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miltonian systems; Benenti systems

2010 Mathematics Subject Classification: 37J35; 70H06; 70H20; 53D05

To Sergio Benenti, on the occasion of his 70th birthday.

1 Introduction

The purpose of this paper is to present an application of the theory recently developed in [39],
aiming at a characterization of integrability and separability for classical Hamiltonian systems
by means of the geometry of Haantjes operators.

In [39] the notion of Haantjes manifolds has been introduced in the realm of integrability for
finite-dimensional systems (see also [15, 24] and [25] for a treatment of integrable hierarchies of
PDEs from a different perspective). Haantjes tensors [18] represent a natural generalization of
the well known Nijenhuis tensors [33, 34, 35]; the (1, 1) tensor fields with vanishing Haantjes
tensor encode many crucial features of an integrable system, especially in relation with the
property of separability of the associated Hamilton–Jacobi (H-J) equation. Due to the fact that
these new geometrical structures are also endowed with a standard symplectic structure, we call
them symplectic-Haantjes or ωH manifolds.

The theory of Haantjes manifolds is very general: it encompasses essentially all known results
concerning integrability of finite classical systems.

A particularly relevant class of integrable models are the separable ones: one can find a coor-
dinate system in which the H-J equation takes a separated form. In this field, the contribution of
Benenti has been crucial. One of his theorems [2], particularly useful for us, states that a family
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of Hamiltonian functions {Hi}1≤i≤n is separable in a set of canonical coordinates (q;p) if and
only if they are in separable involution, that is, they satisfy the conditions

{Hi, Hj}|k =
∂Hi

∂qk

∂Hj

∂pk
− ∂Hi

∂pk

∂Hj

∂qk
= 0, 1 ≤ k ≤ n,

where no summation over k is understood.
The problem of separation of variables (SoV) can be recast and treated in our approach.

Indeed, under mild hypotheses, from the Haantjes structure associated with an integrable sys-
tem one can derive a set of coordinates, that we shall call the Darboux–Haantjes coordinates,
representing separation coordinates for the system.

The Haantjes structure associated with an integrable system allows a tensorial description
(i.e., intrinsic) of its main properties.

In this paper, we shall prove that some of the most relevant separable systems, namely the
generalized Stäckel systems, are described in terms of suitable Haantjes structures, which are
responsible of their separation properties. On one hand, by identifying the Stäckel matrix in their
definition with a Vandermonde type matrix, one can obtain the class of quasi-bi-Hamiltonian
systems. On the other hand, the standard Stäckel systems are re-obtained by specializing
properly the Stäckel functions.

Another important aspect of our analysis is that two particularly relevant integrable systems,
namely the Jacobi–Calogero model and the family of Benenti systems, can be studied in the
framework of Haantjes geometry.

The paper is organized as follows. In Section 2, we review the main properties of Haantjes
operators and Lenard–Haantjes chains, together with the problem of separation of variables in
the context of Haantjes geometry. In Section 3, we construct the Haantjes structure of the gene-
ralized Stäckel systems. As a particular case, the Haantjes structure for the quasi-bi-Hamiltonian
systems and for a Goldfish model [12] is obtained in Section 4. In Section 5, the classical Stäckel
systems and their Killing tensors are discussed. In Section 6, three Haantjes structures for the
Jacobi–Calogero model are presented. In the final Section 7, Haantjes manifolds for the family
of Benenti systems are obtained.

2 The Haantjes geometry: a brief review

We shall first summarize some basic results of the theory of Nijenhuis and Haantjes tensors,
following [18, 33] (see also [16, 34, 35]).

2.1 Nijenhuis and Haantjes operators

Let M be a differentiable manifold and L : TM → TM be a (1,1) tensor field (that is, a field
of linear operators on the tangent space at each point of M).

Definition 2.1. The Nijenhuis torsion of L is the skew-symmetric (1, 2) tensor field defined by

TL(X,Y ) := L2[X,Y ] + [LX,LY ]−L
(
[X,LY ] + [LX,Y ]

)
,

where X,Y ∈ TM and [ , ] denotes the commutator of two vector fields.

Given a set of local coordinates x = (x1, . . . , xn) in M , the Nijenhuis torsion takes the form

(TL)ijk =
n∑

α=1

(
∂Lik
∂xα

Lαj −
∂Lij
∂xα

Lαk +

(
∂Lαj
∂xk

− ∂Lαk
∂xj

)
Liα

)
,

with n2(n− 1)/2 independent components.
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Definition 2.2. The Haantjes tensor associated with L is the (1,2) tensor field defined by

HL(X,Y ) := L2TL(X,Y ) + TL(LX,LY )−L
(
TL(X,LY ) + TL(LX,Y )

)
.

The Haantjes tensor is skew-symmetric due to the skew-symmetry of the Nijenhuis torsion.
Locally, we have

(HL)ijk =

n∑
α,β=1

(
LiαL

α
β(TL)βjk + (TL)iαβL

α
j L

β
k −Liα

(
(TL)αβkL

β
j + (TL)αjβL

β
k

))
.

A discussion of some basic examples can be found in [39].
The powers of a single Haantjes operator generate a module over the ring of smooth functions

on M , as can be inferred from the results in [8, 9]. Our main definitions are the following.

Definition 2.3. A Haantjes (Nijenhuis) field of operators is a field of operators whose associated
Haantjes (Nijenhuis) tensor vanishes identically.

