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Abstract. The analog of the Chern–Gauss–Bonnet theorem is studied for a C∗-dynamical
system consisting of a C∗-algebra A equipped with an ergodic action of a compact Lie
group G. The structure of the Lie algebra g of G is used to interpret the Chevalley–Eilenberg
complex with coefficients in the smooth subalgebra A ⊂ A as noncommutative differential
forms on the dynamical system. We conformally perturb the standard metric, which is
associated with the unique G-invariant state on A, by means of a Weyl conformal factor given
by a positive invertible element of the algebra, and consider the Hermitian structure that it
induces on the complex. A Hodge decomposition theorem is proved, which allows us to relate
the Euler characteristic of the complex to the index properties of a Hodge–de Rham operator
for the perturbed metric. This operator, which is shown to be selfadjoint, is a key ingredient
in our construction of a spectral triple on A and a twisted spectral triple on its opposite
algebra. The conformal invariance of the Euler characteristic is interpreted as an indication
of the Chern–Gauss–Bonnet theorem in this setting. The spectral triples encoding the
conformally perturbed metrics are shown to enjoy the same spectral summability properties
as the unperturbed case.
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1 Introduction

In noncommutative geometry [13, 14], C∗-dynamical systems (A,G, α) have been long studied
from a differentiable point of view starting with extending the basic notions of differential geo-
metry and differential topology to a differential structure on a C∗-algebra A endowed with
an action α : G → Aut(A) of a Lie group G. That is, the notion of a connection, a vector
bundle, and Chern classes were introduced for such a dynamical system, a pseudodifferential
calculus was developed and the analog of the Atiyah–Singer index theorem was proved in [12].
The noncommutative two torus T2

θ has been one of the main motivating examples for these
developments. In [55], this line of investigation has been taken further focusing on general
compact Lie groups and index theory.

Following the seminal work of Connes and Tretkoff on the Gauss–Bonnet theorem for T2
θ [18]

and its extension in [25] concerning general translation invariant conformal structures, local
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differential geometry of non-flat noncommutative tori has been a subject of increasing interest
in recent years [3, 17, 26, 27, 28, 45]. A Weyl conformal factor may be used to perturb a flat
metric on noncommutative tori, and Connes’ pseudodifferential calculus [12] can be employed
along with noncommutative computational methods to carry out calculation of scalar curvature
and to investigate the related differential geometric statements, see also [20] for an asymmetric
perturbation of the metric.

The idea and the techniques were indeed initiated in a preprint [11], where with the help of
complicated modified logarithmic functions and a modular automorphism, an expression for the
value ζ(0) of the spectral zeta function of the Laplacian of a curved metric on T2

θ was written.
The vanishing of this expression is interpreted as the Gauss–Bonnet theorem [18], which was
suggested by the developments in the following intimately related theories. In fact, the spectral
action principle [9], in particular the related calculations in the presence of a dilaton [10], and
the theory of twisted spectral triples, which arise naturally in noncommutative conformal geo-
metry [16, 49], indicate independence of ζ(0) from the conformal factor.

Connes’ index formula for Fredholm modules, which involves cyclic cohomology, is quite
broad [13]. It asserts that given a finitely summable Fredholm module over an algebra, the
analytic index, given by pairing a K-homology and a K-theory element of the algebra, coincides
with the topological index, which pairs the corresponding elements in periodic cyclic cohomology
and homology obtained by the Chern–Connes characters. The local index formula of Connes
and Moscovici [15] gives a local formula based on residue trace functionals, which is in the
same cyclic cohomology class as the Chern–Connes character, and has the advantage that one
can perform explicit computations with it (see also [34]). The residue trace functionals are
intimately related to the spectral formulation of Wodzicki’s noncommutative residue [59, 60]. In
fact, the formulation of the noncommutative residue as an integration over the cosphere bundle
of a manifold also is important for explicit computations with noncommutative geometric spaces,
see [22, 28, 29] for a related treatment on noncommutative tori.

The notion of a twisted spectral triple introduced by Connes and Moscovici [16] allows to
incorporate a variety of new examples, in particular type III examples in the sense of the Murray–
von Neumann classification of operator algebras. They have shown that the Chern–Connes
character of a finitely summable twisted spectral triple is an ordinary cyclic cocycle and enjoys
an index pairing with K-theory. Also, they have constructed a local Hochschild cocycle, which
indicates that the ground is prepared for extending the local index formula to the twisted case.
This was carried out in [47] for a particular class of twisted spectral triples; the analog of Connes’
character formula was investigated in [24] for the examples. For treatments using twisted cyclic
theory, in particular for relations of the theory with Cuntz algebra [19] and quantum groups,
we refer to [6, 7, 8], see also [37, 38]. More recent works related to the twisted version of
spectral triples reveal their connections with the Bost–Connes system, Riemann surfaces and
graphs [33], and with the standard model of particle physics [21]. Twisted spectral triples
associated with crossed product algebras are studied in [16, 36, 47], see also [23] for an algebraic
treatment.

Ergodic actions of compact groups on operator algebras are well-studied in the von Neumann
setting (see, e.g., [56, 57, 58]) and in a C∗-algebraic context. They were first introduced for
C∗-algebras by E. Størmer [54] and this initial effort was expanded in various articles. Let us
just mention two of them:

• In their article [1], Albeverio and Høegh-Krohn investigate in particular ergodic actions
on commutative C∗-algebras A = C(X) and prove that they correspond to continuous
transitive actions on X.

• The article [35] by Høegh-Krohn, Landstad and Størmer proves that if G acts ergodically
on a unital C∗-algebra A, its unique G-invariant state is actually a trace.
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The article [52] was the first to suggest in 1998 that ergodic actions give rise to interesting
spectral triples. This article proceeds with studying the metric induced on state spaces by
ergodic actions. More recently, the article [30] produced a detailed construction of a so called
Lie–Dirac operator on a C∗-algebra A, based on an ergodic action of a compact Lie groupG on A.
It also investigated the analytic properties of these Lie–Dirac operators, proving in particular
that they are finitely summable spectral triples. In the present article, we elaborate on the
techniques used in [30] in order to prove quite different results.

Indeed, in [30] the focus was on a Dirac operator for a “noncommutative spin manifold”,
whereas here the emphasis is on a sort of Hodge–de Rham operator associated with a conformally
perturbed metric, construction of twisted spectral triples and the analog of the Chern–Gauss–
Bonnet theorem. The Hodge–de Rham operators constructed here are (in general) not Lie–Dirac
operators in the sense of [30]. In this previous article, the algebra structure of A played only
a minor role in the analytical properties of the spectral triple. Here, the multiplication of A has
a central importance.

For a recent approach of Hodge theory using Hilbert modules, we refer to the recent artic-
le [44]. See also [42, 43].

This article is organized as follows. In Section 2, we recall the necessary statements from
representation theory and operator theory, and the notion of ordinary and twisted spectral triples
along with their main properties that are used in our arguments and concern our constructions.
We associate a complex of noncommutative differential forms to a C∗-dynamical system (A,G, α)
in Section 3. In the ergodic case, the analog of the Hodge–de Rham operator is studied when
the complex is equipped with a Hermitian structure determined by a metric in the conformal
class of the standard metric associated with the unique G-invariant trace on A.

Inspired by a construction in [18], we construct in Section 4 a spectral triple on A and
a twisted spectral triple on the opposite algebra Aop, which encode the geometric information
of the conformally perturbed metric. We study the Dirac operator of the perturbed metric
carefully and prove that it is selfadjoint and enjoys having the same spectral dimension as the
non-perturbed case. It should be stressed that ergodicity plays a crucial role for the latter to
hold.

