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Abstract. We review an approach which aims at studying discrete (pseudo-)manifolds in
dimension d ≥ 2 and called random tensor models. More specifically, we insist on generali-
zing the two-dimensional notion of p-angulations to higher dimensions. To do so, we consider
families of triangulations built out of simplices with colored faces. Those simplices can be
glued to form new building blocks, called bubbles which are pseudo-manifolds with boun-
daries. Bubbles can in turn be glued together to form triangulations. The main challenge
is to classify the triangulations built from a given set of bubbles with respect to their
numbers of bubbles and simplices of codimension two. While the colored triangulations
which maximize the number of simplices of codimension two at fixed number of simplices
are series-parallel objects called melonic triangulations, this is not always true anymore when
restricting attention to colored triangulations built from specific bubbles. This opens up the
possibility of new universality classes of colored triangulations. We present three existing
strategies to find those universality classes. The first two strategies consist in building new
bubbles from old ones for which the problem can be solved. The third strategy is a bijection
between those colored triangulations and stuffed, edge-colored maps, which are some sort of
hypermaps whose hyperedges are replaced with edge-colored maps. We then show that the
present approach can lead to enumeration results and identification of universality classes, by
working out the example of quartic tensor models. They feature a tree-like phase, a planar
phase similar to two-dimensional quantum gravity and a phase transition between them
which is interpreted as a proliferation of baby universes. While this work is written in the
context of random tensors, it is almost exclusively of combinatorial nature and we hope it
is accessible to interested readers who are not familiar with random matrices, tensors and
quantum field theory.
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1 Introduction

1.1 Random matrices and combinatorial maps

Random matrix models are probability distributions for a random (typically Hermitian) mat-
rix A of size N ×N . It takes the form exp{−N TrV (A)} where V is typically a polynomial [21].
Expectations of unitary invariant polynomials like TrAn are in fact generating functions for con-
nected combinatorial maps rooted on an edge incident to a vertex of degree n (also known as rib-
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bon graphs in physics). We will be interested in generalizing this approach to higher-dimensional
objects, and more particularly in generalizing the 2p-angulations which are combinatorial maps
whose faces all have degree 2p.

A connected combinatorial map M is a connected graph1 equipped with a cyclic order of
the edges incident to each vertex. In other words, each vertex is locally embedded in a small
disc. A corner is the portion of the disc between two consecutive edges at a vertex and we
orient them counter-clockwise from one edge to the other. A face of M is a cycle formed by
following edges and corners counter-clockwise. The genus g(M) of the map satisfies 2−2g(M) =
F (M)−E(M) + V (M) where F (M), E(M), V (M) are the number of faces, edges and vertices
of M , respectively. Topologically, this genus is the smallest value of the genus of a surface
on which M can be embedded without crossings. Combinatorial maps thus define a notion of
discrete surfaces which generalize triangulations (a triangulation being a combinatorial map in
which all faces have degree three).

Let us consider the following example of a random matrix model. Define the partition
function

Z(N, t) =

∫
dA exp

{
−N

(
TrA2 + tTrA2p

)}
, (1.1)

and free energy f(N, t) = lnZ(N, t). Then 1
Z(N,t) exp

{
−N

(
TrA2 + tTrA2p

)}
defines a proba-

bility distribution, and the so-called n-point functions are the following expectations〈
TrAn

〉
=

1

Z(N, t)

∫
dATr(An) exp

{
−N

(
TrA2 + tTrA2p

)}
. (1.2)

To unravel the connection with combinatorial maps, one expands e−NtTrA2p
and (illegally)

commutes the sum with the integral. For the free energy, one gets

f(N, t) = ln
∑
k≥0

(−Nt)k
k!

∫
dATr

(
A2p
)
· · ·Tr

(
A2p
)︸ ︷︷ ︸

k times

e−N TrA2
. (1.3)

It is thus sufficient to evaluate the expectation of the product (Tr(A2p))k in the Gaussian
distribution. According to Wick’s theorem, such an expectation is the sum over all pairings
(i.e., perfect matchings) of the 2p × k copies of A, weighted in a certain way (which we will
not explain here). One represents each A2p as a vertex of degree 2p, and a pairing consists in
drawing an edge between two vertices when some of the As are paired. A careful inspection of
Wick’s theorem in the case of matrix variables reveals that the cyclic order of the edges around
each vertex does matter. That is, it is an expansion onto combinatorial maps with k vertices of
degree 2p. Taking the logarithm then restricts the sum over connected maps.

Notice that this correspondence between matrix models and generating functions of maps
is obtained by considering matrix integrals as formal power series, here in the parameter t.
The matrix integral itself is however only defined for t with a positive real part. Establishing
a rigorous relationship between the formal power series and the integrals is the purpose of
constructive field theory; we refer to [35] for an explicit and state-of-the-art example in the
matrix case.

Let M2p be the set of connected maps with vertices of degree 2p. The free energy then
expands as

f(N, t) =
∑

M∈M2p

(2p)V (M)

s(M)
N2−2g(M)(−t)V (M), (1.4)

1Multiple edges and loops are allowed.
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where V (M) is the number of vertices and s(M) a combinatorial factor related to the symmetries
of M . Therefore, random matrix models provide generating functions of maps with prescribed
vertex degrees, counted with respect to their genera and numbers of vertices. Applying the
same reasoning to the expectation 〈TrAn〉 leads to a sum over rooted maps, i.e., maps with
a distinguished oriented edge outgoing at a vertex of degree n.

1.2 Colored triangulations with prescribed bubbles
as generalizations of p-angulations

A p-angulation is a map in which all faces have degree (i.e., length) p. Duality is an operation
which from a map M produces another map D(M) in the following way. Each face f of M
is represented as a vertex f∗ of the dual map D(M). When two faces f1, f2 share an edge
in M , there is a dual edge in D(M) which connects f∗1 and f∗2 . The order around a vertex f∗ is
inherited from the cyclic order in which the edges are encountered along f . Duality thus turns
p-angulations into maps with vertices of degree p bijectively. Therefore one can consider the
matrix model (1.1) as a generating function of 2p-angulations.

By generalizing the above approach to higher dimensions we mean introducing a family of
higher-dimensional discrete manifolds (e.g., simplicial complexes) and their generating function
as in (1.4). Any attempts to do so then face the following challenges.

• Find an equivalent in some sense to the genus of a map (and we know topology in dimension
higher than two is not characterized by a single number). Maps with vertex degrees equal
to 2p satisfy E(M) = pV (M), which simplifies Euler’s relation to

2− 2g(M) = F (M)− (p− 1)V (M) ≤ 2.

The fact that g(M) ≥ 0 means that there is a bound on the number of faces which is linear
in the number of vertices. This is precisely the kind of equations we would like to (and
will) extend to higher dimensions.

• Is there a generalization of random matrices to other random objects which generate
a family of higher-dimensional discrete manifolds?

The answer to the second point is that random tensors generate discrete (pseudo-)manifolds
of dimensions higher than 2 by means of the same mechanism as the one from (1.1)–(1.4), as
shown in [2, 26, 46] all coming up in the early 90s. However, the methods used in most matrix
models, e.g., reduction to eigenvalues and orthogonal polynomials, are not available to random
tensors. It means that the analysis of those models has to rely on combinatorial methods. This
was a problem because those early attempts generate wild objects, which may not be “nice”
cellular decompositions of pseudo-manifolds [27, 30, 47], and whose combinatorics is therefore
too difficult to control.

The difficulty to control both the topology and the combinatorics of the objects generated by
tensor models explains that they lay dormant for twenty years. It was eventually realized that
colored triangulations form a family of higher-dimensional triangulations which may be suitable
to combinatorics. At least, they were designed in the context of topology [23, 44], which solve
part of the topological issues. It was shown that colored triangulations are piecewise-linear
pseudo-manifolds and all piecewise-linear manifolds admit colored triangulations. We refer to
the review [37] for details on the structures of colored triangulations, in particular in the context
of tensor models.

Colored triangulations are gluings of colored simplices. A colored d-simplex is an abstract
simplex of dimension d with its d+ 1 faces (i.e., boundary (d− 1)-simplices) colored from 0 to d
as shown in Fig. 1. The face-coloring induces colorings on the subsimplices. Indeed, a (d − 2)-
simplex is at the intersection of exactly two (d− 1)-simplices and is therefore identified by the
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Figure 1. This is a colored tetrahedron with faces colored 0, 1, 2, 3. Edges and vertices are respectively

identified by pairs and triples of colors.
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Figure 2. The rule of colored gluing is one glues two tetrahedra of opposite orientations along a face

such that all induced colorings of the sub-simplices are preserved.

couple of colors of those two (d − 1)-simplices. Similarly (d − 3)-simplices are identified by
triplets of colors and so on. In 3D for instance, the colors are 0, 1, 2, 3 on the four triangles of
a tetrahedron. An edge is identified by a couple of colors (those of the two triangles which meet
at that edge) and vertices are identified by triplets of colors.

Those induced colorings provide a canonical gluing rule. Two d-simplices have to be glued
by identifying two of their (d− 1)-simplices. There are generally lots of ways to do so, but there
is a unique way which respects all the induced colorings. In 3D, that would mean identifying
a triangle of color c ∈ {0, 1, 2, 3} with another one, such that the edge of colors (c, c′) for c′ 6= c
of one tetrahedron is identified with the edge of the same colors on the other tetrahedron and
similarly for the three vertices of the triangle. This is shown in Fig. 2.

The combinatorial upside is that colored triangulations can be represented using colored
graphs, i.e., regular graphs with colored edges. Indeed, each simplex is represented by a vertex
of the graph and there is an edge of color c ∈ {0, . . . , d} between two vertices of the graph if the
two corresponding d-simplices are glued along a (d− 1)-simplex of color c. All the vertices have
degree d+ 1, which is the number of (d− 1)-simplices around a simplex, and all edges incident
at a vertex have distinct colors. A (d− 2)-simplex on the boundary of a d-simplex is identified
by a pair of colors. When that (d− 2)-simplex is shared with other d-simplices, it is still labeled
by the same pair of colors and it is identified in the colored graph by a path alternating the
two colors. When the (d− 2)-simplex, with colors (cc′), is not on the boundary of the gluing, it
is then represented in the graph as a cycle alternating the colors c and c′. We call those cycles
faces and they represent simplices of codimension two.

There is a tensor model which generates colored triangulations (or equivalently colored
graphs) in any fixed dimension d ≥ 2 [11]. Gurau was able to study its colored graphs combina-
torially and proved this way that there is a linear bound on the number of faces. The distance
to the upper bound is measured by Gurau’s degree, which thus extends the genus of maps. In
quantum field theory terminology it means that the tensor model admits a 1/N -expansion, i.e.,
the free energy is bounded like f ≤ ND for some D, [28, 31, 36]. At d ≥ 3, the graphs which
dominate at large N are those which generalize the genus zero maps from d = 2. They are
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Figure 3. A 2p-angle, drawn in solid lines, with boundary edges of color 0 can be obtained as the gluing

of 2p colored triangles. The dashed lines represent the dual object with all the colors except 0, with

a vertex for each triangle and an edge of color c between two vertices if the two triangles are glued along

an edge of color c.
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Figure 4. On the left is a three-dimensional bubble: a colored bi-pyramid, consisting of 8 tetrahedra,

four forming an upward pyramid, four others forming a downward pyramid, and the two pyramids glued

to each other, such that all triangles on the boundary have color 0. On the right is its the dual colored

graph: a vertex for each tetrahedron and an edge of color c = 1, 2, 3 when two tetrahedra are glued along

a triangle of color c.

those which maximize the number of faces at fixed number of vertices, just like at d = 2. For
d ≥ 3, it was shown that they are series-parallel graphs called melonic graphs. They are in
bijection with trees and their enumeration is straightforward [11]. Next-to-leading-order graphs
were discovered in [40] by Kaminski, Oriti and Ryan, and eventually the complete classification
of colored graphs was performed with respect to Gurau’s degree in [39] by Gurau and Schaeffer.

In contrast with [39] in which the set of all colored graphs is considered, we wish to study
generalizations of 2p-angulations which only correspond to a subset of colored graphs. A 2p-
angulation is a gluing of 2p-angles, each of which can be seen as a gluing of 2p triangles by
adding a vertex in the center of each 2p-angle. It can be done using colored triangles, so that
the edges of color 0 form the boundary of the 2p-angle, see Fig. 3.

In higher dimensions, a bubble is a gluing of colored d-simplices whose boundary consists of
all (d − 1)-simplices of color 0. The choice of the color 0 is arbitrary, the idea begin that all
(d− 1)-simplices are shared between two simplices except for those of a given color which then
form the boundary. The topology of such a gluing is always a disc in two dimensions, but it is
typically not a ball in higher dimensions, hence the denomination of bubble instead.