Definition 2.4. A field of operators L is said to be semisimple if is diagonalizable at each
point x of M .

The following important result, proved by Haantjes, establishes the conditions assuring that
the generalized eigen-distribution Di := Ker(L − liI)ρi of L (ρi denotes the Riesz index of the
eigenvalue li) is integrable.

Theorem 2.5 ([18]). Let L be a generic field of operators, and assume that the rank of each
generalized eigen-distribution Di is independent of x ∈M . The vanishing of the Haantjes tensor

HL(X,X ′) = 0, ∀X,X ′ ∈ TM (2.1)

is a sufficient condition to ensure the integrability of each distribution Di and of any direct sum
Di ⊕ Dj ⊕ · · · ⊕ Dk (where all indices i, j, . . . , k are different). In addition, if L is semisimple,
the converse is also true.

We remind that a reference frame is a set of n vector fields {Y1, . . . , Yn} which form a basis
of the tangent space TxU at each point x belonging to an open set U ⊆ M . Two frames
{X1, . . . , Xn} and {Y1, . . . , Yn} are said to be equivalent if n nowhere vanishing smooth functions
fi do exist such that

Xi = fi(x)Yi, i = 1, . . . , n.

A natural or coordinate frame
{

∂
∂x1

, . . . , ∂
∂xn

}
is the frame associated to a local chart {(x1, . . .,

xn)}.
Definition 2.6. An integrable frame is a reference frame equivalent to a natural frame.

In other words, to say that a frame {Y1, . . . , Yn} is integrable there must exist a local chart
(x1, . . . , xn) and n nowhere vanishing functions fi such that

Yi = fi(x)
∂

∂xi
, i = 1, . . . , n.

Proposition 2.7 ([6]). A reference frame in a differentiable manifold M is an integrable frame
if and only if it satisfies any of the two equivalents conditions:

• each two-dimensional distribution generated by any two vector fields Yi, Yj is Frobenius
integrable;

• each (n − 1)-dimensional distribution Ei generated by all the vector fields except Yi is
Frobenius integrable.

Then, under the hypotheses of Theorem 2.5, we can interpret equation (2.1) as the sufficient
condition that ensures the existence of a suitable integrable generalized eigen-frame of L. Fur-
thermore, if L is semisimple, condition (2.1) is also necessary.
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2.2 Symplectic-Haantjes manifolds: an outline

The symplectic-Haantjes manifolds, or ωH manifolds, have been introduced in [39]. As we shall
see in the subsequent sections, these structures allow to formulate the theory of Hamiltonian
integrable systems in a natural geometric language.

Definition 2.8. A symplectic-Haantjes or ωH manifold (M,ω,K0,K1, . . . ,Kn−1) is a sym-
plectic manifold of dimension 2n, endowed with n endomorphisms of the tangent bundle of M

Kα : TM 7→ TM, α = 0, . . . , n− 1,

which satisfy the following conditions:

• The operator K0 is the identity operator in TM

K0 = I.

• Their Haantjes tensor vanishes identically, that is

HKα(X,Y ) = 0, ∀X,Y ∈ TM, α = 0, . . . , n− 1.

• The endomorphisms are compatible with ω (or equivalently, with the corresponding sym-
plectic operator Ω := ω[), namely

KT
αΩ = ΩKα, α = 0, . . . , n− 1, (2.2)

where KT
α : T ∗M 7→ T ∗M is the transposed operator of Kα.

• The endomorphisms are compatible with each others, in the sense that they form a com-
mutative ring

KαKβ = KβKα, α, β = 0, . . . , n− 1, (2.3)

and generate a module K over the ring of smooth functions on M , that is, they satisfy

H( n−1∑
α=0

aα(x)Kα

)(X,Y ) = 0, ∀X,Y ∈ TM, (2.4)

where aα(x) are arbitrary smooth functions on M.

The (n + 1)-tuple (ω,K0,K1, . . . ,Kn−1) is called the ωH structure associated with the ωH
manifold, and the module (ring) K is called the Haantjes module (ring).

In other words, we require that the endomorphisms Kα and any operator belonging to the
module (ring) K be a Haantjes operator compatible with ω and with the original Haantjes
operators {K0,K1, . . . ,Kn−1}.

2.3 Lenard–Haantjes chains

Despite the relevance of Lenard chains in soliton hierarchies, especially in the construction of
integrals of motion in involution [21, 22, 27], their importance in the theory of separation of
variables for finite-dimensional Hamiltonian systems has been acknowledged only recently (see
[13, 14, 23, 29, 31, 32, 38, 41, 42]). The natural extension of the original notion of Lenard chain
to the context of the Haantjes geometry is proposed below.
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Definition 2.9. Let (M,ω,K0,K1, . . . ,Kn−1) be a 2n-dimensional ωH manifold and let
{Hj}1≤j≤n be n independent functions which satisfy the following relations

dHj = KT
αdH, j = α+ 1, α = 0, . . . , n− 1, H := H1.

Under these conditions, we shall say that the functions {Hj}1≤j≤n form a Lenard–Haantjes chain
generated by the function H.

