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Abstract. We introduce the notion of “hypergeometric” polynomials with respect to
Newtonian bases. These polynomials are eigenfunctions (LPn(x) = λnPn(x)) of some ab-
stract operator L which is 2-diagonal in the Newtonian basis ϕn(x): Lϕn(x) = λnϕn(x) +
τn(x)ϕn−1(x) with some coefficients λn, τn. We find the necessary and sufficient conditions
for the polynomials Pn(x) to be orthogonal. For the special cases where the sets λn corre-
spond to the classical grids, we find the complete solution to these conditions and observe
that it leads to the most general Askey–Wilson polynomials and their special and degenerate
classes.
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1 Introduction

It is well known that all “classical” orthogonal polynomials Pn(x) from the Askey tableau [7]
have rather simple expressions of the form

Pn(x) =

n∑
s=0

Wnsϕs(x), (1.1)

where ϕn(x) are the Newtonian basis (interpolated) polynomials defined as

ϕ0 = 1, ϕn(x) = (x− a0)(x− a1) · · · (x− an−1), n = 1, 2, . . .

with the real numbers ai as the interpolation nodes i = 0, 1, 2, . . . .

The expansion coefficients Wns in these formulas satisfy the two-term recurrence relation

Wn,s+1 = RnsWns, (1.2)

where Rns are simple rational functions either of n or of qn. This property allows to obtain
the coefficients Wns explicitly and this leads to the hypergeometric expressions for the classical
orthogonal polynomials.
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The recurrence relation (1.2) follows from the fact that the classical orthogonal polynomials
Pn(x) satisfy the eigenvalue equation

LPn(x) = λnPn(x), (1.3)

where L is either a differential or difference operator of second order.
It turns out that in all these cases the operator L acts on the Newtonian basis according to

Lϕn(x) = λnϕn(x) + τnϕn−1(x), (1.4)

where λn are the same eigenvalues as in (1.3) and τn are some coefficients.
From (1.3) and (1.4) follows the recurrence relation (1.2) for these coefficients which takes

the form

Wn,s+1

Wns
=
λn − λs
τs+1

,

whence

Wns = Wn,0
(λn − λ0)(λn − λ1) · · · (λn − λs−1)

τ1τ2 · · · τs
, s = 1, 2, . . . , n. (1.5)

The coefficient Wn0 can be chosen arbitrarily. One possible choice is Wn0 = 1 for all n. This
corresponds to the “hypergeometric-like” form of the polynomial Pn(x). Another choice is the
monic form Pn(x) = xn +O(xn−1). In this case

Wn0 =
τ1τ2 · · · τn

(λn − λ0)(λn − λ1) · · · (λn − λn−1)
.

It is then convenient to present the expansion coefficients as follows

Wn,n−k =
τnτn−1 · · · τn−k+1

(λn − λn−1)(λn − λn−2) · · · (λn − λn−k)
, k = 1, 2, . . . , n, (1.6)

and we thus have the following expression for the polynomial Pn(x):

Pn(x) = ϕn(x) +
n∑

k=1

τnτn−1 · · · τn−k+1

(λn − λn−1)(λn − λn−2) · · · (λn − λn−k)
ϕn−k(x).

One can propose an “inverse” problem: assume that the operator L is given in an abstract form
by its action (1.4) with unknown coefficients λn, τn. The interpolation points an are unknown
as well.

The only restrictions for these coefficients are:

(i) the spectrum is nondegenerate λn 6= λm for n 6= m;

(ii) the initial conditions for the coefficients λn, τn are

λ0 = τ0 = a0 = 0.

(iii) In the infinite case τn 6= 0 for all n = 1, 2, . . . .

In the finite case τn 6= 0 for all n = 1, 2, . . . , N and τN+1 = 0.
(For the finite case see the discussion in the next section.)
These conditions are quite natural. Indeed, τ0 = 0 follows from the truncation condition of

the action of the operator L on the constant ϕ0(x) = 1. Condition λ0 can always be achieved by
the appropriate addition of a constant to the operator L. Moreover, we will assume that a0 = 0.
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Indeed, if a0 6= 0, we only need to choose ϕ̃n(x) = ϕn(x−a0); the Newtonian polynomials ϕ̃n(x)
have the same properties with respect to the operator L and the polynomials Pn(x − a0) and
hence we can always assume that a0 = 0.

