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Abstract. The fast basin of an attractor of an iterated function system (IFS) is the set of
points in the domain of the IFS whose orbits under the associated semigroup intersect the
attractor. Fast basins can have non-integer dimension and comprise a class of deterministic
fractal sets. The relationship between the basin and the fast basin of a point-fibred attractor
is analyzed. To better understand the topology and geometry of fast basins, and because of
analogies with analytic continuation, branched fractal manifolds are introduced. A branched
fractal manifold is a metric space constructed from the extended code space of a point-fibred
attractor, by identifying some addresses. Typically, a branched fractal manifold is a union
of a nondenumerable collection of nonhomeomorphic objects, isometric copies of generalized
fractal blowups of the attractor.
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1 Introduction

This paper on iterated function systems concerns related concepts: the fast basin, fractal con-
tinuation, an extended code space, and the branched fractal manifold.

The fast basin of an attractor of an iterated function system (IFS) is the set of points, each
of which possesses a chaos game orbit [4] that reaches the attractor in finitely many steps. More
precisely, let A be an attractor of an IFS F, here defined to be a finite set of homeomorphisms
X=X n=12,...,N, mapping a complete metric space X onto itself. If f,g € F, then
fog denotes the composition of f with g. The fast basin of A is the set of points x € X such that
there exists a finite sequence of digits {t,}5_; C {1,2,..., N}¥ with f,, o f,0---0 f, (z) € A.
Equivalently, the fast basin is the complement of the set of points, all of whose orbits do not
intersect the attractor. If the maps that comprise the IFS are contractive similitudes on R",
then the fast basin is the union of fractal blowups, as defined by Strichartz [14], of A with
respect to the IFS. In general, a fast basin is a union of fractal continuations, generalizing the
main idea in [6], of A with respect to the IFS.

Some examples of fast basins, corresponding to geometrically simple IFSs, are presented in
Section 3, illustrating that they can have interesting geometrical structure and that they are
not easy to understand. Fast basins of affine IFSs may have non-integer Hausdorff dimension,
as proved in [2], and thus comprise a class of deterministic fractals which may be suitable for
geometrical modelling of real-world objects, extending the reach of ideas initiated by Mandelbrot;
see for example the many modelling papers that cite [13] and use IFS theory. But our interest
here is in mathematical structure of fast basins, which is relevant to fractal transformations [1],
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tiling theory [8], non-commutative geometry [11], and to a generalization of analytic continuation
(see below).

A branched fractal manifold is a certain metric space built from the code space of a point-
fibred attractor of an IF'S. Its projection onto X is the fast basin of the attractor. An initial moti-
vation for defining and analyzing branched fractal manifolds was a desire to understand the topo-
logical structures of fast basins, at least in the case of simple IFSs consisting of a few affine maps.

A strong motivation for interest in fast basins and branched fractal manifolds is a new view of
analytic continuation, introduced in [6]. According to this view, fractal continuation provides an
extension of the notion of analytic continuation. As a simple example, consider the IFS defined
by the pair of M&bius transformations,

—31+4i 8422 1 95— 13i —17 + 14;
24110 2—4i an “114+7i —4+13i

acting on the Riemann sphere. This IFS has a unique attractor, an arc of a circle (of radius one
half, centered at 3i/2). The fast basin is the whole circle, i.e., the analytic continuation of the
arc. This illustrates a more general situation. In [6] it is proved, under conditions that are not
stated here, that the graph of a real analytic function over an interval, say [0, 1], is the attractor
of an IFS whose maps are analytic on a neighborhood of the graph, and generalized blowups
of the graph, generated using the IFS, coincide with the graph of any analytic continuation of
the original function, where both are defined. (In [6] and here, we refer to generalized fractal
blowups of the graphs of fractal interpolation functions as (fractal) continuations.) In [6] it is
further established that all except two fractal continuations of the graphs of any affine fractal
interpolation function g: [0,1] — R are defined for all real x. Although a fractal continuation
coincides with the real analytic continuation of g when ¢ is real analytic on a neighborhood of
[0, 1], in general the graphs of different continuations of an affine fractal interpolation function
do not coincide, except over [0,1]. Instead, their union, which is an example of a fast basin,
may be interpreted as an analog or generalization of analytic continuation applied to a fractal
function g. In this interpretation, different continuations of g belong to different branches, thus
the need to understand how these branches fit together and the motivation for the fast basin
and branched fractal manifold.

The organization of the paper is as follows. In Section 2 we define point-fibred IFSs, their
attractors, duals, basins, fast basins and fractal continuations. A fractal continuation is a gene-
ralization of a fractal blowup as defined by Strichartz [14]. Proposition 2.7 states that the fast
basin of an attractor is the union of its fractal continuations. Section 3 provides examples of
fast basins.

The relationship between the basin and the fast basin of an attractor is the subject of Sec-
tion 4. Theorem 4.2 shows that the image of a disjunctive point in code space under the
coding map (see below) belongs to the boundary of an attractor if and only if the interior of
the attractor is empty. Theorem 4.5 relates addresses of points in attractors to whether or not
associated continuations contain the basin, using the concept of reversible addresses. As a con-
sequence, Corollary 4.6 states that the fast basin contains the basin if and only if the attractor
has nonempty interior. R

In Section 5, two symbolic IFSs Z and Z are introduced. The first, Z = {I;; o, n =
1,2,..., N}, involves shift maps on I = {1,2,..., N}* and is well known, when F is contrac-
tive, to be related to the attractor A by the following commutative diagram

I, —2>1,

ﬁi lw
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This involves the coding map or addressing function, a continuous surjection 7: I — A.
However, Z is not an IFS, as defined in this paper, as the maps of Z are not invertible

and its fast basin is undefined. This is remedied by the introduction of 7 = {L; op, n =
1,2,..., N} whose maps are invertible. Here I is a certain shift invariant subspace of Iy =
{=N,...,—1,1,2,...,N}*. The attractor of Z is I and its fast basin, I C I, provides a sym-

bolic representation for any attractor of F and its fast basin. It is shown that the coding map
m: I — A can be extended to various subspaces of I, including f, and that the action of shift
maps on these subspaces is (semi-)conjugate to the action of the f,s (and/or their inverses) on
corresponding subspaces of X, including the fast basin of A. Dual relationships also hold in
certain cases. These results are summarized by the commutative diagrams in Theorem 5.6 and
Corollaries 5.8 and 5.9.