The existence of an analog of the Chern–Gauss–Bonnet theorem is studied in Section 5 by
proving a Hodge decomposition theorem for our complex and showing that its Euler charac-
teristic is independent of the conformal factor. Combining this with the McKean–Singer index
formula and small time asymptotic expansions, which often exist for noncommutative geometric
spaces, we explain how the analog of the Euler class or the Pfaffian of the curvature form can
be computed as local geometric invariants of examples that fit into our setting. Indeed, such
invariants depend on the behavior at infinity of the eigenvalues of the involved Laplacians and
the action of the algebra. Finally, our main results and conclusions are summarized in Section 6.

2 Preliminaries

We start by some reminders about results and notations from various anterior articles.

Definition 2.1. Given a strongly continuous action α of a compact group G on a unital C∗-
algebra A, we say that it is ergodic if the fixed algebra of G-invariants elements is reduced to
the scalars, i.e., if ∀ g ∈ G, αg(a) = a, then a ∈ C1A.

Among the important results obtained with this notion of ergodic action, let us quote the
following [35, Theorem 4.1, p. 82]:

Theorem 2.2. Let A be a unital C∗-algebra, G a compact group and α a strongly continuous
representation of G as an ergodic group of ∗-automorphisms of A, then the unique G-invariant
state ϕ0 on A is a trace.
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Another result that will play an important role in our article is [35, Proposition 2.1, p. 76],
which we adapt slightly in the following:

Proposition 2.3. Let A be a unital C∗-algebra, G a compact group and α a strongly continuous
representation of G as an ergodic group of ∗-automorphisms of A. Let V be an irreducible
unitary representation of G, A(V ) the spectral subspace of V in A and m(V ) the multiplicity
of V in A(V ). Then we have

m(V ) 6 dimV.

Among our main results, we prove the finite summability of certain spectral triples (ordinary
and twisted), we therefore define those terms:

Definition 2.4. Let A be a unital C∗-algebra. An odd (ordinary) spectral triple, also called an
odd unbounded Fredholm module, is a triple (A,H , D) where

• H is a Hilbert space and π : A → B(H ) a ∗-representation of A as bounded operators
on H ,

• D is a selfadjoint unbounded operator – which we will call the Dirac operator – with
domain Dom(D),

such that

(i) (1 +D2)−1 is a compact operator,

(ii) the subalgebra A of all a ∈ A such that

π(a)(Dom(D)) ⊆ Dom(D) and [D,π(a)] extends to a bounded map on H

is dense in A.

An even spectral triple is given by the same data, but we further require that a grading γ be
given on H such that (i) A acts by even operators, (ii) D is odd.

Remark 2.5. For a selfadjoint operator D, condition (i) of the definition above is actually
equivalent to ∃λ ∈ R\{0} s.t. (D + iλ)−1 is a compact operator.

To define finitely summable spectral triples, we now need a brief reminder regarding trace
ideals (also known as symmetric ideals), for which we follow Chapter IV of [14]. For more details
concerning symmetrically normed operator ideals and singular traces we refer the reader to [53]
and [46].

Definition 2.6. For p > 1, the ideal L p+ (also denoted L (p,∞) in [14] and Jp,ω in [53, p. 21])
consists of all compact operators T on H such that

‖T‖p+ := sup
k

σk(T )

k(p−1)/p
<∞,

where σk is defined as the supremum of the trace norms of TE, when E is an orthonormal
projection of dimension k, i.e.,

σk(T ) := sup{‖TE‖1, dimE = k}.

Equivalently, σk(T ) is the sum of the k largest eigenvalues (counted with their multiplicities)
of the positive compact operator |T | := (T ∗T )1/2. The definition extends to the case of p = 1:
L 1+ is the ideal of compact operators T s.t.

‖T‖1+ := sup
k

σk(T )

log k
<∞.

The elements of L p+ are called p+-summable (or (p,∞)-summable – see [14, Section IV.2α,
p. 299 and following]).
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A spectral dimension for spectral triples is defined as follows

Definition 2.7. A spectral triple is p+-summable if (1 +D2)−1/2 ∈ L p+ .

Finally, we will consider twisted spectral triples (also called σ-spectral triples) as introduced
in [16, Definition 3.1]. This is a spectral triple just like in Definition 2.4, but for a fixed
automorphism σ of A, the bounded commutators condition (denoted (ii) above) is replaced by

(ii) the subalgebra A of all a ∈ A such that

• π(a)(Dom(D)) ⊆ Dom(D),

• Dπ(a)− π(σ(a))D extends to a bounded map on H

is dense in A.

In this paper, we will need the subalgebras Ak for k > 0, corresponding to the Ck-differen-
tiable class. Following [5, Section 2.2], we introduce the space

Am :=
{
a ∈ A : g 7→ αg(a) is in Cm(G,A)

}
.

Let us fix a basis (∂i) of the Lie algebra g. For such a choice of basis, the infinitesimal genera-
tors ∂i act as derivations Am → Am−1. According to [5, Example 2.2.4, p. 41], Am equipped
with the norm

‖a‖m := ‖a‖+

m∑
k=1

n∑
i1=1

· · ·
n∑

ik=1

‖∂i1 · · · ∂ik(a)‖
k!

,

is a Banach algebra with ‖ab‖m 6 ‖a‖m‖b‖m. In particular, if h ∈ A1, then eλh ∈ A1, for all
complex number λ – see also Lemma 3.3 below for a more precise estimate.

Following the density properties established in [5] (see, e.g., Definition 2.2.15, p. 47), the
intersection A∞ =

⋂∞
j=0Aj is a dense ∗-subalgebra of the C∗-algebra A, which is stable under

the derivations ∂i.

3 Hodge–de Rham Dirac operator and C∗-dynamical systems

In this article, we consider a fixed A, a C∗-algebra with an ergodic action α of a compact
Lie group G of dimension n. We write A for A∞, the “smooth subalgebra” of A, which can
alternatively be defined as

A := {a ∈ A : g 7→ αg(a) is in C∞(G,A)}.

The Chevalley–Eilenberg cochain complex with coefficients in A provides a complex that we
interpret as “differential forms” on A. For the reader’s convenience and to fix notations, we
provide a reminder of this construction. For all k ∈ N,

Ωk := A⊗
k∧
g∗,

where g∗ denotes the linear forms on g, the Lie algebra of the Lie group G. Given a scalar
product on g∗ (e.g., obtained from the Killing form), we can extend it to a scalar product
on
∧k g∗ by setting

〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 := det(〈vi, wj〉),
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i.e., the determinant of the matrix of scalar products. We fix an orthonormal basis (ωj)j=1,...,n

of g∗ for this scalar product and consider its dual basis (∂j)j=1,...,n in g.
Following [41, the model of (4.6), p. 157], we write the exterior derivative of the complex

d(a⊗ ωi1 ∧ ωi2 ∧ · · · ∧ ωiK ) =

n∑
j=1

∂j(a)⊗ ωj ∧ ωi1 ∧ ωi2 ∧ · · · ∧ ωiK

− 1

2

K∑
k=1

∑
α,β

(−1)k+1cikαβa⊗ ωα ∧ ωβ ∧ ωi1 ∧ · · · ∧ ωik−1
∧ ωik+1

∧ · · · ∧ ωiK , (3.1)

where [∂i, ∂j ] =
n∑
k=1

ckij∂k – the ckij are called the structure constants of the Lie algebra g.

A lengthy but straightforward computation proves that this exterior derivative satisfies d2 = 0
on Ω•, therefore (Ω•, d) is a complex.

Remark 3.1. The Chevalley–Eilenberg complex is available even for noncompact groups G
and nonergodic actions. In other words, the square d2 actually vanishes even when G is not
a compact Lie group and when the action of G on A is not ergodic.