Note that the operator L defined by the abstract relation (1.4) can be considered in the
context of the so-called umbral calculus [11] in which case concrete operators (like the derivative
operator ∂x) are replaced with their abstract symbols when acting on specific bases (For instance
the abstract umbral derivative operator D can be defined by its symbols µn from the abstract
relation Dxn = µnx

n−1; for the ordinary derivative operator one has µn = n).
Then it is obvious that the eigenvalue equation (1.3) generates a unique system of monic

polynomials Pn(x) having explicit expansion coefficients (1.6). However, in general, for an
arbitrary choice of the coefficients λn, τn and an, the polynomials Pn(x) will not be orthogonal.

The main problem is to find the coefficients λn, τn, an such that the eigenpolynomials Pn(x)
are orthogonal with respect to a nondegenerate linear functional σ

〈σ, Pn(x)Pm(x)〉 = 0, n 6= m,

where σ can be determined in terms of the moments

〈σ, xn〉 = cn, n = 0, 1, 2, . . . .

The linear functional σ is called nondegenerate if the conditions ∆n 6= 0, n = 0, 1, 2, . . . hold,
where ∆n = |ci+k|ni,k=0 are the Hankel determinants constructed from the moments.

Equivalently, the polynomials Pn(x) are orthogonal if and only if they satisfy the three-term
recurrence relation

Pn+1(x) + bnPn(x) + un+1Pn−1(x) = xPn(x), n = 1, 2, . . . (1.7)

with some coefficients bn, un.
The linear functional σ is nondegenerate if and only if un 6= 0, n = 1, 2, . . . [2]. In a spe-

cial situation when the coefficients bn are real and un > 0, n = 1, 2, . . . the polynomials are
orthogonal with respect to a positive measure dµ(x) on the real axis:∫ b

a
Pn(x)Pm(x)dµ(x) = hnδnm, (1.8)

where h0 = 1 and hn = u1u2 · · ·un, n = 1, 2, . . . . The integration limits a, b in (1.8) may be
either finite or infinite.

The simplest case of the monomial basis ϕn(x) = xn was considered in [20]. In this instance,
a full classification was found. This scheme describes all admissible operators L and corre-
sponding orthogonal polynomials Pn(x). In a nutshell, the analysis performed in [20] led to the
following list of of possibilities:

(i) Pn(x) are the little q-Jacobi polynomials and their special and degenerate cases. The
operator L is up to a scaling factor, the basic hypergeometric operator;

(ii) Pn(x) are the ordinary Jacobi polynomials and their degenerate cases. The operator L
coincides with the ordinary hypergeometric operator;

(iii) Pn(x) are the little −1 Jacobi polynomials. The operator L coincides with the Dunkl type
differential operator of the first order [19].

In the present paper we consider the general Newtonian basis and derive the necessary and
sufficient conditions that the coefficients λn, τn and an must satisfy for the associated poly-
nomials to be orthogonal. Provided the eigenvalues λn are taken to be of the “classical” form,
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we also show that this approach leads to all the polynomials of the Askey scheme (including
their q = −1 limits). By “classical” we mean the Askey–Wilson grid λn = C1q

n + C2q
−n + C0

and their degenerate forms: the quadratic grid λn = C1n
2 + C2n + C0 and the Bannai–Ito

grid λn = (−1)n(C1n + C2) + C0 with arbitrary constants C0, C1, C2. We propose also
a new classification scheme of the Askey tableau elements based only on the knowledge of
the coefficients λn and an. This classification method is purely algebraic and does not depend
on any particular choice of the operator L (differential or difference). This provides a natural
ground for the hierarchy of the polynomials in the Askey tableau.

Note that the study of orthogonal polynomials Pn(x) having an expansion (1.1) with respect
to the Newtonian basis ϕn(x) was initiated in the pioneering paper of Geronimus [6]. For ortho-
gonal polynomials of several variables, the Newtonian interpolation scheme plays an important
role as well [9, 10].

We here focus exclusively on the infinite-dimensional situation. It should be said that the
finite-dimensional problem has already been considered in [12, 13, 14, 15, 16]. Indeed for finiteN ,
the polynomials of hypergeometric type with respect to a Newtonian basis are displayed in [17].

Note also that in the special case when all interpolation nodes ak are distinct ai 6= ak, i 6= k
the abstract hypergeometric polynomials have a specific duality property. Indeed, let us define
the polynomials P ∗n(x), n = 0, 1, . . . by the formula

P ∗n(x) =

n∑
s=0

(an − a0)(an − a1) · · · (an − as−1)φ̃s(x)

τ1τ2 · · · τs
,

where φ̃n(x) is the (dual) Newtonian basis defined as

φ̃n(x) = (x− λ0)(x− λ1) · · · (x− λn−1).