A bubble can then be represented as a connected colored graph with all the colors except 0,
as shown in Fig. 4. The generalization of the notion of 2p-angulation which we propose to
study consists in choosing a bubble B, and constructing all colored graphs whose bubbles (i.e.,
maximal subgraphs with all colors but 0) are copies of B. This means taking some copies of B
and adding the color 0 to all vertices so as to get a connected graph. We denote this set of colored
graphs G(B). Interestingly, this set is the one generated by random tensor models in a natural
way [12]. When going from a random matrix with distribution of the form exp{−N TrV (A)}
for a polynomial V to a random tensor T with a distribution of the form exp{−Φ(T )}, it is
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necessary to specify the admissible forms of Φ. It turns out that restricting oneself to polynomials
invariant under the natural action of d copies of the unitary group is equivalent (via the same
steps as (1.1)–(1.4)) to considering the generating functions of colored graphs whose bubbles are
prescribed by the choice of Φ. In particular there is a ΦB such that

ln

∫
dT dT exp

{
−Nd−1ΦB(T, T ; t)

}
=

∑
G∈G(B)

C(G)Nd−ω(G)tb(G),

where we use a complex random tensor with d indices ranging from 1 to N and its complex
conjugate T . Here ω(G) ≥ 0 is Gurau’s degree of G and t counts the graphs with respect to the
number b(G) of copies of B in G and C(G) is a numerical factor related to the symmetries of G.

On one hand, in order to saturate Gurau’s degree, i.e., ω(G) = 0, the allowed bubbles B must
be of the melonic type. This is very restrictive and leads to branched-polymer (i.e., tree-like)
behaviors [12, 38]. This suggests that in order to find more interesting behaviors, one has to
study graphs of non-vanishing Gurau’s degree, built from non-melonic bubbles. However, a naive
application of the Gurau–Schaeffer classification [39] suggests that for most choices of B, there
is always a finite number of graphs of G(B) at fixed Gurau’s degree. This implies that there is
no “large number of bubbles” limit at fixed Gurau’s degree.

It means that if one insists on exploring tensor models and colored triangulations using the
generalization of 2p-angulations provided by the set G(B), this is a whole new combinatorial
analysis which has to be performed. The key point is to modify Gurau’s degree and define
a B-degree which depends on the choice of B, such that there are infinitely many graphs at
fixed degree or at least in the large N limit (minimal B-degree). When this is achieved for
a bubble B, we say that it admits an enhancement.

Then the generating function of the graphs with minimal degree can be studied. Its singu-
larity corresponds to the continuum (thermodynamical) limit of the model where the number
of bubbles becomes arbitrarily large. It typically behaves like (tc− t)2−γ where γ is the entropy
exponent. It is the critical exponent which (partly) characterizes the universality class of the
continuum limit.

The entropy exponent of melonic graphs is γmelons = 1/2, typical of trees, and it is γplanar =
−1/2 for random planar maps. We will see that tensor models equipped with different bubbles
can reproduce both those behaviors as well as the proliferation of baby universes observed
in multi-trace matrix models [1, 4, 19, 41, 42] with γ = 1/3 (and all the associated multi-
critical behaviors which we will not further mention). This will be done very naturally with the
“simplest” bubbles (those on four vertices).

The present article is mostly a review article. A few new results are included, in Sections 5, 6
and 8.2 which in fact extend ideas and results which have already appeared in the literature in
specific cases or more narrow situations than here. We here formalize them and put them in
the broader context of enhancements. In the case of Section 8.2, the new enumeration results
generalize [10] and remarkably require a totally different approach than there to do so.

The organization is as follows. In Section 2 we review the framework of tensor models and its
connection to bubbles and colored graphs. Gurau’s degree theorem is given in Section 3. While
it reduces to standard results on combinatorial maps for d = 2, we explain Gurau’s universality
theorem for large random tensors [34] and its application to the large N enumeration of melonic
graphs for d ≥ 3 [12]. We then start the exploration of other large N limits for tensor models in
Section 4. We define enhancements and formulate the combinatorial problem necessary to find
enhancements: find the colored graphs in G(B) which maximize the number of faces at fixed
number of bubbles. Three strategies are then provided to find enhancements. The first two of
them consist in finding new enhancements from existing ones, while the third strategy is a true
new combinatorial approach to the issue. Those strategies are the following three.
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• New bubbles, with new enhancements, can be created by gluing bubbles whose enhance-
ments are known. We call this inherited enhancements. This gluing of bubbles increases
the number of vertices of the bubbles. It was used in [13] and [10] to get results for bubbles
with more than four vertices (thus going beyond the quartic tensor models). But it had
not been used further than in these specific cases. This idea had not been synthesized and
framed as a strategy to find enhancements yet. We do so in Section 5. It thus contains
a few new equations which extend and synthesize for the first time techniques used [13]
and [10].

• The strategy presented in Section 6 consists in looking at sub-bubbles forming a partition
of a bubble. If the enhancements of the sub-bubbles are known, the enhancement of the
bubble itself can be found. This is equivalent to thinking of colored graphs in dimension d
as superpositions of subgraphs with dimensions ∆i, such that

∑
i ∆i = d. It is a (new but

very modest) extension of the 1/N -expansions of [8] to non-trivial enhancements.

• The third strategy is a bijection, presented in Section 7 which reviews material from [14].
Since the challenge is to study faces of colored graphs, it would be enlightening to find
a bijection with maps for which faces are well-controlled. This would also help understand
the complexity of combinatorics on objects of dimension d ≥ 3 with respect to d = 2.
We present in Section 7 the bijection introduced in [14] which maps the set G(B) to some
extension of edge-colored hypermaps where hyperedges are replaced with a “stuffing”, i.e.,
a prescribed edge-colored map. This bijection has made it possible to find enhancements
and perform the enumeration of the graphs which maximize the number of faces beyond
the case of bubbles with four vertices and beyond melonic bubbles.

Finally, we show in Section 8 that the bijection enables to perform enumeration. We do so on
the quartic models to keep things simple and also because in that case there are several coupling
constants to play with and we can have an explicit algebraic description of the generating
function. We find in particular the exponents γ = 1/2, 1/3,−1/2 very naturally. Section 8.1
reproduces the results of [10] using the approach of [14]. Section 8.2 contains new results as it
extends the enumeration performed in [10] to additional parameters.

Although the presentation highlights the point of view of random tensor models, the main
technique is combinatorics. In fact random tensors and matrices are barely used beyond Sec-
tion 2. We even hope that readers who are unfamiliar with tensor models and quantum field
theory methods can accept the results coming from those fields and go through to the purely
combinatorial parts.

2 Random tensor models

The framework is the one introduced in [12], with an additional freedom on the N -dependence.

2.1 Bubbles and tensorial invariants

In matrix models, both the potential of the model and the observables are (typically) unitary
invariant quantities, e.g., Tr(MM †)p. To generalize this, we introduce tensorial unitary inva-
riants, or simply invariants. An invariant is a polynomial in the tensor entries Ta1···ad and T a1···ad
which is invariant under the following action of U(N)d,

Ta1···ad 7→
∑

b1,...,bd

U
(1)
a1b1
· · ·U (d)

adbd
Tb1···bd , T a1···ad 7→

∑
b1,...,bd

U (1)
a1b1 · · ·U (d)

adbdTb1···bd ,

where U (1), . . . , U (d) are d independent unitary matrices.
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(c) A 10-vertex bubble at d = 4.

Figure 5. Here are some examples of bubbles. The dots indicate multiple edges.

The algebra of invariant polynomials is generated by a set of polynomials labeled by bubbles.
A bubble is a connected, bipartite graph, regular of degree d, whose edges must be colored with
a color in {1, . . . , d}, and such that all d colors are incident at each vertex (and is incident exactly
once). Examples of bubbles are displayed in Fig. 5. To each bubble B, a polynomial PB(T, T )
is canonically associated, and the other way around. To do so, associate to each white (black)
vertex the tensor T (T ). If there is an edge of color c ∈ {1, . . . , d} between two vertices, one
identifies the two indices in position c of the tensors corresponding to those two vertices, and

sum the index from 1 to N ,
N∑

ac=1
T···ac···T ···ac···. This way, it is easily seen that all indices are

contracted between T s and T s in a position-preserving way which ensures unitary invariance.

There is a single quadratic invariant

T · T =
∑

a1,...,ad

Ta1···ad T a1···ad ,

associated with the unique bubble on two vertices (both connected by d edges of all colors).

Special classes of bubbles include the melonic bubbles. To describe them, we recall that the
(d− 1)-dipole of color c is the (open) graph made of two vertices connected by the d− 1 edges
of all colors except c, and half-edges of color c incident to both vertices. A melonic bubble on
p+ 2 vertices is obtained from a melonic bubble on p vertices by cutting an edge of color c into
two half-edges and gluing them back to the half-edges of the (d− 1)-dipole of color c,

B =

c

→ B′ =
c

(2.1)

The first melonic graphs are obtained by doing so on the bubble with two vertices. One obtains
a bubble Bc with four vertices and c = 1, . . . , d. Identifying the bubble with the polynomial, we
can write

PBc(T, T ) = c c

=
∑

a1,...,ad
b1,...,bd

Ta1···ac−1acac+1···adT a1···ac−1bcac+1···ad Tb1···bc−1bcbc+1···bdT b1···bc−1acbc+1···bd .
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Other remarkable bubbles are, for d even, the so-called necklaces. They are cycles of arbitrary
length where two adjacent vertices are connected by d/2 edges. Thus a white vertex receives
the colors {i1, . . . , id/2} from a black vertex and the complementary colors from another black

vertex. Denoting M the Nd/2 × Nd/2-matrix between those two sets of colors, the necklace of
length 2p has associated polynomial Tr(MM †)p (see equation (4.1)).

The counting of bubbles has been studied in [6]. Here we are interested in counting the
different ways to glue bubbles together instead.

2.2 Tensor models and (d + 1)-colored graphs

Let I be a finite set, and {Bi}i∈I a set of bubbles. A tensor model is defined by its partition
function Z and free energy f ,

Z = exp f =

∫
exp

(
−Nd−1T · T −

∑
i∈I

N sitiPBi(T, T )

)
dTdT , (2.2)

and expectation of observables

〈PB(T, T )〉 =
1

Z

∫
PB(T, T ) exp

(
−Nd−1T · T −

∑
i∈I

N sitiPBi(T, T )

)
dTdT , (2.3)

which are all functions of the coupling constants {ti}i∈I . They also depend on the choice of the
exponents {si}i∈I . How to choose them is actually the main topic of the present article.

The relationship with edge-colored graphs comes from applying Feynman’s expansion to (2.2)
and (2.3). One expands the exponentials of PBi (except the quadratic one) as power series and
(illegally) commutes the sums with the integral. Since each PBi is a polynomial in the entries
of T , T , one ends up with moments of the Gaussian distribution,∫

exp
(
−Nd−1T · T

)∏
j

P
bij
Bij

(T, T )dTdT . (2.4)

They are evaluated thanks to Wick’s theorem, as sums over pairings of T s with T s. This can be
represented graphically as follows. The polynomials PBij appearing in the Gaussian moment are

represented by their bubbles (which carry the colors from 1 to d). Since T s are white vertices
and T s are black vertices, pairings between T s and T s are then drawn as edges between black
and white vertices. Those edges are assigned the color 0. This way, the calculation expands onto
graphs, which satisfy the same definition as that of bubbles, with the additional color 0 (and for
the calculation of Z, those graphs are not necessarily connected). We call them (d+ 1)-colored
graphs.

The free energy therefore expands onto connected (d+1)-colored graphs, whose bubbles (i.e.,
maximally connected subgraphs with colors 1, . . . , d) are chosen among the set {Bi}i∈I . We
call this set of (non-labeled, non-rooted) graphs G({Bi}i∈I). Each graph furthermore receives
a weight. There is a free sum over a tensor index in position c from 1 to N for each cycle of
alternating colors 0 and c. We call such a cycle a face of color 0c. Moreover, each bubble of
type Bi comes with a weight N siti, i ∈ I and each edge of color 0 comes with N−(d−1). That
gives

f =
∑

G∈G({Bi})

C(G)N

d∑
c=1

F0c(G)−(d−1)E(G)+
∑
i∈I

bi(G)si∏
i∈I

(−ti)bi(G). (2.5)
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Here, F0c(G) denotes the number of faces of colors 0c of G, E(G) its number of edges of color 0,
bi(G) its number of bubbles of type Bi. C(G) is a numerical factor of combinatorial origin.
Indeed, the Feynman expansion naturally labels the bubbles and their vertices, since all T
and T in (2.4) are distinct. C(G) is thus the number of graphs with labeled bubbles and vertices
which have the same unlabeled graph G ∈ G({Bi}i∈I), divided by b(G)! (where b(G) is the total
number of bubbles)2.