The natural product on Ω• is

(a⊗ v1 ∧ · · · ∧ vk) · (a′ ⊗ w1 ∧ · · · ∧ wk′) := aa′ ⊗ v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ wk′ , (3.2)

i.e., the product of a k-form with a k′-form is a k + k′-form. In particular, for all k, Ωk is an
A-bimodule. The exterior derivative d is compatible with the right module structure in the
following sense

d(aa′ ⊗ ωi1 ∧ ωi2 ∧ · · · ∧ ωiK ) =
n∑
j=1

∂j(aa
′)⊗ ωj ∧ ωi1 ∧ ωi2 ∧ · · · ∧ ωiK

− 1

2

∑
k

∑
α,β

cikαβaa
′ ⊗ ωα ∧ ωβ ∧ ωi1 ∧ · · · ∧ ωik−1

∧ ωik+1
∧ · · · ∧ ωiK

=

 n∑
j=1

∂j(a)⊗ ωj ∧ ωi1 ∧ ωi2 ∧ · · · ∧ ωiK

 a′

+
n∑
j=1

a∂j(a
′)⊗ ωj ∧ ωi1 ∧ ωi2 ∧ · · · ∧ ωiK

− 1

2

∑
k

∑
α,β

cikαβa⊗ ωα ∧ ωβ ∧ ωi1 ∧ · · · ∧ ωik−1
∧ ωik+1

∧ · · · ∧ ωiK

 a′

= d(a⊗ ωi1 ∧ ωi2 ∧ · · · ∧ ωiK )a′ + (−1)K(a⊗ ωj ∧ ωi1 ∧ ωi2 ∧ · · · ∧ ωiK )d(a′).

Since we want to treat conformal deformations of the original structure, we follow [18] and fix
a positive invertible element eh ∈ A1, where h is a smooth selfadjoint element in A1. Then we
define a scalar product on Ωk by the formula

(a⊗ v1 ∧ · · · ∧ vk, a′ ⊗ w1 ∧ · · · ∧ wk)ϕ := ϕ0

(
a∗a′e(n/2−k)h

)
det(〈vi, wj〉), (3.3)

where ϕ0 is the unique G-invariant state on A, which is actually a trace according to [1, Theo-
rem 3.1, p. 8]. We set the scalar product of two forms of different degrees to vanish. The scalar
product obtained for h = 0 is the one we call the natural scalar product on forms. We define
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the Hilbert space Hϕ as the completion of Ω• for the scalar product (3.3). In the particular
case of h = 0, we obtain our reference Hilbert space H . We will also need the Hilbert spaces
H0,ϕ := GNS(A, ϕ) and H0 := GNS(A, ϕ0) as well as the Hilbert spaces Hk := H0 ⊗

∧k g∗ –
i.e., the completion of k-forms – and Hk,ϕ.

To understand why we choose the form (3.3) for the conformal deformation, we compare with
the commutative case of a n-dimensional compact manifold M , where we have the following
property: if the Riemannian metric is transformed by g  λg (for λ > 0), then the (pointwise)
norm of all vectors is multiplied by λ1/2 and thus the pointwise norm of 1-forms is multiplied
by λ−1/2. This in turn implies that the pointwise norm of k-form is multiplied by λ−k/2. Finally,
the (global) scalar product of k-forms is the integral of the pointwise scalar products. Since under
the conformal deformation, the total volume of the manifold M is multiplied by λn/2, the (global)
scalar products of k-forms are multiplied by λn/2−k. In particular, if n is even and k = n/2,
then the scalar product on n/2-forms is left invariant under the conformal deformation.

In order to study d and its adjoint, we introduce the degree 1 maps Tj :
∧• g∗ → ∧• g∗

defined for all j ∈ {1, . . . , n} by

Tj(v1 ∧ · · · ∧ vk) = ωj ∧ v1 ∧ · · · ∧ vk.

Let Rx denote the right multiplication operator for any x ∈ A: Rx(a) = ax, and let Bik
αβ be the

bounded operator on
∧• g∗ defined using the basis (ωj) by

Bik
αβ(ωi1 ∧ ωi2 ∧ · · · ∧ ωiK ) = ωα ∧ ωβ ∧ ωi1 ∧ · · · ∧ ωik−1

∧ ωik+1
∧ · · · ∧ ωiK .

We can now give an explicit form to the operator d and its (formal) adjoint for the unperturbed
metric.

Lemma 3.2. With the previous notations, when h = 0, the operator d can be written

d =
∑
j

∂j ⊗ Tj −
1

2

∑
k,α,β

cikαβ ⊗B
ik
αβ

and its adjoint d∗ is

d∗ =
∑
j

∂j ⊗ T ∗j −
1

2

∑
k,α,β

cikαβ ⊗
(
Bik
αβ

)∗
.

Proof. The only point that is not self-explanatory is the behavior of ∂j with respect to the
trace ϕ0

〈[∂j(a)], [a′]〉 = ϕ0(∂j(a)∗a′) = ϕ0(−∂j(a∗)a′) = ϕ0(a∗∂j(a
′)),

where we used the relations ∂j(a)∗ = −∂j(a∗) and ϕ0(∂j(a)) = 0. �

Lemma 3.3. Let h be an element of A1 and ∂ be an infinitesimal generator of G, acting as
a derivation on A1, then ∂(eh) is in the C∗-algebra A and satisfies∥∥∂(eh)∥∥ 6 ‖∂(h)‖e‖h‖.

In particular, for a scalar parameter v → 0, ∂(evh)→ 0.

Proof. As an operator from A1 to A, the derivation ∂ is continuous, therefore we can esti-
mate ∂(eh) by using an A1-converging sequence, like the partial sums of eh.

For this sequence, using the derivation property, we get∥∥∥∥∥∂
(

N∑
k=0

hk

k!

)∥∥∥∥∥ 6
N∑
k=1

k
‖∂h‖
k

‖h‖k−1

(k − 1)!
6 ‖∂h‖e‖h‖.

The property ∂(evh)→ 0 as v → 0 follows immediately. �
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We call dϕ the operator defined on Hϕ by the formula (3.1). Once the scalar product (3.3)
is defined, we want to define an adjoint d∗ϕ to dϕ for this scalar product. The Hodge–de Rham
operator that we would like to study in fine is dϕ + d∗ϕ. However, the unbounded operator dϕ
is a priori arbitrary, so it is not clear that it admits a densely defined adjoint. To clarify the
relations between H and Hϕ, we introduce the following lemma:

Lemma 3.4. For any selfadjoint h ∈ A1,

• the Hilbert space Hϕ is equipped with a G-representation defined on degree k forms by
Vg([a ⊗ v1 ∧ · · · ∧ vk]ϕ) = [αg(a) ⊗ v1 ∧ · · · ∧ vk]ϕ, which leads to a G-equivariant left
A-module structures on Hϕ;

• the map L : H0 → H0,ϕ defined by L([a]) := [a]ϕ is invertible and intertwines the G-
equivariant left A-module structures on H0 and H0,ϕ.

Of course, L extends to L ⊗ Id : H → Hϕ which is still a continuous and invertible map. We
denote its adjoint by H : Hϕ →H , whose explicit form is

H([a⊗ v1 ∧ · · · ∧ vk]ϕ) =
[
ae(n/2−k)h ⊗ v1 ∧ · · · ∧ vk

]
.

Finally, H and Hϕ are related by the unitary map U : H →Hϕ given on degree k forms by

U([a⊗ v1 ∧ · · · ∧ vk]) =
[
ae−(n/2−k)h/2 ⊗ v1 ∧ · · · ∧ vk

]
ϕ
.

