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Abstract. Recently Penskoi [J. Geom. Anal. 25 (2015), 2645–2666, arXiv:1308.1628] ge-
neralized the well known two-parametric family of Lawson tau-surfaces τr,m minimally im-
mersed in spheres to a three-parametric family Ta,b,c of tori and Klein bottles minimally
immersed in spheres. It was remarked that this family includes surfaces carrying all ex-
tremal metrics for the first non-trivial eigenvalue of the Laplace–Beltrami operator on the
torus and on the Klein bottle: the Clifford torus, the equilateral torus and surprisingly the
bipolar Lawson Klein bottle τ̃3,1. In the present paper we show in Theorem 1 that this three-
parametric family Ta,b,c includes in fact all bipolar Lawson tau-surfaces τ̃r,m. In Theorem 3
we show that no metric on generalized Lawson surfaces is maximal except for τ̃3,1 and the
equilateral torus.
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1 Introduction

Minimal surfaces in the Euclidean space R3 is one of the most classical subjects of differential
geometry. Surprisingly, interest to minimal surfaces in spheres Sn appeared much later and
a serious investigation in this direction started only in the second half of the 20th century. One
important paper in the early period of this investigation was the famous paper [20] by Lawson,
where several examples of immersed minimal surfaces in S3 were constructed, including examples
of surfaces of any genus except the projective plane. These examples include a family τm,n of
minimal tori and Klein bottles.

Definition 1. A Lawson tau-surface τm,n # S3 is defined as the image of the doubly-periodic
immersion Ψm,n : R2 # S3 ⊂ R4 given by the explicit formula

Ψm,n(x, y) = (cos(mx) cos y, sin(mx) cos y, cos(nx) sin y, sin(nx) sin y). (1)

For each unordered pair of positive integers (m,n) with (m,n) = 1, the surface τm,n is
a distinct compact minimal surface in S3. Let us assume (m,n) = 1. If both integers m and n
are odd then τm,n is a torus (we call it Lawson torus). If one of integers m and n is even then τm,n
is a Klein bottle (we call it a Lawson Klein bottle). The torus τ1,1 is the Clifford torus.

Many efforts were later applied to find minimal surfaces in spheres. There are several con-
structions of paticular types of minimal surfaces in spheres. For example, the Hsiang–Lawson
approach [12] constructs surfaces with additional symmetry. However it is only minimal tori that
are completely described. This description is given by the theory of integrable systems using
algebraic geometry. This was done in several papers by many authors starting from Hitchin’s
paper [11] dealing with a particular case of S3 and finishing with Burstall’s paper [3] dealing
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with the general case Sn. In fact this investigation was a part of more general investigation
of harmonic maps from tori into symmetric spaces. A recent paper by Carberry [5] contains
a review of the current state of this approach.

We should remark however that only a very limited number of explicitly parametrized minimal
surfaces in spheres is known. Unfortunately, most approaches to minimal surfaces in spheres
give only quite implicit descriptions of minimal surfaces. This pertains to the Hsiang–Lawson
construction and description of minimal tori using integrable systems mentioned above. This
makes the question of finding explicitly parametrized minimal surfaces in spheres interesting.

Let us mention here several known results about explicitly parametrized minimal surfaces in
spheres. We mentioned already Lawson surfaces τm,n given by the explicit parametrization (1).
Another example is bipolar Lawson surfaces. Starting from an immersed surface I : Σ# S3 ⊂ R4

one can construct a new surface Σ̃ called bipolar to Σ and defined by the immersion I∧I∗ : Σ#
R4 ∧ R4 ∼= R6, where I∗ is a Gaussian map, i.e., I∗(p) is a unitary normal vector to Σ in S3 at
the point p. It turns out that the image is in the sphere S5 ⊂ R6, and if the surface Σ is minimal
in S3, then its bipolar surface Σ̃ is minimal in S5 (see [20]). As was shown by Lawson, bipolar
surfaces τ̃m,n are in fact lying in an equatorial sphere S4 ⊂ S5. Details are provided below in
Section 2.

Another example is given by a construction by Mironov [21, 22] of Hamiltonian-minimal
Lagrangian embeddings in CN based on intersections of real quadrics of a special type. As
was remarked by Karpukhin in [17], as a by-product of this construction, one obtains minimal
surfaces in spheres.