Similarly, we denote G({Bi};B) the set of connected (d + 1)-colored graphs with a marked
bubble B (with labeled vertices) and all other bubbles from the set {Bi}i∈I . The expectation of
PB(T, T ) admits a Feynman expansion onto the graphs of G({Bi};B),

〈PB(T, T )〉 =
∑

G∈G({Bi};B)

C(G)N

d∑
c=1

F0c(G)−(d−1)E(G)+
∑
i∈I

bi(G)si∏
i∈I

(−ti)bi(G).

In that case, the bubble B is not counted among the bi(G) (it may be different from all Bi for
i ∈ I anyway). Moreover, the combinatorial factor C(G) is now evaluated with labeled vertices
on B.

It will be convenient to define the power of G ∈ G({Bi}i∈I) as

δ{si}i∈I (G) = F (G)− (d− 1)E(G) +
∑
i∈I

bi(G)si, with F (G) =
d∑
c=1

F0c(G)

being the total number of faces, so that a graph G in the above expansions like (2.5) is counted

with a weight N
δ{si}i∈I (G) ∏

i∈I
(−ti)bi(G).

• A tensor model is said to have a 1/N -expansion if

f ≤ AND,

for some N -independent quantities A, D, i.e., the exponent of N in the summand in (2.5)
is bounded,

∃D ∀G ∈ G({Bi}) δ{si}i∈I (G) ≤ D.

• It is furthermore said that the large N limit is non-trivial if there is an infinite family of
graphs which contribute to the limit lim

N→∞
f/ND.

Those two conditions (existence of a 1/N -expansion and non-triviality of the large N limit)
will be used to determine the values of the exponents {si}i∈I . Indeed, if some of the si are too
large, the exponent of N in (2.5) can get larger and larger as the number of bubbles grows.
Requiring the existence of a 1/N -expansion enforces si not to be too large. The reason the
notion of non-trivial large N limit is introduced is that by taking the exponents si sufficiently
small, one can easily build tensor models which do have a 1/N -expansion. However, the large N
limits obtained this way are typically uninteresting: only a finite number of graphs contributes
to each order of the 1/N -expansion. Then f/ND is a polynomial in the couplings {ti}. We are
interested on the contrary in the cases where f develops singularities. This is possible only when
lim
N→∞

f/ND is an infinite sum of graphs.

2In quantum field theory, normalizing the coupling constants reduces the combinatorial factor to 1/s(G)
where s(G) is the symmetry factor of G. However, this normalization of the coupling constants depend on their
symmetry. In an interaction φ(x)n, the n copies of φ(x) are equivalent, so the natural normalization of the
coupling constant is 1/n!, as well known. In tensor models however this depends on the choice of bubbles.
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Remark 2.1. The coefficient C(G) is very important in the explicit evaluation of the free energy.
However, we will not have to care too much about it in this article. Indeed, in most sections
we will be interested in the existence of 1/N -expansions and in finding the families of graphs
which contribute to lim

N→∞
f/ND. The coefficient C(G) is then irrelevant. As for the sections

dealing with enumeration, we will use Schwinger–Dyson-like techniques which bypass the explicit
analysis of C(G). Moreover, our most developed section on enumeration is Section 8 devoted
to the quartic case. In that case, C(G) = 2b(G), which can be re-absorbed by a redefinition of
the couplings ti → ti/2 (this is because quartic bubbles have two equivalent black, or white,
vertices).

3 Gurau’s degree theorem

Tensor models were revived thanks to Gurau’s discovery that there is a value of si which provides
tensor models with a 1/N -expansion. This was proved in [28, 31, 36] by a detailed analysis of
all (d + 1)-colored graphs. It was then adapted to the colored graphs G({Bi}) with prescribed
bubbles in [12]. We state the theorem is this context.

Theorem 3.1. For any finite set of bubbles {Bi}i∈I and any graph G ∈ G({Bi}),

δ{si=d−1}(G) =
d∑
c=1

F0c(G)− (d− 1)

(
E(G)−

∑
i∈I

bi(G)

)
≤ d. (3.1)

Equivalently, one defines Gurau’s degree

ω(G) ≡ d−
d∑
c=1

F0c(G) + (d− 1)

(
E(G)−

∑
i∈I

bi(G)

)
,

and the theorem states that ω(G) ≥ 0.
The key application of the theorem is to notice that with the choice si = d− 1 for all i ∈ I,

each graph G in the summand of (2.5) is weighted like Nd−ω(G). In particular, the free energy
is then bounded. In other words, choices

si ≤ d− 1

ensure the existence of the 1/N -expansion for any bubble. The bound obtained on the free
energy is f ∼ Nd. That is natural since Nd is the total number of degrees of freedom of the
random tensor, and the free energy is extensive.

The question is then to find whether the large N limit obtained for si = d− 1 is non-trivial.
Before that, we show that the above theorem encompasses the well-known 2D case, where the
degree of a graph reduces to (twice) the genus of a map.

3.1 The case d = 2: combinatorial maps

Bubbles at d = 2 are connected 2-colored graphs, hence they are cycles, characterized by their
number of vertices. A graph G ∈ G({Bp}p∈2N), where Bp is the cycle with 2p vertices, consists
in cycles connected by edges of color 0.

First, one can represent G as a bipartite map Mcol(G) with colored edges. Indeed, draw G
such that the cyclic, counter-clockwise order of the colors around each black vertex is (0, 1, 2), and
(0, 2, 1) around each white vertex. The faces of the map obtained this way are by construction
partitioned into three sets of colored faces: those with alternating colors 01, colors 02 and
colors 12. They are obviously in bijection with the corresponding faces of G.
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Notice that the bubbles in G form a disjoint union of cycles which account for all edges of
colors 1 and 2. Those cycles are the faces of colors 12 in Mcol(G). They can be shrunk to
a point, while keeping track of the cyclic order of the edges of color 0 incident to the face.
This way, one obtains for each face of colors 12 and degree 2p a locally-embedded vertex of
degree 2p. The remaining edges are the edges of color 0, whose color can now be erased. One
gets a combinatorial (non-colored) map M(G) whose vertices have the degrees of the original
bubbles.

Topologically, M(G) is obtained from Mcol(G) through local homotopy transformations, so
that they both have the same genus g(M(G)).

This mapping can be inverted to associate a 3-colored graph to each map whose vertices
have even degrees, up to the symmetries which exchange black with white vertices and edges of
colors 1 and 2.

Each graph G comes with an exponent of N , given in equation (3.1). It can be rewritten in
terms of the combinatorial quantities of M(G),

F01(G) + F02(G)− E(G) +
∑
p≥2

bp(G)

= F (M(G))− E(M(G)) + V (M(G)) = 2− 2g(M(G)).

Indeed, the faces of M(G) are the faces of colors 01 and 02 of G, its edges are the edges of color 0
of G and its vertices are the bubbles of G. Therefore, each graph in the Feynman expansion
is weighted by N2−2g(M(G)) where g(M(G)) is the genus of the map M(G). Gurau’s degree
theorem thus reproduces at d = 2 the famous topological expansion of matrix models. This
means that it is a genuine generalization of the 2D case.

3.2 Large N limit for d ≥ 3

3.2.1 Melonicity

At d = 2, the large N limit thus consists in planar maps. However, the situation becomes
drastically different for d ≥ 3. In Section 2.1 we have defined melonic bubbles. Melonic graphs
are constructed exactly the same way with one additional color. Notice that the bubbles of
a melonic graph are melonic bubbles.

Theorem 3.2. Let G ∈ G({Bi}i∈I). Then

d∑
c=1

F0c(G)− (d− 1)

(
E(G)−

∑
i∈I

bi(G)

)
= d

(which is the vanishing of Gurau’s degree) if and only if G is a melonic graph. This forces all
bubbles appearing in G to be melonic too.

The proof is given in [12]. This theorem shows that the large N limit obtained with si = d−1
for all bubbles Bi in the action is non-trivial only if some of those bubbles are melonic.

3.2.2 Universality

Tensor models can be solved at large N just like matrix models, using either direct combinatorial
arguments [34], or using the Schwinger–Dyson equations [9] (more details on the Schwinger–
Dyson equations of tensor models can be found in [29, 32]). One first proves, using either
methods, the following universality theorem, which first appeared in [34].
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Theorem 3.3. Let B′ be a bubble with a (d− 1)-dipole and B the same bubble after the dipole
removal, like in equation (2.1). Then,

〈PB′(T, T )〉 = G2({ti}i∈I)〈PB(T, T )〉, where G2({ti}i∈I) =
1

N
〈T · T 〉 (3.2)

is the large N , 2-point function.
As a consequence, if B is melonic (meaning built out of recursive (d− 1)-dipole insertions),

then

1

N
〈PB(T, T )〉 = G2({ti}i∈I)p(B), (3.3)

where p(B) is the number of black vertices of B.

In the theorem and in the remaining of the section, all equalities hold in the large N limit.
Equation (3.2) can be explained as follows. Denote v, v̄ the white and black vertices of the
(d− 1)-dipole in B′. All graphs G ∈ G({Bi}i∈I ;B′) which contribute to the expectation of PB′

at large N must contain a 2-point function between v and v̄, i.e., a contribution such that
cutting the two edges of color 0 incident to v and v̄ disconnects G. The set of all contributions
surviving the large N limit therefore factorizes: all the 2-point functions connecting v to v̄ which
sum up to G2({ti}i∈I), and all the large N contributions which do not see the dipole, i.e., the
expectation of PB. Graphically,

〈PB′(T, T )〉 =

〈
B

v̄

v

〉
= B G2

v̄

v

= G2({ti}i∈I)〈PB(T, T )〉.

In fact the theorem in [34] shows that tensor models are Gaussian in the large N limit,
with covariance given by G2, i.e., all expectations factorize as products of the large N , 2-point
function. In a Gaussian distribution, the expectation of a polynomial reads as a sum over pairings
of T s with T s. For a melonic bubble, there is a single pairing which survives the large N limit.
It can be found iteratively by pairing the vertices of each (d − 1)-dipole, then removing those
dipoles and repeating the process.

Note that (3.3) shows that the expectation of a melonic bubble only depends on its number
of vertices, and not on its particular structure.

3.2.3 Enumeration and continuum limit

If B is melonic, it has a (d−1)-dipole with vertices v, v̄. We denote B/(v, v̄) the melonic bubble
obtained by replacing the dipole with an edge. We also define the gluings of bubbles: remove
the vertex v of B, which leaves half-edges of color 1, . . . , d hanging out from black vertices, and
similarly remove a black vertex v̄i from a bubble Bi. One can connect the half-edges which have
the same colors, so as to get a new (connected) bubble, denoted B ·(v,v̄i) Bi. The gluing of two
melonic bubbles still is melonic. The Schwinger–Dyson equations read [9]

〈PB/(v,v̄)(T, T )〉 − 〈PB(T, T )〉 −
∑
i∈I

ti
∑
v̄i∈Bi

〈PB·(v,v̄i)Bi(T, T )〉 = 0.

This a priori complicated set of equations simplify drastically thanks to the universality theo-
rem (3.3), as all expectations then only depend on the numbers of vertices. They all collapse
onto an equation which determines the 2-point function,

1−G2({ti}i∈I)−
∑
i∈I

pitiG2({ti}i∈I)pi = 0, (3.4)

where pi is the number of black vertices of Bi.
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This is a polynomial equation on G2. Let us rescale all the couplings {ti}i∈I with λ3. Thus
(dropping the explicit dependence on the couplings except λ),

G2(λ) =
∑

G∈G({Bi}i∈I
melonic with a marked edge

C(G)λb(G)
∏
i∈I

(−ti)bi(G),

i.e., λ counts the melonic graphs G with a marked edge of color 0, with respect to the number
of bubbles b(G). One obtains

1−G2(λ)− λ
∑
i∈I

pitiG2(λ)pi = 0. (3.5)

A standard theorem on algebraic generating functions [24] shows that for generic couplings,
G2 has a dominant singularity of the form

G2(λ) ∼
√
λc − λ,

where λc is the radius of convergence of G2. The free energy f(λ) therefore behaves as

f(λ) ∼ (λc − λ)2−γ , for γ =
1

2
.

The critical exponent γ is known as the entropy exponent. The value 1/2 is quite universal for
algebraic functions, and typical of trees. γ = 1/2 is in fact known as the branched polymer
exponent. It was later proved that the geometry of the melonic graphs also converges to that of
the continuous random tree [38].

By tuning the couplings {ti}i∈I to specific values, one can in addition reach the multi-critical
exponents of branched polymers, γ = 1− 1/m, for m integer and m ≥ 2, [12].

4 New large N limits

For tensor models with melonic bubbles and s = d− 1,

• in combinatorial terms: melonic graphs (equivalent to trees) dominate the Feynman ex-
pansions of all expectations,

• in probabilistic terms: the large N limit is a Gaussian distribution with covariance G2.

Those are two related facts, and it is natural to expect that escaping the branched polymer
behavior of melonic graphs comes with a non-Gaussian large N limit.