Remark 3.5. The map U defined above is unitary, but it does not intertwine the G-structures
on H and Hϕ.

Proof. Since the sum Hϕ =
⊕

k Hk,ϕ is finite, it suffices to check that Vg is continuous on
each Hk,ϕ separately. Since Vg does not act on

∧• g∗, it is enough to prove continuity on
GNS(A, ϕ̃) where ϕ̃(a) = ϕ0(ae−hk) and hk = −(n/2 − k)h ∈ A1 (corresponding to forms of
degree k). We get

‖αg(a)‖2ϕ̃ = ϕ0

(
αg(a)∗αg(a)e−hk

)
= ϕ0

(
a∗aαg−1

(
e−hk

))
= ϕ0

(
ae−hk/2ehk/2αg−1

(
e−hk

)
ehk/2e−hk/2a∗

)
6 Kϕ0

(
ae−hka∗

)
= K‖a‖2ϕ̃,

for a constant K = ‖ehk/2αg−1(e−hk)ehk/2‖. The above (scalar) inequality follows from the
inequality of operators

ae−hk/2ehk/2αg−1

(
e−hk

)
ehk/2e−hk/2a∗ 6 ae−hk/2Ke−hk/2a∗ = Kae−hka∗,

which is valid since ehk/2αg−1(e−hk)ehk/2 is a positive operator. It then suffices to apply the
positive functional ϕ0. Once we know that the map Vg is defined on the full Hilbert space,
proving that it is compatible with the left A-module structure is a formality.

The process is similar for L: it is clear from the definition that if the map L exists, then
it intertwines the G-equivariant left A-module structures on H and Hϕ. It remains to prove
that L is well-defined and invertible.

We first evaluate

‖L(a)‖2ϕ̃ = ϕ0

(
a∗ae−hk

)
= ϕ0

(
ae−hka∗

)
6
∥∥e−hk∥∥ϕ0(aa∗) =

∥∥e−hk∥∥ ‖a‖2ϕ0
,

by the same argument as above.
To prove that L is invertible, consider the norm of its inverse

‖a‖2ϕ0
= ϕ0

(
ae−hk/2ehke−hk/2a∗

)
6
∥∥ehk∥∥ϕ0

(
ae−hka∗

)
=
∥∥ehk∥∥ ‖a‖2ϕ̃.

The evaluation of the adjoint H of L and of the unitary map U : H →Hϕ is an easy exercise. �
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With the previous notations, we see that dϕ = (L⊗Id)d(L⊗Id)−1 and thus (at least formally)
d∗ϕ = H−1d∗H. However, in order to facilitate the comparison between dϕ + d∗ϕ acting on Hϕ

and d + d∗ acting on H , we “push” dϕ + d∗ϕ to H using the unitary U . This leads us to the
operators Du studied in the Proposition 3.6 below. But first, for h = h∗, we need to introduce
the operators Ku : H →H , where u ∈ R, defined by

Ku([a⊗ v1 ∧ · · · ∧ vk]) =
[
ae(n/2−k)hu ⊗ v1 ∧ · · · ∧ vk

]
. (3.4)

This is a one-parameter group of invertible selfadjoint operators. Moreover, following our remark
on A1 at the end of Section 2, for all u ∈ R, the operators Ku preserve the space A1 ⊗

∧• g∗.
In the proof below, we consider the orthogonal projections Πk : H →Hk onto the completion

of the k-forms, for all k ∈ {0, . . . , n}.

Proposition 3.6. For all u ∈ [0, 1], we consider two unbounded operators defined on the dense
domain C = A1 ⊗

∧• g∗ ⊆H ,

du := KudK−u, d∗u := K−ud
∗Ku.

We have:

(1) if E+,u and E−,u are, respectively, the closures in H of the images of the operators du and
d∗u, then E+,u and E−,u are orthogonal in H ; we denote by Π+,u and Π−,u, respectively,
the orthogonal projections on these spaces;

(2) the operator

Du = KudK−u +K−ud
∗Ku,

is essentially selfadjoint on a common core domain C = A1 ⊗
∧• g∗.

The family of operators Du satisfies the estimate

‖(Du+v −Du)(ω)‖ 6 ov(1)‖Duω‖+ ov(1)‖ω‖, (3.5)

where ω is any vector in the common selfadjointness domain and following Landau’s notations,
ov(1) stands for functions of v which tend to 0 for v → 0. We can choose these two functions
independently of the parameter u ∈ [0, 1].

Proof. Regarding point (1), we start by proving the property for u = 0, i.e., for the untwisted
case. There, following Lemma 3.4 the trace ϕ0 is G-invariant and therefore the action Vg of G
on H0 is unitary. Consequently, the G-representation can be decomposed into a direct sum of
finite-dimensional G-representations. Let us denote by V one of these finite-dimensional spaces.

It is clear from the definition (3.1) that both V ⊗
∧k g∗ ⊆ H and its orthogonal are stable

under the action of d. Thus the restriction of d to the finite-dimensional space V ⊗
∧k g∗ is

bounded and admits an adjoint d∗ whose form is given by Lemma 3.2. Varying the space V ,
we see that d∗ is defined on D , the algebraic direct sum of V ⊗

∧k g∗, which is a dense subset
of H . If we restrict to the case of forms ω, ω′ in the space V ⊗

∧k g∗ ⊆H , we have

〈dω, d∗ω′〉 = 〈d2ω, ω′〉 = 0,

there are no considerations of domains for d and d∗, since we consider finite-dimensional spaces.
The same argument applied to different finite vector spaces V proves that E+,0 (the image of d)
and E−,0 (the image of d∗) are orthogonal.
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To treat point (1) for a general u ∈ [0, 1], we note that E+,u = KuE+,0: indeed, if ξ =
lim dωn, then Kuξ = limKudK−u(Kuωn) and vice versa. Similarly, E−,u = K−uE−,0. Given
Kue+ ∈ E+,u and K−ue− ∈ E−,u, we have

〈Kue+,K−ue−〉 = 〈e+, e−〉 = 0,

since Ku is selfadjoint and e+ ∈ E+,0, e− ∈ E−,0 are orthogonal. This proves the requested
orthogonality relation.

Regarding point (2), let us start by giving a sketch of the proof: we first prove that D0 = D
is essentially selfadjoint on the requested domain. Using the estimate (3.5), we then apply
Kato–Rellich theorem to show that if Du is essentially selfadjoint for the domain C, then so
is the operator Du+v for all |v| 6 ε, where ε is independent of the point u ∈ [0, 1] chosen. As
a consequence, all operators Du are essentially selfadjoint for the fixed domain.

We first prove that D0 is selfadjoint. This is done by using the Peter–Weyl decomposition
of H0 for the unitary action Vg of G on H0. As mentioned in point (1), the restriction of d to

this finite-dimensional space V ⊗
∧k g∗ ⊆ H is well-defined, as is its adjoint d∗. Varying the

space V , we consider D , the direct sum of V ⊗
∧k g∗, which is a dense subset of H .

In this situation, we can define D = d + d∗ on D . If we restrict D to a component V ⊗∧k g∗ ⊆H , it is formally selfadjoint by definition. It therefore admits an orthonormal basis of
eigenvectors with real associated eigenvalues. It follows that Ran(D + i) and Ran(D − i) are
dense in H , and this is enough to prove that D is essentially selfadjoint on the domain C (see
[50, Corollary, p. 257]).

Let us now consider an arbitrary u ∈ [0, 1]. We want to find ε > 0 uniform in u and small
enough so that for all v with |v| 6 ε, the operator Du+v is essentially selfadjoint. By definition,

Du+v = Ku+vdK−(u+v) +K−(u+v)d
∗Ku+v.

