1 +ixe € C with (z1,22) € R? so that Vf is the standard Euclidean gradient.
On R, define

Vf _ n-V(Vxn)

. ~ nxV(V-n)
IV " VA

PYRE
' IV£II?
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Then
(f, Ans Ae) (R) (4.2)

is a subset of R? that is invariant under the action of the Mébius group on images.

Proof. As defined above, n is the unit vector field normal to the level sets of f. Let nt be
the unit vector tangent to the level sets given by nf = giyjnj. (Here i,j = 1,2 and €;; is the
Levi-Civita symbol defined by €17 = €92 = 0, €12 = 1, €97 = —1; we sum over repeated indices
and write n;, = On;/0z;.) From the Frenet-Serret relation n, = kn+, where s is arclength
along the level sets, we have that the curvature of the level sets is

k=n"ng=nt" ((nJ‘ -V)n) = einjemmni g = (8idjr — dadjr)ningm; k

= n;n;ng L — NNk = Nk (because njn; =1 = n;n;; = 0 for all k)
=V n.

Recall that the M6bius arclength of the level sets of f is d\ := Mds. Under any conformal
map, the scaling along and normal to the level sets is the same, and thus ds and 1/||Vf]]
both scale by the same factor. Therefore /[rs|/||V f| is invariant, as is its square |xs|/||V f]|%.
The sign of kg is also invariant under Mobius transformations, resulting in the given invariant

M = s/ VfII%.
The invariant A\, arises in the same way from the orthogonal trajectories, whose curvature is
V-nt=Vxn. |

Example 4.2. As a test image we take the smooth function

f(ﬂf, y) _ e—4a22—8 (y—O.Q:E—O.8$2)2 (43)
and calculate its invariant signature before and after the Mdbius transformation with parameters
a=0.9+0.1ij, b=0.1, c=0.140.4i, d=1. (4.4)

on the domain [—1,1]2. The invariants are approximated by finite differences with mesh spacing
1/80, corresponding to 161 x 161 pixel images. The invariants are shown as functions of (z,y) in
Fig. 14 for A, and Fig. 15 for \;. The resulting signature surfaces, shown for f in Fig. 16 in R3,
are quite complicated. A useful way to visualize and compare them is shown in Fig. 17. For
example, one can plot the contours of f in the (A,, \¢) plane, and similarly for other projections.
This enables a sensitive comparison of the signatures of the image and its Mobius transformed
version and reveals that they are extremely close.

Example 4.3. As a more numerical example, we take 9 similar blob-like functions, constructed
as the sum of four random 2D Gaussian functions, and their Mébius images under a random
Mobius transform, and compare their invariant signatures. The functions and their Mobius-
transformed variants f o o~ are shown in Fig. 18 as level set contours, while the invariant
signatures are shown in Fig. 19. Because the whole invariant signature surfaces are very com-
plicated, we show just the signature curve corresponding to the level set f~1(0.5). This depends
only on the first 3 derivatives of f on the level set. Because A\, and \; take values in [—o0, 00],
we use coordinates (arctan(;/4),arctan(Ay,/4)). Clearly, even this very limited portion of the
signature serves to distinguish the Mobius-related pairs extremely sensitively. In some cases,
the invariants change extremely rapidly along the level set, so that even though they are eva-
luated accurately, the resulting contours of the Mobius-related pairs do not overlap. This would
need to be taken into account in the development of a distance measure on the invariant signa-
tures.
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Figure 14. Contours 0.1,0.2,...,0.9 of a function are shown in blue, together with its invariant A,:
contour 0 in green, contours —0.25, —1, and —100 in red, and contours 0.25, 1, and 100 in black. Top:

L parameters in (4.4). The invariance can

function f from (4.3). Bottom: Mobius related function fop™
be seen, along with the way that A, typically blows up as Vf — 0. A small discretization error is visible
in the top figure: the saddle point near (—0.5, —0.5) has \,, & 1.07, whereas the exact value is 0.94. This

results in the wrong topology of the +1 contour (cf. bottom figure near (—0.8, —0.2)).

Example 4.4. In this example we illustrate the extreme sensitivity of the invariant signature
by evaluating it on 9 very similar images, together with their Mobius transformations. Each
original image is a blob function generated as in Example 4.3, but with parameters varying only
by £5%. The Mobius transformations have the form 1/(1 + ¢z) where ¢ is normally distributed
with standard deviation 0.1. The 0.5-level contours of the original and transformed images are
shown in Fig. 20, and their signatures in Fig. 21. The signature is extremely sensitive to tiny
changes in the image, but not to Mobius transformations.

We do not have a full understanding of the properties of this invariant signature with respect
to the criteria listed in Section 2. It is certainly fast, small, local, and lacks redundancy and
suppression. It has a good numerical approximation on smooth (or smoothed) images. Is it
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-1 -0.5 0 0.5 X 1

Figure 15. Contours 0.1,0.2,...,0.9 of a function are shown in blue, together with its invariant A
contour 0 (which locates vertices (points of stationary curvature) of the level sets) in green, contours
—0.25, —1, and —100 in red, and contours 0.25, 1, and 100 in black. Top: function f from (4.3). Bottom:

Mébius related function f o ¢~!