The branched fractal manifold IL associated with a point-fibred attractor of an invertible IFS is
defined in Section 6. It is a metric space constructed from the symbolic fast basinfby identifying
some addresses. It is a disjoint union of certain leaves, each leaf being homeomorphic to one of
at most N + 1 subsets of A, but L itself may not be locally compact. Also, IL contains isometric
copies, called sheets, of all the fractal continuations of the original attractor. The branched
fractal manifold contains, in a concise way, information on the global addressing discussed in
Section 5. A description of L, providing its main properties, is the content of Theorems 6.4
and 6.5. Examples are provided.

Relationships between this paper and related work in the literature are discussed in Section 7.

2 IF'Ss attractors, their basins, fast basins, and continuations

Let N={1,2,3,...} and Ny = {0,1,2,...}. Throughout this paper an iterated function system
(IFS) is a complete metric space X together with a finite set of homeomorphisms f,: X — X|
n=1,2,...,N, and is denoted by

F=Fx =X fi, fo, ..., [N}

We use the same symbol F for the IFS and for the set of functions {f1, fo,..., fn}.
Let H = Hx be the collection of nonempty compact subsets of X and define F': H — H by

FC) = £(©)

fer

for all C' € H, where f(C) = {f(x): x € C'}. We extend naturally F' to a map on the collection
of all subsets of X. For S C X, define FO(S) = S and let F¥(S) denote the k-fold composition
of F applied to S, namely, the union of {1,}¥_; € {1,2,..., N}¥ with f,, o f, 0---0 f,, (S) over
all finite words ¢1t9 - - - 1y of length k.

Let d = dx be the metric on X, and let dg = dg, be the corresponding Hausdorff metric
on Hyx. Throughout, the topology on Hx is the one induced by dp,. It is well known that
(H,dp) is a complete metric space because (X,d) is complete, and that if (X,d) is compact
then (H,dp) is compact.

Definition 2.1. An attractor of the IFS F is a set A € H such that

1) F(A) = A, and
2) there is an open set U C X such that A C U and lim F*(C) = A, for all S € H with

k—o00
C C U, where the limit is w.r.t. the metric dy.
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The union of all open sets U, such that statement 2 of Definition 2.1 is true, is called the basin
of the attractor A (w.r.t. F). If B = B(A) denotes the basin of A, then it can be proved that
statement 2 of Definition 2.1 holds with U replaced by B. That is, the basin of the attractor A
is the largest open set U such that statement 2 of Definition 2.1 holds. An IFS may not possess
an attractor, or it may possess multiple attractors. Examples and further discussion can be
found in [5] and in references therein.

The IFS F is said to be contractive if there is a A € [0, 1) such that

for all f € F and all 2,y € X. A basic result of [10] is that a contractive IFS possesses a unique
attractor A, with B(A) = X.

Note that, in this paper, each f,: X — X is a homeomorphism and so has a continuous
inverse f, ': X — X which is also a homeomorphism. This allows us to define an “inverse” of
the IFS F as follows.

Definition 2.2. The dual IFS is
F* = {X; fitn= 1,2,...,]\7}.

If A is an attractor of the IFS F, then the set A* := X\ B(A) is called the dual repeller of A
(w.r.t. F). The dual repeller A*, under certain conditions [7], is an attractor of the dual IFS F*.
This can occur, for example, when F5 is a Mobius IFS on the Riemann sphere C [17].

For an infinite word ¢ = ¢1e9t3--+, ¢; € {1,2,..., N}, let

|k = t109t3 - - 1, fL|k:fL1ofL2o"‘okaa (2.1)
and fg = f,|o = idx, the identity map on X.
Definition 2.3. An attractor A of F is point-fibred (w.r.t. F) if

lim fL|k(C) C A,

k—o0
is a singleton subset of X, for all + € {1,2,..., N}* independent of C C B(A) with C € H,
where convergence is with respect to the Hausdorff metric.

All attractors in this paper are assumed to be point-fibred. It follows from results in [10] that
if the IFS F is contractive, then its attractor is point-fibred. The point-fibred property allows
for an addressing scheme for points of the attractor (Definition 2.4). The following notation will
be used throughout this paper. Let N € N and let

I, ={+1,42,...,+N}, I, =1,

I =1{-1,-2,...,—-N}, L =I>,
I=I,Ul, Ty = I,
I={cely: t; # —ti+1 for all i € N}. (2.2)

Let dy be the metric on Iy defined by

d _ max{2_k:k‘€N,Lk7éwk} if +#w,
i) 0 if t=w

for all t,w € Iy. The metric dy induces the product topology on Iy, and the metric spaces (I, dy),
(Ly, dp), (I, dy) are compact subspaces of the compact metric space (I, dy).

The space (I, dy) is sometimes called the code space or address space for an attractor of F
because it provides addresses for the points of A, as given in the following definition.
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Definition 2.4. Let A be a point-fibred attractor of an IFS F. According to Definition 2.3,
there is a map 7: [, — A C X, called the coding map, that is well defined by

m(e) = lim f;.(b), (2.3)

for all ¢ € I, and the limit is independent of b € B(A). It is readily proved that 7 is continuous
and that 7(I) = A. The set-valued inverse 7~ !(a) comprises the set of addresses of the point
a€c A (wrt. F).

Definition 2.5. The fast basin B = B(A) of an attractor A of an IFS F is

Ez{xEX: FE({z})nA+# & for some K € N}.

The relatlonshlp between the basin B and the fast basin B is complicated because neither
B C Bnor B C B holds in general. This topic is discussed in Section 4.

Fractal continuations were introduced in [6] in the context of fractal interpolation, and in [5] in
the context of fractal tiling. (See also the last part of Section 1 for a discussion of related notions.)
These situations are generalized in Definition 2.6. Extend the notation of equation (2.1) as
follows. For ¢ € [y define —¢ by

(=) = —u

for all £ € N and

fg=n
forj=1,2,...,N.

Definition 2.6. Let A be an attractor of an IFS F = {X; f,, n € I.}. For 0 € I, the
continuation Bg of A (w.r.t. F) is defined to be

By=J frop(A) =AU f5, 0 f3," 0+ 0 £5,1(A),

keN keN
Note that this is a nested union in the sense that f_g(A) C f_g41(4).