If we introduce Rv = Kv − 1, then we can write

Ku+v = Ku(1 +Rv), K−(u+v) = (1 +R−v)K−u.

It is clear that both Rv and R−v are bounded with ‖Rv‖ → 0, ‖R−v‖ → 0 for v → 0 and by
definition, for all v ∈ R, Rv commutes with Ku for u ∈ R.

We write

Du+v = Ku(1 +Rv)d(1 +R−v)K−u +K−u(1 +R−v)d
∗(1 +Rv)Ku

= KudK−u +KudR−vK−u +KuRvdK−u +KuRvdR−vK−u

+K−ud
∗Ku +K−ud

∗RvKu +K−uR−vd
∗Ku +K−uR−vd

∗RvKu.

The sum of the termsKudK−u andK−ud
∗Ku gives backDu. Since E+,u and E−,u are orthogonal,

we have

‖Duω‖2 = ‖Π+,u(Duω)‖2 + ‖Π−,u(Duω)‖2 = ‖duω‖2 + ‖d∗uω‖2. (3.6)

Both Du+v and Du are symmetric operators, so their difference (namely the sum Σ of the
six remaining terms) is a symmetric operator. By hypothesis, Du is selfadjoint. According to
Kato–Rellich theorem as stated in [51, Theorem X.12, p. 162], it therefore only remains to prove
that C is also a domain for Σ and that for all ω ∈ C,

‖Σ(ω)‖ 6 a‖Duω‖+ b‖ω‖,

where both real numbers a, b are positive and a < 1. It is clear from the definition of K±u
and Rv that their actions preserve the core C of C1-functions on G and thus Σ(ω) has a well-
defined meaning for all ω ∈ C. We decompose ω ∈ C into a sum ω =

∑
k ωk of C1-forms of

degree k and start by an estimate of the different terms ‖Σωk‖ for any fixed k.
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Remember from Lemma 3.2 that d can be written

d =
∑
j

∂j ⊗ Tj −
1

2

∑
k,α,β

cikαβ ⊗B
ik
αβ,

where the different Bik
αβ are bounded operators. We remark that the Bik

αβ commute with right
multiplications, like the one appearing in the definition of Ku acting on an element of given
degree. For ω = a⊗ v of degree k, we write

KudR−vK−ua⊗ v =
∑

∂j(ae
−(n/2−k)hu(e−(n/2−k)hv − 1))e(n/2−(k+1))hu ⊗ Tj(v)

− 1

2

∑
k

∑
α,β

cikαβae
−(n/2−k)hu(e−(n/2−k)hv − 1)e(n/2−(k+1))hu ⊗Bik

αβv

=
∑

∂j(ae
−(n/2−k)hu)e(n/2−(k+1))hu(e−(n/2−k)hv − 1)⊗ Tj(v)

− 1

2

∑
k

∑
α,β

cikαβae
−hu(e−(n/2−k)hv − 1)⊗Bik

αβv

+
∑

ae−(n/2−k)hu∂j(e
−(n/2−k)hv − 1))e(n/2−(k+1))hu ⊗ Tj(v)

= R−v(KudK−u)(a⊗ ω)+Ku ◦
∑
j

(R∂j(e−(n/2−k)hv)⊗ Tj) ◦K−u(a⊗ v).

Taking a linear combination to treat the case of a sum ω =
∑
ωk, we get

KudR−vK−u = R−v(KudK−u) +Ku ◦
(∑

j,k

(R∂j(e−(n/2−k)hv) ⊗ Tj) ◦Πk

)
◦K−u.

In this equality,
∑

j,k(R∂j(e−(n/2−k)hv) ⊗ Tj) ◦ Πk is a finite sum of bounded operators. As
a consequence of Lemma 3.3, the norm of these operators tend to 0 for v → 0. We already know
that R−v tends to 0 in norm for v → 0, we therefore get the estimate

‖KudR−vK−u(ω)‖ 6 ov(1)‖KudK−u(ω)‖+ ov(1)‖ω‖. (3.7)

The two functions ov(1) can be taken uniform in u ∈ [0, 1], since [0, 1] is a compact.
The term KuRvdK−u is easily treated: KuRvdK−u = RvKudK−u. The term KuRvdR−vK−u

is processed similarly: KuRvdR−vK−u = RvKudR−vK−u and then the estimate (3.7) enables
us to write

‖KuRvdR−vK−u(ω)‖ 6 ov(1)
∥∥(KudK

−1
u

)
(ω)
∥∥+ ov(1)‖ω‖.

As a result, we get

‖(du+v − du)ω‖ 6 ov(1)‖duω‖+ ov(1)‖ω‖. (3.8)

Lemma 3.2 affords a similar treatment of the term K−ud
∗RvKu, just replacing Tj by T ∗j , Bik

αβ

by (Bik
αβ)∗ and cikαβ by cikαβ. We get an estimate

‖(d∗u+v − d∗u)ω‖ 6 ov(1)‖d∗uω‖+ ov(1)‖ω‖. (3.9)

Using the equation (3.6), which ensures that ‖duω‖ 6 ‖Duω‖ and ‖d∗uω‖ 6 ‖Duω‖, we can
combine (3.8) and (3.9) to show that the relation (3.5) is satisfied.

We can therefore apply the Kato–Rellich theorem for all u ∈ [0, 1] and this proves that all Du

(including D1) have selfadjoint extensions with the same core C = A1 ⊗
∧• g∗. �
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Remark 3.7. It appears from the proof of point (2) that we could also take A∞ ⊗
∧• g∗ as

core for the operator D0 (using the Peter–Weyl decomposition). If we further assume h ∈ A∞,
the rest of the proof applies verbatim and shows that all Du have a common core, namely
A∞ ⊗

∧• g∗.
Corollary 3.8. For all selfadjoint elements h ∈ A1 and all parameters u ∈ [0, 1], the opera-
tors Du are n+-summable.

Proof. In the untwisted case, i.e., for D0, we can follow the argument of Theorem 5.5 of [30]
to prove that d + d∗ is n+-summable, where n is the dimension of G. Indeed, according to
Proposition 2.3 from [35], as G-vector spaces, we have H ↪→Href where Href := L2(G)⊗

∧k g∗.
Moreover, the operator d + d∗ := Dref on this space is just the Hodge–de Rham operator
on G and therefore it is n+-summable. Since Dref also preserves the finite-dimensional spaces
V ⊗

∧k g∗ obtained by Peter–Weyl decomposition, the eigenvalues of |D| coincide with those
of |Dref| except that they may have lower (and possibly zero) multiplicities. Consequently, the
same computation as in [30] proves that D is n+-summable.

To extend this property to all Du for u ∈ [0, 1], we first note that to prove Du is n+-summable,
it suffices to show that the operator (Du + i)−1 is in the symmetric ideal L n+

– as mentioned
in Remark 2.5. The existence of the operator (Du + i)−1 is a consequence of Proposition 3.6.
The discussion above proves that (D0 + i)−1 is in this ideal.

We then use [39, Theorem 1.16, p. 196] to prove that if (Du+i)−1 ∈ L n+
then for some ε > 0

small enough but independent of u ∈ [0, 1], and for any v in |v| 6 ε, then (Du+v + i)−1 ∈ L n+
.

