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Abstract. Embeddings of the Racah algebra into the Bannai–Ito algebra are proposed
in two realizations. First, quadratic combinations of the Bannai–Ito algebra generators in
their standard realization on the space of polynomials are seen to generate a central exten-
sion of the Racah algebra. The result is also seen to hold independently of the realization.
Second, the relationship between the realizations of the Bannai–Ito and Racah algebras
by the intermediate Casimir operators of the osp(1|2) and su(1, 1) Racah problems is es-
tablished. Equivalently, this gives an embedding of the invariance algebra of the generic
superintegrable system on the two-sphere into the invariance algebra of its extension with
reflections, which are respectively isomorphic to the Racah and Bannai–Ito algebras.
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1 Introduction

The purpose of this paper is to examine the relationship between two algebraic structures that
have received some attention in the literature as of late: the Racah algebra and the Bannai–
Ito algebra. Using two realizations of these algebras, it will be shown that the former can be
embedded into the latter.

The Racah algebra, in its standard presentation (1), first appeared in 1988 in the paper [8]
by Granovskii and Zhedanov, who used this algebraic structure to study the symmetry group of
the 6j symbols that arise from the coupling of three angular momenta, also known as the Racah
problem for su(2). The Racah algebra can be defined as the unital associative algebra over C
with generators κ1, κ2, κ3 and relations

[κ1, κ2] = κ3, [κ2, κ3] = a2κ
2
2 + a1{κ1, κ2}+ c1κ1 + dκ2 + e1,

[κ3, κ1] = a1κ
2
1 + a2{κ1, κ2}+ c2κ2 + dκ1 + e2, (1)

where [a, b] = ab − ba and {a, b} = ab + ba and where ai, ci, d, ei for i = 1, 2 are structure
constants. The algebra (1) has a Casimir operator

T = a1
{
κ21, κ2

}
+ a2

{
κ1, κ

2
2

}
+
(
a21 + c1

)
κ21 +

(
a22 + c2

)
κ22 + κ23

+ (d+ a1a2){κ1, κ2}+ (2e1 + da1)κ1 + (2e2 + da2)κ2, (2)

which commutes with all generators. In (1) only two of the generators are genuinely independent
and hence κ3 can be eliminated from the defining relations. Moreover, if a1a2 6= 0, one can set
a1 = a2 = 1 and c1 = c2 = 0 by performing affine transformations on the generators [5].
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The Racah algebra can be described as the algebraic structure encoding the bispectrality of
the Racah and Wilson polynomials, which sit at the top the Askey scheme of hypergeometric
orthogonal polynomials [5]. This assertion originates from the fact that the Racah algebra (1)
has realizations on the space of polynomials, called standard realizations, in which the generators
are the difference and recurrence operators associated to these polynomials. As an example, in
the case of the Racah polynomials Rn(λ(x);α, β, γ;N) (in the notation of [13]) of degree n in
the variable λ(x) = x(x+ γ + δ + 1), the standard realization is defined as

κ1(x) = B(x)T+ +D(x)T− − (B(x) +D(x))I, κ2(x) = λ(x), (3)

where T±f(x) = f(x± 1) are discrete shift operators and where B(x) and D(x) are of the form

B(x) =
(x+ α+ 1)(x+ β + δ + 1)(x+ γ + 1)(x+ γ + δ + 1)

(2x+ γ + δ + 1)(2x+ γ + δ + 2)
,

D(x) =
x(x− α+ γ + δ)(x− β + γ)(x+ δ)

(2x+ γ + δ)(2x+ γ + δ + 1)
.

The operators (3) satisfy the relations (1) with the structure constants expressed in terms of the
parameters α, β, γ and N [5]. In the realization (3), the Casimir operator (2) is a multiple of
the identity. In the basis {vi = Ri(λ(x);α, β, γ;N)}Ni=0, the realization (3) yields a 3-parameter
family of (N + 1)-dimensional irreducible representations of (1) in which κ1 is represented by
a diagonal matrix and κ2 is represented by a tridiagonal matrix. Infinite-dimensional represen-
tations of (1) are obtained by taking the standard representation associated with the difference
and recurrence operators of the Wilson polynomials.