The set By is referred to as a continuation of A or a fractal continuation of A. The family
{Bg: 0 € 1} is referred to as the set of continuations of A. We also write By, = f_g1(4),
which is referred to as a finite continuation of A. Clearly

By= | Bap-

keNy

The paper [6] concerns the special case of fractal continuations of fractal functions. In that
case it is proved, under special conditions, the most important of which is that the IF'S consists
of analytic functions, that the set of continuations is uniquely determined by the attractor,
independent of the analytic IFS used to generate the attractor.

The following result, stating that the fast basin is the union of all the continuations, is readily
verified.

Proposition 2.7. Let A be an attractor of an IFS F = {X; fn, n € 1}. Ifﬁ is the fast basin
of A and {By: 0 € 1} is the set of continuations of A, then
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Figure 1. This illustrates part of the fast basin of the attractor of the iterated function system F =
{R%; (2/2,9/2), (x +1)/2,y/2), (x/2,(y +1)/2)}. The attractor is rendered in red at the lower left.

3 Fast basin examples

Example 3.1 (Cantor set). Routine calculation shows that the fast basin of the standard Cantor
set C C R, w.r.t. the IFS {R; z/3, z/3 + 2/3}, is

B = | J(c+2k).
keZ

We use the notation for Minkowski sum, (C+2k) := {x + 2k: z € C}.

Example 3.2 (Sierpinski gasket). The fast basin of a Sierpinski triangle A C R?, with vertices
at v1,v2,v3€ R?, w.r.t. the IFS {R% (z + v1)/2, (x +v2)/2, (z + v3)/2}, is B = Useg(D + 1)
where G is the group generated by the set of translations by {v; — va, vy — v3,v3 — v1}. This
may be proved by induction, using A = U, f;(A) and fv_il o fy; is translation by v; —v;. Fig. 1
shows B when v = (0,0), v2 = (1,0), and v3 = (0,1).

Example 3.3 (other affine IFSs). Fig. 2 illustrates part of the fast-basin of a contractive affine
IFS {R% f1, f2}, where

_(Z Y xz Y _(Z Y z Y
f1($7y)—<2+2\/§—172\/§_2>7 f2(:17,y)—<2—2\/§+1,—2\/§—2>.

The attractor is the segment of the Koch snowflake curve near the center of the figure. The fast
basin is the union of the boundaries of the tiles of a tiling of the plane by Koch snowflakes and
other related tiles.

Fig. 3 illustrates part of the fast basin for the contractive affine IFS {R?; f1, fo}, where

(1 x 2y 1 (1 oz 2y 1

whose attractor, at the center of the image, is the graph of a fractal interpolation function. At
each branch point, there is a countable infinity of distinct branches.
Both figures in this example were obtained by direct computation.

Example 3.4 (topological dimension of the fast basin). We use the following definition: an
orbit of a point x € X, under the IFS F = {X; fi,..., fx}, is {fi,o fi,o---of (2)}e, CX
for some ¢ € {1,2,...,N}*. If F is an IFS on RM consisting of affine functions and whose
attractor A is contained in a proper linear subspace V of RM | then it is easy to show that the
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Figure 2. See Example 3.3. This shows the fast basin for the Koch curve using an IFS of similitudes.
The Koch curve is located near the center, in various colours.

Figure 3. See Example 3.3.

fast basin of A is also contained in V. Moreover, any orbit of any point not in V' has empty
intersection with A. It follows that the topological dimension of the fast basin of A is strictly
less than that of the underlying space. For instance, if M = N = 2, and

hy) = (2/2,9/2),  falz,y) = ((z +1)/2,y/2)

for all (z,y) € R, then A = [0,1] x {0} C R x {0}, B =R?, and B C R x {0}. Any orbit of any
point in R?\{(z,0): z € R} does not meet the attractor (although the closure of the orbit does
meet the attractor) while, for any point in R, there exists an orbit that reaches A in finitely
many steps, i.e., the orbit intersects the attractor.

Example 3.5. An example, illustrating a relationship between a fast basin and analytic con-
tinuation, is provided by the contractive IFS

F ={C?% firpir f-14ir fr1ir f-1-i},

where

R— O k= O
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By following arguments similar to ones in [6], we find that the unique attractor A of F is the
graph of z — 22 over the square —1 < Rez,Im z < +1. We also find that the fast basin B of A
(w.r.t. F) is the manifold

{(2,22): z € C}.

Example 3.6. An example that is related to a Schottky group is provided by the loxodromic
Moébius IFS

F o= {@7 fi(z) = az —i(2+ V3) falz) = az +i(2++/3) }

z—i(24+V3) +a—1 2z —i24+V3)+a—1
where a = _i(%{f‘/@cﬂ, C € Cwith |C] ¢ {0,1}, f1(1) =1 and fo(—1) = —1. We find

fil) = fo(-1)=C

so if |C is sufficiently small, then F has a totally disconnected attractor A, located within two
small circles, one centered at +1 and one centered at —1. This is because the center of each
circle is an attractive fixed point of one of the maps, and the derivative of each map, at its
attractive fixed point, has magnitude |C|. Similarly, in this case, the dual repeller A* is also
totally disconnected and is located within two small circles, one centered at (2 4+ v/3)i and the
other at —(2 4 1/3)i. The maps fi, fo are the generators of a Schottky group whose limit set A
is also totally disconnected, and we have A C A, A* C A, and B C A. Tt follows that B is totally
disconnected.

4 When does the fast basin contain the basin?

Consider the following examples showing that, in general, there is no containment relationship
between the basin and the fast basin. Since the IFS

1 1 1
R. _ — —
{ T gt 2}
is contractive, the basin B = R. It is not hard to show, for example via Proposition 2.7, that
the fast basin B = R. Therefore, B = B for this IFS. Likewise, the IFS

1 1 2
R'* — —
{ ,33:, 390—1—3}

is contractive, but, as in Example (3.1), the fast basin is not all of R. Therefore B C B for
this IFS. Finally consider the IFS F = {P!; f1, fo}, where P! is 1-dimensional projective space,
homeomorphic to the circle, and which we denote by RU{oo} (the reals with an additional point
at infinity). The functions are

9z 11z +9
ho =555 PW=5 7

The attractor A of F is the interval [0, 1]; the attractor A* of the dual IFS is R\{—-9/2,11/2}.
Therefore the basin of A is B = R\A* = {-9/2,11/2}. It is straightforward to check that the
fast basin is B = R. Therefore, in this example, B C B.