For all u, v,

(Du+v + i)− (Du + i) = Du+v −Du,

and to apply Kato’s stability property, we need to give a relative bound on Du+v−Du, expressed
in terms of Du + i. We are going to obtain this using the relation (3.5). Indeed, since we know
that D is selfadjoint, 〈Dξ, ξ〉 = 〈ξ,Dξ〉 and thus

‖(D + i)ξ‖2 = ‖Dξ‖2 + ‖ξ‖2.

which shows that ‖Dξ‖ 6 ‖(D + i)ξ‖. From this fact and (3.5), we deduce

‖(Du+v −Du)(ω)‖ 6 ov(1)‖(Du + i)ω‖+ ov(1)‖ω‖,

which let us apply [39, Theorem 1.16, p. 196] to Du+ i and Du+v−Du, leading to the expression

(Du+v + i)−1 = (Du + i)−1
(
1 + (Du+v −Du)(Du + i)−1

)−1
,

where both (Du+v −Du)(Du + i)−1 and (1 + (Du+v −Du)(Du + i)−1)−1 are bounded operators.
This expression shows that (Du+v + i)−1 is a product of (Du + i)−1 in the ideal L n+

and
a bounded operator. It is therefore itself in the ideal L n+

and this completes the proof. �

The operator du of Proposition 3.6 induces a cochain complex:

Proposition 3.9. The operator du := KudK−u, defined from d = Π+D on the domain of
selfadjointness of Du is closable. Taking its closure, there is a cochain complex (du,Hk)

0→H0
du,0−−→H1 → · · · →Hn−1

du,n−1−−−−→Hn → 0. (3.10)

Remark 3.10. In the complex (3.10), the map du,k : Hk → Hk+1 is of course (the closure of)
the restriction of du to Hk ∩Dom(Du), where Dom(Du) is the domain of selfadjointness of Du.
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Proof. We first treat the case of d (for h = 0). In this case, if xn → x and yn → x while both dxn
and dyn converge, we want to prove that lim dxn = lim dyn. Consider any z ∈H which lives in
a finite-dimensional vector space V ⊗

∧• g∗ obtained from the Peter–Weyl decomposition. This
ensures that Π+z is in V ⊗

∧• g∗ and thus in the domain of D. We then have

〈z,Π+Dxn〉 = 〈DΠ+z, xn〉 → 〈DΠ+z, x〉 ← 〈z,Π+Dyn〉.

Since we know that both dxn and dyn converge in H and that D , the algebraic direct sum of
all V ⊗

∧• g∗ is dense, it is necessary that lim dxn = lim dyn and this proves that d is closable.
It follows that the kernel ker(d) is closed. Since A1 ⊗

∧• g∗ is a core for D, any x in the
domain Dom(d) can be approximated by xn ∈ A1⊗

∧• g∗ such that xn → x and dxn → dx. The
density of A∞ inside A1 (as discussed at the end of Section 2) then provides an approximation
of the original x ∈ dim(d) by yn ∈ A∞ ⊗

∧• g∗ = Ω•. For this sequence yn, we know from
Section 3 that d2yn = 0. By density, we obtain that (3.10) is a cochain complex.

Similarly, for du = KudK−u if xn → x and yn → x while both duxn and duyn converge, we
have K−uxn → K−ux ← K−uyn and K−uduxn = dK−uxn, K−uduyn = dK−uyn. Since d is
closable, we get limK−uduxn = limK−uduyn, which suffices to prove that du is also closable.
The cochain property then follows from d2

u = Kud
2K−u = 0. �

In the rest of this section, we will be interested in the reduced cohomology of the complex (3.10),
namely the cohomology groups

Hk(du,Hk) := ker(du,k)/Ran(du,k−1). (3.11)

For any u ∈ [0, 1], let us write E0,u for the kernel of Du. We have the following Hodge
decomposition theorem for the conformally perturbed metric:

Theorem 3.11. Let G be a compact Lie group of dimension n acting ergodically on a unital
C∗-algebra A. With the notations introduced previously, for any parameter u ∈ [0, 1], there is
a decomposition of H into a direct sum of orthogonal Hilbert spaces

H = E−,u ⊕ E0,u ⊕ E+,u.

Proof. The operator Du is selfadjoint with compact resolvent, as a consequence of Proposi-
tion 3.6 and Corollary 3.8. Thus, we have an orthogonal sum H = E0,u ⊕ Ran(Du). Following

Proposition 3.6, Ran(Du) = E−,u⊕E+,u and the sum is orthogonal, which proves the result. �

We call the restriction of D2
u to Hk the Laplacian on Hk and denote it by ∆k, which is thus

an unbounded operator on Hk, defined on the domain A∞ ⊗
∧k g∗. Note that ∆k actually

depends on our choice of conformal perturbation h ∈ A1.

Corollary 3.12. Let Hk(du,Hk) be the cohomology groups introduced in (3.11), they identify
naturally with the kernel of ∆k, i.e.,

ker(∆k) ' Hk(du,Hk).

Remark 3.13. This Corollary implies in particular that these cohomology groups are finite-
dimensional, since ker(∆k) = ker(Du) and Du has compact resolvent by Corollary 3.8.

Proof. The cohomology group Hk(du,Hk) is defined as ker(du,k)/Ran(du,k−1). The Hodge
decomposition Theorem 3.11 can be combined with the projections Π± and Πk on Hk to prove
that Hk = ker(∆k) ⊕ Ran(du,k−1) ⊕ Ran(d∗u,k). We know that ker(du,k) = Ran(d∗u,k)

⊥. There-

fore ker(du,k) = Ran(du,k−1) ⊕ ker(∆k) from which it follows immediately that Hk(du,Hk) =

ker(du,k)/Ran(du,k−1) ' ker(∆k). �



14 F. Fathizadeh and O. Gabriel

Proposition 3.14. The cohomology groups Hk(du,Hk) are abstractly isomorphic to the non-
perturbed (h = 0) cohomology groups Hk(d,Hk).

Proof. It is easy to check that ker(du) = Ku ker(d) and E+,u = KuE+,0. Thus, as abstract
vector space, ker(du)/E+,u = Ku ker(d0)/KuE+,0 is finite-dimensional, with the same dimension
as ker(d0)/E+,0. �

Remark 3.15. The dimensions of ker(du)/E+,u and ker(d0)/E+,0 are the same, but there are
not “concretely isomorphic” for the scalar product we consider. The concrete realisation of
ker(du)/E+,u is {ω ∈ ker(du) : ∀ω′ ∈ E+,u, 〈ω, ω′〉 = 0}. However, Ku does not preserve scalar
products and therefore, ker(du)/E+,u is not realised concretely by KuE0,0. In other words,
KuE0,0 is not the space of harmonic forms for Du.

4 Conformally twisted spectral triples
for C∗-dynamical systems

In the following theorem, we use the selfadjoint operator Du to construct spectral triples for the
natural actions of the algebra A (with its left action on H ) and the algebra Aop (acting on the
right of H ).

Theorem 4.1. Let G be a compact Lie group of dimension n acting ergodically on a unital
C∗-algebra A, then using the unique G-invariant trace ϕ0 of Theorem 2.2, we write H0 :=
GNS(A,ϕ0).

For any fixed h ∈ A1 and any u ∈ [0, 1], the data (A,H0 ⊗
∧• g∗, Du) with grading γ defines

an even n+-summable spectral triple, where

• the representation π of A on H = H0 ⊗
∧• g∗ is given by restriction of the left multipli-

cation (3.2);

• the unbounded operator Du is the unique selfadjoint extension of

Du = KudK−u +K−ud
∗Ku,

defined on the core C = A1 ⊗
∧• g∗, the operator Ku being defined by (3.4);

• the grading operator γ is defined on degree k forms by

γ(a⊗ v1 ∧ · · · ∧ vk) = (−1)k(a⊗ v1 ∧ · · · ∧ vk).