The Racah algebra has a an alternative presentation in terms of generators A, B, C and ∆.
In this presentation, one has

A+B + C = Γ, [A,B] = [B,C] = [C,A] = 2∆, (4a)

where Γ is a constant or a central operator. The commutation relations are

[A,∆] = BA−AC + iA, [B,∆] = CB −BA+ iB, [C,∆] = AC − CB + iC , (4b)

where iA, iB, iC are structure constants. The details of the passage from (1) to (4) can be
found in [6]. The presentation (4) is known as the democratic or equitable presentation, as
it is invariant under cyclic permutations of the generators A, B and C. As far as we know,
the democratic presentation of the Racah algebra first appeared in the work of Lévy-Leblond
and Lévy-Nahas (equations (2.8) and (2.9) of [15]), who were concerned with the symmetrical
coupling of three angular momenta. The algebra (4), which has also been studied in [1], can be
seen as a q = 1 analog of the Askey–Wilson algebra in its Z3-symmetric presentation, see [17].

The Bannai–Ito algebra was first introduced in 2012 by Tsujimoto, Vinet and Zhedanov
in their study of the Bannai–Ito polynomials [19]. This algebra can be defined as the unital
associative algebra over C with generators X, Y , Z and relations

{X,Y } = Z + ωZ , {Y,Z} = X + ωX , {Z,X} = Y + ωY , (5)

where ωX , ωY , ωZ are structure constants. The Bannai–Ito algebra has a Casimir operator

U = X2 + Y 2 + Z2, (6)

which commutes with all generators. Again, only two of the generators are genuinely indepen-
dent. The Bannai–Ito algebra encodes the bispectral properties of the Bannai–Ito polynomials.
The standard realization of the Bannai–Ito algebra on the space of polynomials is defined as

X(z) = F (z)T+R+G(z)R− (F (z) +G(z)− h)I, Y (z) = 2z + 1/2, (7)
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where Rf(z) = f(−z) is the reflection operator, where

F (z) =
(z − r1 + 1/2)(z − r2 + 1/2)

z + 1/2
, G(z) =

(z − ρ1)(z − ρ2)
−z

,

h = ρ1 + ρ2 − r1 − r2 + 1/2,

and where ρ1, ρ2, r1, r2 are complex parameters. In the realization (7), the Casimir operator (6)
acts as a multiple of the identity. If one introduces the basis vectors wi = Bi(z; ρ1, ρ2, r1, r2)
for i = 0, 1, 2, . . ., where Bn(z; ρ1, ρ2, r1, r2) are the Bannai–Ito polynomials of degree n in z
(see [2]), one obtains a four-parameter family of infinite-dimensional irreducible representations
of (5) where X is represented by a diagonal matrix and Y is represented by a tridiagonal matrix;
these representations can be made finite-dimensional under appropriate truncation conditions.

The Racah and Bannai–Ito algebras are intimately related to second-order superintegrable
systems in two dimensions. Recall that a quantum system in d dimensions governed by a Hamil-
tonian H is said to be superintegrable if it possesses 2d− 1 algebraically independent constants
of motion, see [16] for a review. On the one hand, the Racah algebra arises as the symmetry al-
gebra for the generic superintegrable system on the two-sphere [9, 10]. This system is described
by the Hamiltonian

H = L2
1 + L2

2 + L2
3 +

(
x21 + x22 + x23

)(k21 − 1/4

x21
+
k22 − 1/4

x22
+
k23 − 1/4

x23

)
, (8)

where ki > −1/2, i = 1, 2, 3, are real parameters and where the operators Li are the standard
angular momentum generators in three dimensions

L1 =
1

i
(x2∂x3 − x3∂x2), L2 =

1

i
(x3∂x1 − x1∂x3), L3 =

1

i
(x1∂x2 − x2∂x1).

The model defined by (8) is the most general second-order superintegrable system in two dimen-
sions (without reflections-see below), as all the other systems in that category can be obtained
from it by taking limits and contractions [12]. The connection between the representations
of the symmetry algebra generated by the second-order constants of motion of (8) and the
Racah/Wilson polynomials was established in [11]. On the other hand, the Bannai–Ito algebra
arises as the invariance algebra for the system governed by the Hamiltonian [3]

H = L2
1 + L2

2 + L2
3 +

(
x21 + x22 + x23

)(µ1(µ1 −R1)

x21
+
µ2(µ2 −R2)

x22
+
µ3(µ3 −R3)

x23

)
, (9)

where Rif(xi) = f(−xi), i = 1, 2, 3, are reflection operators. Since the Hamiltonian (9) com-
mutes with the reflection operators, it can be considered as a concatenation of eight systems
of type (8), which is reminiscent of supersymmetry. The model described by (9) is in fact su-
persymmetric, as it can be expressed, up to additive constant, as the square of a Hermitian
supercharge (see [3, 7]).