, parameters in (4.4).

complete? That is, given an image, does its signature surface determine the image up to a Mdbius
transformation? Suppose we are given a small piece of signature surface, parameterized by (u, v),
say. We are given three functions f(u,v), An(u,v), and A (u,v), and need to determine (by
solving three PDEs) three functions f(z,y) (the image), z(u,v), and y(u,v) (the coordinates).
Typically, the solution of these PDEs will be determined by some boundary data. This suggests
that distinct images with the same signature are parameterized by functions of 1 variable; a kind
of near completeness that may be good enough in practice.

Although very sensitive, the fact that it is not continuous at critical points means that it does
not have good discrimination in the sense of Section 2. (It falls into the ‘more false negatives’
region of Fig. 1.) Near nondegenerate critical points, the signature blows up in a well-defined
way, so it is possible that there exists a metric on signatures that leads to robustness and good
discrimination.
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arctan &

Figure 16. The sample image defined in equation (4.3) is shown in grayscale (top left) and as a graph
(z,y, f(z,y)) (bottom left). Its Mobius signature surface (4.2) is shown at right.

5 Conclusion

In this paper we have developed Mobius invariants of both curves and images, and proposed
computational methods to evaluate both, demonstrating them on a variety of examples. In
Section 2 we identified a set of properties that are important for invariants, principally that
there was a small set of invariants that were quick to compute, numerically stable, robust (so
that noisy versions of the same curve have similar invariants) and yet sufficiently discriminatory
(so that different objects have different invariants).

While differential invariants are not generally robust when dealing with noise, they offer
good discrimination and are cheap to compute; this leads us to the M&bius arc-length. The
cross-ratio is more robust, but requires a large set of points to be evaluated, and blows up as
the pairs of points approach each other. In order to make this reparameterization-invariant, we
used a Fourier transform. This lead to a method of computing Mdbius invariants that satisfies
the properties that we have outlined, as is demonstrated in the numerical experiments, see
particularly Fig. 9.
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0.5 / (
2 0 2 A
n
Figure 17. The invariant signature (f, \,,\;) shown for f in the left column and for f o o~! in the
right column. Top: contours 0.2, 0.4, 0.6, and 0.8 of f; middle and bottom: contours —1, —0.25, 0, 0.25,

and 1 of A, (resp. \¢). The two invariants are almost identical in appearance (see, e.g., the —1 (dark
blue) contour of A\; near (A, f) = (1,0.6), which is slightly different in the left and right columns).

Figure 18. Nine random blob-like functions are shown on the left. Each is given by the sum of 4
random Gaussians, with the range of the resulting function scaled to [0,1]. The domain is [—1,1]?
and the functions are discretized with h = 1/80 giving 161 x 161 grey-scale images. For each of the 9
functions f, a random Mébius transformation ¢ is chosen and the composition f o ¢~! shown on the
right, evaluated on the domain [—1,1]?. The transformations have parameters b = 0, a uniform in an
annulus with inner radius 0.7 and outer radius 1.3, d = 1, and ¢ with uniform argument and normal
random modulus with standard deviation 0.6. The contours 0.1, 0.2,...,0.9 of the functions are shown.
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Figure 19. The invariant signature (arctan()\;/4),arctan(\,/4)) evaluated on the level set f~1(0.5)
is calculated by central differences for each of the images in Fig. 18 left (shown in blue) and for the

corresponding images in Fig. 18 right (shown in red). The domains are [—7/2,7/2]2. The signature
curves distinguish the Md6bius-related pairs very sensitively; only tiny finite difference errors are visible.
However, some errors related to insufficient resolution of the signature curves are clearly visible.

0.2f

Figure 20. The 0.5-level contour of 9 very similar blob-like images are shown in blue, and of their
Mobius transformations in red. Only the central 80 x 80 portion of the 161 x 161 images are shown.

For images, the extra information means that it is possible to compute a relatively simple
three-dimensional signature based on the function value at each point together with two functions
of the Mobius arclength, along and perpendicular to level sets of the image intensity. It is
computationally cheap, extremely sensitive to non-M&bius changes in the image, but insensitive
to Mobius transformations of the image.

Acknowledgements

This research was supported by the Marsden Fund, and RM by a James Cook Research Fel-
lowship, both administered by the Royal Society of New Zealand. SM would like to thank the
Erwin Schrodinger International Institute for Mathematical Physics, Vienna, where some of this
research was performed.



28

S. Marsland and R.I. McLachlan

arctan(kt /4)

051

“1F

arctan()»n /4)

-08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure 21. The invariant signature (arctan();/4), arctan(\,/4)) evaluated on the level set f=1(0.5) is

shown for each of the images in Fig. 20 (blue) and for their Mobius transformations (red).
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