The relevance of Lenard–Haantjes chains is clarified by the following

Proposition 2.10. Let M be a 2n-dimensional ωH manifold and {Hj}1≤j≤n be n smooth inde-
pendent functions forming a Lenard–Haantjes chain. Then, the foliation generated by these func-
tions is Lagrangian. Consequently, each Hamiltonian system with Hamiltonian functions Hj,
1 ≤ j ≤ n is integrable by quadratures.

Proof. By virtue of the classical Arnold–Liouville theorem, it is sufficient to prove that the
functions Hj belonging to a Lenard–Haantjes chain are in involution w.r.t. the Poisson bracket
defined by the symplectic form ω. In fact, if we denote by P := Ω−1 the Poisson operator
induced by the symplectic form, we obtain

{Hj , Hk} = 〈dHj ,P dHk〉 =
〈
KT

αdH,PKT
β dH

〉
=
〈
dH,KαPKT

β dH
〉

= 0,

as the operator KαPKT
β is skew-symmetric by virtue of the compatibility condition (2.2). �

Remark 2.11. Given a ωH manifold, the purpose of its Haantjes operators is to provide
a Lenard–Haantjes chain of n integrals of motion in involution. To this end, n independent
Haantjes operators are required.

2.4 Darboux–Haantjes coordinates and separation of variables
in ωH manifolds

By analogy with the classical Darboux coordinates, in Haantjes geometry the Darboux–Haantjes
coordinates (DH) are a set of distinguished local symplectic coordinates, which simultaneously
diagonalize every Haantjes operator.

Definition 2.12. Let (M,ω,K0,K1, . . . ,Kn−1) be a ωH manifold. A set of local coordinates
(q1, . . . , qn; p1, . . . , pn) will be said to be a set of Darboux–Haantjes (DH) coordinates if the
symplectic form in these coordinates assumes the Darboux form

ω =
n∑
i=1

dpi ∧ dqi

and each Haantjes operator diagonalizes:

Kα =
n∑
i=1

l
(α)
i (q,p)

(
∂

∂qi
⊗ dqi +

∂

∂pi
⊗ dpi

)
, α = 0, . . . , n− 1,

with l
(0)
i = 1, i = 1, . . . , n.

In [39] we have shown that a semisimple Haantjes structure which admits a maximal genera-
tor, that is a cyclic Haantjes operator with n distinct eigenvalues, provides DH coordinates. They
turn out to be separation variables for each Hamiltonian function belonging to an associated
Lenard–Haantjes chain. In particular, see Theorems 57 and 59 of [39] for the statement and the
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proof of the main results concerning the existence of separation variables for ωH manifolds. By
virtue of these general theorems, such structures take the form

Kα =
n∑
i=1

∂Hα+1

∂pi
∂H1
∂pi

(
∂

∂qi
⊗ dqi +

∂

∂pi
⊗ dpi

)
, α = 0, . . . , n− 1, (2.5)

in any set of separable Darboux coordinates (q,p) for the Hamiltonian functions Hα, α =
0, . . . , n− 1.

3 Generalized Stäckel systems

The purpose of this section is to determine the Haantjes structure for a huge class of Hamil-
tonian systems of Stäckel type, that we shall call the generalized Stäckel systems. Specializing
conveniently their Stäckel matrix and functions, we can also derive, in a direct way, both families
of quasi-bi-Hamiltonian and classical Stäckel systems.

Proposition 3.1 (generalized Stäckel systems). Let us consider the Hamiltonian functions [1]

Hj =

n∑
k=1

S̃jk
det(S)

fk(qk, pk), j = 1, . . . , n, (3.1)

where Sij are the elements of a Stäckel matrix S(q) (i.e., an invertible matrix whose i-th row
depends on the coordinate qi only), and S̃jk denotes the cofactor of the element Skj. They belong
to the Lenard–Haantjes chain

KT
j−1dH1 = dHj , j = 1, . . . , n, (3.2)

where Kj−1 are the Haantjes operators defined by

Kj−1 :=

n∑
r=1

S̃jr

S̃1r

(
∂

∂qr
⊗ dqr +

∂

∂pr
⊗ dpr

)
, j = 1, . . . , n. (3.3)

Proof. The operators (3.3) are a special case of the operators (2.5) for the Stäckel Hamiltonian
functions (3.1). �

Remark 3.2. It is known that the Stäckel matrix S(q) is not unique. In fact, multiplying
the i-th row of a given Stäckel matrix for an arbitrary function Fi(qi), one obtains a different
Stäckel matrix for the same coordinate web. However, it should be noted that, although the
Hamiltonian functions (3.1) transform into

Hj 7→
n∑
k=1

S̃jk
Fk(qk) det(S)

fk(qk, pk), j = 1, . . . , n,

the Haantjes operators (3.3) stay invariant, as their eigenvalues turn out to be

S̃jr

����Fr(qr)

����Fr(qr)

S̃1r
≡ S̃jr

S̃1r
.

For this reason, we could say that the Haantjes operators (3.3) are the tensorial representation
of a given Stäckel web in T ∗Q.
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Remark 3.3. The Haantjes operators (3.3) are independent of the functions fk(qk, pk), that ap-
pear in the Hamiltonians (3.1) only. They are called the Stäckel functions and are characteristic
functions of the Haantjes web, according to [39].

By choosing as Stäckel functions fk = ψk(pk), fk = Wk(qk) and fk = ψk(pk) +Wk(qk), where
ψk(pk) and Wk(qk) are arbitrary smooth functions of their argument, from equation (3.2) and
Proposition 2.10, we obtain the following result.