The fact that the Racah and Bannai–Ito algebras appear as symmetry algebras for the mo-
dels (8) and (9) is directly related to the fact that these algebras also arise as the commutant
algebras for the actions of the Lie algebra su(1, 1) and Lie superalgebra osp(1|2) on three-fold
tensor product representations (see [5] and [4]). Indeed, in three-fold tensor product represen-
tations involving three irreducible representations of the positive-discrete series for su(1, 1) and
osp(1|2), the Hamiltonians (8), (9) and their symmetries respectively correspond to total and
intermediate Casimir operators constructed from the coproducts of su(1, 1) and osp(1|2) (see
Section 3 for details).

In light of the visible relationship between the two Hamiltonians (8), (9) and the embedding
su(1, 1) ⊂ osp(1|2), it is natural to expect a relation between the Racah and Bannai–Ito algebras.
In the present paper, this relation will be made explicit.
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Here is the outline of the paper. In Section 2, we show that upon taking appropriate quadratic
combinations of the generators of the Bannai–Ito algebra (5), one finds a central extension of
the Racah algebra in its equitable presentation. In Section 3, the quadratic relation between the
sCasimir operator of osp(1|2) and the Casimir operator of su(1, 1) is derived. The realization of
the Racah generators in terms of the Bannai–Ito generators in the context of three-fold tensor
product representations of su(1, 1) and osp(1|2) is given. The relation between the constants of
motion of the superintegrable systems (8) and (9) is deduced. A short conclusion follows.

2 Embedding of the Racah algebra into the Bannai–Ito algebra
and the standard realization

Consider the standard realization (7) of the Bannai–Ito algebra. In this representation, the
structure constants have the expressions

ωX = 4(ρ1ρ2 + r1r2), ωY = 2
(
ρ21 + ρ22 − r21 − r22

)
, ωZ = 4(ρ1ρ2 − r1r2),

and the Casimir operator (6) acts a multiple of the identity with value

U(z) = uI, u = 2
(
ρ21 + ρ22 + r21 + r22

)
− 1/4.

Consider the quadratic combination of generators

A(z) =
1

4

(
X2(z)−X(z)− 3

4

)
, B(z) =

1

4

(
Y 2(z)− Y (z)− 3

4

)
,

C(z) =
1

4

(
Z2(z)− Z(z)− 3

4

)
, (10)

and introduce the operator

I(z) = X(z) + Y (z) + Z(z)− 3/2. (11)

It is verified that I(z) commutes the operators A(z), B(z) and C(z), i.e.,

[A(z), I(z)] = [B(z), I(z)] = [C(z), I(z)] = 0.

It is also observed that the generators A(z), B(z), C(z) commute with their sum since one has

A(z) +B(z) + C(z) =
1

4
[U(z)− I(z)− 15/4], (12)

where U(z) is the Bannai–Ito Casimir operator (6). Let ∆(z) be defined as

[A(z), B(z)] = [B(z), C(z)] = [C(z), A(z)] = 2∆(z).

A direct calculation using the expressions (7) for the standard realization shows that the oper-
ators A(z), B(z), C(z) and ∆(z) satisfy the commutation relations

[A(z),∆(z)] = B(z)A(z)−A(z)C(z) +
1

16

(
ωY − ωZ

2

)[(
ωY + ωZ

2

)
− I(z)

]
,

[B(z),∆(z)] = C(z)B(z)−B(z)A(z) +
1

16

(
ωZ − ωX

2

)[(
ωZ + ωX

2

)
− I(z)

]
, (13)

[C(z),∆(z)] = A(z)C(z)− C(z)B(z) +
1

16

(
ωX − ωY

2

)[(
ωX + ωY

2

)
− I(z)

]
.
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Upon comparing the above relations with those appearing in (4), it is directly seen that the
above relations coincide with the defining relations of the equitable Racah algebra extended
by the central operator I(z). We have thus shown that the quadratic combinations (10) of the
generators of the Bannai–Ito algebra (5) in the standard realization (7) realize the Racah algebra.
The explicit expression of the generators A(z), B(z) and C(z) should be compared with (3).