From the above examples we see that all three possibilities B = B, B C B, B
occur. However, if the attractor A has nonempty interior (in the topology of X), the
(see Corollary 4.6).

C Bea
n B C

Uc»:s
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Define the shift map S: Iy — Iy by
S<L1L2"') = lglg -
for all ¢ € . Note that S is continuous and maps I onto I, I onto I, and I_ onto I_.

Definition 4.1. A word 0 € 1 is disjunctive if every finite word is a subword of 6. In fact, if 0
is disjunctive, then every finite word (in the alphabet ;) appears as a subword in ¢ infinitely
many times. Moreover, an equivalent definition of a disjunctive word is that its orbit under the
shift map is dense in the code space. Denote the interior of set S by S° and the closure by S.

Theorem 4.2. Let A be an attractor of an IF'S F, and let 0 € 1 be disjunctive. Then 7(0) € A°
if and only if A° # @.

Proof. Since 6§ € I, is disjunctive, the orbit, {Sk(e)}z‘;o, of § under the shift map S: I, — 1,
is dense in I;. Since 7 is continuous, {Wf(Sk(Q))}Zo:O is dense in A. By way of contradiction
assume that 7x(0) € 0A, the boundary of A. Since each f € F is a homeomorphism, f(A°) C A°
or, equivalently, (f|4)~" (8A) C DA. Therefore w(S*(6)) € DA for all k € Ny, which would mean
that A = {m(5%(0))};—, C 9A = DA which implies A° = &, which contradicts A° # @. [

Theorem 4.5 below provides sufficient conditions for a fractal continuation of an attractor to
contain the basin of the attractor. It involves the equivalent notions of a full and a reversible
word in L. These concepts were introduced in [8]; the equivalence of full and reversible is part
of Theorem 4.4.

Definition 4.3. If A is an attractor of an IFS F, call § € I full if there exists a nonempty
compact set A" C A° such that, for any positive integer M, there exist n > m > M such that

Jon 0 fo,_1 00 f9m+1(A) cA.

Call 0 € 11 reversible w.r.t. an attractor A and IFS F if there exists an w = wyws--+ € I}
such that w is the address of some point in A° and, for every pair of positive integers M and L,
there is an integer m > M such that

wiws W = Oy LO0myr—1- Oy

In some cases it is easy to check if a word is reversible. For example, if = 0105 --- 0,010 - - -
0101 - - - is periodic and 7(0pOk_1---010k0;_1--- 010k ---) lies in the interior of A, then 6 is
reversible.

Theorem 4.4 ([8, Theorem 3.7]). For an IFS F, let A be an attractor. With respect to A
and F:

1. There are infinitely many disjunctive words in I for N > 2.
2. If A° # @, then every disjunctive word is reversible.

3. A word is reversible if and only if it is full.

Theorem 4.5. Let A be an attractor of an IFS F with basin B. If 0 € 1 is full/reversible,
then

B C By.
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Proof. Let z € B. It suffices to show that = € f¢9_11 o f9_21 o f9_31 0---0 fe_nl(A) for some n, or
equivalently

fon 0 fo,_1 00 fo,(x) € A,
By the definition of attractor, for any € > 0 there is an M, such that if m > M., then
F™(z) C A,

where A, is the open e-neighborhood of A. Because 6 is assumed to be full, there exists a compact
set A" with A" C A° with the property that, for any M there exist n > m > M such that

fgn [OaN Of9m+1(A/) C AO.

This implies that there exists an ey-neighborhood A, of A such that

fﬁn 0:-0 ft9m+1(A50) - AO?

for some ¢y > 0. If M > M,,, then

fan o ...of0m+1 Of9m o--- Ofgl(l‘) € fen Or--- Of9m+1(Aeo) C A,
as required. "

Corollary 4.6. Let A be an attractor of an IFS F on a complete metric space X, with basin B
and fast basin B. Then B C B if and only if A° # &. Moreover, if F is contractive and A° # &,
then B= B =X.

Proof. Assume that A° # &. Let 6 be a disjunctive word; by Theorem 4.4 there are infinitely
many. By the same theorem 6 is full and reversible. By Theorem 4.5 and Proposition 2.7 we
have B C By C B. If Fis contractive, then, as mentioned after the definition of contractive in
Section 2 (see also [10]), it is well known that B = X.

Conversely, assume that A° = @. If A is an attractor, the fast basin of A is

B={(f)""(A): e},

where I, is the set of all finite sequences in the alphabet I. Since (f,) "' (A) has empty interior,
B is nowhere dense by the Baire category theorem. Since B is open, clearly B ¢ B. |

5 Symbolic IFSs and the extended coding map

The goal of this section is to extend the classic coding map given in Definition 2.4. We begin
with two examples of “symbolic IFSs”. It may be helpful for the reader, at this juncture, to
recall the notation introduced around equation (2.2) for Iy, I, I, I, I, Iy and I_.

For n € I, define the inverse shift maps o,,: Iy — I, by

O'n(leg"-) =nLity -, (51)

and define o,,: I — I by

O'n(blLQ .o )

{TLLlLQ"‘ if 11 # —n,

Loty - - if 11 =-—n.
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Example 5.1 (first symbolic IFS). If
Z = {]Lra On, M € IJr}a

then Z is an IFS each of whose functions is a contraction with scaling factor 1/2. The unique
attractor is 1. Not that this example does not strictly fit the definition of an IFS as given in
Section 2 because o, is not a homeomorphism as it is not surjective.