Corollary 3.4. The functions

Tj :=
n∑
k=1

S̃jk
det(S)

ψk(pk), Vj :=

n∑
k=1

S̃jk
det(S)

Wk(qk) j = 1, . . . , n, (3.4)

are elements of the Haantjes chains

KT
j−1dT1 = dTj , KT

j−1dV1 = dVj , j = 1, . . . , n. (3.5)

Therefore, they fulfill the involution relations

{Ti, Tj} = 0, {Vi, Vj} = 0, {Ti, Vj}+ {Vi, Tj} = 0, i, j = 1, . . . , n. (3.6)

Using [39, Theorem 57], stating the existence of generators of a Haantjes structure, we can
derive the following result.

Proposition 3.5. The Haantjes structure of a (generalized) Stäckel system admits as generator
the Haantjes operator

K :=
n∑
r=1

λr(q)

(
∂

∂qr
⊗ dqr +

∂

∂pr
⊗ dpr

)
, (3.7)

where λr(q) are arbitrary smooth functions of the coordinates (q1, . . . , qn), with λr 6= λj at any
point of Q, except possibly for a closed set.

In fact,

Kj−1 =
n∑
r=1

S̃jr

S̃1r
πr(K), j = 1, . . . , n,

where the operators

πr(K) :=

n∏
i=1
i 6=r

(K − λiI)

n∏
i=1
i 6=r

(λr − λi)
=

∂

∂qr
⊗ dqr +

∂

∂pr
⊗ dpr, r = 1, . . . , n,

are the elements of the so-called Lagrange interpolation basis Bint = {π1(K), . . . , πn(K)} asso-
ciated to the operator K, and represent a basis of the Haantjes module K.

Remark 3.6. The representation of the Haantjes operators (3.3) on the cyclic basis Bcycl =
{I,K,K2, . . . ,Kn−1} associated to the Haantjes operator (3.7) can be obtained by observing
that the transition matrix between the cyclic basis and the interpolation basis is given by the
Vandermonde matrix of the eigenvalues of (3.7)

[I]BintBcycl = V (q) =


1 λ21 . . . λn−11

1 λ22 . . . λn−12

. . . . . . . . . . . .
1 λ2n . . . λn−1n

 .
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Thus, the Haantjes operators (3.3) can be written as polynomial fields in the powers of K

Kj−1 = pj−1(q,K) =
n−1∑
i=0

a
(j−1)
i+1 (q)Ki, j = 1, . . . , n, (3.8)

where


a
(j−1)
1

a
(j−1)
2

. . .

a
(j−1)
n


Bcycl

= V −1


S̃j1
S̃11
S̃j2
S̃12

. . .
S̃jn
S̃1n


Bint

.

Another basis of interest for the sequel is the so-called control basis Bcont = {e1(K), . . . , en(K)}
associated with the operator K (see, for instance, [17, p. 98]). Its elements (in reverse order)
are defined by

e1(K) = I,

e2(K) = −c1I + K,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
en(K) = −cn−1I − cn−2K − · · · − c1Kn−2 + Kn−1, (3.9)

where the functions c1(q), . . . , cn(q) are the (opposite of the) coefficients of the minimal poly-
nomial of K

mK(λ) = λn − c1λn−1 − · · · − cn−1λ− cn. (3.10)

Thus, these coefficients are related to the elementary symmetric functions σk of the roots
of (3.10), namely the n eigenvalues (λ1, λ2, . . . , λn) of (3.7), by the formulae

ck := (−1)k+1σk.

The transition matrix between the control basis and the cyclic basis is given by

HR =



1 −c1 · · · · · · −cn−1
0

. . .
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . −c1
0 · · · 0 0 1


,

which can be regarded as a Hankel matrix in a disguised form. We can conclude that the
transition matrix between the control basis and the interpolating basis is simply given by the
product

[I]BintBcont = V HR. (3.11)

To relate our approach with the classical theory of Stäckel about SoV, based on transfor-
mations of coordinates in the configuration space Q, we need to study which of the Haantjes
structures can be projected along the fibers of T ∗Q by means of the canonical projection map
π : T ∗Q → Q, (q,p) 7→ q. The following results hold true.
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Proposition 3.7. The Haantjes operators (3.3) can be projected along the fibers T ∗Q onto the
operators

K̃j−1 :=

n∑
r=1

S̃jr

S̃1r

∂

∂qr
⊗ dqr, j = 1, . . . , n− 1, (3.12)

that are still Haantjes operators in the configuration space Q and are compatible with each other,
that is, fulfill the relations (2.3), (2.4). Moreover, the Haantjes generator (3.7) as well can be
projected onto the operator

K̃ =

n∑
r=1

λr(q)
∂

∂qr
⊗ dqr, j = 1, . . . , n− 1. (3.13)

Such an operator is a Haantjes operator in Q and generates the Haantjes operators (3.12)
according to the relations

K̃j−1 =
n∑
r=1

S̃jr

S̃1r
πr
(
K̃
)

=
n−1∑
i=0

a
(j−1)
i (q)K̃

i
, j = 1, . . . , n.