This clearly has to be done using non-melonic bubbles. Theorems 3.1 and 3.2 however fall
short of a description of what happens with non-melonic bubbles. Indeed, one does not know
the minimal value of the degrees of the graphs built from arbitrary non-melonic bubbles. The
degree certainly increases with the number of bubbles in the graphs. If it does so linearly, one
could then find a value of si > d− 1 which would lead to a non-trivial large N limit.

3It is also convenient and customary to instead rescale the action by a global parameter 1/λ, which turns the 1
in (3.4) into λ so that the equation reads λ = F (G2) for some polynomial F . Such an equation is particularly
easy to analyze.
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4.1 An example

Let us first show that the above scenario, that of a non-trivial, non-Gaussian large N limit,
is valid on an example. It relies on the fact that ordinary matrix models have non-branched
polymer, non-Gaussian, large N limits. Moreover, they can be turned to tensor models, by
doubling the indices into pairs of indices for instance, MAB = Ta1a2a3a4 , with A = (a1, a3),
B = (a2, a4). Through this correspondence one has

Tr(MM †)p = PBp(T, T ) =

3

1

3

1

24

1

3
4

(4.1)

where we represent the polynomial by its bubble Bp with 2p vertices, and thus

∫
dMdM † e−N

2
∑
p≥1 tp Tr(MM†)p =

∫
dTdT e

−N2

(
t1T ·T+

∑
p≥2

tpPBp (T,T )

)
.

Rescaling T , T by N1/2 so that the factor in front of T · T becomes Nd−1 at d = 4, as in (2.2)
gives ∫

dTdT exp

(
−N3t1T · T +

∑
p≥2

N2+ptpPBp(T, T )

)
.

In other words, we have found some exponents

sp = p+ 2 > d− 1, (4.2)

for the bubbles Bp, p ≥ 2, such that i) there is a 1/N -expansion, ii) the large N limit is
non-Gaussian (the set of “planar” graphs, in the appropriate sense, as it can be solved as an
ordinary matrix model [21]). Furthermore, the trick we have just described can be applied to
any tensor with an even number of indices (the matrix MAB would have for instance an index
A = (a1, a3, a5, . . . ) containing all the odd colors while B = (a2, a4, a6, . . . ) contains all the even
colors).

If the exponent s = d − 1 of Theorem 3.1 had been used in front of the bubbles Bp shown
in (4.1) in the action, the large N limit would have been trivial (a Gaussian with covariance 1/t1)
because they are not melonic. We can in fact check that the degree of the graphs grows with
the number of bubbles. From its definition, Gurau’s degree is

ω(G) = 4−
4∑
c=1

F0c(G) + 3
∑
p≥2

(p− 1)bp(G),

where bp(G) is the number of bubbles of type Bp in G, and we have used E(G) =
∑
p≥2

pbp(G).

Notice that any graph G can be obtained from a 3-colored graph with colors 0, 1, 2 by doubling
the edges of colors 1 and 2. The corresponding 3-colored graph represents a surface of genus g(G)
with 2 − 2g(G) = F01(G) + F02(G) − ∑

p≥2
(p − 1)bp(G). Moreover, by construction, F03(G) +

F04(G) = F01(G) + F02(G), and then

ω(G) = 4g(G) +
∑
p≥2

(p− 1)bp(G) ≥
∑
p≥2

(p− 1)bp(G).
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It comes that among the set of planar graphs, the degree indeed increases linearly with the
number of bubbles.

Choosing sp = p + 2 > d − 1 to be bubble-dependent and larger than d − 1 enhances the
bubbles Bp so that each graph G receives a weight N4−4g(G) instead of N4−ω(G). The large N
limit consists of the set of graphs for which g(G) = 0, which can be made of an arbitrary number
of bubbles. Therefore the couplings tp contribute to a non-trivial large N limit, while preserving
the 1/N -expansion.

4.2 The key question: do enhancements exist?

The key question we will henceforth discuss in this article is the following. Given a non-melonic
bubble B, is there a value of sB > d− 1 such that

fB(tB) = ln

∫
dTdT exp

(
−Nd−1T · T −N sB tBPB(T, T )

)
admits a 1/N -expansion? If so, we say that sB is the enhancement of B. When it exists, one
can then ask what the large N limit is? Also, if two bubbles have enhancements, can they be
used together in the action like in (2.2)?

The above free energy has the Feynman expansion

fB(tB) =
∑

G∈G(B)

C(G)N

d∑
c=1

F0c(G)−(d−1)E(G)+sBb(G)
(−tB)b(G),

where G(B) denotes the set of connected (d+ 1)-colored graphs whose bubbles are copies of B,
and b(G) is the number of such bubbles in G. Assume that sB is fixed so that fB is bounded by
some fixed power of N and also has a non-trivial large N limit, i.e., there exists an infinite family
of graphs Gmax(B) maximizing the power of N . Then, the enhancement is unique. Indeed, if
ε > 0 is added to sB, then the graphs in Gmax(B) will receive a weight which grows like N εb(G),
i.e., which diverges with the number of bubbles. This would ruin the 1/N -expansion. Therefore,
there is a unique maximal enhancement.

Observe that E(G) = p(B)b(G), where p(B) denotes the number of black vertices of B. Thus,
the number of edges of color 0 is determined by and scales linearly with the number of bubbles.
The power of a graph rewrites

δsB (G) = F (G)−
[
(d− 1)p(B)− sB

]
b(G). (4.3)

As a consequence, establishing the existence of a 1/N -expansion of fB, which means finding
a bound on fB, hence on δsB (G), is equivalent to determining how the number of faces grows
with the number of bubbles for those graphs which maximize that number of faces at fixed number
of bubbles.

Therefore if for a given B one can identify combinatorially the graphs which maximize the
number of faces at fixed number of bubbles, then one can find the maximal value of the en-
hancement sB.

5 Bubble gluing and inherited enhancements

Before we present some strategies to find the graphs which maximize the number of faces, let
us assume that we have done so for a given bubble B, and let us try and use this knowledge to
identify the enhancements for other bubbles.

More precisely, we assume that there exists sB such that fB admits a 1/N -expansion with
a non-trivial large N limit. This means that δsB (G) in (4.3) is bounded for all G by δmax(B) =
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Figure 6. An example of a graph H with free vertices on the left and its boundary bubble ∂H on

the right. The vertices of ∂H are the free vertices of H. The edges of color c in ∂H are the paths of

colors (0c) in H. All edges between free vertices in H remain as such in ∂H. For instance, there is path

with colors 4, 0, 4 from the top left white vertex v to the right bottom black vertex v̄ of H. It gives rise

to an edge of color 4 between those vertices in ∂H.

max
G′∈G(B)

δsB (G′) and there is an infinite family of graphs Gmax(B) ⊂ G(B) whose graphs reach

the bound on δsB (G),

Gmax(B) = {G ∈ G(B), δsB (G) = δmax(B)}.

Consider colored graphs with free vertices, i.e., vertices which do not have an incident edge of
color 0 (but they do have all the other colors 1, . . . , d). A bubble can thus be seen as a colored
graph with only free vertices. Gluing two bubbles with respectively 2p and 2p′ vertices via
a single edge of color 0 leads to a graph with 2(p+ p′ − 1) free vertices, and so on.

We denote Gk(B) the set of graphs whose bubbles are all copies of B and with 2k free vertices.
Clearly, all graphs in Gk(B) can be obtained (non-uniquely) by removing edges of color 0 from
graphs in G(B).

Recall that a face of colors (0c) is a cycle alternating the colors 0 and c. If H ∈ Gk(B), we
denote its number of faces F (H). Since it has free vertices, there are also paths alternating the
colors 0 and c which are not closed.

Any graph H ∈ Gk(B) defines naturally a bubble with 2k vertices which we denote ∂H and
call the boundary bubble of H. It is obtained in the following way. The vertices of ∂H are the free
vertices of H (keeping the black and white coloring). There is an edge of color c in ∂H between v
and v̄ if there is a path alternating the colors 0 and c between v and v̄ in H. The operation
of taking the boundary bubble of two bubbles glued via an edge of color 0 is one of the two
operations necessary to formulate the Schwinger–Dyson equations of tensor models (analogous
to the loop equations of matrix models, or Tutte’s equations of combinatorial maps) [32]. An
example is shown in Fig. 6.

Here, our interest in the boundary bubble is the following. Assume that H ∈ Gk(B) is
a subgraph of G ∈ G(B). G has two types of faces: those restricted to H (there are F (H) of
them) and those which have at least one edge not in H (F (G,H) = F (G) − F (H) of them).
Let us form a new colored graph G′ with no free vertices by replacing H ⊂ G with ∂H. The
faces which were confined to H have disappeared in G′. However, the faces which went through
a path in H now follow the edges of ∂H with the same entry and exit vertices, by definition
of ∂H. For instance, if H is the graph on the left of Fig. 6, then there is a face of colors 04
in G which enters H via the top left white vertex v and leaves through the right bottom black
vertex v̄. In G′ this face now goes straight between the two vertices via the edge of color 4
between v and v̄ in ∂H on the right of Fig. 6. Finally, the faces which did not touch H are
unchanged in G′. This shows that

F (G′) = F (G,H).
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In other words, the boundary graph ∂H keeps the structure seen by the rest of G while forgetting
about the internal structure of H (the non-free vertices).

Consider now H ∈ Gp(H)(B) with b(H) copies of B, and the set G(H) ⊂ G(B) obtained by
gluing copies of H via edges of color 0. Denote further Gmax(H) ⊂ Gmax(B) those which reach
the maximal value of the power δsB and assume that it is an infinite set. It implies that we
have found the graphs which maximize the number of faces at fixed number of bubbles for the
bubble ∂H as well as its enhancement s∂H , as shown below.

First, the set G(∂H) can be seen as a subset of G(B). Let G ∈ G(∂H), then there exists G̃ in
G(H) ⊂ G(B) such that replacing all copies of H in G̃ with ∂H, one obtains G. We denote b(G)
the number of copies of ∂H in G. Then

F (G) = F (G̃)− b(G)F (H).

We know that F (G̃) is bounded like

F (G̃) ≤
[
(d− 1)p(B)− sB

]
b(G̃) + δmax(B)

and moreover the number of copies of B in G̃ is b(G̃) = b(G)b(H), hence

F (G) ≤
([

(d− 1)p(B)− sB
]
b(H)− F (H)

)
b(G) + δmax(B).

We thus find that the power

δs∂H (G) = F (G)−
[
(d− 1)p(∂H)− s∂H

]
b(G)

defined with

s∂H = (d− 1)
(
p(∂H)− p(B)b(H)

)
+ sBb(H) + F (H), (5.1)

is bounded. There is moreover an infinite family Gmax(∂H) of graphs which reach the maximal
value of the power, obtained by replacing H with ∂H in Gmax(H).

Notice that the above value of s∂H is inherited from B, i.e., defined in a way which depends
on the representative H built from B, and not only on the bubble ∂H itself. However, uniqueness
of the enhancement guarantees that we would find the same value of s∂H for any other way of
representing this bubble as a boundary bubble.

Of course, the above reasoning applies with several bubbles {Bi}i∈I instead of the single
bubble B. Similarly, one can then add ∂H with its enhancement to the action including the
bubbles {Bi}i∈I and still have a non-trivial large N limit.

Since the technique we have presented here requires to generate ∂H as a boundary bubble
from another bubble B, one might ask what bubbles can be generated that way. The answer is
all of them: the quartic model with its d possible quartic melonic bubbles generate all bubbles
as boundary bubbles, as shown in [14]. However, only the melonic bubbles are boundary graphs
of subgraphs in Gmax({Bi}) – all other bubbles are generated at higher orders of the 1/N -
expansion (and their enhancement cannot be found from the quartic model). Still, let us check
our formula (5.1) for the inherited enhancement on the melonic bubbles (for which we know
that s = d− 1).

It is easy to see that a melonic bubble B with 2p vertices can be obtained as the boundary
graph of a gluing of quartic melonic bubbles in a tree-like fashion, meaning F (H) = 0 and
b(H) = p − 1. Then formula (5.1) gives s = (d − 1)(p − 2b(H)) + (d − 1)b(H) = d − 1, as
expected.
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Let us also derive the enhancements of the examples in Section 4.1 from the quartic case.
Since those are not melonic bubbles, we use the quartic “necklace” bubbles,

∂

 3

1

3

1

2 1
34


=

3

1

3

1

24

1

3
4

Formula (5.1) is applied with p(∂H) = b(H) = p, F (H) = 2 (one face of colors (03) and
one face of colors (01)) and sB = 4 (the enhancement of the quartic necklace), and gives
sp = −3p+ 4p+ 2 = p+ 2, as already found from the matrix model side in equation (4.2).