Then from (1.1) and (1.5) we have (assuming that Wn0 = 1)

Pn(ak) = P ∗k (λn). (1.9)

Property (1.9) corresponds to the duality property of polynomials proposed by Leonard [8].

In the case when both polynomial systems Pn(x) and P ∗n(x) are assumed to be orthogonal,
it is possible to give a full classification of all such families of polynomials. For the finite-
dimensional case this was done by Leonard in [8]; Bannai and Ito in [1] then extended this result
by including the infinite-dimensional case.

The paper is organized as follows. In Section 2 we derive the necessary and sufficient condi-
tions for the polynomials Pn(x) to be orthogonal. These conditions are presented in the form of

a system of equations for the matrix Q
(k)
n of reduced moments.

In Section 3 we show that for the “classical” expressions of the eigenvalues λn, the remaining
coefficients τn and an can be found explicitly. This leads to all entries of the Askey tableau.

In Section 4 we propose a new classification scheme of the polynomials from the Askey
tableau. This classification scheme differs from the known ones and is based only on the knowled-
ge of the explicit expression of the coefficients λn and an.

2 Necessary and sufficient conditions for orthogonality

One way to derive the necessary and sufficient conditions for the polynomials Pn(x) to be
orthogonal is to exploit the three-term recurrence relation (1.7).

Assume that the polynomials Pn(x) are orthogonal which means that these polynomials
satisfy (1.7).
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Using formulas (1.1) and (1.7), we obtain a system of equations for the coefficients Wnk:

Wn+1,k + (bn − ak)Wn,k + unWn−1,k = Wn,k−1, k = 0, 2, . . . , n+ 1. (2.1)

For k = n+ 1, condition (2.1) becomes trivial: 1 = 1. For k = n and k = n− 1, we obtain the
following explicit expressions for the recurrence coefficients un, bn in terms of the coefficients λn,
τn, an

bn = an +
τn

λn − λn−1
− τn+1

λn+1 − λn
, (2.2a)

un =
τn(an−1 − bn)

λn − λn−1
+

τnτn−1
(λn − λn−1)(λn − λn−2)

− τnτn+1

(λn+1 − λn)(λn+1 − λn−1)
, (2.2b)

where we have used formulas (1.6).
From (2.2b) it is seen that uN+1 = 0 if τN+1 = 0. This leads to the degeneration of the

corresponding orthogonal polynomials. This justifies our condition τn 6= 0 for all n = 1, 2, . . . .
Nevertheless when τn 6= 0 for n = 1, 2, . . . , N but τN+1 = 0 we have the special case of a finite
system of polynomials orthogonal on the set of points a0, a1, . . . , aN (in this case we should
assume that all points ai are distinct, of course). Indeed, the condition τN+1 = 0 means that

PN+1(x) = ϕN+1(x) = (x− a0)(x− a1) · · · (x− aN ).

From the standard theory of orthogonal polynomials [2] we have that the polynomials Pn(x),
n = 0, 1, . . . , N satisfy the orthogonality relations

N∑
s=0

Pn(as)Pm(as)ws = hnδnm,

where the weights ws are expressed as

ws =
u1u2 · · ·uN

P ′N+1(as)PN (as)
.

Thus the condition τN+1 = 0 leads to the special case of a finite set of polynomials Pn(x)
orthogonal on a set a0, a1, . . . , aN of distinct points of the real axis. We will discuss this special
case in Section 5.

The equations (2.1) corresponding to k = n− 2, n− 3, . . . , 0 give an ensemble of restrictions
upon the coefficients λn, τn, an. Instead of solving this system of restrictions, we shall follow
a method which was successfully applied in [20] to find necessary and sufficient conditions for
the orthogonality of the polynomials Pn(x).

It was shown in [20] that the polynomials Pn(x) corresponding to the operator L are ortho-
gonal if and only if the operator L is symmetric on the space of polynomials. In more details,
this means that for any two polynomials f(x) and g(x) the condition

〈σ, f(x)Lg(x)〉 = 〈σ, g(x)Lf(x)〉 (2.3)

must hold.
Note that when L is a differential operator, condition (2.3) is well known [4]. When L is

a higher-order difference operator, condition (2.3) was derived in [3]. Terwilliger in [16] considers
this condition from the algebraic point of view in the finite-dimensional case.