Recently Penskoi constructed a generalization of Lawson surfaces τm,n in [28]. This genera-
lization is given by an explicit formula. In complex form, it is written as(√

b2 + c2 − a2
2(c2 − a2)

eiax sin y,

√
a2 + c2 − b2
2(c2 − b2)

eibx cos y,√
a2 + b2 − c2
2(b2 − c2)

eicx
√

1− b2 − a2
c2 − a2

sin2 y

)
∈ S5 ⊂ C3 ∼= R6. (2)

It is proven in [28] that

• if either a, b, c are integers and |c| >
√
a2 + b2 or

• if a, b are nonzero integers and |c| =
√
a2 + b2,

then the parametrization (2) defines a minimal torus or a minimal Klein bottle in S5, denoted
by Ta,b,c. Moreover, if |c| =

√
a2 + b2, then Ta,b,c coincides with the Lawson surface τa,b. This

follows immediately by composing (1) and (2). Thus, this three-parametric family of minimal
tori or Klein bottles in fact generalizes the famous two-parametric Lawson family τm,n.

Penskoi’s construction of generalized Lawson tori was deeply motivated by the relation be-
tween minimal surfaces in spheres and spectral geometry. We will expose this relation below, but
let us also remark at this moment that it was observed in [28] that bipolar Lawson surface τ̃3,1
is isometric to T1,0,2. The proof of this fact was indirect and was based on the uniqueness of the
extremal metric for the first eigenvalue of the Laplace–Beltrami operator ∆ on the Klein bottle,
proved in [7].

This observation is quite intriguing and leads us into an investigation of the following natural
question: is it true that not only is the two-parametric family of Lawson tau-surfaces τm,n
a subfamily of the three-parametric family Ta,b,c of generalized Lawson surfaces, but is the family
of bipolar Lawson surfaces τ̃m,n also a subfamily of the three-parametric family Ta,b,c? The list
of known explicitly parametrized minimal surfaces in spheres is quite short and this makes it
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interesting to understand relations among different known families of explicitly parametrized
minimal surfaces in spheres.

The first result of the present paper is an affirmative answer to this question.

Theorem 1.

1. If rm ≡ 0 (mod 2) then the bipolar Lawson torus τ̃r,m is isometric to the surface Ta,b,c,
where a = r −m, b = 0, c = r +m.

2. If rm ≡ 1 (mod 4) then the bipolar Lawson torus τ̃r,m is isometric to the surface Ta,b,c,
where a = r−m

2 , b = 0, c = r+m
2 .

3. If rm ≡ 3 (mod 4) then the bipolar Lawson Klein bottle τ̃r,m is isometric to the surfa-
ce Ta,b,c, where a = r−m

2 , b = 0, c = r+m
2 .

Let us now explain the relation between minimal surfaces in spheres and spectral geometry
in more detail.

Let M be a closed surface and g be a Riemannian metric on M . Let us consider the associated
Laplace–Beltrami operator ∆: C∞(M)→ C∞(M),

∆f = − 1√
|g|

∂

∂xi

(√
|g|gij ∂f

∂xj

)
.

The spectrum of ∆ is non-negative and consists only of eigenvalues, where each eigenvalue
has a finite multiplicity and the associated eigenfunctions are smooth. Denote the eigenvalues
of ∆ by

0 = λ0(M, g) < λ1(M, g) ≤ λ2(M, g) ≤ λ3(M, g) ≤ · · · ,

where eigenvalues are written with multiplicities.

Let us fix the surface M and consider Λi(M, g) as a functional g 7→ Λi(M, g) on the space of
all Riemannian metrics on M . The eigenvalues possess the following rescaling property

∀ t > 0, λi(M, tg) =
λi(M, g)

t
.

To get scale-invariant functionals on the space of Riemannian metrics one has to normalize
the eigenvalue functionals. It is most natural to normalize the functionals by multiplying by the
area

Λi(M, g) = λi(M, g) Area(M, g).

The functionals Λi(M, g) are invariant under the rescaling transformation g 7→ tg.

If we consider the functional Λi(M, g) over the space of Riemannian metrics g with a fixed
surface M , the question about the value of supremum sup Λi(M, g) is interesting. It is a very
difficult question with a limited number of known results. It follows from Yang and Yau [29]
and Korevaar [18] that this supremum is finite.