It becomes more interesting when combining for instance melonic and necklace quartic bub-
bles. The graphs which maximize the number of faces at fixed number of bubbles were found
in [10]. This then allowed the authors to find the enhancements and the graphs in Gmax for
an infinite family of bubbles which mixes melonic and necklace features and called “trees of
necklaces”. The enumeration of the graphs in Gmax (i.e., the calculation of the free energy)
was moreover performed in [10] (it leads to the same universality classes as those presented in
Section 8).

6 Enhancing bubbles using color slices

There are some cases where the graphs which maximize the number of faces at fixed number
of bubbles are easily found. Let us start with an example. Suppose we have a non-melonic
bubble B at d = 6, with p(B) black vertices, whose subgraph with colors 1, 2, 3 is melonic
and whose subgraph with colors 4, 5, 6 is melonic too. Then, if sB = d − 1, the tensor model
with that bubble as interaction is independent of the bubble coupling at large N because the

degree is always positive,
6∑
c=1

F0c(G) − 5(p(B) − 1)b(G) = 6 − ω(G) < 6. However, if B is

such that G(B) contains 7-colored Feynman graphs G whose subgraphs G{1,2,3} with colors
{0, 1, 2, 3} and G{4,5,6} with colors {0, 4, 5, 6} are both melonic, then it is clear that they are the
graphs which maximize the number of faces at fixed number of bubbles. Gurau’s degree formula
for G{1,2,3} and G{4,5,6} gives

F01(G) + F02(G) + F03(G) = 2(p(B)− 1)b(G) + 3− ω(G{1,2,3}),

F04(G) + F05(G) + F06(G) = 2(p(B)− 1)b(G) + 3− ω(G{4,5,6}),

and therefore by summing both equations

6∑
c=1

F0c(G)− 4(p(B)− 1)b(G) = 6− ω(G{1,2,3})− ω(G{4,5,6}) ≤ 6.

We can write the left-hand side in the same form as δsB (G),

6∑
c=1

F0c(G)− 4(p(B)− 1)b(G) =
6∑
c=1

F0c(G)− 5E(G) + (p(B) + 4)b(G),
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from which we conclude that the enhancement for any bubble of this type is sB = p(B) + 4.
If G(B) contains graphs for which ω(G{1,2,3}) = ω(G{4,5,6}) = 0, then the large N limit is
non-trivial.

The reason we could easily work out the above example is the partition of B into two sub-
graphs. To formalize this situation, consider a bubble B and a partition of the set of colors

{1, . . . , d} =
L⋃
k=1

λk,

such that:

1. Each λk, k = 1, . . . , L, has cardinality at least two, |λk| ≥ 2,

2. The subgraph of B with colors in λk, denoted Bλk , is connected.

This assumption can actually be relaxed but the analysis is then more involved [8]. No-
tice then that the analysis which follows applies to any bubble. It may however not be
conclusive as far as the enhancement is concerned.

3. Assuming that assumption 2 holds, we can further assume that Bλk has an enhance-
ment sλk . If assumption 2 is relaxed, one can always take sλk = |λk|− 1 as done originally
in [8] to ensure the existence of the 1/N -expansion. One could also try and adapt the
analysis of [8] in case Bλk is not connected but each connected piece has a given enhance-
ment.

Let G ∈ G(B). We denote Gλk the subgraph of G with all edges of colors 0 and the edges
with colors in λk. It is connected because we have assumed that the restriction of B to λk is.
Then the existence of the enhancement sλk ensures that the number of faces with colors (0c) for
c ∈ λk can be written like in (4.3),∑

c∈λk

F0c(G) =
(
(|λk| − 1)p(B)− sλk

)
b(G) + δsλk (Gλk),

and is bounded, with dk being the maximum of the power of Gλk ,

δsλk (Gλk) ≤ dk.

Summing over the parts of the partition, we get the following counting of the number of faces
of G,

d∑
c=1

F0c(G) =

L∑
k=1

∑
c∈λk

F0c(G) =

(
(d− L)p(B)−

L∑
k=1

sλk

)
b(G) +

L∑
k=1

δsλk (Gλk),

where we have used
L∑
k=1

|λk| = d. We now consider the power of G written for a yet-to-be-

determined enhancement sB,

δsB (G) =
d∑
c=1

F0c(G)−
(
(d− 1)p(B)− sB

)
b(G)

=

(
sB − (L− 1)p(B)−

L∑
k=1

sλk

)
b(G) +

L∑
k=1

δsλk (Gλk).
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A 1/N -expansion exists provided the right-hand side is bounded for any b(G). Since the last

sum is bounded,
L∑
k=1

δsλk (Gλk) ≤
L∑
k=1

dk, this imposes sB ≤ (L − 1)p(B) +
L∑
k=1

sλk . Moreover,

a non-trivial large N limit exists if and only if G(B) contains an infinite family of graphs such

that ∀ k = 1, . . . , L, δsλk (Gλk) = dk, and sB = (L− 1)p(B) +
L∑
k=1

sλk . This way, we can find the

enhancement of B from those of its sub-bubbles Bλk .

It is still interesting even if the enhancements of the sub-bubbles are not known. Then,
taking sλk = |λk|− 1 ensures the existence of a 1/N -expansion, by Gurau’s degree theorem, and
the bound on the power of the subgraphs is dk = |λk|. This reduces the new enhancement to
sB = (L− 1)p(B) + d− L, and the condition δsλk (Gλk) = dk becomes the vanishing of Gurau’s
degree for each subgraph, ω(Gλk) = 0.

For L = 1, one then recovers sB = d−1. For L ≥ 2, one notices a limitation right away, since
it is the same limitation as for L = 1: the analysis is inconclusive if there are no graphs such
that ω(Gλk) = 0. It can nevertheless solve tensor models with non-melonic bubbles, although
the large N limit, if non-trivial, is always found to be either similar to the melonic one or planar.
This comes from the fact that ω(Gλk) = 0 enforces Gλk to be either melonic if λk has cardinality
greater than 2, or planar if λk has cardinality 2.

We have thus found the following theorem

Theorem 6.1. Let B be a bubble, (λ1, . . . , λL) a partition of {1, . . . , d} such that the assump-
tions 1 and 2 hold. Then the free energy

fB(tB) = ln

∫
dTdT exp

(
−Nd−1T · T −N sB tBPB(T, T )

)
,

with sB = d− L+ (L− 1)p(B), admits a 1/N -expansion. Its large N limit is non-trivial if and
only if G(B) contains an infinite number of graphs satisfying ω(Gλk) = 0 for all k = 1, . . . , L.

Moreover, if the sub-bubbles Bλk with colors in λk are connected and have enhancements sλk ,
then B has the enhancement

sB = (L− 1)p(B) +
L∑
k=1

sλk .

More details can be found in [8], in particular the extension to the case where the assump-
tion 2 is dropped. Interestingly, that framework makes it possible to define tensor models for
“rectangular” tensors, i.e., where the tensor indices whose positions are in λk have a range Nk,
where N1, . . . , NL can be chosen independently.

We close this section with a simple application of the theorem. At d = 5, consider the bubble

B =

4
1

5 3 2

With L = 2, λ1 = {1, 2, 3}, λ2 = {4, 5}, one finds the enhancement sB = 5 > d − 1 = 4
and the large N limit is non-trivial. Indeed, the sub-bubble with colors 1, 2, 3 is melonic,
hence the large N limit enforces the subgraphs G{1,2,3} to be melonic. Moreover, ω(G{4,5}) = 0
imposes G{4,5} to be planar. This is in fact automatically the case if G{1,2,3} is melonic. Indeed,
all graphs contributing to the free energy at large N must have 2-point functions connecting the
vertices of the bubble which are connected by the colors 2, 3 (this is the universality Theorem 3.3
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applied toG{1,2,3}). It comes that there are infinitely many graphs satisfying ω(Gλ1) = ω(Gλ2) =
0, and

〈PB(T, T )〉 = N2G2(tB)2, with G2(tB) =
1

N2
〈T · T 〉.

Moreover, from the Schwinger–Dyson equation and the above expectation, one finds that the
large N 2-point function satisfies the equation 1−G2(tB)−2tBG2(tB)2 = 0, just like the 2-point
function of a model with a quartic melonic bubble (see (3.5)).

7 Stuffed Walsh maps

Finding the enhancement of a bubble requires to study the growth of the number of faces of the
graphs in G(B) with the number of bubbles. There are combinatorial objects for which faces are
under control: combinatorial maps. Hence, a bijection between G(B) and maps could be useful.
Such a bijection was introduced in [14].

In the case of quartic bubbles (bubbles with four vertices), the bijection can be seen di-
rectly in terms of integrals: one performs a Hubbard–Stratonovich transformation of the quartic
tensor integral, which leads to a matrix model with a logarithmic potential [20, 33, 45]. This
Hubbard–Stratonovich transformation translates to a bijection between the graphs of the Feyn-
man expansions of both sides of the transformation. Moreover, in the d = 2 matrix case, the
bijection obtained this way is Tutte’s bijection between bipartite quadrangulations (which in the
dual are maps with vertices of degree four, generated by a quartic matrix integral) and generic
maps (generated by a matrix model with a logarithmic potential). Therefore, the bijection we
present can be thought of as an extension of Tutte’s bijection to higher dimensions and arbitrary
bubbles.

The bijection relies on a repeated use of the following idea. Consider a cyclically ordered
list of objects l = (o1, . . . , ok). It can be represented graphically as an oriented cycle where the
objects o1, . . . , ok are drawn as vertices. Equivalently, one can turn the cycle into a star-shaped
map: still representing the objects as vertices, one add an extra vertex V connected to each
oject on via an edge en. The cyclic order between the objects thus translates into a cyclic order
of the edges, (e1, . . . , ek), around V . Using the counter-clockwise orientation of the plane, the
transformation looks like

o1o2

o3 o5

o4

o1o2

o3 o5

o4

V

e1e2

e3 e5e4

(7.1)

Crucially, the edge from on to on+1 becomes a piece of a face (called a broken face), i.e., a path
which goes from on to on+1 by following the corner between en and en+1 at V counter-clockwise.

7.1 Representing a bubble as a map

One starts with a pairing π on B, i.e., a partition of its vertices into pairs of black and white
vertices. We will map B to a map M(B, π) with blue vertices representing the pairs of B.
First, we erase the edges which connect the two vertices of a pair (obviously, one can find back
the missing edges since they are those whose colors are missing at each vertex) and orient the
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remaining edges of B from their white to black vertices. We can then merge the black and white
vertices of each pair into a blue vertex,

i1
i2
i3

i1

i2
i3

i1
i2
i3

i1

i2
i3

i1
i2
i3

and the property “being incident to a black (white) vertex” is replaced with “being ingoing
(outgoing) on a blue vertex”. We obtain a graph denoted Bπ. Thus, if a blue vertex has an
ingoing edge of color j, it also has an outgoing edge of the same color. Moreover, it cannot have
more than two edges of the same color. It other words, the restriction of Bπ to a fixed color is
a disjoint union of oriented cycles. For instance,

B =

1 2

1 2

1 2

π→ 1 2

1 2

1 2

→ Bπ =

1

1

1 2

2

2 (7.2)

Therefore, in this section, the word cycle means equivalently a simple closed path of edges
of a fixed color in Bπ or a cyclic list which alternates pairs of vertices of B (represented by the
blue vertices of Bπ) and edges of a fixed color (and visiting them at most once).

Let l(j) = (ρ1, . . . , ρkj ) be such a cycle of color j which goes along the (cyclically ordered) blue

vertices ρ1, . . . , ρkj . We apply the transformation (7.1) to l(j): we add a box-vertex Vl(j) and con-
nect it with edges of color j to the vertices ρ1, . . . , ρkj . This is done so that the (cyclic) counter-

clockwise order around Vl(j) is the same as the (cyclic) order of the blue vertices around l(j). This
transformation is performed on all cycles of all colors in Bπ. Continuing the example of (7.2),

Bπ =

1

1

1 2

2

2 →M(B, π) =

1 2

2
21

1 . (7.3)

The order between different colors incident on a blue vertex is irrelevant and can be chosen
arbitrarily.

Clearly, an edge of color j ∈ {1, . . . , d} is either not represented in M(B, π) if it connects two
vertices of a pair, or it is represented in Bπ by an oriented edge between two blue vertices. In
the latter case, it is then represented in M(B, π) as a counter-clockwise corner at a box-vertex
between two edges of color j,

ρ1

ρ2

e e

ρ1

ρ2

ρ1

ρ2

e
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7.2 The universal part of the bijection

We now need to connect the maps M(B, π) together. In the original graph G ∈ G(B), bubbles
are connected by edges of color 0. The pairing π on B induces a pairing πG on all the graphs
G ∈ G(B) by choosing π on all the copies of B contained in G.

The pairing πG can be thought of as a permutation: given a labeling of the vertices, it maps
each white vertex to a black vertex. Similarly, the edges of color 0 can be encoded through
a permutation τ0: using this same labeling, τ0 maps a black vertex to a white vertex if there is
an edge of color 0 between them.