Remark 1. While the above calculations have been performed with the help of the faithful
model provided by the realization (7), let us observe that the embedding (13) of the Racah
algebra into the Bannai–Ito algebra can be obtained directly in an abstract fashion using only
the definitions (10), (11), (12), and the relations (5).

3 Embedding of the Racah algebra into the Bannai–Ito algebra,
superintegrability in two dimensions and the Racah problem

In this section we give another embedding of the Racah algebra into the Bannai–Ito algebra
in relation with the realizations of these algebras as symmetry algebras for the superintegrable
systems (8) and (9) or equivalently as commutant algebras for the actions of su(1, 1) and osp(1|2)
on three-fold tensor product representations. Let us first review how the Racah and Bannai–Ito
algebras arise in the context of the latter.

3.1 The Racah algebra and the Lie algebra su(1, 1)

The su(1, 1) algebra has three generators K0, K± satisfying the commutation relations

[K0,K±] = ±K±, [K−,K+] = 2K0.

The Casimir operator for su(1, 1) can be written as

C = K2
0 −K+K− −K0, (14)

As a Lie algebra, su(1, 1) admits a coproduct ∆: su(1, 1)→ su(1, 1)⊗ su(1, 1) given by

∆(K±) = 1⊗K± +K± ⊗ 1, ∆(K0) = 1⊗K0 +K0 ⊗ 1. (15)

The coproduct allows to construct tensor product representations. Let V (λ) be an irreducible
representation space for su(1, 1) on which the Casimir operator C acts as a λI. Consider the
three-fold tensor product representation on V = V (λ1) ⊗ V (λ2) ⊗ V (λ3). The action of the
generators is given by

K±V = (1⊗∆)∆(K±)V, K0V = (1⊗∆)∆(K0)V. (16)

The elements that commute with the action of su(1, 1) on V are easily constructed. First, one has
the three initial Casimir operators C(i), C(2), C(3) for i = 1, 2, 3 associated to each factor V (λi)

of the tensor product. These operators are defined as

C(1) = C ⊗ 1⊗ 1, C(2) = 1⊗ C ⊗ 1, C(3) = 1⊗ 1⊗ C.

Second, one has the total Casimir operator C(4) that has the expression

C(4) = (1⊗∆)∆(C) = (∆⊗ 1)∆(C),

and which acts non-trivially on all factors of the tensor product. Finally, one has the two
intermediate Casimir operators C(12) and C(23) that are of the form

C(12) = ∆(C)⊗ 1 C(23) = 1⊗∆(C),
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and which act non-trivially only on a pair of representation spaces. By construction, the initial,
intermediate and total Casimir operators commute with action (16) of the su(1, 1) generators
on the tensor product space V . However, these Casimir operators do not all commute with
each other and they thus generate a non commutative commutant algebra. This algebra can be
identified with the Racah algebra as follows.

Let A and C be defined as A = C(23), C = C(12), and let B =
4∑
i=1

C(i)−A−C. By definition,

we thus have

A+ B + C = C(1) + C(2) + C(3) + C(4).

Since A, B and C all commute with the Casimir operators C(i) for i = 1, 2, 3, 4, one can introduce
the operator Ω defined as

[A,B] = [B, C] = [C,A] ≡ 2Ω.

Using the expressions of the intermediate and total Casimir operators computed from (14) and
the coproduct (15), an involved calculation shows that the operators A, B, C together with the
operator Ω, satisfy the commutation relations

[A,Ω] = BA−AC + (λ2 − λ3)(λ4 − λ1), [B,Ω] = CB − BA+ (λ3 − λ1)(λ4 − λ2),
[C,Ω] = AC − CB + (λ1 − λ2)(λ4 − λ3), (17)

where the substitutions C(i) = λi for i = 1, 2, 3, 4 were made to underscore the fact that each
eigenspace of C(4) supports a representation of the Racah algebra (17).

The relationship between the results presented above and the analysis of the generic superin-
tegrable system on the 2-sphere is as follows [5]. Let V (k) be the representation associated with
the following realization of su(1, 1):

K0(x) =
1

4

(
−∂2x + x2 +

k2 − 1/4

x2

)
, K±(x) =

1

4

(
(x∓ ∂x)2 − k2 − 1/4

x2

)
, (18)

where k is a real number such that k > −1/2. In this realization, one has

C(x) =
1

4

(
k2 − 1

)
I.