Example 5.2 (second symbolic IFS). If
7 = {L; op, n € 1},

then Z is an IFS, for which it is easily verified that each function o, : I — I is bi-Lipshitz with
1
idﬂ(b’w) <dj (on(t),on(w)) < 2dp(t,w)

for all t,w € 1. In particular, each o, is a homeomorphism with inverse o_,: I —I. The dual
IFS is

7 = {I; op, n € 1_}.
Although neither Z nor Z* is contractive, both have attractors as proved in Theorem 5.3 below.
In a metric space, the notation B(x,r) denotes the open ball of radius r centered at x.
Theorem 5.3.
1. The IFS Z has a point-fibred attractor I with basin I\I_ and fast basin
I if j< k:}

T:= <. e1: there exists k € N such that Lj € )
I+ 'Lf j 2 k

2. The dual IFS Z* has point-fibred attractor 1_ with basin I\l and fast basin

I, if j<k
I if j>k)

~

I .= {L € I: there exists k € N such that 1; € {

Proof. We will show that the IFS Z has point-fibred attractor I, with basin T\I_ and dual
repeller I_. The rest of the proof follows immediately, and is omitted. The compact nonempty

~

set Iy is contained in I, and Iy = Z(I}) := Uper, 0n(Ily). An open neighborhood of Iy is T\I_.
If « € N[, then there is K = K(:) € N such that tf € I, from which it follows that oy € I
for all « € ZEK=1({s}). In turn, this implies

du (2K+j({b})7]1+) < 2—]‘—1’

for all 7 € N. This proves that {Ek({L})}keN converges to Iy for all « € T\I_.
Now suppose that C' € H(I) and C C I\I_. Let ¢« € C, and let K = K(¢) be as above. Then
for all w € B(1,275~1) we have wx € I, and hence

dp (ZKOH ({w}), 1) < 2777,

which shows that {2k(B(L, 2_K(b)_1))}keN converges to I;. Using its compactness, C' can be
covered by a finite set of such balls, and we conclude that {2 k(C)} pen converges to I On the
other hand, I_ C 2(}1_) sol_ C ZF(I_) for all k € N, so {Zk(l_)}keN does not converge to I,

so we conclude that the basin of the attractor I (w.r.t. 2) is I\I_. Hence, by definition, the
dual repeller is T_. |
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Theorem 5.4 below is a generalization, along the lines of Kieninger [12, Section 4.2] and
Hata [9, Theorem 3.2], to point-fibred attractors, of ideas in Hutchinson’s work [10, 2.1.(8),
p. 716; 3.1.(3), p. 724]. It asserts, in particular, a semiconjugacy between F acting on A and
the contractive IFS Z = {I;;0,,n € I} of Example 5.1 acting on its attractor, L.

Theorem 5.4. Let A be a point-fibred attractor of the IFS F = {X; fn, n € I+}. The map
m: Iy — A from the attractor of Z to the attractor of F given in equation (2.3) is uniformly
continuous, and the diagram

H+i>]l+

wl lw

A——s A
fn

commutes for allmn € 1.

Theorem 5.4 describes the behaviour of the functions of the IFS on points of the attractor,
not outside the attractor. The results below describe the behaviour of the functions of the IFS
on the fast basin of the attractor and, in the case that the IFS is contractive with attractor with
nonempty interior, on all of the space X. These new results, Theorem 5.6 and its corollaries,
together with Theorem 5.4, provide a more complete symbolic description than the one provided
by Theorem 5.4 alone, of the structure and dynamics of point-fibred attractors of IFSs.

Extend the notation of equation (2.2) as follows

J4 = {v€1: 3K € Ny such that SK() e I},
J_ ={ve1: 3K € Ny such that SK() e I_},

and note that
I, cIcJ,cli=Icl, and I .cI*cJ_.cl_=Icl.

In particular, the spaces J1 are dense in I. Moreover, o,(J+) = J+ and o,(J-) = J_ for all
n € I. In addition, o,,|y, : J4 — J4 and o,|;_: J- — J_ are homeomorphisms.

Definition 5.5. Let A be a point-fibred attractor of an IFS F. The extended coding map
m: J+ — X is given by

m(e) = lim f;,(b), (5.2)

for all v € J4, where b € B(A). The limit in (5.2) exists and is independent of b because, by the
definition of J, there is K € Ny such that S¥ (1) € I, which means that we can write

() = L (7 (S5 (1))

Clearly, the extended coding map agrees with the standard coding map (Definition 2.4) on L.
We will use the same notation for both maps. When the dual repeller A* is a point-fibred
attractor of the dual IFS F*, we denote the associated extended coding map by n*: J_ — X.

Although I does not serve as a code space — in particular, a result analogous to Theorem 5.4
does not hold — the sets Ji, that are dense in I, do.
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Theorem 5.6. Let A be a point-fibred attractor of an IFS F. The extended coding map
m: Ji — X defined by (5.2) is continuous and agrees with the standard coding map on 1. The
left diagram below is commutative for allm € [ =1, UI_.

If A*, the dual repeller of A, is a point-fibred attractor of the dual IFS F*, then the right
diagram below is commutative for alln € I:

J+ﬂ>qﬂ+ J_ o7
X——X X——X
fn n

Proof. That the extended coding map 7: J;+ — X agrees with the standard coding map
on I, follows immediately from Definitions 2.4 and 5.5. That 7 is continuous follows from
the definition in Section 2 of the metric on Iy. Concerning the commuting diagram:

m(on(e)) = im0 f() = fal lim fye(®) = fulr(0).
The proof is similar for the dual. |

Example 5.7. If F is as in Example 3.6, then the ranges of both 7w and 7* are contained in A.

Corollary 5.8. If F is an IF'S with point-fibred attractor A and fast basin E, then m: 1 — B is
surjective and the left diagram below is commutative for alln € I_.

Let B* denote the fast basin of the dual IFS F*. If A* = X\B(A) is a point-fibred attractor
of the dual IFS F*, then 7*: T* — B* is surjective and the right diagram below is commutative
forallnel,.

~ ~
T In T

Proof. This is a corollary of Theorem 5.6. We simply note that o_n(ﬁ) cTand o, (ﬁ*) c T* for
all n € 1. |

The following corollary provides a model for attractor-repeller pairs, for example the loxo-
dromic Mébius case discussed in [17].

Corollary 5.9. Let F be an IFS with point-fibred attractor A on a complete metric space X
such that A° # @. If F is contractive, then w(I) = X and the left diagram below commutes
for alln € I_. If X is compact, let the dual repeller A* be a point-fibred attractor of F* with

(A*)° # @. Then w(I) = 7*(I*) = X; the left diagram commutes for all n € I_, and the right
diagram commutes for alln € 1.