We now consider the cycles of πG ◦ τ0. Graphically, start from a black vertex and follow the
incident edge of color 0 to a white vertex (this is τ0). This white vertex is part of a pair given
by π, so jump to the black vertex of that pair, and repeat. The cycles obtained that way contain
all edges of color 0 and all pairs.

In this section, the word cycle thus means equivalently a cycle of a permutation or a cyclic
list of objects in a colored graph which alternates edges of color 0 and pairs of vertices from π
(and visiting them at most once).

Denote c = (ρ1, . . . , ρk) a cycle of πG ◦τ0 which encounters the pairs ρ1, . . . , ρk. If the vertices
of ρj are connected by the colors of a subset Ij ⊂ {1, . . . , d}, denote Îj = {1, . . . , d} \ Ij its
complement. These are the colors of the edges that, when being followed from a vertex of ρj
lead to other pairs in different cycles of πG ◦ τ0.

We represent each cycle c = (ρ1, . . . , ρk) by a black vertex vc of degree k. A pair ρj is
represented in the map M(B, π) by a blue vertex. We therefore connect vc to the blue vertices
representing ρ1, . . . , ρk. An edge connecting vc to ρj is decorated with the color set Îj . Moreover,
one has to record the order in which the pairs are encountered along c. This gives rise to a cyclic
order of the edges incident to vc. This is summarized graphically as follows

j

k1k2

i1 i2
i3

e
ρi

ρj
ρk

→
i1i2i3

k1k2
j

e

ρi

ρkρj

Notice that the edges of color 0 are mapped to corners. It is done in such a way that following
an edge of color 0 from its black vertex to its white vertex corresponds to the counter-clockwise
orientation of the corner. Therefore, an oriented path which alternates edges of color 0 (from
black to white vertices) and edges of another fixed color, say j ∈ {1, . . . , d}, along the cycle
becomes a path which follows corners counter-clockwise until an edge carrying the color j is
met. It is a closed path (i.e., a face of colors (0j) of G) if and only if the color j is not incident
to the vertex. In other words, the parts of the faces of colors (0j) which go through such a cycle
become the corners around the vertex between edges which carry the color j.

Notice that this part is universal: it does not depend on B. In principle, all subsets of
{1, . . . , d} are allowed on the edges connecting the blue and black vertices. The restriction to
a particular bubble only puts restrictions on the subsets of colors which can effectively appear.

7.3 Bijection with stuffed Walsh maps

The set of maps obtained by gluing copies of M(B, π) via black vertices is denotedW(B, π). The
maps W ∈ W(B, π) are called stuffed Walsh maps, because if one replaces each copy of M(B, π)
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contained in W with a white vertex, one would have a bipartite map where the white vertices
can be thought of as hyper-edges (this is Walsh’s representation of hypermaps [49]). In fact,
if B is a cycle (closed path alternating edges of colors 1 and 2), then the bijection precisely
leads to bipartite maps which represent hypermaps [14]. However a white vertex is generically
not a faithful representation of M(B, π), so a map W can be thought as obtained from stuffing
a bipartite map with copies of M(B, π).

Due to the stuffing, a map W ∈ W(B, π) has three types of vertices: blue ones represent
pairs, box-vertices incident to edges of color j represent cycles of pairs and edges of color j, and
black vertices represent cycles of pairs and edges of color 0.

We introduce W (c) the submap of W with all the edges whose color sets contain c ∈ {1, . . . , d}.
It is typically disconnected and isolated vertices are taken into account.

Theorem 7.1. For any choice of pairing π there is a bijection between G(B) and W(B, π)
which maps copies of B to copies of M(B, π), pairs of vertices to blue vertices, edges of color
j ∈ {1, . . . , d} to corners around box-vertices between edges of color j, edges of color 0 to corners
around black vertices while the faces of colors (0c) are mapped to the faces of W (c).

The only bit we have not explained yet is the fact that the faces of colors (0c) become the
faces of the submap W (c). All the construction pointed that way. Indeed, an edge of color c
from its white vertex to its black vertex is mapped to a counter-clockwise corner at a box-vertex.
Moreover, an edge of color 0 from its black vertex to its white vertex is mapped to a counter-
clockwise corner at a black vertex of W between two edges containing the color c. Following
edges of colors c and 0 therefore amounts to following corners counter-clockwise between edges
which contain the color j, as shown below

ρ1

ρ2

e0

e1e′0
→ ρ1

ρ2

e0

e′0 e1

Notice that no order is specified at the blue vertices because for a fixed color, a blue vertex is
always bivalent (and the order between distinct colors is irrelevant).

7.4 Projected maps and trees

Stuffed Walsh maps remain complicated objects to study due to the structure of the
map M(B, π) which represent the bubble B. As such, the maps M(B, π) encodes all the richness
of the possible bubbles. Yet, for any B, there are some tree-like maps for which we can easily
find the number of faces.

To see that, we introduce the notion of projected maps. For a stuffed Walsh map W ∈
W(B, π), its projected map PW is defined by representing all submaps M(B, π) as vertices, say
white vertices, while preserving the rest of W . This requires to fix an ordering of the edges
around these white vertices. As a consequence, PW loses the structure of the bubble B and
becomes an edge-colored hypermap.

Proposition 7.2. The number of faces of a map W whose projected map PW is a tree is

F (W ) = (F (Bπ)− d)V◦(W ) + d, (7.4)

where Bπ is the map which consists in a single M(B, π) whose blue vertices are each connected
to a univalent black vertex, and V◦(W ) is the number of copies of M(B, π) in W .
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1 2

2
21

1

1 2

1 2

Figure 7. We use the bubble and pairing of (7.2). On the left is the map Bπ obtained by connecting the

blue vertices of M(B, π) (taken from (7.3)) to univalent black vertices. On the right is the corresponding

colored graph, with dashed edges for the color 0. It simply consists in adding the color 0 between the

vertices of each pair of π. Indeed, blue vertices represent pairs of vertices of B, and connecting them to

univalent black vertices correspond to closing cycles made of a pair and an edge of color 0.

An example of the map Bπ is provided in Fig. 7 in the case the bubble B and the pairing are
those of equation (7.2).

In other words, the number of faces of such maps grows linearly with the number of sub-
maps M(B, π), with a known coefficient. This coefficient features Bπ which is easily interpreted
in terms of colored graphs. Indeed, it is the graph obtained by representing the pairing π with
edges of color 0 connecting the two vertices of each pair in B. This is a contribution to the
expectation of the polynomial PB(T, T ) in the Gaussian distribution.

Let us assume that B and π are such that the number of faces of any map F (W ) is bounded
by the number of faces of those whose projected maps are trees, at fixed V◦. We can then find
the enhancement sB,

sB = d+ (d− 1)p(B)− F (Bπ). (7.5)

Indeed, since the bijection preserves the number of faces, F (W ) = F (G) and since V◦(W ) = b(G),
our assumption means that there exists a family of graphs G ∈ G(B) which maximizes the
number of faces at fixed number of bubbles. Hence F (G) ≤ (F (Bπ) − d)b(G) + d. Then the
power δ(G) of a graph G is bounded like

δsB (G) ≤ d−
[
(d− 1)p(B)− (F (Bπ)− d)− sB

]
b(G).

Choosing sB as in (7.5) is then the only choice which provides a bound independent of the
number of bubbles and at the same time which can be saturated by an infinite family of graphs:
those in bijection with maps whose projected maps are trees.

The difficult point is to prove the assumption that the number of faces is bounded by (7.4)
for some choice of π. It has been proved in some cases [10, 14], and no counter-examples have
been found yet. Notice that in most cases where it was proved, maps whose projected maps are
trees are not the only maps which maximize the number of faces. Often, the set of such maps
include a subset of planar maps.

It is important to keep in mind that the graphs represented by trees in (7.4) depend on the
choice of π. Any choice of π is a valid one. However, depending on what one plans to use the
bijection for, some choices can be more convenient and useful. In our case, we are interested in
finding the maps which maximize the number of faces. Therefore, we would like π to help us
characterize the maps which maximize the number of faces and make them as simple as possible,
like trees for instance (or rather maps whose projected maps are trees).

Different pairings π on a fixed bubble B can lead to projected maps which are the same trees,
but with a different counting of faces (due to different values of F (Bπ)). For instance, if B is
melonic, there is a canonical pairing π (the one which maximizes F (Bπ)). If chosen, this pairing
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is such that the number of faces is indeed bounded by the number of faces of maps which project
on trees: maps which maximize the number of faces are those whose projected maps are trees.
In fact, they are precisely the melonic graphs built from B. However, for a different choice of
pairing, our bijection does not map melonic graphs to trees. Instead, (maps whose projected
maps are) trees then correspond to an entirely different family of graphs which certainly do not
maximize the number of faces.

From this example, it appears that a convenient choice of π is one such that F (Bπ) is maximal,
say π∗. Only then one might hope to prove that (maps whose projected maps are) trees are
dominant. In fact, it is proved in [14] that maps whose projected maps have a single cycle (in
the sense of a simple closed path of edges in the projected map) always have fewer faces than
trees, provided one chooses π∗ as pairing for the bijection. For other choices of π, there is no
conjecture at all on what the maps which maximize the number of faces look like.

8 The quartic case

8.1 Description of the dominant maps

The bijection we have presented simplifies quite a bit in the quartic case, i.e., the case of bubbles
with four vertices (as the bijection is then generated by a Hubbard–Stratonovich transformation).
Indeed, those bubbles have two pairs of vertices which are mapped in M(B, π) to two blue
vertices. They are connected by the colors in I = {i1, . . . , ik}. The box-vertices for each of
those colors are then bivalent, meaning that they can be transformed to just edges between the
two blue vertices. Since one gets such an edge for all colors which connect the two pairs, the
map M(B, π) can simply be turned to an edge between two blue vertices, decorated with the
colors which connect the two pairs,

i1 i2 ik i1i2ik → i1 i2 ik → I = {i1i2 . . . ik}

Each blue vertex therefore connects to another blue vertex and a black vertex, with edges
carrying the same color set I. They are thus bivalent and can be erased. One ends up with
maps with only black vertices of arbitrary degrees, and edges colored by I.

When several types of quartic bubbles are allowed, the generalization is obvious: each quartic
bubble becomes an edge of a map with a color set. We will consider quartic melonic and necklace
bubbles with the following pairings

i → i, i1 → 1i

We already know the enhancements for all those bubbles, s = d − 1 for the melonic ones
and s = 4 for the quartic necklaces at d = 4. It remains to find the maps which maximize the
number of faces when the bubbles are all used together. The results have appeared in [10]. The
monocolored edges have to be bridges (or cut-edges, i.e., their removals disconnect the map).
We can therefore temporarily assume that M is a map without monocolored edge. It therefore
only has bicolored edges with colors (1i). To find the maps which maximize the number of
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faces, we use a result of [14] which gives the difference between the number of faces of a stuffed
Walsh map and the number of faces of another one whose projected map is a tree with the same
number of copies of M(B, π). In our context, maps and projected maps are the same, so we
find that the difference between the number of faces of M and that of a tree T with the same
number of edges is

F (M)− F (T ) = −4l(M) + 2

4∑
i=1

l(M (i))− 2

4∑
i=1

g
(
M (i)

)
. (8.1)

Here l(M) = E(M) − V (M) + 1 is the cyclomatic number of M , M (i) is the (typically non-
connected) submap obtained by keeping only the edges whose color set contains the color i,
and l(M (i)), g(M (i)) are its cyclomatic number and genus. Notice that the color 1 labels all
edges, therefore l(M) = l(M (1)). Since M (2), M (3), M (4) are edge-disjoint submaps, it comes

l
(
M (2)

)
+ l
(
M (3)

)
+ l
(
M (4)

)
≤ l(M). (8.2)

The right-hand side of (8.1) is thus nonpositive and therefore F (M) ≤ F (T ).

To get the equality F (M) = F (T ), i) the map M should have all its colored submaps
planar4, g(M (c)) = 0 for c = 1, 2, 3, 4, and ii) the equality has to hold in (8.2). The latter
condition means that the edges of every cycle (i.e., simple closed path of edges) have the same
color type, either (12) or (13) or (14).

Let G(k,q)
max be the set of colored graphs made of q types of quartic melonic bubbles and k types

of quartic necklace bubbles which maximize the number of faces at fixed number of bubbles. It

is mapped to the set M(k,q)
max of maps which satisfy the following conditions,

• vertices have unbounded degrees,

• monocolored edges can have q possible colors (as we allow q ≤ d types of quartic melonic
bubbles),

• monocolored edges are bridges,

• bicolored edges carry the color type (1c) where c can take k values (and k ≤ 3 since there
are at most the types (12), (13) and (14)),

• the submaps M (c) made of all edges which carry the color c are planar,

• every cycle has a fixed color type (1c).