Condition (2.3) is equivalent to the set of conditions

〈σ, ϕk(x)Lϕn(x)〉 = 〈σ, ϕn(x)Lϕk(x)〉, n, k = 0, 1, 2, . . . . (2.4)
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Taking into account relation (1.4), we can present (2.4) in the form

(λn − λk)〈σ, ϕkϕn〉+ τn〈σ, ϕkϕn−1〉 − τk〈σ, ϕk−1ϕn〉 = 0. (2.5)

We shall take the relations (2.5) as the set of necessary and sufficient conditions for the poly-
nomials Pn(x) to be orthogonal.

It is convenient to introduce the generalized moments ψ
(k)
n

ψ(k)
n ≡ 〈σ, ϕkϕn〉, n, k = 0, 1, 2, . . . . (2.6)

By definition, these moments possess the symmetry property

ψ(k)
n = ψ

(n)
k , n, k = 0, 1, 2, . . . . (2.7)

The orthogonal polynomials Pn(x) can then be presented in determinant form in terms of
the generalized moments

Pn(x; t) =
1

Hn(t)

∣∣∣∣∣∣∣∣∣∣∣

ψ
(0)
0 ψ

(0)
1 . . . ψ

(0)
n

ψ
(1)
0 ψ

(1)
1 . . . ψ

(1)
n

. . . . . . . . . . . .

ψ
(n−1)
0 ψ

(n−1)
1 . . . ψ

(n−1)
n

ϕ0(x) ϕ1(x) . . . ϕn(x)

∣∣∣∣∣∣∣∣∣∣∣
,

where

H0 = 1, Hn =

∣∣∣∣∣∣∣∣∣
ψ
(0)
0 ψ

(0)
1 . . . ψ

(0)
n−1

ψ
(1)
0 ψ

(1)
1 . . . ψ

(1)
n−1

. . . . . . . . . . . .

ψ
(n−1)
0 ψ

(n−1)
1 . . . ψ

(n−1)
n−1

∣∣∣∣∣∣∣∣∣ , n = 1, 2, . . . .

Note that the nondegeneracy condition of the linear functional σ is equivalent to the condition

Hn 6= 0, n = 0, 1, . . . .

The relations (2.5) can be presented in the form

(λn − λk)ψ(k)
n + τnψ

(k)
n−1 − τkψ

(k−1)
n = 0. (2.8)

Moreover, from the obvious identity

ϕk+1(x)ϕn(x) = ϕk(x)ϕn+1(x) + (an − ak)ϕk(x)ϕn(x),

we obtain the relation

ψ(k+1)
n = ψ

(k)
n+1 + (an − ak)ψ(k)

n . (2.9)

Consider relation (2.8) for k = 0. Due to the conditions λ0 = τ0 = 0 we have

λnψ
(0)
n = −τnψ(0)

n−1. (2.10)

We already know that λn 6= 0 for n = 1, 2, . . . . We now show that similarly τm 6= 0 for
n = 1, 2, . . . . Indeed, assume that τj = 0 for some positive integer j. Then from (2.10) we

obtain that necessarily ψ
(0)
n = 0 for n = j, j + 1, j + 2, . . . . From (2.9) we have that ψ

(k)
n = 0

for n ≥ j and for all k = 0, 1, 2, . . . . But then Hn = 0 for n ≥ j + 1 which would imply that
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the functional σ is degenerate. We thus see that τn 6= 0 for n > 0. Moreover, from the same

relation (2.10), it is seen that ψ
(0)
0 6= 0, n = 0, 1, 2, . . . .

We can put ψ
(0)
0 = 1 (this is merely the standard normalization condition for the functional σ).

Then from (2.10) we find the explicit expression for ψ
(0)
n :

ψ(0)
n = (−1)n

τ1τ2 · · · τn
λ1λ2 · · ·λn

. (2.11)

From relation (2.9), step-by-step, we can find the explicit expressions for all the generalized

moments ψ
(1)
n , ψ

(2)
n , . . . , ψ

(k)
n , . . . . For example

ψ(1)
n =

(
an −

τn+1

λn+1

)
ψ(0)
n .

It is convenient to present ψ
(k)
n as follows

ψ(k)
n = Q(k)

n ψ(0)
n ψ

(k)
0 , (2.12)

where Q
(0)
n = Q

(k)
0 = 1.