This realization corresponds to positive-discrete series [20]. Consider the tensor product rep-
resentation V (k1) ⊗ V (k2) ⊗ V (k3) obtained by taking three copies of the realization (18) with
parameters k1, k2 and k3 in the three independent variables x1, x2 and x3. In this realization,
the total Casimir operator C(4) takes the form

C(4)(x1, x2, x3) =
1

4

(
L2
1 + L2

2 + L2
3

+
(
x21 + x22 + x23

)(k21 − 1/4

x21
+
k22 − 1/4

x22
+
k23 − 1/4

x23

)
− 3

4

)
. (19)

Upon comparing with (8), it is directly seen that the total Casimir operator corresponds, up to
an inessential affine transformation, to the Hamiltonian for the generic superintegrable system
on the two-sphere. By construction, the intermediate Casimir operators A, B and C commute
with C(4), and are thus the constants of motion of the Hamiltonian. In this realization, one has

A(x1, x2, x3) =
1

4

[
L2
1 +

(
x22 + x23

)(k22 − 1/4

x22
+
k23 − 1/4

x23

)
− 1

]
,
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B(x1, x2, x3) =
1

4

[
L2
2 +

(
x21 + x23

)(k23 − 1/4

x23
+
k21 − 1/4

x21

)
− 1

]
, (20)

C(x1, x2, x3) =
1

4

[
L2
3 +

(
x21 + x22

)(k21 − 1/4

x21
+
k22 − 1/4

x22

)
− 1

]
.

The constants of motion A(x1, x2, x3), B(x1, x2, x3) and C(x1, x2, x3) satisfy the defining re-
lations of the equitable Racah algebra (17) with λi = (k2i − 1/4)/4 for i = 1, 2, 3 and λ4 =
(H − 3/4)/4 where H is the Hamiltonian (8) of the generic superintegrable system on the 2-
sphere. The constants of motion (20) coincide with those constructed by Miller et al. [9, 10, 12].

3.2 The Bannai–Ito algebra and the Lie superalgebra osp(1|2)

The osp(1|2) Lie superalgebra has two odd generators A± and one even generator A0 that obey
the commutation relations

[A0, A±] = ±A±
2
, {A+, A−} = 2A0.

The even subalgebra of osp(1|2) is generated by the elements J± = A2
± and A0. The generators

of the even subalgebra satisfy the defining relations of su(1, 1). One has indeed

[A0, J±] = ±J±, [J−, J+] = 2A0,

whence it follows that su(1, 1) ⊂ osp(1|2). The abstract Z2 grading of osp(1|2) can be con-
cretized by appending the grade involution P to the set of generators and declaring that the
even generators commute with P and that the odd generators anticommute with P . Hence one
can define osp(1|2) as the algebra generated by A±, A0 and the involution P satisfying the
relations

[A0, A±] = ±A±
2
, {A+, A−} = 2A0, [A0, P ] = 0 {A±, P} = 0, P 2 = 1.

This presentation has been referred to as sl−1(2) [18]; in this presentation the grading of the
elements no longer needs to be specified. The sCasimir operator S of osp(1|2) is defined as [14]

S = 2A+A− − 2A0 + 1/2.

The sCasimir operator satisfies the relations

{S,A±} = 0, [S,A0] = 0.

There is a quadratic relation between the sCasimir of osp(1|2) and the Casimir operator of the
even su(1, 1) subalgebra, denoted by Csu(1,1)⊂osp(1|2). A direct calculation shows that

Csu(1,1)⊂osp(1|2) =
1

4

(
S2 + S − 3

4

)
, (21)

where one has

Csu(1,1)⊂osp(1|2) = A2
0 − J+J− −A0,

as per (14). An operator that commutes with every element of osp(1|2) can be constructed by
combining the sCasimir with the grade involution. It is indeed verified that the operator

Q = S · P = 2A+A−P − 2A0P + P/2, (22)
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commutes with A± and A0. We shall refer to (22) as the Casimir operator for osp(1|2).
The osp(1|2) algebra has a coproduct defined as follows

∆(A±) = A± ⊗ P + 1⊗A±, ∆(A0) = 1⊗A0 +A0 ⊗ 1, ∆(P ) = P ⊗ P. (23)

This coproduct allows to construct tensor product representations. Let W (λ) be an irreducible
representation space for osp(1|2) on which the Casimir operator (22) acts as λI. Consider the
three-fold tensor product representation W = W (λ1)⊗W (λ2)⊗W (λ3). The action of the osp(1|2)
generators is

A±W = (1⊗∆)∆(A±)W, A0W = (1⊗∆)∆(A0)W, PW = (1⊗∆)∆(P )W.