An schematic example is given in Fig. 8. The constraint that every cycle has a fixed color type
is equivalent to the following: Every two connected submaps of different color types can only
meet at a cut-vertex (recall that a cut-vertex is a vertex whose removal increases the number of
connected components of the map). Indeed, assume that there is a cycle made of edges of several
color types. We can choose as submaps the chains of edges of the same color type and maximal
length along the cycle and those submaps clearly meet on vertices which are not cut-vertices.
The other way around, assume that there exist two connected submaps M ′, M ′′ of different
color types which meet on a vertex v which is not a cut-vertex. For all vertices u ∈M ′, w ∈M ′′
there is a path from u to w going through v. Since v is not a cut-vertex, the map remains
connected after its removal, and therefore there exists a path between u and w which do not go
through v. These two paths can be concatenated to form a cycle (removing the vertices which
are visited more than once) which has at least two distinct color types.

4In general, M (c) is not connected. Its genus is the sum of the genera of its connected components.
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Figure 8. This is a schematic example of a graph in G(3,4)max . The greyed regions with labels (1c) are

arbitrary planar connected components with edges of type (1c). Every two such regions can only meet

on cut-vertices, leading to a (nested) cactus-like structure.

8.2 Enumeration of the dominant maps

We denote M̄(k,q)
max the set of rooted maps (i.e., with an marked oriented edge) satisfying all those

conditions, and its generating function

f(k,q)(t, λ) =
∑

M∈M̄(k,q)
max

tE(M)λEm(M),

where E(M) is the total number of edges and Em(M) the number of monocolored edges of M .
This is actually the 2-point function of the quartic tensor model. Indeed, the latter is a sum over
colored graphs with a marked edge of color 0. A marked edge of color 0 is incident to the black
vertex of a bubble. In the map point of view, this bubble is an edge e and the edge of color 0
is a corner incident to e. We can then orient e outward, and the construction can be reversed,
i.e., an oriented edge of a map is equivalent to a marked edge of color 0. Moreover, since quartic
bubbles have two indistinguishable white (or black) vertices, there are two equivalent ways to
glue a bubble to a graph. This leads to C(G) = 2b(G) = 2E(M) which is being re-absorbed in t.

Notice that the only constraint on monocolored edges is that every one of them is a bridge,
so their colors are irrelevant. It means that one can set a unique color to monocolored edges and
simply rescale λ by q, f(k,q)(t, λ) = f(k,1)(t, qλ). We thus forget about q and study fk(t, λ) ≡
f(k,q=1)(t, λ).

We consider the map consisting of a single vertex as a rooted map so that fk(t, λ) starts
with 1. All other terms have at least one edge. Assume that the root edge e is monocolored,
then as it is a bridge, it separates two connected components which can be canonically rooted on
the first edge after e by going counter-clockwise around each vertex of e. Those two connected

components are thus in M̄(k,1)
max . We thus have

fk(t, λ) = 1 + tλfk(t, λ)2 + maps rooted on a bicolored edge. (8.3)

The only difficult part of the enumeration is to take into account the constraint that every cycle
has a single color type. To do so, we notice that connected components consisting of edges of
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color type (1c) and (1c′) for c 6= c′ can only touch at a cut-vertex which separate them (i.e.,
removing the vertex separates the two connected components).

Let M ∈ M̄(k,1)
max rooted on a bicolored edge e and let M ′ be the maximal non-separable

submap containing e. As explained in [25], M can be recovered from M ′ by inserting rooted

maps Mα ∈ M̄(k,1)
max on each corner of M ′ (if Mα is inserted in the counter-clockwise corner

between e1 and e2, one can root Mα on the first edge met after e1). This decomposition holds
for generic planar maps [25]. In our case, the key point is that M ′ has a single color type (the
same as its root edge e). However, the corner insertions Mα can be arbitrary and in particular
rooted on an edge of arbitrary color type.

Let P (t) be the generating function of non-separable rooted planar maps counted with respect
to the number of edges. Since the number of corners is twice the number of edges, one can
consider that there are two maps Mα,Mβ inserted on M ′ for each edge. The contribution of the
maps rooted on a bicolored edge is thus P (tfk(t, λ)2)− 1 for a single color type (P contains the
single vertex map, which we have already taken into account in (8.3), hence the −1). Adding
the k types of bicolored root edge to (8.3) therefore gives

fk(t, λ) = 1− k + tλfk(t, λ)2 + kP
(
tfk(t, λ)2

)
. (8.4)

It remains to describe the generating function P (x). It satisfies the following algebraic sys-
tem [25] (more about where it comes from below)

x = u(1− u)2, P = (1− u)(1 + 3u). (8.5)

The latter can be turned into an algebraic system describing fk(t, λ). Indeed, by setting x = tf2,
one directly gets a parametrization of P (tf2). In particular, tf2 = u(1−u)2. Moreover from (8.4)
we also know that f = 1−k+λx+kP (x). By plugging x = u(1−u)2 and P (x) = (1−u)(1+3u),
the following system is obtained

tf2 = u(1− u)2, f = k(1− u)(1 + 3u)− k + 1 + λu(1− u)2, (8.6)

and fk(t, λ) is the solution of this system for f after elimination of u. One then gets the
polynomial equation

tfk(t, λ)2
(

2k3 + k2(λ− 18) + 3λ− 4λk +
(
18k2 − 6λ+ 4λk

)
fk(t, λ)

+
(
3λ(1 + tλ)− 27k3t− 18k2tλ− 2ktλ2

)
fk(t, λ)2 − 3tλ2fk(t, λ)3 + t2λ3fk(t, λ)4

)
−
(
fk(t, λ)− 1

)(
fk(t, λ) + k − 1

)2
= 0. (8.7)

Notice that when allowing for a single type of bicolored edges, i.e., k = 1, and no monocolored
edges, i.e., λ = 0, one should be enumerating generic planar maps. The polynomial equa-
tion (8.7) indeed reduces to the well-known quadratic equation on the generating function of
rooted planar maps,

27t2A(t)2 + (1− 18t)A(t) + 16t− 1 = 0, (8.8)

with A(t) = fk=1(t, λ = 0). In fact, [25] proceeds precisely the other way around to get the
system (8.5). Indeed, as is standard, one can find (8.8) independently, using Tutte’s equation
for instance. It can thus be shown that A(t) satisfies the system t = α(1 − 3α), A = (1 −
4α)(1 − 3α)−2. This system combined with the decomposition (8.4) in the case k = 1, λ = 0,
i.e., A(t) = P (tA(t)2), leads to (8.5) after some change of variables [25]. What we are doing
here is thus extend A(t) = P (tA(t)2) to (8.4) and use (8.5) to get to (8.6).
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We are going to discuss the singularities of fk(t, λ) with respect to t. Since t counts the total
number of edges, those singularities describe the asymptotic behavior of the number of maps

in M̄(k,1)
max with respect to the number of edges. We find it more convenient to work with the

algebraic system (8.6) rather than the polynomial equation (8.7).
The system (8.6) describes solutions for f and u as functions of t, with parameters k, λ. The

system becomes singular with respect to t when the Jacobian vanishes. The differential system
reads(

2tf −(1− u)(1− 3u)
1 −2k(1− 3u)− λ(1− u)(1− 3u)

)(
f ′

u′

)
=

(
−f2

0

)
,

where the prime indicates the derivative with respect to t. The singularities are thus determined
by adding the vanishing of the determinant of the above matrix to the system (8.6),

tf2 = u(1− u)2,

f = k(1− u)(1 + 3u)− k + 1 + λu(1− u)2,

(1− 3u)
(
1− u− (2k + λ(1− u))2tf

)
= 0. (8.9)

Solutions to this system can be given using radicals but the explicit expressions are lengthy and
not particularly suitable for detailed analysis. Instead we solve explicitly the case where k = 1,
i.e., a single type of bicolored edges allowed, and the case λ = 0, i.e., no monocolored edges
(which can only be bridges). Those two situations will both give the same phase diagram, which
we conjecture extends to the case of generic (k, λ):

• For k and λ small enough, a large typical map consists of several planar components each of
a fixed bicolored type, connected by a finite number of monocolored edges (with weight λ)
and/or cut-vertices which can connect two components of different color types. Therefore
the criticality is expected to be that of planar maps, with a singularity (tc − t)3/2.

• For k or λ large enough, a large typical map has mostly monocolored edges (which form
trees) and/or numerous cut-vertices separating planar components of different color types
(when k gets larger, the probability of adding a component of a different color type in-
creases). The planar components of fixed color type remain non-critical. The maps are
thus dominated by branching processes, so a singularity (tc − t)1/2 is expected, i.e., the
universality class of trees.

• Between those two phases, there should be a regime where bicolored planar components are
in infinite number (connected by infinitely many monocolored edges and/or cut-vertices)
and each of them becomes infinite too. This phase thus has a proliferation of baby universes
and the expected singularity is (tc − t)2/3.

The proliferation of baby universes is a known phenomenon, which has been encountered
in the context of multi-trace matrix models in [1, 4, 19, 41, 42]. A multi-trace matrix model
has as interaction products of matrix traces, like TrMk1 · · ·TrMkq for the matrix M . An
interaction of this type can be thought of as the superposition of q vertices of degrees k1, . . . , kq.
For maps which maximize the number of faces, the planar components which contain each of
those q vertices can only touch at the point where they are superimposed. This leads to planar
components connected in a cactus way. This phenomenon is analogous to the fact that planar
components of different color types can only touch at vertices which separate them in our model.
This is therefore a branching process also similar to connecting planar components via bridges.
This analogy explains the presence of the proliferation of baby universes in tensor models.

We can further find an equation on the radius of convergence of fk(t, λ) in terms of k, λ in the
regime where it has a square-root singularity. Let us look at solutions of (8.7) with a square-root
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singularity, fk(t, λ) = a+ b
√
ρ− t+ o(

√
ρ− t). At orders 0 and 1 in

√
ρ− t, equation (8.7) gives

algebraic relations between a, ρ, k, λ. Eliminating a, the resultant of those two equations then
reduces to

0 = −λρ+
(
4k3 + 40λk2 + 12λ2 − 8λ2k

)
ρ

+
(
−128k5 − 192λk4 − 96λ2k3 − 320λk3 − 48λ3 − 16λ3k2 − 32λ2k2 + 64λ3k

)
ρ2

+
(
1024k6 + 2048λk5 + 1536λ2k4 + 64λ4 + 512λ3k3 − 512λ2k3 + 64λ4k2

− 512λ3k2 − 128λ4k
)
ρ3.

Anticipating the cases studied below, notice that it has the solution ρ = λ
4(1+λ)2 for k = 1 and

ρ =
k+
√
k(k−1)

16k2 for λ = 0.
By further developing some ansatz of the form fk(t, λ) = a0 + a1(ρ − t)α + a2(ρ − t) + · · ·

for some well-chosen exponents α, and plugging them into (8.7), one might try and match the
coefficients to find algebraic relations between them. Instead of pursuing that approach, we will
describe in details two cases where the values of the exponent α can be found directly.

8.2.1 A single type of necklace bubble

Allowing for a single type of necklace bubbles corresponds to allowing for a single type of
bicolored edges, i.e., k = 1. This case has in fact been solved in [10] with the so-called “trees
of necklaces” bubbles which generalize the present case k = 1 beyond quartic bubbles. It was
solved in [10] using the Schwinger–Dyson equations of tensor models which were shown to reduce
to the loop equations of multi-trace matrix models, already studied in [1, 4, 19, 41, 42]. Here we
present another approach, based on the system (8.6) instead, which to our knowledge has not
appeared in the matrix model literature.

Notice that the polynomial equation (8.7) reduces to a quartic equation,

1− 16t−
(
1 + 2t(λ− 9)

)
fk=1(t, λ) +

(
3λt+ t2(λ2 − 18λ− 27)

)
fk=1(t, λ)2

− 3t2λ2fk=1(t, λ)3 + t3λ3fk=1(t, λ)4 = 0,

which itself reduces to the quadratic equation (8.8) for the generating function of planar maps
A(t) by setting λ = 0.

The system (8.9) then admits the following solutions (depending on λ)

u1(λ) =
1

3
, f1(λ) =

4

27
(λ+ 9), t1(λ) =

27

4(λ+ 9)2

which is the singular locus for λ ≤ 3, and

u2(λ) =
1

λ
, f2(λ) = 2

λ2 − 1

λ2
, t2(λ) =

λ

4(1 + λ)2

for λ ≥ 3. The function fk=1(t, λ) is represented in Fig. 9 as a function of t for various values
of λ. For λ ≤ 3, f(t) hits a singularity at t1(λ). For λ ≥ 3, the first singularity encountered
while coming from (t = 0, f = 1) becomes the one at (t2(λ), f2(λ)).

Performing some Taylor expansion of the system (8.6) around the above critical points, one
finds the singular behaviors. For λ < 3, one finds

fk=1(t, λ) = f1(λ) +
16(λ+ 3)(λ+ 9)3

729(λ− 3)
(t1(λ)− t) +

64(λ+ 9)11/2

6561(3− λ)5/2
(t1(λ)− t)3/2

+ o
(
(t1(λ)− t)3/2

)
.