Obviously, the reduced moments Q
(k)
n are symmetric with respect to the variables n, k

Q(k)
n = Q

(n)
k .

Moreover, relations (2.9) and (2.8) become

ζkQ
(k+1)
n = ζnQ

(k)
n+1 + (ak − an)Q(k)

n (2.13a)

λn(Q(k)
n −Q

(k)
n−1) = λk(Q(k)

n −Q(k−1)
n ), (2.13b)

where

ζn =
τn+1

λn+1
, n = 0, 1, 2, . . . . (2.14)

Relation (2.13a) allows to determine unambiguously the quantities Q
(k)
n , k = 1, 2, . . . iteratively

from the initial value Q
(0)
n = 0.

The first two quantities are

Q(1)
n =

ζn − an
ζ0

and

Q(2)
n =

(a1 − an)(ζn − an)

ζ0ζ1
+
ζn(ζn+1 − an+1)

ζ0ζ1
.

Relations (2.13b) give then additional conditions upon the quantities Q
(k)
n . These conditions

are equivalent to the set of necessary and sufficient conditions (2.5) for the orthogonality of
the polynomials Pn(x). Indeed, we already derived conditions (2.13) from the necessary and

sufficient conditions (2.8). Conversely, assume that Q
(k)
n is a solution of conditions (2.13) for

k, n = 0, 1, 2, . . . with the initial conditions Q
(0)
n = Q

(k)
0 = 1 and with the symmetry condition

Q
(k)
n = Q

(n)
k . Then one can construct the moments ψ

(k)
n from (2.12) and (2.11). These moments

will satisfy relations (2.9) and (2.7) which guarantee that the moments ψ
(k)
n are compatible with

their definition (2.6). Moreover, the moments ψ
(k)
n will satisfy the condition (2.8) for all n, k =
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0, 1, 2, . . . . The latter condition is equivalent to the necessary and sufficient conditions (2.4).
Hence relations (2.13) (together with the symmetry and initial conditions) are equivalent to the
necessary and sufficient conditions (2.4).

For example, the corresponding condition coming from (2.13b) for k = 1 looks like

λnyn−1 + (λ1 − λn)yn + τ1 = 0, (2.15)

where we have introduced the new variable

yn = an − ζn (2.16)

instead of ζn.

Similarly, for k = 2 we obtain the relation

(yn+1 − yn)(λn − λ2)an − λn(yn − yn−1)an−1
= λnyn(yn+1 − yn−1) + a1λn(yn−1 − yn)− λ2yn(yn+1 − y1). (2.17)

It is interesting to note that the reduced moments Q
(k)
n satisfy 3-term recurrence relations

resembling the recurrence relations of the orthogonal polynomials.

Indeed, in (2.13a) we can shift k → k− 1 and then substitute the expression for Q
(k−1)
n given

in (2.13b). We then obtain the recurrence relation

τn+1

λn+1
(λk − λn+1)Q

(k)
n+1 + (τn+1 − τk + (λn − λk)(an − ak−1))Q(k)

n

+ λn(ak−1 − an)Q
(k)
n−1 = 0, (2.18)

where the superscript k is the same and the subscript n takes the values n− 1, n, n+ 1.

Similarly, in (2.13b) we can shift k → k + 1 and then substitute the expression for Q
(k+1)
n .

We obtain another recurrence relation:

τn+1

λn+1
(λn − λk+1)Q

(k)
n+1 + (τk+1 − τn + (λn − λk+1)(ak − an))Q(k)

n

+ λn(an−1 − ak)Q
(k)
n−1 = 0. (2.19)

Relations (2.18) and (2.19) are not independent due to relations (2.13).

3 General solution for prescribed classical eigenvalues

3.1 The case of linear λn

The general solution of the necessary and sufficient conditions (2.13) is rather complicated.
Instead we present here a special solution of this problem, starting with prescribed dependence
of λn on n. Let us consider first the simplest case of linear dependence: λn = αn+β. Clearly, the
scaling transformation λn → κλn, τn → κτn leaves the problem invariant, so we can choose α = 1.
Moreover, the initial condition λ0 = 0 leads to β = 0. Hence we may take λn = n without loss
of generality.

Consider equation (2.15) with λn = n. The general solution of this equation is elementary

yn = γn− τ1, (3.1)

where γ is an arbitrary constant.
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Substituting expression (3.1) into equation (2.17) we obtain the equation for the grid an

an−1
(n− 1)(n− 2)

− an
n(n− 1)

=
a1

(n− 1)(n− 2)
.