For any fixed h ∈ A1 and any u ∈ [0, 1], the data (Aop,H0 ⊗
∧• g∗, Du) with grading γ defines

an even n+-summable twisted spectral triple, with the automorphism β on A given by β(a) =
ehuae−hu – we use this β to define an automorphism on Aop.

Remark 4.2. The morphism β defined above preserves the multiplication of Aop. It also
satisfies the relation unitarity condition (see [16, equation (3.4)]) that is β

(
(aop)∗

)
= (β−1(aop))∗.

Proof. It is clear from the definition of π that A is represented on H by bounded operators.
The existence and uniqueness of the selfadjoint extension of Du is proved in Proposition 3.6,
while the compact resolvent and finite summability properties are shown in Corollary 3.8.

We now prove that the commutator of Du with a ∈ A1 is bounded. To this end, we use the
notations of Lemma 3.2 to decompose the operator Du. We call

• Part (0) is the “bounded part” of Du, that is the terms

−Ku

(
1

2

∑
k,α,β

cikαβ ⊗B
ik
α,β

)
K−u and −K−u

(
1

2

∑
k,α,β

cikα,β ⊗ (Bik
α,β)∗

)
Ku.
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• Part (I) consists of the terms

Ku

(∑
j

∂j ⊗ Tj
)
K−u.

• Part (II) consists of the terms

K−u

(∑
j

∂j ⊗ T ∗j
)
Ku.

Part (0) commutes with the left multiplication by a ∈ A1, and thus it does not contribute
to the commutator. We therefore only need to estimate Parts (I) and (II) of Du(a′ω) for
ω = a⊗ v1 ∧ · · · ∧ vk, that is∑

j

∂j
(
a′ae−(n/2−k)hu

)
e(n/2−(k+1))hu ⊗ Tj(v1 ∧ · · · ∧ vk)

+
∑
j

∂j
(
a′ae(n/2−k)hu

)
e−(n/2−(k−1))hu ⊗ T ∗j (v1 ∧ · · · ∧ vk)

=
∑
j

(
∂j(a

′)ae−(n/2−k)hu + a′∂j
(
ae−(n/2−k)hu

))
e(n/2−(k+1))hu ⊗ Tj(v1 ∧ · · · ∧ vk)

+
∑
j

(
∂j(a

′)ae(n/2−k)hu + a′∂j
(
ae(n/2−k)hu

))
e−(n/2−(k−1))hu ⊗ T ∗j (v1 ∧ · · · ∧ vk).

It follows from these considerations that

[Du, a
′]ω =

∑
j

∂j(a
′)ae−hu ⊗ (Tj + T ∗j )(v1 ∧ · · · ∧ vk),

which is clearly a bounded function of ω for any a′ ∈ A1. Moreover, such a′ ∈ A1 sends the
core C of our selfadjoint operator Du to itself and following [48, Proposition A.1, p. 293], this
suffices to ensure that a′ ∈ A1 sends the domain of Du to itself. The algebra A of Definition 2.4
thus contains A1 and is dense in the C∗-algebra A. This completes the proof that (A,H , Du)
is a n+-summable spectral triple.

It remains to study its parity: it is clear from the definition that γ sends the core C to itself
and thus it leaves the full domain of the selfadjoint operator Du stable. Clearly, γ distinguishes
only between Heven := A⊗

∧even g∗ and Hodd := A⊗
∧odd g∗ and π(a) leaves both spaces invari-

ant, while Du is an odd operator. This proves that (A,H , Du) with γ is an even spectral triple.
The parity paragraph above applies verbatim to the spectral triple constructed from the

right action of Aop. The summability property is also conserved. It remains to investigate the
bounded twisted commutators. Notice first that if a′, h ∈ A1 then both right multiplications
by a′ and by β(a′) leave the core C of Du invariant and therefore the domain of Du is also stable
under these right multiplication.

Using the decomposition of Du into Parts (0), (I) and (II), it appears that Part (0) com-
mutes with the right action of Aop and therefore does not contribute to the commutator. We
treat Parts (I) and (II) separately. Keeping only Part (I) in the expression Du(ω · a′) for
ω = a⊗ v1 ∧ · · · ∧ vk, we get∑

j

∂j
(
aa′e−(n/2−k)hu

)
e(n/2−(k+1))hu ⊗ Tj(v1 ∧ · · · ∧ vk)

=
∑
j

(
∂j(a)a′e−(n/2−k)hu + a∂j(a

′)e−(n/2−k)hu
)
e(n/2−(k+1))hu ⊗ Tj(v1 ∧ . . . ∧ vk)
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+
∑
j

aa′∂j
(
e−(n/2−k)hu

)
e(n/2−(k+1))hu ⊗ Tj(v1 ∧ · · · ∧ vk)

=
∑
j

(
∂j(a)a′e−hu + a∂j(a

′)e−hu + aa′∂j
(
e−(n/2−k)hu

)
e(n/2−(k+1))hu

)
⊗ Tj(v1 ∧ · · · ∧ vk).

We compare this expression to Du(ω)β(a′), i.e.,∑
j

∂j
(
ae−(n/2−k)hu

)
e(n/2−(k+1))huehua′e−hu ⊗ Tj(v1 ∧ · · · ∧ vk)

=
∑
j

∂j(a)a′e−hu ⊗ Tj(v1 ∧ · · · ∧ vk)

+
∑
j

a∂j
(
e−(n/2−k)hu

)
e(n/2−(k+1))huehua′e−hu ⊗ Tj(v1 ∧ · · · ∧ vk).

In these two sums, the only terms that could lead to an unbounded contribution are those
containing ∂j(a), but these two terms cancel. At this point, we must perform the same com-
putation on Part (II) to make sure that the automorphism β is also suitable for this case.
A very similar computation proves that this it is indeed the case – the key property is that
e−(n/2−k)hue(n/2−(k+1))hu = e−hu = e(n/2−k)hue−(n/2−(k−1))hu – and thus the operator (defined
a priori only on C)

Duπ
op
(
(a′)op

)
− πop(β(a′)op)Du,

where πop
(
(a′)op

)
= Ra′ ⊗ Id∧• g∗ , extends to a bounded operator on H . �

Since the operator Du is odd with respect to the grading operator γ, we can write Du as
combination of D+

u : Heven → Hodd and D−u : Hodd → Heven. The odd Fredholm operator
admits a (possibly) nontrivial index defined as

Indexodd(Du) = dim ker(D+
u )− dim ker(D−u ) (4.1)

(see, e.g., [32, equation (9.36), p. 397]).

5 Existence of a Chern–Gauss–Bonnet theorem
for conformal perturbations of C∗-dynamical systems

In this section we show that the Hodge decomposition theorem proved in Section 3 indicates
the existence of an analog of the Chern–Gauss–Bonnet theorem for the C∗-dynamical systems
studied in the present article. Let us explain the classical case before stating the statement
for our setting. Indeed, because of the natural isomorphism between the space of harmonic
differential forms and the de Rham cohomology groups, for a classical closed manifold M , the
index of the operator d + d∗ : ΩevenM → ΩoddM is equal to the Euler characteristic of M . On
the other hand the McKean–Singer index theorem asserts that the index is given by

Index
(
d+ d∗ : Ωeven → Ωodd

)
=

dimM∑
i=0

(−1)i Tr
(
e−t4i

)
,

where 4i = d∗d + dd∗ is the Laplacian on the space of i-differential forms on M , and t is any
positive number. This formula, furthermore, contains local geometric information as t → 0+,
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since there is a small time asymptotic expansion of the form

Tr
(
e−t4i

)
∼ t− dimM/2

∞∑
j=0

a2j(4i)t
j .