Proof. The components S̃jr/S̃1r of the Haantjes operators (3.3) in T ∗Q, as well as the eigen-
values of K, in the separation coordinates (q;p) depend on the coordinates q only. Therefore,
the operators (3.3) and (3.7) can be projected along the fibers of T ∗Q. Moreover, the projected
operators inherit the properties (2.3), (2.4) from (3.3). �

4 Quasi-bi-Hamiltonian systems

We derive here the Haantjes structure of a large class of separable systems with n degrees of
freedom introduced in [29], that includes a Goldfish system by F. Calogero and the L-systems
of Benenti (whose discussion is postponed to Section 7). Geometrically, such systems can be
interpreted as reductions of Gelfand–Zakarevich systems of maximal rank to a symplectic sub-
manifold of a suitable bi-Hamiltonian manifold [14]. To this aim, we have to choose each
eigenvalue of the Haantjes generator to be dependent only on the homologous coordinate, so
that the generator (3.7) becomes the following Nijenhuis operator

N :=

n∑
r=1

λr(qr)

(
∂

∂qr
⊗ dqr +

∂

∂pr
⊗ dpr

)
. (4.1)

As before, we assume that its eigenvalues λr(qr) are arbitrary smooth functions of their argu-
ment, with the restriction that λr 6= λj at any point of Q, except possibly for a closed set.
Accordingly, we can choose as Stäckel matrix in equation (3.1) the (reverse) Vandermonde ma-
trix of the eigenvalues of (4.1)

S(q) = V R =


λn−11 (q1) λn−21 (q1) . . . 1

λn−12 (q2) λn−22 (q2) . . . 1
. . . . . . . . . . . .

λn−1n (qn) λn−2n (qn) . . . 1

 .
Computing its inverse, we find that(

V −1R
)
jk

=
(ṼR)jk

det(ṼR)
=
∂ck
∂λj

1
n∏
r=1
r 6=j

(λj − λr)
.

Here the functions ck are the (opposite of the) coefficients of the minimal polynomial of N .
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Thus, we have obtained the class of separable Hamiltonian functions

Hk =
n∑
i=1

∂ck
∂λi

fi(qi, pi)
n∏
j=1

j 6=i

(λi − λj)
, k = 1, . . . , n, (4.2)

that has been discussed in [7, 43] in the framework of quasi-bi-Hamiltonian (QBH) systems.

Using equation (3.3), and the relations

S̃jr

S̃1r
=

(ṼR)jr

(ṼR)1r
=
∂cj
∂λr

,

we find that such systems admit the simple Haantjes structure (T ∗Q, ω,K0 = I,K1, . . . ,Kn),
given by

Kj−1 :=

n∑
r=1

∂cj
∂λr

(
∂

∂qr
⊗ dqr +

∂

∂pr
⊗ dpr

)
, j = 1, . . . , n− 1. (4.3)

They can be projected onto the Haantjes operators on Q:

K̃j−1 :=
n∑
r=1

∂cj
∂λr

∂

∂qr
⊗ dqr, j = 1, . . . , n− 1. (4.4)

Proposition 4.1. The Haantjes operators (4.3) of a QBH system are the elements of the control
basis (3.9) associated to the Nijenhuis operator (4.1).

Proof. It is sufficient to compute explicitly the transition matrix (3.11) and to observe that the
i-th column of such matrix coincides with the eigenvalues of the Haantjes operators (4.3). �

Due to the fact that the Haantjes operators (4.3) are generated by the Nijenhuis opera-
tor (4.1) through the relations (3.8), the Lenard–Haantjes chain formed by the Hamiltonian
functions (4.2) is an example of generalized Lenard chain (see, e.g., [38, 42]).

4.1 A Goldfish system

In 1996, Calogero studied a solvable system (already introduced by him in 1978) whose Hamil-
tonian function in canonical coordinates (qi, pi) reads

H =

n∑
i=1

eapi
n∏
j=1

j 6=i

(qi − qj)
. (4.5)

The corresponding Newton equations are

q̈k = 2
n∑
i=1
i 6=k

q̇kq̇i
(qk − qi)

.

This model is the simplest representative of a large class of solvable models called Goldfish
systems (see [12] and reference therein).
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In the papers [30, 43], it was proved that the Goldfish system (4.5) and the generalized one
with Hamiltonian function

H =
n∑
i=1

(
eapi

n∏
j=1

j 6=i

(qi − qj)
+ bqi

)
, b ∈ R, (4.6)

and with Newton equations

q̈k = 2

n∑
i=1
i 6=k

q̇kq̇i
(qk − qi)

− abq̇k,

admit a quasi-bi-Hamiltonian structure which ensures the separability of the associated H-J
equation directly in the symplectic coordinates (q;p). We wish to point out that the generalized
system (4.6) admits also the ωH structure (4.3), shared by all quasi-bi-Hamiltonian systems.
Therefore, in turn, it belongs to the generalized Stäckel class (3.1).

The Hamiltonian function of the Goldfish system (4.6) arises from equation (4.2) with λi ≡ qi,
i = 1, . . . , n, with the following choice of the Stäckel functions

fi := eapi + bqni ,

taking also into account the Jacobi identity [1]

n∑
i=1

qni
n∏
j=1

j 6=i

(qi − qj)
=

n∑
i=1

qi.