The solution of this equation is immediate:

an = a1n+ αn(n− 1) (3.2)

with an arbitrary constant α.
From (2.16) we obtain the solution for τn:

τn+1 = (n+ 1) (τ1 + (a1 − γ)n+ αn(n− 1)) . (3.3)

We have thus found the general solution of the problem for the special case λn = n. Instead of
checking the compatibility of all conditions (2.13) with the obtained solution it is sufficient to
notice that this solution describes orthogonal polynomials that are already known.

Indeed, if α = a1 = 0, then an = 0, n = 0, 1, 2, . . . and we obtain the monomial basis
φn(x) = xn. For τn we have from (3.3):

τn = n (τ1 − γ(n− 1)) .

The corresponding operator L is the second-order differential operator

L = −γx∂2x + (x− τ1)∂x. (3.4)

It is well known that the operator (3.4) has Laguerre polynomials as eigenfunctions [7].
If α = 0 but a1 6= 0, then the grid is linear:

an = a1n.

The coefficient τn is a quadratic function in n:

τn = n(τ1 + (a1 − γ)(n− 1)).

This case corresponds to all classical polynomials on the uniform grid: Krawtchouk, Meixner,
Meixner–Pollaczek and Charlier polynomials.

Finally, if α 6= 0 we have the quadratic grid (3.2). This corresponds to the dual Hahn
polynomials (including the continuous dual Hahn polynomials) [7].

The analysis of the case where λn is linear in n expounds all known classical orthogonal
polynomials with such a spectrum. The only exception are the Hermite polynomials, because
the eigenvalue equation for these polynomials in the monomial basis [7] xn contains the terms xn

and xn−2 instead of xn and xn−1 as required in our approach.

3.2 The case of quadratic λn

Consider the case when λn is a quadratic polynomial in n. Because λ0 = 0 it is sufficient to
take

λn = n(n+ α) (3.5)

with some real parameter α. The only restriction is α 6= −1,−2,−3, . . . because otherwise
λj = 0 for some positive integer j and that is forbidden by hypothesis since we are assuming
that the spectrum is non degenerate.
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Consider first equation (2.15). Substituting expression (3.5), we get

(n+ α)yn−1
n− 1

− (n+ α+ 1)yn
n

+ τ1

(
1

n− 1
− 1

n

)
= 0 (3.6)

(with yn again as in (2.16)). The solution of (3.6) is immediately found to be:

yn =
γn− τ1
n+ α+ 1

, (3.7)

where γ is an arbitrary constant.
Equation (2.17) now reads

κ(nan−1 − (n− 2)an − a1n) = 0,

where

κ = (α+ 2)(τ1 + γ(α+ 1)).

Note that κ 6= 0. Indeed, α = −2 means that λ2 = 0 which is forbidden since the spectrum
must be non degenerate. If τ1 + γ(α + 1) = 0, it is easy to show from equation (2.13a) that

all moments are degenerate Q
(1)
n = Q

(2)
n = · · · = const which is again forbidden for degenaracy

reasons. We thus conclude that κ 6= 0 and hence have the equation

nan−1 − (n− 2)an − a1n = 0 (3.8)

which has the general solution

an = a1n+ βn(n− 1) (3.9)

with an arbitrary constant β. (The value of a1 is arbitrary as well, it can be considered as the
initial condition for an). We thus obtained a quadratic grid for an.

Finally, from (2.16) and (3.7), we find the explicit expression for τn:

τn+1 = λn+1an + (n+ 1)(τ1 − γn),

where λn and an are given by (3.5) and (3.9).
In general, τn is a polynomials of 4-th degree in n. In this case the grid an is quadratic and the

corresponding polynomials are the Wilson–Racah polynomials. When β = 0 but a1 6= 0, then
the grid an is linear, τn is a polynomial of third degree and the corresponding polynomials are
the Hahn polynomials. Finally, when a1 = β = 0, then an = 0 for all n. The basis ϕn(x) = xn

is the monomial one and the corresponding polynomials Pn(x) are the Jacobi polynomials.

3.3 The Askey–Wilson grid

Consider the eigenvalues

λn =
(
1− qn

)(
α− q−n

)
(3.10)

with an arbitrary real parameter α. These eigenvalues correspond to the Askey–Wilson polyno-
mials.