L “*i l

X
In In

On
s

3
< =)

T

Proof. The result follows from Corollary 5.8 once it is shown that the fast basin of A is X and
the fast basin of A* is also X. In the case of a contractive IFS with A° # &, the fast basin and
the basin coincide and both equal X; see Section 2. The dual repeller in this case is empty.
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In the X compact case, we will show that the fast basin of A* is X; a similar argument shows
that the fast basin of A is X. It is known [7, Theorem 5.2] that the basin B(A*) = X\ A. So by
Proposition 2.7 and Theorems 4.5 and 4.4, if x ¢ A, then z is in the fast basin of A*. Lastly,
if x € A, let y # = be any other point of A. If ¢ is any address of y, then 7(¢) = klggo fur(A).

Therefore there is a k such that x ¢ f,;,(A), which implies that

z = L;l o L;El 0---0 fLIl(y) gé A.
Since z is in the basin of A* and (A*)° # @, there is wiws - - - w; for some j such that f wal °
..o f;jl(z) € A. Hence z lies in the fast basin of A*. [

Theorem 5.6 and its corollaries have many consequences including the following: (i) the
feasibility of continuous assignment of addresses to points in B(A); (ii) symbolic dynamics
on T are semiconjugate to corresponding dynamics on B(A); (iii) if A has nonempty interior as
a subset of X, then we obtain addresses and dynamics on the basin B(A); (iv) description of the
relationship between attractors and dual repellers; (v) extension of fractal homeomorphisms,
generalizing results in [1] and [8]; (vi) address structures for continuations, branched fractal
manifolds and tilings, thereby clarifying and extending ideas in [8].

6 Fractal manifold

Throughout this section, A is a point-fibred attractor of an IFS F on a complete metric space X.
The branched fractal manifold generated by (F, A) is constructed in this section. Properties of
the branched fractal manifold are the subject of Theorem 6.4.

Definition 6.1. For ¢ € ﬁ, let

k, —mln{k TF(Sk ) GA} € Np.
Define

[t] = |k, and (1) = Sk (1),

to be the integer part and the fractional part of the address ¢ = t02--- g, - -+ (w.r.t. F and A)
respectively.

Example 6.2 (integer and fractional parts). Consider the case F = {R; f1, fa}, where fi(x) =
12 and fo(z) = 32 + 3. The unique attractor is A = [0,1]. We will determine the integer and

fractional parts of the two elements of I, namely —1 —1 —12 and —1 —1 —212. A “bar” over
a sequence means infinite repetition; in particular 2 = 222---. Noting that 7(2) =1 € R and
m(—12) = 2 € R we have

-1 -1-12]=-1-1 -1, (-1 -1-12)=2.
Noting that m7(—1 —1 —212) =0 € R, we have
-1 -1-212] =2, (-1-1-212)=-1-1-212.
Define an equivalence relation ~ on T by ¢ ~ w if and only if

1) [t] = [w], and
2) 7(1) = n(w)
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and let
L=1/~.

For . € f, let 7 denote the equivalence class to which ¢ belongs. Maps 7: T—Land7: L X
are well defined by 7(:) = 7 and 7(¢) = (1), respectively. The maps 7 and 7 will be called
projection maps.

For o :=7 € L, let

ko ==k, [a] := [¢], () == (1).

These entities do not depend on the representative ¢ of the equivalence class «. It is useful to
think of L in terms of leaves, panicles, and sheets.

Definition 6.3. If 0 is a finite word in the alphabet I_, then
[(0) ={a€cL: [a] =0}

will be called a leaf of L, and
p(0) =1(2)Ul(01)Ul(6102) U---UI(0)

will be called a panicle of L. Because of the special importance of the case § = &, define
K:=1(2) = p(2).

If 0 € I_, we will refer to the “infinite panicle”

Lo == | ] 1(0]k)
k=0

as a sheet of L.

Define a metric on L as follows. That it is a metric is part of Theorem 6.4 below. For
o, €L let

K :=max{k: [o]|k = [B]|k}, [ao,f]:=[a]|K=[B]|K,  pla,B):=p([e,B]),

and
di(e, ) = min {dx (7(), 7(2)) + dx(7(¢), 7(B)): ¢ € p(c, B) }. (6.1)

Because p(a, ) = fla,8] (A), where the notation of equation 2.1 is used, it is equivalent to define

dp (e, B) = min {dx(ﬁ(a),x) +dx(x,7(B)): x € f[aﬁ}(A)}. (6.2)

The metric space (L, dy) will be called the branched fractal manifold or just the f-manifold
generated by (F, A). A description of the f-manifold is the intent of the following theorem. Shift
maps o, : L — L are well-defined by

—~—

on(t) = op(t).

These maps occur in statement (9).
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Theorem 6.4. Let A be a point-fibred attractor of an IFS F with fast basin B CX. Let (L, dr)
be the f-manifold generated by (F,A). Let 7: L =X and 7: I— L be the associated projection
maps. The following statements hold.

1. The minimum in equation (6.1) is achieved, and dy, is a metric on L.
2. The set of all leaves form a partition of L, and each leaf is nonempty.
3. The image of L under 7 is the fast basin, i.e., w(L) = B.
4. For any/ﬂ € I_, the projection ™ maps the sheet g isometrically onto the continuation
B yCBCX:
dx (7(a), @(B)) = di(ev, B).
for all a, B € Ly.
5. Fach panicle is homeomorphic to A.

6. The projection maps T: T—Land7: L — E, are continuous; in particular

dx (7(), @(B)) < di(ev, B).
for all a, B € L.
7. If A is pathwise connected, then 1L is pathwise connected.

8. If the metric spaces (X,dx) and (X,d%) have the same topology, then (LL,dy) and (L,d;)
have the same topology, where the metric dy is defined by equation (6.1) with dx replaced
by d.

9. With o,,: T—Tas defined in Section 5 and o,: L. — I as defined above, both o, and oy,
are continuous and injective, for all n € I_, and we have the commutative diagram,

T
L—

Proof. The proofs of (2), (3), (9) are straightforward.

(1) The set fio,5(A) in (6.2) is compact because A is compact and fi, g is continuous. For
fixed «, 3, the function dx(7(a), ) + dx(z,7(8)) is continuous in x € fi,(A). Hence the
minimum is achieved at some z* € fi, 5/(4).