5 Classical systems of Stäckel

The classical separable Stäckel systems arise from equation (3.1) by choosing as Stäckel functions
the homogeneous quadratic functions in the momenta

fk :=
1

2
p2k +Wk(qk). (5.1)

The functions Wk(qk) are components of the so-called Stäckel multiplicator [36]. With this
choice, the Hamiltonian function (3.1) takes the form

H =
1

2

n∑
j=1

gj(q)p2j + V (q),

where the functions

gj(q) =
S̃1j

det(S)

can be interpreted as the diagonal components gj := gjj of the inverse of a metric tensor g over
the configuration space Q:

G :=
n∑
j=1

gj
∂

∂qj
⊗ ∂

∂qj
. (5.2)
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Also,

V (q) =
n∑
j=1

gjWj

is the potential energy. The presence of the metric (5.2) allows one to construct the contravariant
form of the Haantjes operators (3.12), which are still diagonal, with components

(Kj−1)
ii = (Kj−1)

i
ig
i =

S̃ji
det(S)

, i, j = 1, . . . , n.

Proposition 5.1. The tensor fields (3.12) are Killing tensors for the metric (5.2) and are in
involution with respect to the Schouten bracket of two symmetric contravariant tensors.

Proof. The result follows immediately from the first involution relation (3.6). �

6 The Jacobi–Calogero model

In this section, we analyze in the framework of Haantjes geometry the celebrated rational
Calogero model describing particles on a line, interacting with an inverse square potential [11].
We shall limit ourselves to the case of three particles, already introduced by Jacobi in 1866 [20],
but totally forgotten till his contribution was re-discovered in [37]. The Jacobi–Calogero Hamil-
tonian function reads

H =
1

2

(
p2x + p2y + p2z

)
+ VCal, (6.1)

where the potential energy VCal is

VCal =
a

(x− y)2
+

a

(y − z)2
+

a

(z − x)2
, a ∈ R,

and (x, y, z) are the coordinates of the three particles on the line. The configuration space of
this system is Q = E3 \ ∆, where E3 denotes the 3-dimensional Euclidean affine space and
∆ := {x = y, x = z, y = z} the set of the collision planes. Its cotangent bundle T ∗Q ' Q× E3
is the phase space of the model.

Two bi-Hamiltonian structures has been worked out for this system. However, in the first
one [26], the computation of a second Poisson operator P 1 and therefore of a Nijenhuis operator
N := P 1Ω seems to be prohibitively complicated and has not been carried out explicitly. The
other bi-Hamiltonian structure [44] is an “irregular” one and does not provide integrals of motion
different from the Hamiltonian (6.1).

Here, we will compute five Haantjes operators that turn out to be very simple, that is, at
most quadratic in the coordinates and momenta, and provide integrals of motion by means of
three independent Lenard–Haantjes chains.

As is well known, the model is maximally superintegrable, namely, it admits five independent
integrals of motion in involution [28, 40]. Furthermore, it is also multi-separable. In fact,
in the interesting paper [5], it has been proved that, besides the known circular cylindrical
coordinates [10], there are four other webs in which the associate HJ equation is separable:
spherical, parabolic, oblate spheroidal and prolate spheroidal. All such webs have a common
axis of rotational symmetry. Using the first three of them, we will be able to construct the
Haantjes structures of the model. The other two webs, oblate and prolate spheroidal, do not
provide further independent Haantjes structures. Specifically, we will write down the Calogero
Hamiltonian function (6.1) (the source) and two integrals of motion (the K-images) in each
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of the separable webs and we will apply Theorem 59 of [39], that assures the construction of
a Haantjes structure for which the separable coordinates are DH coordinates.

Due to the absence of external force fields, the linear momentum

px + py + pz

is a (linear) integral of motion. In the configuration space Q, it is equivalent to the conserved
scalar quantity (~p · ~u), where ~p and ~u are the vectors

~p := px~ex + py~ey + ~ez, ~u := ~ex + ~ey + ~ez,

and (~ex, ~ey, ~ez) is a basis of three orthonormal vectors in E3. This fact amounts to the rotational
symmetry of the model around the axis (O, ~u), that is, the straight line passing through the
origin of the coordinates O and parallel to the vector ~u. Thus, such an axis is a symmetry axis
for each of the separable webs above-mentioned. Following [5], we consider the integral of motion

H2 =
1

6

(
~L0 · ~u

)2
+

∣∣∣∣~r × ~u

|~u|

∣∣∣∣2 VCal =
1

6

(
(ypz − zpy) + (zpx − xpz) + (xpy − ypx)

)2
+

1

3

(
(x− y)2 + (x− z)2 + (y − z)2

)
VCal,

related to the axial angular momentum. This integral has a privileged role for it is separable in
each of the separated webs above-mentioned. Thus, writing down the integral and the Hamilto-
nian function (6.1) in one of the separated webs, and using equation (2.5) we obtain a diagonal
operator (consequently a Haantjes one) which in cartesian coordinates reads

K1 =

[
A 03
B A

]
,

where

A =
1

3

 (y − z)2 (y − z)(z − x) (y − z)(x− y)
(y − z)(z − x) (x− z)2 (z − x)(x− y)
(y − z)(x− y) (z − x)(x− y) (x− y)2

 ,
B =

1

3

(
(x− y)pz + (y − z)px + (z − x)py

) 0 1 −1
−1 0 1
1 −1 0

 .
Such an operator provides

dH2 = KT
1 dH,

which is the first element common to the three Lenard–Haantjes chains presented in equa-
tions (6.2).

Now, we shall focus on the separable webs.