In this case, the general solution to (2.15) for yn is

yn =
τ1(q − 1)−1q−n + γ(q−n − 1)

α− q−n−1
(3.11)

with γ an arbitrary parameter.
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Substituting then expression (3.11) into (2.17), we obtain the equation for the unknown
grid an:(

qn−1 − q
)
an −

(
qn − 1

)
an−1 = a1

(
1− qn

)
. (3.12)

This is a simple first order difference equation which has for general solution

an =
(
1− q−n

)(
a1q(q − 1)−1 + ν

(
qn−1 − 1

))
(3.13)

with ν an arbitrary parameter.
Expression (3.13) corresponds to the grid of the Askey–Wilson polynomials. Indeed, one

checks directly that the recurrence coefficients bn, un constructed with the help of formulas (2.2)
correspond to the most general Askey–Wilson polynomials. There are 4 free parameters: τ1, a1
and the integration constants γ, ν. These parameters correspond to the 4 parameters of the
Askey–Wilson polynomials.

3.4 Bannai–Ito grid

Finally, consider the case of the Bannai–Ito eigenvalues [18]

λn = (−1)n(n+ α)− α (3.14)

with an arbitrary parameter α. Note that for real α the even and the odd eigenvalues form two
equidistant lattices each with step 2. These sublattices are separated by the gap ∆ = 2α + 1.
For the special case α = 1/2, these two sublattices can be combined into one equidistant lattice
λn = ±2n, n = 0, 1, 2, . . . .

The eigenvalues (3.14) can be obtained from a specific limit of the AW eigenvalues (3.10)
(see, e.g., [18]). It is instructive however to start from (3.14) to see how the analysis proposed
here applies directly to the BI lattice.

The first equation, namely, (2.15) can be split into two equations according to the parity of n

2ny2n−1 − (2n+ 2α+ 1)y2n + τ1 = 0, (3.15)

2ny2n+1 − (2n+ 2α+ 1)y2n + τ1 = 0. (3.16)

The solution of these equations is readily seen to be

y2n =
2γn+ τ1

2n+ 2α+ 1
, y2n+1 = γ, (3.17)

where γ is an arbitrary parameter.
Substituting (3.17) for yn into (2.17), we obtain the following equation for the unknown

grid an:

κ ((n− 1)a2n + na2n−1 − a1n) = 0, κ(a2n+1 + a2n − a1) = 0, (3.18)

where

κ = γ(2α+ 1)− τ1.

As in the previous cases the constant κ should be nonzero to avoid degeneracies. The solution
of the equations (3.18) is elementary

a2n = 2νn, a2n+1 = a1 − 2νn, n = 0, 1, 2, . . . ,

where ν is an arbitrary parameter.
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The coefficients τn are then expressed as

τn = λn(an−1 − yn−1), n = 1, 2, . . . . (3.19)

Using the expressions for an, λn, τn, we can calculate the recurrence coefficients bn, un with
the help of formulas (2.2). These coefficients coincide with the recurrence coefficients of the
Bannai–Ito polynomials [18] for an arbitrary choice of the parameters a1, τ1, γ, ν.

We have thus considered all possible choices for the classical spectrum λn; in all cases the
orthogonal polynomials that are found coincide with the corresponding polynomials from the
Askey tableau. It is quite natural to conjecture that there are no other (“non-classical”) expres-
sions for λn which give rise to orthogonal polynomials. This means that only the polynomials
from the Askey tableau do satisfy the conditions of the Newtonian “hypergeometric” polyno-
mials. This conjecture remains however an open problem.

4 Algebraic classif ication of the elements of the Askey tableau

All the elements of the Askey tableau can be characterized naturally within the unified algebraic
“abstract” hypergeometric scheme offered here. We observed that the broad features of the spec-
trum λn provide a first categorization. Indeed, we already know that all classical polynomials
from the “abstract” hypergeometric scheme can be classified by the eigenvalues λn. There are
3 main classes: one corresponding to a generic q (Askey–Wilson class) and two associated to the
special cases, q = 1 (Racah–Wilson class) and q = −1 (Bannai–Ito class). Within each of these
classes, the interpolation grids an further split into 3 different types. This gives 9 basic classes
of classical hypergeometric polynomials.

Consider for example the general Askey–Wilson class. The grid an may be taken to be the
most general – this gives the generic AW polynomials. If the grid is exponential (this corresponds
to ν = 0), we obtain the big q-Jacobi polynomials. Finally, if the grid degenerates to a single
point (i.e. when ν = a1 = 0), we obtain the little q-Jacobi polynomials.