Definition 2. A metric g0 on a fixed surface M is called maximal for the functional Λi(M, g) if

sup Λi(M, g) = Λi(M, g0),

where the supremum is taken over the space of Riemannian metrics g on the fixed surface M .



4 B. Causley

Currently, we only know maximal metrics for Λ1(S2, g), Λ1(RP 2, g), Λ1(T2, g), Λ2(S2, g), and
Λ3(S2, g). For more details please see the recent survey by Penskoi [26] and the recent paper by
Nadirashvili and Sire [24].

A problem in the study of Λi(M, g)-maximal metrics is that the functional Λi(M, g) depends
continuously on metric g but is not differentiable. However, for any analytic deformation gt,
the left and right derivatives of the functional Λi(M, g) with respect to t exist (see Berger [2],
Bando and Urakawa [1], El Soufi and Ilias [9]).

Definition 3 ([8, 9, 23]). A Riemannian metric g0 on a closed surface M is called an extremal
metric for the functional Λi(M, g) if for any analytic deformation gt the following inequality
holds

d

dt
Λi(M, gt)

∣∣∣∣
t=0+

· d
dt

Λi(M, gt)

∣∣∣∣
t=0−

≤ 0.

The mentioned metrics above are extremal since they are global maxima. However, extremal
metrics are not necessarily maximal. For example, El Soufi and Ilias proved in [8] that the only
extremal metric for Λ1(T2, g) different from the maximal one is the metric on the Clifford torus.

Jakobson, Nadirashvili and Polterovich proved in [13] that the metric on the Klein bottle
realized as the bipolar Lawson surface τ̃3,1 is extremal for Λ1(KL, g). Using this result El Soufi,
Giacomini and Jazar proved in [7] that this metric is the unique extremal metric.

The following extremal metrics on families of tori and Klein bottles were investigated recently:
Lapointe investigated metrics on bipolar Lawson surfaces τ̃r,m # S4 in [19], these surfaces
are described below in Section 2; Penskoi investigated extremal metrics on Lawson surfaces
τm,n # S3 and on Otsuki tori O p

q
# S3 in [25] and [27] respectively; Karpukhin investigated

metrics on bipolar Otsuki tori Õ p
q
# S4 and on a family of tori Mm,n # S5 in [16] and [17]

respectively; and Karpukhin proved that the metrics on τm,n, τ̃r,m, O p
q
, Õ p

q
, and Mm,n are not

maximal except metrics on M1,1 (the equilateral torus) and τ̃3,1 in [15]. Here # denotes an
immersion.

As it was mentioned above, in [28], Penskoi introduced the new three-parametric family Ta,b,c
of minimal surfaces in spheres, generalizing Lawson tau-surfaces, and investigated their extremal
spectral properties.

Theorem 2 (Penskoi, [28]). Let Fa,b,c : R2 → S5 ⊂ R6 be a three-parametric doubly-periodic
immersion of the plane to the 5-dimensional sphere of radius 1 defined by the formula (2),
where

a) either a, b, c are integers and |c| >
√
a2 + b2,

b) or a, b are nonzero integers and |c| =
√
a2 + b2.

Then the following statements hold:

1) The image Ta,b,c = Fa,b,c(R2) is a minimal compact surface in the 5-dimensional sphere S5.

2) The case b) corresponds to Lawson tau-surfaces τa,b ∼= Ta,b,
√
a2+b2. Distinct Lawson tau-

surfaces correspond to unordered pairs a, b > 1 such that (a, b) = 1. The surface Ta,b,
√
a2+b2

is a Lawson torus τa,b if a and b are odd and Ta,b,
√
a2+b2 is a Lawson Klein bottle τa,b if

either a or b is even, where we assume (a, b) = 1.

3) In the case b) the metric induced on τa,b ∼= Ta,b,
√
a2+b2 is extremal for the functionals

Λj(T2, g) if τa,b is a Lawson torus or Λj(KL, g) if τa,b is a Lawson Klein bottle, where

j = 2
[√

a2+b2

2

]
+ a+ b− 1 and [·] denotes the integer part. The corresponding value of the

functional is Λj(τa,b) = 8πaE
(√

a2−b2
a

)
.
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4) In the case a) for an integer k > 1 one has Ta,b,c = Tka,kb,kc. Moreover, T−a,b,c, Ta,−b,c
Ta,b,−c and Tb,a,c are isometric to Ta,b,c. Hence, it is sufficient to consider non-negative
integer a, b, c satisfying conditions a) such that (a, b, c) = 1 and assume that (a, b, c) and
(b, a, c) are equivalent.