6.1 Cylindrical Haantjes operator

Let us consider the integral of the (square of the) linear momentum

Hcil =
1

2
(~p · ~u)2 =

1

2
(px + py + pz)

2.

Once we write it in cylindrical circular coordinates with axes (O, ~u) together with the Hamil-
tonian function (6.1), according to equation (2.5) we can define a second uniform Haantjes
operator, given in cartesian coordinates by

Kcil =

[
Acil 03

03 Acil

]
, where Acil =

1 1 1
1 1 1
1 1 1

 .
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6.2 Spherical Haantjes operator

Analogously, we consider the following integral of motion

Hsph =
1

2
|~LO|2 + |~r|2VCal

=
1

2

(
(ypz − zpy)2 + (zpx − xpz)2 + (xpy − ypx)2

)
+
(
x2 + y2 + z2

)
VCal

related to the (square) module of the angular momentum. From the expression of this integral in
spherical coordinates and from the Hamiltonian function (6.1), we construct a Haantjes operator
that in cartesian coordinates reads

Ksph =

[
Asph 03
Bsph Asph

]
,

where

Asph =

y2 + z2 −xy −zx
−xy x2 + z2 −yz
−zx −yz x2 + y2

 ,
Bsph =

 0 ypx − xpy zpx − xpz
−(ypx − xpy) 0 zpy − ypz
−(zpx − xpz) −(zpy − ypz) 0

 .
6.3 Parabolic Haantjes operator

We consider the following integral of motion

Hpar =
1

2

(
(~p · ~u)(~p · ~r)− (~r · ~u)(~p · ~p)

)
− (~r · ~u)VCal

=
1

2

(
(px + py + pz)(xpx + ypy + zpz)− (x+ y + z)

(
p2x + p2y + p2z

))
− (x+ y + z)VCal

related to the product of the axial with the radial linear momentum. The associated Haantjes
operator is

Kpar =

[
Apar 03
Bpar Apar

]
,

where

Apar =
1

2

−2(y + z) (x+ y) (x+ z)
(x+ y) −2(x+ z) (y + z)
(x+ z) (y + z) −2(x+ y)

 ,
Bpar =

1

2

 0 py − px pz − px
−(py − px) 0 pz − py
−(pz − px) −(pz − py) 0

 .
The following result holds.

Proposition 6.1. The three Haantjes structures (T ∗Q, ω,K0 = I6,K1,Kcyl), (T ∗Q, ω,K0 =
I6,K1,Ksph), (T ∗Q, ω,K0 = I6,K1,Kpar) together with the Hamiltonian function (6.1) gene-
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rate three Lenard–Haantjes chains with two common elements

KT
cyldH = dHcyl,

KT
0 dH = dH1, KT

1 dH = dH2,

99

//

%%

KT
sphdH = dHsph,

KT
pardH = dHpar.

(6.2)

Proof. In any of the separable webs above-mentioned the operators K0 and K1 take a diagonal
form. Furthermore, Kcyl, Ksph, Kpar, by construction, are diagonal in the cylindrical, spherical,
parabolic webs, respectively. Then, they fulfill all the conditions of Definition 2.8. �

Remark 6.2. The existence of more than one independent Lenard–Haantjes chain is due to the
superintegrability of the Calogero model. However, only two of the three chains are independent
as

dH1 ∧ dH2 ∧ dHcyl ∧ dHsph ∧ dHpar = 0,

and

dH1 ∧ dH2 ∧ dHcyl ∧ dHsph 6= 0,

dH1 ∧ dH2 ∧ dHcyl ∧ dHpar 6= 0,

dH1 ∧ dH2 ∧ dHsph ∧ dHpar 6= 0.

Therefore, an additional independent integral is required in order to prove the maximal
superintegrability of the model. The additional integral is the cubic one in the momenta

H3 :=
1

3

(
p3x + p3y + p3z

)
+ a

(
px + py
(x− y)2

+
px + pz
(x− z)2

+
py + pz
(y − z)2

+
px + pz
(x− z)2

)
,

which is in involution both with H1 and H2. The problem of finding a Haantjes structure that
involves such an integral is under investigation.

Remark 6.3. According to Proposition 3.7, all the previous Haantjes operators can be pro-
jected onto the configuration space. Each projection is simply given by the first block of the
representative matrix, that is, by I3, A, Acil, Asph, Apar. These two-tensors in the configuration
space coincide with the mixed form (1, 1) of the Killing tensors found in [5].

7 A Haantjes route to Benenti systems

In this section, we will prove that the L-systems introduced by S. Benenti [3, 4] and discussed
in [19] within a bi-Hamiltonian framework, can be recovered by projecting onto the configuration
space the Haantjes operators of the QBH systems (4.3). This can be done by choosing the
classical quadratic functions in the momenta (5.1) as Stäckel functions in the Hamiltonian (4.2).
Indeed, the components of the metric (5.2) turn out to be

gi =
(ṼR)1i

det(ṼR)
=
∂c1
∂λi

1
n∏
j=1

j 6=k

(λi − λj)
=

1
n∏
j=1

j 6=i

(λi − λj)
. (7.1)

Now we are able to prove the following
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Proposition 7.1. The projected Haantjes operators (4.4) are Killing tensors w.r.t. the met-
ric (7.1) and commute with each other. As for the QBH systems λr(q) = λr(qr), the projected
operator (3.13), which we shall denote by L, is a Nijenhuis operator and generates the Killing
tensors (4.4) by means of the relations