Concerning the metric, we establish only the triangle inequality:

d(a,v) +di(y, ) = dx (7 (), 1) + dx (21, 7(7)) + dx(T(7), 22) + dx (22, 7(5)),

where 71 € flo4(A) minimizes dx(7(a),r1) + dx(v1,7(y)) and z2 € fig4(A) minimizes
dx (7(7), 2) + dx(z2,7(5)). We have either fi, 1(A) C fla,5(4) or fi34(A4) C fla,g(A). With-
out loss of generality assume that fi3,)(A) C fia,g(A). Then
d(a,y) +du(v, B) = dx(7(a), z1) + dx (21,7 (7)) + dx (7 (7), x2) + dx (22, 7(B))

> dx (7 (), 1) + dx (21, 32) + dx (22, 7(5))

> dx (7 (), x2) + dx (22, 7(B)) (where z € fig(A))

> min{dx(7(a),z) + dx(z, 7(8)): € fla,5(A)}

= dp(o, B).
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(4) Assume that o, € L lie in the same sheet, and therefore lie in a common panicle,
say p([B]). Then [a, 8] = [a] and fl, 5(A) = fla)(A), which implies that 7(a) € fi(A4). By
the triangle inequality we have dp(a, 8) = min{dx(7(a),z) + dx(z,7(8)): © € fla5(A)} =
dx(7m(a), 7(B)). That the image of Ly under 7 is B_gy follows from the definitions of 77 and of
the continuation B_g.

(5) It follows from the definitions that 7 maps the panicle p(f) onto fy(A). The result
now follows from that facts that fp is a homeomorphism and that, by part (4), the mapping 7
restricted to p(0) is an isometry.

(6) The continuity of 7: . — X follows from the inequality dx(7(«), 7(8)) < dp(«, 8), which
follows from the triangle inequality.

Concerning the continuity of 7: T L, let ¢ € T be given. If w € T and w|K = |K for K
sufficiently large, that is, if dp(¢,w) is sufficiently small, then w and 7 lie the same leaf. By
part (4) dL(7(¢),7(w)) = dx(7(0), 7(w)) = dx(7(+),7(w)). The continuity of 7: T — L then
follows from the continuity of 7w: I — X by Theorem 5.6.

(7) Assume that A is pathwise connected. Given any two points «, 5 € L, the leaf K is
contained in the intersection of the sheets containing o and 3. It is therefore sufficient to prove
that any sheet is pathwise connected; so assume that « and S lie in the same sheet, which
implies that they lie in the same panicle p(f) for some finite word 6. But by (5), this panicle is
homeomorphic to A.

(8) Two metrics dx and dy on X generate the same topology if, given any ball Bx 4.(x,7),
r > 0, there is a positive radius r’ such that B(xd%)(x,r’) C Bxay)(w,7) and, given any
B(X,dgg)(x, r'), there is a positive radius 7 such that Bx 4,)(z,7) C B(X’dk)(x,r’). In the present
situation, let the metrics on L defined using dx and d% be denoted by dj, and dj . Let r > 0 be
given and a € L be given. We will show that there is ' > 0 so that B, 4 (e, ") C B, a.) (v, 7).
The rest of the argument is then obtained by switching the roles of the key players.

If @ and 8 are contained in the same sheet, then by (4), we have dp(a, 8) = dx(7(«), 7(5)),
so that

B gy (o, 7) = {B € L: ®(B) € Brx,ay)(T(a),7)}.

Now choose ' > 0 so small that

Bx,a) (T(@), ') C Bz gy (F (), 7).

Then, if v’ is sufficiently small,

Biray(onr') = {8 € L: 7(8) € Bz (R(0), ™)}
C {8 € L: 7(8) € Bgay (R(0),1)} = Bray (o 7).

It now suffices to show that if « is fixed and 3 is sufficiently close to «, then o and g lie
on the same sheet. Assume that {f3,} is a sequence of points in L that converges to «, but 3,
is not in the same sheet as « for every n. By the definition of the distance on the f-manifold,
this implies that there is a sequence {~,} such that v, € p(«, ) and 7(v,) converges to T(«).
Because « is fixed, the set {p(«, 5,)} has at most finitely many distinct elements. So there is
an infinite subsequence {7/} of {7, } and the corresponding subsequence {3, } of {3,,} such that

Y, € pla, By,) = p(a, Bo)

for some fixed (y. Since «, 7, € p(«) for all n and p(a) is compact by statement (5), it follows
from the fact that 7(v],) converges to 7(«) and statement (4) that {~,} converges to . But
from the facts that p(«, 5o) is compact and 7/, € p(a, fp), it follows that a € p(«, By). Therefore,
a and [, are in the same panicle, and hence the same sheet, for all n, a contradiction. |
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Theorem 6.5. Let A be a point-fibred attractor of an IFS F. For the f-manifold of (F, A) there
are at most N + 1 topologically distinct leaves. Specifically, the leaf (@) = K is homeomorphic
to A, and the leaf 1(0) for 8 # @ is homeomorphic to A\ fi,(A) where —ig is the last component
of 0.

Proof. To simplify notation, when the intent is clear, we make no distiction between ¢ € T and
its equivalence class in L. For o € L, note that 7({(«)) € A. For aleaf [(0), let (I(6)) = {<a>: a€

0)}. By definition, ¢ € (I(9)) ifand only if 7(¢) € Aand fgi(,y(m(¢)) ¢ Afori=0,1,2,...,k~1;
the last condition here is equivalent to f;,(m (L)) ¢ A where —29 is the last entry in 9 Therefore
©((1(8))) = A\fi,(A). This implies that 7(l(8)) = fo(m({1(0)))) = fo(A\fi,(A)). Since 7
restricted to [(0) is a homeomorphism by part (4) of Theorem 6.4, and fy is a homeomorphism,
we have [(#) is homeomorphic to A\ fi, (A). [ |

Corollary 6.6. Let A be a point-fibred attractor of an IFS F. The closures of any two distinct
leaves of the f-manifold are non-overlapping.

Proof. This follows from part (5) of Theorem 6.4, Theorem 6.5, and the fact that the boundary
of a compact set has empty interior. |

Example 6.7. The attractor of the IFS {R; fi1, fa} where fi(x) = %ZL’ and fo(z) = %x—l—%, is the
Cantor set C. The f-manifold L is the disjoint union of its leaves, each of which is homeomorphic
to C. The image of each leaf under the projection map 7 is related by a similitude to C, with
scaling factor equal to 3* for some k € Ny.