The second result of the present paper concerns the maximality of metrics induced on Ta,b,c.

Theorem 3. All metrics induced on Ta,b,c are not maximal except for the metric of τ̃3,1 and the
metric of the equilateral torus.

The paper is organized in the following way. In Section 2 we recall a construction of bipo-
lar Lawson tau-surfaces following Lapointe’s paper [19]. In Section 3 we provide a proof of
Theorem 1. Finally, nonmaximality of metrics on Ta,b,c is shown in Section 4.

2 Construction of bipolar Lawson surfaces

Let us now recall the construction of bipolar Lawson surface τ̃r,m following Lapointe’s paper [19].
The Lawson surface τr,m, with r > m > 0 and (r,m) = 1, is minimally immersed into S3 by
I : R2 → R4, where

I(u, v) = (cos ru cos v, sin ru cos v, cosmu sin v, sinmu sin v).

The bipolar minimal surface τ̃r,m of τr,m is the image of an exterior product of I and I∗,
where I∗ is a unit vector normal to τr,m and tangent to S3,

I∗(u, v) =
(m sin ru sin v,−m cos ru sin v,−r sinmu cos v, r cosmu cos v)√

r2 cos2 v +m2 sin2 v
.

The explicit formula for Ĩ = I ∧ I∗ : R2 → S5 ⊂ R6 is then

Ĩ =
1√

r2 cos2 v +m2 sin2 v



−m sin v cos v
r sin v cos v

−r cos2 v sinmu cos ru−m sin2 v sin ru cosmu
r cos2 v cosmu sin ru+m sin2 v cos ru sinmu
−r cos2 v sinmu sin ru+m sin2 v cos ru cosmu
r cos2 v cosmu cos ru−m sin2 v sin ru sinmu

 .

It is known that τ̃r,m actually lies in S4, seen as an equator of S5.
In [19] Lapointe proved that for the bipolar surface τ̃r,m of a Lawson torus or Klein bottle τr,m:

(1) if rm ≡ 0 (mod 2), τ̃r,m is a torus with an extremal metric for Λ4r−2,

(2) if rm ≡ 1 (mod 4), τ̃r,m is a torus with an extremal metric for Λ2r−2,

(3) if rm ≡ 3 (mod 4), τ̃r,m is a Klein bottle with an extremal metric for Λr−2.

The value of functional Λi(τ̃r,m) can be calculated as follows [19]:

(1) if rm ≡ 0 (mod 2), Λ4r−2(τ̃r,m) = 16πrE
(√

r2−m2

r

)
,

(2) if rm ≡ 1 (mod 4), Λ2r−2(τ̃r,m) = 8πrE
(√

r2−m2

r

)
,

(3) if rm ≡ 3 (mod 4), Λr−2(τ̃r,m) = 4πrE
(√

r2−m2

r

)
.
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3 Proof of Theorem 1

Let us prove that the surface Ta,b,c where a = r −m, b = 0, and c = r + m is isometric to the
bipolar Lawson surface τ̃r,m when rm ≡ 0 (mod 2).

The induced metric g on Ta,b,c and g̃ on τ̃r,m are given by the formulas [19, 28]

g =
1

2

(
c2 +

(
b2 − a2

)
cos 2y

)
dx2 +

c2 +
(
b2 − a2

)
cos 2y

2c2 − a2 − b2 +
(
b2 − a2

)
cos 2y

dy2,

g̃ =

(
r2 −

(
r2 −m2

)
sin2 v

)2
+ r2m2

r2 −
(
r2 −m2

)
sin2 v

(
du2 +

dv2

r2 − (r2 −m2) sin2 v

)
.

The task is to find the change of variable between metrics g and g̃. Let a = r −m, b = 0,
c = r + m and apply the change of variable sin y = sn(z, k), where k = a√

a2−c2 and sn(z, k) is

a Jacobi elliptic function [10]. This implies

g =
1

2

(
c2 − a2 + 2a2 sn2(z, k)

)(
dx2 +

dz2

c2 − a2

)
.