The coefficients a2j(4i) are local geometric invariants, which depend on the high frequency
behaviour of the eigenvalues of the Laplacian and are the integrals of some invariantly defined
local functions a2j(x,4i) against the volume form of M . Independence of the index from t
implies that the alternating sum of the constant terms in the above asymptotic expansions
for 4i gives the index. Hence, using the Hodge decomposition theorem,

χ(M) = Index
(
d+ d∗ : Ωeven → Ωodd

)
=

∫
M

dimM∑
i=0

(−1)iadimM (x,4i) dvolg.

In fact, the integrand in the latter coincides with the Pfaffian of the curvature form, which is
a remarkable and difficult identification [2].

With notations and assumptions as in Section 3, we obtain the following result which indicates
the existence of an analog of the Chern–Gauss–Bonnet theorem in the setting of C∗-dynamical
systems studied in this article.

Theorem 5.1. The Euler characteristic χ of the complex (du,Hk) is related to the odd index
defined in (4.1)

χ =
n∑
k=0

(−1)k dimHk(du,Hk) =
n∑
k=0

(−1)k ker(∆k) = Indexodd(Du),

and is independent of the conformal factor e−h.

Proof. The first equality is actually the definition of the Euler characteristic χ. The second
equality is an immediate consequence of Corollary 3.12. The third equality and the last statement
can be justified by using Remark 3.13 and Proposition 3.14. That is, ω ∈ ker(∆k) means in
particular that ω is in the domain of ∆k, which is included in the domain of Du (by definition).
We then have

0 = 〈ω,∆kω〉 = 〈Duω,Duω〉,

which proves that ω ∈ ker(Du). For a k-form ω, the converse is obvious. It follows that
ker(D+

u ) =
⊕

k>0 ker(∆2k) and ker(D−u ) =
⊕

k>0 ker(∆2k+1), which yields

Indexodd(Du) = dim ker(D+
u )− dim ker(D−u ) =

⊕
k>0

dim ker(∆2k)−
⊕
k>0

ker(∆2k+1) = χ.

The dimension of these groups are independent of the conformal factor e−h as a consequence of
Proposition 3.14. �

Remark 5.2. An alternative proof of the index property using only bounded operators can be
obtained using Sobolev spaces. For a clear account of these spaces and their analytic properties
in our setting, we refer the reader to the paper [55]. Also, in order to have a complete analog
of the Chern–Gauss–Bonnet theorem, one needs to find a local geometric formula for the index,
which is proved above to be a conformal invariant.
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The heat kernels of Laplacians of conformally perturbed metrics on certain noncommutative
spaces such as the noncommutative n-tori TnΘ admit asymptotic expansions of the form

Tr(e−t∆k) ∼
∞∑
j=0

aj(∆k)t
(j−n)/2, t→ 0+. (5.1)

In fact, for noncommutative tori, each Laplacian ∆k is an elliptic selfadjoint differential operator
of order 2, and asymptotic expansions of this form can be derived by using the heat kernel
method explained in [31] while employing Connes’ pseudodifferential calculus [12]. This method
was indeed used in [17, 18, 25, 26, 28], for calculating and studying the term in the expansion
that is related to the scalar curvature of noncommutative two and four tori. Going through
this process for noncommutative tori TnΘ, one can see that the odd coefficients in the latter
asymptotic expansion will vanish, since in their explicit formula in terms of the pseudodifferential
symbol of ∆k, there is an integration over the Euclidean space Rn of an odd function involved
(see [31, p. 54 and Theorem 1.7.6, p. 58]). Thus in the case of the noncommutative torus TnΘ we
can write (5.1) as

Tr
(
e−t∆k

)
∼ t−n/2

∞∑
j=0

a2j(∆k)t
j , t→ 0+. (5.2)

Now, using the McKean–Singer index formula [31, Lemma 1.6.5, p. 47] and our analog of Hodge
decomposition theorem, for any t > 0 we have

χ =

n∑
k=0

(−1)k Tr
(
e−t∆k

)
. (5.3)

Thus from equations (5.2) and (5.3), and using the independence of the Euler characteristic
from t which implies that only the constant term from (5.2) contributes to the calculation of
the Euler characteristic, we can write

χ =

n∑
k=0

(−1)kan(∆k) =

n∑
k=0

(−1)kϕ0(Rk),

where the local geometric invariants Rk are derived from the pseudodifferential symbols of the
Laplacian ∆k, by a heat kernel method. This method was used for example in [17, 26, 28] for
computation of scalar curvature for noncommutative two and four tori. The alternating sum of
the Rk gives a noncommutative analog of the local expression for the Euler class.

6 Summary and conclusions

The Chern–Gauss–Bonnet theorem is an important generalization of the Gauss–Bonnet theo-
rem for surfaces, which states that the Euler characteristic of an even-dimensional Riemannian
manifold can be computed as the integral of a characteristic class, namely the Pfaffian of the
curvature form, which is a local invariant of the geometry. In particular, it shows that the inte-
gral of this geometric invariant is independent of the metric and depends only on the topology
of the manifold. The results obtained in this paper show that the analog of this theorem holds
for a general ergodic C∗-dynamical system, whose algebra and Lie group are not necessarily
commutative. To be more precise, the family of metrics considered for a dynamical system
is obtained by using an invertible positive element of the C∗-algebra to conformally perturb
a fixed metric defined via the unique invariant trace, and our result is about the invariance of
a quantity, which is a natural analog of the Euler characteristic, from the conformal factor.
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This type of results were previously proved for the noncommutative two torus T2
θ. That is,

the analog of the Gauss–Bonnet theorem was proved in [18] and extended to general transla-
tion invariant complex structures on these very important but particular C∗-algebras in [25],
where a conformal factor varies the metric. The differential geometry of C∗-dynamical systems
were developed and studied in [12], where the noncommutative two torus T2

θ played a crucial
role. However the investigation of the analog of the Gauss–Bonnet theorem for T2

θ, when the
flat metric is conformally perturbed was pioneered in [11], where after heavy calculations, some
noncommutative features seemingly indicated that the theorem does not hold. However, stu-
dying the spectral action in the presence of a dilaton [10], the development of the theory of
twisted spectral triples [16], and further studies of examples of complex structures on noncom-
mutative manifolds [40], led to convincing observations that the Gauss–Bonnet theorem holds
for the noncommutative two torus. Then, by further analysis of the expressions and functions of
a modular automorphism obtained in [11], Connes and Tretkoff proved the desired result in [18]
for the simplest translation invariant conformal structure, and the generalization of their result
was established in [25] (where the use of a computer for the heavy computations was inevitable).

It is remarkable that, a non-computational proof of the Gauss–Bonnet theorem for the non-
commutative two torus is given in [17], which is based on the work [4], where the conformal index
of a Riemannian manifold is defined using properties of conformally covariant operators and the
variational properties of their spectral zeta functions. Therefore, since computations are enor-
mously more involved in dimensions higher than two, it is of great importance to use spectral
methods to show the existence of the analog of the Chern–Gauss–Bonnet theorem, which is pre-
sented in this article, not only for nocommutative tori, but for general C∗-dynamical systems.
We have also paid special attention to the spectral properties of the analog of the Hodge–
de Rham operator of the perturbed metric: we have proved its selfadjointness and shown that
the spectral dimension is preserved. We have then shown that this operator gives rise to a spec-
tral triple with the unitary left action of the algebra, and gives a twisted spectral triple with the
unitary action of the opposite algebra on the right, generalizing the construction in [18] on the
noncommutative two torus and providing abstractly a large family of twisted spectral triples.
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[43] Krýsl S., Hodge theory for complexes over C∗-algebras with an application to A-ellipticity, Ann. Global
Anal. Geom. 47 (2015), 359–372, arXiv:1309.4560.
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