For the Racah–Wilson class (q = 1), we have 3 subclasses according to the particular expres-
sion (3.8) of the interpolation grid an. If both parameters a1 and β are nonzero, we are then
dealing with the general Racah–Wilson polynomials. If β = 0 but a1 6= 0, the interpolation
grid becomes linear and we have the Hahn polynomials (including the case of the continuous
Hahn polynomials). Finally, if a1 = β = 0, the grid is then completely degenerate an = 0, the
corresponding basis is the monomial one φn(x) = xn and we have the Jacobi polynomials.

For the Bannai–Ito class we have again 3 subcategories depending on the expression of an.
If both parameters a1 and ν are nonzero, then the grid an is the general Bannai–Ito grid and
this leads to the Bannai–Ito polynomials. If ν = 0 but a1 6= 0, we have a degenerate grid which
consists of only two distinct points: a2n = 0 and a2n+1 = a1; this case corresponds to the big −1
Jacobi polynomials. Finally, if a1 = ν = 0 then the grid becomes completely degenerate an = 0
and the corresponding polynomials are the little −1 Jacobi polynomials.

One can consider further subdivisions inside these 9 classes. For example, in the Racah–
Wilson class one may consider the case of linear eigenvalues λn; one then obtains the classical
orthogonal polynomials of the Hahn class and their degenerate types (Meixner, Krawtchouk,
Charlier and Laguerre). Similarly, if one takes the case of the exponential AW-grid corresponding
to α = 0 in (3.10), one is led to the q-Hahn polynomials and their degenerate and special cases.

5 Conclusions

In summary, we derived the necessary and sufficient conditions for the orthogonality of the
“hypergeometric” polynomials with respect to the Newton interpolation basis. These conditions
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are presented in the form of a system of equations (2.13) involving the reduced moments Q
(k)
n .

When the eigenvalues λn are given by “classical” expressions (i.e., trigonometric, quadratic or
Bannai–Ito grid), we have showed that the corresponding polynomials Pn(x) coincide with the
entries of the Askey tableau. This gives a simple and natural new classification of all polynomials
of the Askey tableau.

Let us remark that the monomial basis (which generates Jacobi, Laguerre and Hermite poly-
nomials) is a degeneration of the Newton interpolation basis. As pointed out by a referee, let
us mention that the little q-Jacobi polynomials can also be viewed as a special case of the big
q-Jacobi polynomials (see, e.g., formula (III.7) in [5]) and hence also associated with to the same
Newtonian basis as the latter.

An unresolved issue is to prove that the general problem with all unknown coefficients
λ, τn, an gives in all likelihood the same solution (i.e., the polynomials of the Askey tableau).

Another interesting question is to find the explicit expression of the moments Q
(k)
n for all poly-

nomial families of the Askey tableau. Indeed, formulas (2.18) and (2.19) can be considered as
three-term recurrence relations for these moments; one could expect that they are related to the
recurrence relations of the corresponding orthogonal polynomials.

The problem considered here admits several possible generalizations. We mention only one
of them. Fix some positive integer j and assume that the operator L satisfy the following more
general property in the Newtonian basis ϕn(x):

Lϕn(x) =

j∑
s=0

τnsϕn−s(x) (5.1)

with some coefficients τns such that τn0 = λn. Then the eigenvalue problem (1.3) generates
again a set of unique monic polynomials Pn(x). The issues examined in the present paper
correspond to the simplest nontrivial case j = 1. For j = 2, 3, . . . we can consider similarly
the orthogonality of the corresponding polynomials Pn(x). Of course, all “classical” orthogonal
polynomials are obtained as special cases for every j. Indeed, let L be the operator associated to
the classical polynomials Pn(x), then the operator L̃ = ξjL

j +ξj−1L
j−1 + · · ·+ξ1L+ξ0 (i.e., any

polynomial of the operator L of degree j) will trivially have the same orthogonal polynomials
as solutions of the eigenvalue problem

L̃Pn(x) = λ̃nPn(x).

The nontrivial question is the existence of non-classical orthogonal polynomials satisfying (1.3)
with “higher-order” operators (5.1). Such non-classical polynomials appear, e.g., in the solu-
tion of the Krall problem that describes all the orthogonal polynomials satisfying higher-order
differential equations [4]. We can therefore expect the appearance of generalized Krall polyno-
mials (e.g., those introduced by Durán [3]) as solutions of this problem.
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