Example 6.8. The attractor of the IFS {R; fi, fo} where fi(z) = 32 and fo(z) = $2+3, is the
unit interval A = [0, 1]. The f-manifold is a connected, branched 1-manifold. The set K = /()
is homeomorphic to A = [0,1]. According to Theorem 6.5, all other leaves are homeomorphic
to half open intervals. Each panicle, a union of leaves, is homeomorphic to a closed interval.
Routine calculation shows the following. The length of the projection of each leaf, under 7, is a
power of 2. Fach point « € L is contained in a neighborhood that is homeomorphic to the open
interval (0,1) or, if it is a branch point, to the union of a countably infinite number of copies
of [0,1) where only « is common to the copies. The branch points are isolated. More exactly,
the branch points are the points of I whose projection under 7 are of the form 2", n > 0, or
—2" + 1, n > 0. Each sheet of L is mapped isometrically by 7 to either R or the interval [0, c0)
or the interval (—oo, 1]. For example (recall that the “bar” means infinite repetition) the sheet
L—5— is homeomorphic to R, and L—5 is homeomorphic to (—oo, 1]. See Fig. 4.

Example 6.9. While it is easy to visualize the branched fractal manifold in the above example,
it is harder to picture it in the following example, illustrated in Fig. 5. Here the IFS F =
{R?%; f,, n = 1,2,3,4} is affine, with the following property. There is a triangle ABC with
points ¢ € AB, a € BC, b € CA, where XY is the line segment joining the points X and Y,
and the triangles abc, ABC, Abc, aBc, abC are non-degenerate. Moreover, fi(ABC) = Abc,
f2(ABC) = aBe, f3(ABC) = abC, and fi(ABC) = abc. IFSs of this kind are discussed in [1].
This IFS possesses a unique attractor, the filled triangle with vertices ABC'. This attractor is
represented, in each of the four panels of Fig. 5, by a very small multicoloured triangle located
near the center of each of the four pictures; directly below it is a small yellow triangle. If
0 € 1 is reversible, then By = R2. The branched fractal manifold consists of non-denumerably
many copies of R? glued together appropriately. Each region of glue is triangular. The top left
panel illustrates B, for a fixed choice of ijk. It comprises 256 copies of A, namely the sets
fl._lofj_lofk_lofl_lofmofnofoofp(A) for all m,n,o,p € {1,2, 3,4}, each copy in a colour that is
supposed to be different from its neighbours. The top right panel illustrates B;jx1 U Bjj k2, where
each of the subtriangles fi—1 o fj_l o fk_l o f2_1 o fmo fao foo fp(A) for all m,n,o,p € {1,2,3,4}
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Figure 4. A portion of the f-manifold of Example 6.8. Each leaf [(0) is labeled by —f. Note that there
are additional leaves, with longer labels, incident with some of the branch points in the diagram, that
are not included in the diagram.

is coloured so that it is different from its neighbours. The two images may be thought to be
glued together on B;j;. Similarly, the bottom left panel illustrates B;jr1 U Bjjra U Bjjrz and the
bottom right panel illustrates B;jr1 U Bijka U Bijra U Bijka.

7 Related work

Fast basins, the extended code space, and branched fractal manifolds were first introduced in
the earliest version of this paper [3], which also concerns the notion of fractal continuation, first
introduced in [6].

The notion of fractal continuation is discussed in [5, 6], in the context of fractal interpolation,
and in [8] in the context of tiling theory. The scope of the present work is much wider, most
particularly with regard to the definition and topology of fast basins and branched fractal
manifolds. In [2], a work in progress, conditions under which certain topological and geometrical
properties that the fast basin inherits from the attractor of the IFS are established. These
properties include the Hausdorff and topological dimension, local connectivity and o-porosity.

Notions related to but distinct from fast basins and branched fractal manifolds occur in the
literature, mainly in the context of IFSs of similitudes with the open set condition (OSC). In
particular, some fast basins are fractafolds as defined by Stritchartz [16, Section 5.4], and some
are examples of fractafold bundles as defined by Ionescu and Kumjian [11]. We discuss these
related notions in more detail in the following paragraphs.

In [14] Strichartz defines and establishes some properties of fractal blowups (called fractal
continuations here) for an IFS consisting of similitudes that obeys the OSC. Fractal blowups
for the classical Cantor set, the Sierpinski triangle, and the Koch curve are investigated, and
it is noted that various different IFSs, with the Koch curve as the attractor, yield different
blowups. It is pointed out that in general a given IFS may yield a nondenumerable set of non-
homeomorphic blowups, where the relative topology is assumed. Strichartz is focused on post
critically finite (PCF) fractals because energy forms and Laplacians can be defined on their
blowups. In [16, Section 5.4] Strichartz defines a fractafold to be a countable union of PCF
fractals, glued together on their boundaries in such a way that every point in the fractafold has
a neighborhood that is conjugate to a neighborhood of a point on the attractor; this notion
subsumes fractal blowups. In his context, Strichartz considers a fractafold to be a generalization
of the notion of a manifold, with the role of Euclidean space (or half-space) being played by the
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Figure 5. Fractal manifold under construction. See Example 6.9.

attractor. In various works, see for example [15], he has shown how energy forms and Laplacians
on PCF fractals can be extended to fractafolds.

Some branched fractal manifolds are related to fractafold bundles, defined by Ionescu and
Kumjian [11]. They consider IFSs of the form of F with 0 < r; < R; < 1 and rid(z,y) < d(fi(z),
fily)) < Rid(z,y) for all z,y € X and alli = 1,2,..., N, so that F is invertible and has a unique
attractor A. They define the associated fractafold bundle L to be {w x B, : w € I}, but with
a certain inductive limit topology in place of the relative topology. They use the projection of
L onto I} in order to build a Renault—-Deaconu groupoid which exploits the fact that if tails of
two strings «, 8 € [ are the same, and F obeys the OSC, then B, and Bg are homeomorphic.
This enables the establishment of properties of an associated C*-algebra on L. The point of
view in [11] is very different from that of the present work because it concerns the projection
of L onto I, rather than into X.
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