Use the following transformation

H1(x, z) =

(
u,

2
√
c2 − a2
a+ c

w +K(k)

)
. (3)

This implies that

g =

(
2rm+ (r −m)2

1− sn2
(
2
√

m
r w, k

)
1− k2 sn2

(
2
√

m
r w, k

))(du2 +
dw2

r2

)

=

(
r2 −

(
r2 −m2

)
sn2
(
w,
√
r2−m2

r

))2
+ (rm)2

r2 −
(
r2 −m2

)
sn2
(
w,
√
r2−m2

r

) (
du2 +

dw2

r2

)
,

which for k′ =
√

1− k2, used the identities (13.17), (13.22), (13.23) from [10]:

cn2(t, k) = 1− sn2(t, k), sn

(
k′u,

ik

k′

)
= k′

sn(u, k)

dn(u, k)
,

dn2(t, k) = 1− k2 sn2(t, k), sn

(
(1 + k′)u,

1− k′

1 + k′

)
= (1 + k′)

sn(u, k) cn(u, k)

dn(u, k)
.

Now apply change of variable sin v = sn(w, k̃), where k̃ =
√
r2−m2

r , implying

g =

(
r2 −

(
r2 −m2

)
sin2 v

)2
+ r2m2

r2 −
(
r2 −m2

)
sin2 v

(
du2 +

dv2

r2 −
(
r2 −m2

)
sin2 v

)
= g̃.

When rm ≡ 0 (mod 2), a = r − m and c = r + m are both odd since (r,m) = 1. We
have that Ta,b,c is a torus and F̃a,b,c : R2/L → Ta,b,c, where L = {(2πn, 2πm) |n,m ∈ Z}, is
a one-to-one map [28]. Apply change of variable sin y = sn(z, k), and we alternatively have
F̂a,b,c : R2/L̂ → Ta,b,c, where L̂ = {(2nπ, 4mK(k)) |n,m ∈ Z}. There is now a one-to-one corre-
spondence between the rectangle [0, 2π)×[K(k), 5K(k)) and Ta,b,c. Our linear transformation (3)
maps this rectangular domain as follows

H1 ([0, 2π)× [K(k), 5K(k))) = [0, 2π)×
[
0,

2(a+ c)K(k)√
c2 − a2

)
= [0, 2π)×

[
0, 2K

(
k̃
))
,

which used the identities K(k) = 1
k′K( ikk′ ), K(k̃) = 2

1+k̃′
K
(
1−k̃′
1+k̃′

)
.
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Let us remark that when rm ≡ 0 (mod 2) and after change of variable sin v = sn(w, k̃), the
bipolar Lawson torus τ̃r,m has a one-to-one correspondence with [0, 2π)× [0, 2K(k̃)).

Thus we obtained the required isometry.
We recall now the explicit definition of S(a, b, c) [28]:

S(a, b, c) =
4π√
c2 − a2

(
2
(
c2 − a2

)
E

(√
b2 − a2
c2 − a2

)
−
(
c2 − a2 − b2

)
K

(√
b2 − a2
c2 − a2

))
, (4)

where K(k), E(k) are the complete elliptic integrals of the first, second kind [10].
Using the values Λ2(a+c)−2(Ta,b,c) and Λ4r−2(τ̃r,m) from [28] and [19], which are twice the

areas of these surfaces, we can check that the areas of corresponding surfaces are the same.
Note that S(a, b, c) = S(b, a, c) since Tb,a,c ∼= Ta,b,c,

Λ2(a+c)−2(Ta,0,c) = 2S(0, a, c) =
8π

c

[
2c2E

(a
c

)
−
(
c2 − a2

)
K
(a
c

)]
= 8π(a+ c)E

(
2
√
ac

a+ c

)
= Λ4r−2(τ̃r,m),

which uses the identity E
(
2
√
k

1+k

)
= 2E(k)−(1−k2)K(k)

1+k .
We now consider the cases when rm ≡ 1 (mod 4) and rm ≡ 3 (mod 4). For the case of rm ≡ 1

(mod 4), we have that τ̃r,m is a bipolar Lawson torus, and it is isometric to the surface Ta,b,c,
where a = r−m

2 , b = 0, and c = r+m
2 .