Large N Limits in Tensor Models 33

0.01 0.02 0.03 0.04 0.05 0.06
t

1.2

1.4

1.6

1.8

2.0

2.2

2.4

f

Λ � 3

Λ � 1

Λ � 8

Ht1 HΛL,f1 HΛLL
Ht2 HΛL,f2 HΛLL

Figure 9. The curves represent f as a function of t for λ = 1 up to λ = 8 with a step of .25. The dashed

line is the singular locus for λ ≤ 3, and the thick line for λ ≥ 3 where a f(t) develops a vertical tangent.

It thus extends the known singularity of the generating function of planar maps,

A(t) =
4

3
− 16

(
1

12
− t
)

+ 64
√

3

(
1

12
− t
)3/2

+ o

((
1

12
− t
)3/2

)
, (8.10)

with t1(λ = 0) = 1/12, f1(λ = 0) = 4/3, to the case where planar maps can be connected by
bridges with weight λ.

For λ > 3, one gets

fk=1(t, λ) = f2(λ)− 4(1 + λ)2

λ5/2

√
λ2 − 2λ− 3(t2(λ)− t)1/2 + o

(
(t2(λ)− t)1/2

)
,

which is the behavior expected for trees. Finally, at λ = 3, one gets t = 3/64 − 81/512(1/3 −
u)3 + o((1/3− u)3) and f = 16/9− 6(1/3− u)2 + o((1/3− u)2), and therefore

fk=1(t, λ = 3) =
16

9
− 128

35/3

(
3

64
− t
)2/3

+ o

((
3

64
− t
)2/3

)
,

which corresponds to the phase where baby universes (each planar submap of fixed color type
becoming critical) proliferate because there is an infinity of them connected by bridges in a tree-
like fashion. This phase was originally described in the context of multi-trace matrix models [1,
4, 19, 41, 42].

8.2.2 No monocolored edges

The maps with no monocolored edges, i.e., λ = 0, corresponds to the case where the quartic
melonic bubbles are not allowed whereas k types of necklace bubbles are. A priori, k is an
integer at most 3. Notice however that the algebraic system (8.6) makes sense for k a positive
real number.

Setting λ = 0, the polynomial equation (8.7) becomes of order 4,

(k − 1)2 − (k − 1)(k − 3)fk(t) +
(
3− 2k − 18k2t+ 2k3t

)
fk(t)

2

+
(
18k2t− 1

)
fk(t)

3 − 27k3t2fk(t)
4 = 0,
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where we have set fk(t) = fk(t, λ = 0). The linear and constant terms vanish at k = 1, thus
reproducing (8.8).

The system (8.9) which determines the singularities has four solutions at λ = 0. Two of them
give negative values to fk for all k ≥ 1. We dismiss them and the “physical” solutions are the
two others. For k ≤ 9/5 the singularities are on the following line parametrized by k

u
(1)
k =

1

3
, f

(1)
k = 1 +

k

3
, t

(1)
k =

4

3(k + 3)2

while for k ≥ 9/5, they are on

u
(2)
k = 1−

√
k − 1

k
, f

(2)
k = 4

(
1− k +

√
k(k − 1)

)
, t

(2)
k =

k +
√
k(k − 1)

16 k2
,

and those two solutions coincide at k = 9/5, as shown on the plot of Fig. 10.
The behavior of fk(t) close to the singular points can be obtained by performing Taylor

expansions of (8.6). For k < 9/5, that gives

fk(t) = f
(1)
k −

k(k + 3)3

9− 5k

(
t
(1)
k − t

)
+
√

3k
(k + 3)11/2

(9− 5k)5/2

(
t
(1)
k − t

)3/2
+ o
((
t
(1)
k − t

)3/2)
,

which indeed reproduces (8.10) when k → 1. For k > 9/5, one finds

fk(t) = f
(2)
k + 16

√
k
(
20k3 − 31k2 + 11k −

√
k(k − 1)(20k2 − 21k + 3)

)(
t
(2)
k − t

)1/2
+ o
((
t
(2)
k − t

)1/2)
.

meaning that fk(t)− f (2)
k ∼

√
t
(2)
k − t for some non-zero, explicit constant. As in the case k = 1

and λ > 3, the universality class is that of ordinary trees. This is interpreted as the fact that
when k is large enough, it becomes very likely that a typical vertex separates planar components
of different color types. This produces cacti-like structures similar to trees.

Eventually, for k = 9/5, the critical values are f
(1)
k = f

(2)
k = 8/5 and t

(1)
k = t

(2)
k = 25/432.

Moreover, the singularity takes the form

fk=9/5(t) =
8

5
− 432

25× 51/3

(
25

432
− t
)2/3

+ o

((
25

432
− t
)2/3

)
.

9 Conclusion

We started the present article by explaining how random tensor models generate discrete, higher-
dimensional (pseudo-)manifolds, the same way random matrix models generate combinatorial
maps. We insisted on generalizing the notion of 2p-angulations (or more generally maps with
restrictions on the allowed face degrees), by using colored triangulations with prescribed bubbles.
A bubble is a generalization of a 2p-angle, obtained by gluing colored simplices until the boun-
dary is formed by (d − 1)-simplices of a fixed color, much like a 2p-angle is a gluing of 2p
colored triangles with 2p edges of color 0 on its boundary. We then went on studying the set of
colored triangulations built by gluing copies of an arbitrarily chosen bubbleB, and denoted G(B).
Importantly, those bubbles and colored triangulations can be represented as regular, edge-colored
graphs with respectively d and d+ 1 colors.

The program of random tensors can then be put in purely combinatorial terms. It consists in
classifying the graphs of G(B) with respect to the number of bubbles and the number of faces,
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where a face is a cycle alternating the colors 0 and c, for c ∈ {1, . . . , d}. The classification by
Gurau and Schaeffer [39] does precisely that for the set of all colored graphs, using Gurau’s
degree ω(G) ≥ 0. However, it is believed that for a typical bubble B, the degree ω(G) for
G ∈ G(B) scales with the number of bubbles in G. In other words, the generating function at
fixed degree is polynomial and no interesting continuum limit can be achieved.

We have called an enhancement of B the maximal value of sB such that

δsB (G) = F (G)−
[
(d− 1)p(B)− sB

]
b(G)

is bounded for all G ∈ G(B). The strategy we used to find enhancements was to try and find the
graphs which maximize the number of faces at fixed number of bubbles forming the set Gmax(B).
We have also shown that finding sB is crucial to defining tensor models with non-trivial large N
limits.

Sections 5, 6 and 7 were then devoted to three techniques developed in the literature to find
enhancements, using combinatorial tools. We have moreover taken the opportunity of reviewing
those techniques to formalize and actually extend two of them borrowed from [8, 10, 13] in
Sections 5 and 6. Section 7 then reviews the bijection proposed recently in [14].

This bijection is finally used in Section 8 to perform the enumeration of the graphs in Gmax(B)
in the quartic cases (with four-vertex bubbles). The relevant graphs were already described
in [10] but we have i) revisited their derivation using the new bijection, ii) perform the enumer-
ation beyond [10].

The set Gmax(B) was described for other bubbles in [14], but the set of universality classes
that colored triangulations can reach is far from being understood. We know that it includes
all universality classes of combinatorial maps, since the necklace bubbles are matrix models in
disguise (as shown in Section 4.1). The three techniques presented in this article are fairly recent
and have been applied to a handful of bubbles only. It is possible that those techniques, as well
as combinations of them, can lead to the enumeration of Gmax(B) for bubbles B which have not
been investigated yet. For instance, one might use the bijection to find new enhancements, then
the techniques of Sections 5 and 6 to derive other enhancements from them.
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While the phase diagram resulting from the enumeration in Section 8 is not really surprising,
we think the method is worth discussing. We indeed used a decomposition of the relevant maps
onto non-separable planar maps whose generating function is known [25]. In particular, we did
not use directly the Schwinger–Dyson/loop/Tutte equations for quartic models (however, we use
the system (8.5) for non-separable planar maps which is derived in [25] from Tutte’s equation
for planar maps). It would be interesting to write (using the tensor integrals, or matrix integrals
as discussed below) and solve the Schwinger–Dyson equations for quartic models directly, since
this is one of the more traditional methods in matrix models and also the root of the topological
recursion.

In fact, the maps counted in Section 8 can be generated by a matrix model [10]. More
generally, stuffed Walsh maps based on any bubble, as described in Section 7, can be generated
using random matrix integrals as shown in [14]. This means that there are Schwinger–Dyson
equations which characterize the relevant generating functions. We have not however found any
way to solve those equations yet. The difficulty lies in the fact that the corresponding matrix
models are multi-matrix, multi-trace models, so that the matrices typically do not commute. The
set of relevant observables is thus more difficult to analyze and so is the set of Schwinger–Dyson
equations.

In the quartic case with only necklace bubbles, the matrix model is as follows. Let V = RN
be the defining representation space of N × N matrices. We introduce N2 × N2 Hermitian
matrices ψ12, ψ13, ψ14 and denote Ψ1c the matrix which acts on V ⊗ V ⊗ V ⊗ V as ψ1c on the
first and c-th copies of V and as the identity on the two other factors. Then∫

dψ12dψ13dψ14 exp

{
−N2

4∑
c=2

TrV ⊗2 ψ2
1c + TrV ⊗4 ln

(
I + t(Ψ12 + Ψ13 + Ψ14)

)}
(9.1)

generates the maps studied in Section 8 for λ = 0. Evidently [Ψ1c,Ψ1c′ ] 6= 0 for c 6= c′ because
they both act on the first copy of V . The observables are thus multi-traces of words in the
alphabet {Ψ12,Ψ13,Ψ14}.

It can be compared with the O(n) matrix model [21]. It is a single matrix model for a mat-
rix ψ say of size N2 ×N2 which acts on V ⊗ V . Denote Ψ12 = ψ ⊗ IV⊗V the matrix acting on
V ⊗ V ⊗ V ⊗ V as ψ on the first two factors and as the identity on the last two, and define
Ψ34 = IV⊗V ⊗ ψ acting non-trivially on the third and fourth factors. The matrix model is then∫

dψ exp
{
−N2 TrV ⊗2 ψ2 + nTrV ⊗4 ln

(
I + t(Ψ12 + Ψ34)

)}
.

Remarkably, it has a similar form to (9.1), except that the terms in the logarithm commute,
[Ψ12,Ψ34] = 0, because they act non-trivially on distinct copies of V . This leads to interpre-
ting (9.1) as a non-commutative O(1) model.

It would therefore be interesting to directly write and solve the Schwinger–Dyson equations
for (9.1), as done in the quartic melonic case in [45]. There are further interests in doing that.
A direct motivation is that it would in turn help to solve the Schwinger–Dyson equations for
tensor models directly. This is a set of equations analogous to the Tutte/loop equations for
colored triangulations in arbitrary dimensions. Those equations have been described in [32].
There were studied in the case of melonic bubbles in [9] at large N , and it was shown in [13]
that the first corrections (colored graphs of degree ω(G) = d − 2, d) can be calculated from
those equations. They have also been used for bubbles which result from the gluings of melonic
bubbles with necklaces in the sense of Section 5. The enumeration was performed using the
Schwinger–Dyson equations in [10] which reproduce the loop equations of multi-trace matrix
models.

Schwinger–Dyson equations are also the key to go beyond the graphs which maximize the
number of faces and to obtain a full classification of G(B) with respect to the number of faces.
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This is expected since this is the way it works in matrix models. Tutte’s equations indeed
give a recursion on the generating functions of maps of genus g with n marked faces which
is the starting point of the topological recursion [22]. Schwinger–Dyson equations also encode
algebraic properties which in the case of combinatorial maps show integrability. In the case of
tensor models, similar bilinear equations can be derived in the quartic melonic case [18].

We therefore expect that the techniques presented here, together with a better understanding
of the Schwinger–Dyson equations, will make it possible to identify more enhancements and to
perform more enumeration of Gmax(G) thereby leading to a better exploration of the universality
classes of colored triangulations, as well as a full classification and enumeration of G(B) for more
bubbles B.

As often techniques are first developed for the purely combinatorial models and then adapted
to more elaborate ones. This was the case with the discovery of melonic graphs as the graphs of
vanishing degree, which then lead to using them to build renormalizable tensorial theories [5, 7]
and group field theories [3, 15, 16]. The bijection we have presented here was even used in the
quartic case for such renormalizable tensorial theories to get closed equations on some Green
functions [43] (this is the equivalent of enumerating for renormalizable models).

Hopefully, our techniques could also be adapted to more general families of triangulations,
such as the multi-orientable one in d = 3 [48] and the family introduced in [17] which contain
the multi-orientable and colored triangulations in d = 3.
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