K̃0 = L0 = I,

K̃α = −
α−1∑
j=0

cα−jL
j + Lα, α = 1, . . . , n− 1. (7.2)

Moreover, it is a L-tensor or a conformal Killing tensor of trace-type, i.e., it fulfills the relation

[L,G] = −2X �G, X = Gd(tr(L)). (7.3)

Here, the symbols [ , ] and � denote the Schouten bracket and the symmetric product of two
contravariant tensor fields, respectively. Furthermore, the potential functions (3.4) form the
Haantjes chain in Q

K̃
T
j−1dV1 = dVj , j = 1, . . . , n. (7.4)

Proof. The first assertion is a direct consequence of Proposition 5.1 and of the compatibility
condition (2.3). The generating formula (7.2) follows from Proposition 4.1. Property (7.3) is
a consequence of equation (7.2), which for α = 1 and in contravariant form implies

L = c1G + K̃1,

and of the properties of the Schouten bracket. Indeed,

[L,G] = [c1G + K̃1,G] = −2[c1,G]�G.

Finally, the potential functions Vj(q) in equation (3.4) can be projected naturally along the
fibers of T ∗Q. Therefore, the second Haantjes chain of (3.5) can also be projected onto Q,
giving equation (7.4). �
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[28] Miller Jr. W., Post S., Winternitz P., Classical and quantum superintegrability with applications, J. Phys. A:
Math. Theor. 46 (2013), 423001, 97 pages, arXiv:1309.2694.

[29] Morosi C., Tondo G., Quasi-bi-Hamiltonian systems and separability, J. Phys. A: Math. Gen. 30 (1997),
2799–2806, solv-int/9702006.

[30] Morosi C., Tondo G., On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian, Phys.
Lett. A 247 (1998), 59–64, solv-int/9811007.

[31] Morosi C., Tondo G., The quasi-bi-Hamiltonian formulation of the Lagrange top, J. Phys. A: Math. Gen.
35 (2002), 1741–1750, nlin.SI/0201028.

[32] Morosi C., Tondo G., Separation of variables in multi-Hamiltonian systems: an application to the Lagrange
top, Theoret. and Math. Phys. 137 (2003), 1550–1560, nlin.SI/0305007.

[33] Nijenhuis A., Xn−1-forming sets of eigenvectors, Indag. Math. 54 (1951), 200–212.

http://dx.doi.org/10.1063/1.533369
http://dx.doi.org/10.1063/1.1506180
http://dx.doi.org/10.1007/978-3-642-58893-8
http://dx.doi.org/10.1007/BF02517890
http://dx.doi.org/10.1007/BF02517890
http://dx.doi.org/10.1070/IM2004v068n06ABEH000511
http://dx.doi.org/10.1063/1.1664820
http://dx.doi.org/10.4249/scholarpedia.7216
http://dx.doi.org/10.1093/acprof:oso/9780199535286.001.0001
http://dx.doi.org/10.1007/BF02551195
http://arxiv.org/abs/solv-int/9906009
http://dx.doi.org/10.1023/A:1024080315471
http://arxiv.org/abs/nlin.SI/0204029
http://dx.doi.org/10.1007/s00208-007-0106-2
http://arxiv.org/abs/nlin.SI/0505013
http://dx.doi.org/10.1016/S1385-7258(56)50046-7
http://dx.doi.org/10.1007/978-1-4419-8734-1
http://dx.doi.org/10.1016/S1385-7258(55)50021-7
http://dx.doi.org/10.1016/S0393-0440(99)00051-0
http://dx.doi.org/10.1063/1.523777
http://dx.doi.org/10.1007/3-540-09971-9_40
http://dx.doi.org/10.1023/B:TAMP.0000007919.80743.1e
http://dx.doi.org/10.3842/SIGMA.2012.076
http://arxiv.org/abs/1210.5320
http://dx.doi.org/10.1088/1742-6596/482/1/012028
http://dx.doi.org/10.1088/1751-8113/46/42/423001
http://dx.doi.org/10.1088/1751-8113/46/42/423001
http://arxiv.org/abs/1309.2694
http://dx.doi.org/10.1088/0305-4470/30/8/023
http://arxiv.org/abs/solv-int/9702006
http://dx.doi.org/10.1016/S0375-9601(98)00543-X
http://dx.doi.org/10.1016/S0375-9601(98)00543-X
http://arxiv.org/abs/solv-int/9811007
http://dx.doi.org/10.1088/0305-4470/35/7/318
http://arxiv.org/abs/nlin.SI/0201028
http://dx.doi.org/10.1023/A:1027365903527
http://arxiv.org/abs/nlin.SI/0305007
http://dx.doi.org/10.1016/S1385-7258(51)50028-8


18 G. Tondo and P. Tempesta

[34] Nijenhuis A., Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I, Indag.
Math. 17 (1955), 390–397.

[35] Nijenhuis A., Jacobi-type identities for bilinear differential concomitants of certain tensor fields. II, Indag.
Math. 17 (1955), 398–403.

[36] Pars L.A., A treatise on analytical dynamics, Heinemann Educational Books Ltd., London, 1965.

[37] Perelomov A.M., Integrable systems of classical mechanics and Lie algebras, Birkhäuser Verlag, Basel, 1990.
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