Remark that the change of variable on y and v are the same as in the case rm ≡ 0 (mod 2).
The method of proof is the same using the transformation

H2(x, z) =

(
2u,

2
√
c2 − a2
a+ c

w +K(k)

)
. (5)

When rm ≡ 1 (mod 4), a = r−m
2 is even and c = r+m

2 is odd. We have that Ta,b,c is again

a torus and F̃a,b,c : R2/L → Ta,b,c is a one-to-one map [28]. Let us again use the rectangle

[0, 2π)× [K(k), 5K(k)) and F̂a,b,c : R2/L̂ → Ta,b,c, where L̂ = {(2nπ, 4mK(k)) |n,m ∈ Z}. Now,
our linear transformation (5) maps this rectangular domain as follows

H2

(
[0, 2π)× [K(k), 5K(k))

)
= [0, π)×

[
0,

2(a+ c)K(k)√
a2 − c2

)
= [0, π)×

[
0, 2K

(
k̃
))
.

When rm ≡ 1 (mod 4) and after change of variable sin v = sn(w, k̃), the bipolar Lawson
torus τ̃r,m has a one-to-one correspondence with [0, π)× [0, 2K(k̃)).

Thus we obtained the required isometry.
Now, for the case of rm ≡ 3 (mod 4), we have that τ̃r,m is a bipolar Lawson Klein bottle,

and it is isometric to Ta,b,c, where a = r−m
2 , b = 0, and c = r+m

2 .
Remark that we need the same change of variable on y and v and transformation (5) as the

case rm ≡ 1 (mod 4).
When rm ≡ 3 (mod 4), a = r−m

2 is odd and c = r+m
2 is even. We have that Ta,b,c is a Klein

bottle and F̃a,b,c : R2/L → Ta,b,c is a double covering [28]. With change of variable sin y = sn(z, k)
we now have as before a one-to-one correspondence between the rectangle [0, π)× [K(k), 5K(k))
and Ta,b,c. Our linear transformation (5) maps this rectangular domain as follows

H2

(
[0, π)× [K(k), 5K(k))

)
=
[
0,
π

2

)
×
[
0,

2(a+ c)K(k)√
a2 − c2

)
=
[
0,
π

2

)
×
[
0, 2K

(
k̃
))
.

When rm ≡ 3 (mod 4) and after change of variable sin v = sn(w, k̃), the bipolar Lawson
Klein bottle τ̃r,m has a one-to-one correspondence with

[
0, π2

)
× [0, 2K(k̃)).

This completes the proof of Theorem 1.
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4 Proof of Theorem 3

In [15], Karpukhin studied nonmaximality of known extremal metrics including metrics on Ot-
suki tori O p

q
, Lawson tori and Klein bottles τr,m, generalized tori Mr,m, bipolar Lawson sur-

faces τ̃r,m, and bipolar Otsuki tori Õ p
q
. Although the family Ta,b,c of tori and Klein bottles

include the families τr,m, Mr,m and now τ̃r,m, there has been no general study of nonmaximality
of metrics on Ta,b,c. We prove that there are no maximal metrics among Ta,b,c apart from the
equilateral torus T1,1,2 ∼= M1,1 and Klein bottle T1,0,2 ∼= τ̃3,1.

Proposition 1 (Karpukhin, [15]). The following inequalities hold

sup Λn
(
T2, g

)
≥ 8π

(
n− 1 +

π√
3

)
,

sup Λn(KL, g) ≥ 8π(n− 1) + 12πE

(
2
√

2

3

)
,

where E(k) is the complete elliptic integral of the second kind [10].

This result can also be found by Colbois and El Soufi in [6, Theorem B:4]. Recent computa-
tional evidence [14] further suggests that this construction is in fact maximal. For our purposes,
we use Proposition 1 to show nonmaximality on Ta,b,c.

Proposition 2. Let abc 6= 0, and |c| >
√
a2 + b2. If a and b have different parity and c is even,

then the following inequality holds

Λa+b+c−3(Ta,b,c) < 8π(a+ b+ c− 4) + 12πE

(
2
√

2

3

)
.

If a and b are odd and c is even, then the following inequality holds

Λa+b+c−3(Ta,b,c) < 8π

(
a+ b+ c− 4 +

π√
3

)
.

Otherwise, the following inequality holds

Λ2(a+b+c)−3(Ta,b,c) < 8π

(
2(a+ b+ c)− 4 +

π√
3

)
.

Before proving Proposition 2, let us find an upper bound for S(a, b, c).

Proposition 3. Let |c| >
√
a2 + b2. The following inequality holds

S(a, b, c) < 2π2(a+ b+ c).

Proof. Using the definition (4) of S(a, b, c), we show the proof when a, b, c are each nonzero.
The instance when a, b, c contains at least one zero will follow as a special case. Here, we now
use a, b, c > 0 without loss of generality. Since c >

√
a2 + b2 we have that our interval on k

is [0, 1) for both K(k) and E(k) in the inequality above. It is well known [10] that K(k) is
bounded below by π

2 , and E(k) is bounded above by π
2 on the interval [0, 1]. This implies that

S(a, b, c) ≤ 4π√
c2 − a2

(
2
(
c2 − a2

)π
2
−
(
c2 − a2 − b2

)π
2

)
.
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We now simplify this expression as follows

S(a, b, c) ≤ 2π2
√
c2 − a2 +

2b2π2√
c2 − a2

.

We have that
√
c2 − a2 ≤

√
c2 + a2 ≤

√
c2 + 2ca+ a2 =

√
(c+ a)2 = (c+a). Hence, this implies

that

S(a, b, c) ≤ 2π2(c+ a) +
2b2π2√
c2 − a2

.

The condition c >
√
a2 + b2 implies that b√

c2−a2 < 1. This now implies

S(a, b, c) < 2π2(c+ a) + 2π2b.

This concludes the proof of Proposition 3. �

We recall that Lawson tau-surfaces τr,m correspond to Ta,b,
√
a2+b2 . Since c =

√
a2 + b2, we

have the same upper bound for S(a, b, c) with the exception that the inequality is not strict.

Proof of Proposition 2. In order to prove the first inequality we must show

0 < 8π(a+ b+ c− 4) + 12πE

(
2
√

2

3

)
− S(a, b, c).

Using Proposition 3, this implies that we must show

0 < 8π(a+ b+ c− 4) + 12πE

(
2
√

2

3

)
− 2π2(a+ b+ c).

This expression can be rewritten as

16− 6E
(
2
√
2

3

)
4− π

< (a+ b+ c).

This inequality holds for a + b + c ≥ 11. For the exceptional cases (a, b, c) ∈ {(1, 2, 4), (1, 2, 6),
(2, 3, 4)}, one can verify the first inequality explicitly using the tables of elliptic integrals in the
book [4].

Similarily, the second inequality holds for a + b + c ≥ 11. Remark that when (a, b, c) =
(1, 1, 2), we have the well known equilateral torus T1,1,2 ∼= M1,1. For the exceptional cases
(a, b, c) ∈ {(1, 1, 4), (1, 1, 6), (1, 1, 8), (1, 3, 4), (1, 3, 6), (3, 3, 4)}, one can again verify the second
inequality explicitly.

The third inequality holds for a+ b+ c ≥ 6. Only one exceptional case of (a, b, c) = (1, 1, 3)
should be verified for the third inequality explicitly. �

We now observe when exactly one of a or b is zero, while |c| >
√
a2 + b2. Since Ta,b,c ∼= Tb,a,c

when we assume that S(a, b, c) = S(b, a, c), this corresponds to surfaces Ta,0,c. These surfaces
have now been shown isomorphic to the family of bipolar Lawson surfaces τ̃r,m. Fortunately,
these surfaces were investigated by Karpukhin in [15] and nonmaximality was shown for all
extremal metrics except the well known bipolar Lawson Klein bottle T1,0,2 ∼= τ̃3,1.

In [28], the case of T0,0,1 was already investigated to be the Clifford torus but with a metric
multiplied by 1

2 . Remark that the condition of (a, b, c) = 1 prevents any other T0,0,n.

Finally, when c =
√
a2 + b2, we have seen in Theorem 2 that this corresponds to Lawson

tau-surfaces τr,m ∼= Ta,b,
√
a2+b2 . These surfaces were also investigated by Karpukhin in [15], and

it was shown that none of the extremal metrics are maximal.
This completes the proof of Theorem 3.
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