Once again, the elements that commute with this action are easily found. First, one has the
initial Casimir operators Q(i), Q(2), Q(3) for i = 1, 2, 3 associated to each factor W (λi). They are
defined as

Q(1) = Q⊗ 1⊗ 1, Q(2) = 1⊗Q⊗ 1, Q(3) = 1⊗ 1⊗Q.

Second, one has the total Casimir operator Q(4) defined as

Q(4) = (1⊗∆)∆(Q) = (∆⊗ 1)∆(Q),

which acts non-trivially on all factors of the three-fold tensor product. Finally, one has the two
intermediate Casimir operators Q(12) and Q(23) given by

Q(12) = ∆(Q)⊗ 1 Q(23) = 1⊗∆(Q),

which act non-trivially only on a pair of representation spaces. By construction, the initial,
intermediate and total Casimir operators commute with the action of the osp(1|2) generators on
the tensor product space W . However, these Casimir operators do not all commute with each
other and they thus give rise to a non-commutative commutant algebra. This algebra can be
identified with the Bannai–Ito algebra in the following way.

Let Z and X be defined by

Z = −Q(12), X = −Q(23).

Upon using the formulas (22) and (23) for the Casimir and coproduct for osp(1|2), an involved
calculation shows that the operators Z, X satisfy the relations

{Z,X} = Y + ωY , {X,Y } = Z + ωZ , {Y,Z} = X + ωX , (24)

where Y is defined by the first relation of (24) and where

ωX = 2(λ2λ3 + λ1λ4), ωY = 2(λ1λ3 + λ2λ4), ωZ = 2(λ1λ2 + λ3λ4). (25)

Again we have made the substitutions Q(i) → −λi for i = 1, 2, 3, 4, replacing the initial and
total Casimir operators, which commute with X, Y , Z, by constants.

The relationship between the superintegrable system with reflections on the two-sphere
governed by the Hamiltonian (9) and the above considerations can be established as follows.
Let W (µ) be the representation of osp(1|2) associated with the coordinate realization

A±(x) =
1

2

(
x∓ ∂x ±

µ

x
Rx

)
, A0(x) =

1

4

(
−∂2x + x2 +

µ(µ−Rx)

x2

)
,

P (x) = Rx, (26)
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where Rxf(x) = f(−x) is the reflection operator and where µ is a real parameter such that µ > 0.
In this realization, the Casimir operator Q of osp(1|2) acts as a multiple of the identity with
multiple

Q(x) = −µI.

The Casimir operator for the even su(1, 1) subalgebra has the expression

Csu(1,1)⊂osp(1|2) = A0(x)2 − J+(x)J−(x)−A0(x) =
1

4

[
µ2 − µRx −

3

4

]
. (27)

Consider now the tensor product representation W = W (µ1) ⊗ W (µ2) ⊗ W (µ3) obtained by
combining three copies of the realization (26) in three independent variables x1, x2, x3 using the
coproduct specified in (23). In this realization one has[

S(4)(x1, x2, x3)
]2

+ S(4)(x1, x2, x3)

= L2
1 + L2

2 + L2
3 +

(
x21 + x22 + x23

)(µ1(µ1 −R1)

x21
+
µ2(µ2 −R2)

x22
+
µ3(µ3 −R3)

x23

)
,

where S(4) is the total sCasimir operator. It is directly seen that the right-hand side of (3.2)
corresponds to the Hamiltonian for the generic superintegrable system on the 2-sphere with
reflections. The supersymmetry of (3.2) is manifest from the above equation. Indeed, the
right-hand side of (3.2) can be written, up to a constant, as the square of the Hermitian super-
charge S(4). The intermediate Casimir operators X and Z as well as the derived operator Y
commute with the total Casimir Q(4), but also with the total sCasimir S(4). Indeed, in view
of (22) and (23), one has

S(4)(x1, x2, x3) = Q(4)(x1, x2, x3) ·R1R2R3.

Since the operators X, Y , Z commute with the product R1R2R3, it follows that they are
symmetries of S(4) and consequently of the Hamiltonian (9). In the present realization, the
constants of motion have the expressions

X(x1, x2, x3) =

(
iL1 + µ2

x3
x2
R2 − µ3

x2
x3
R3

)
R2 + µ2R3 + µ3R2 +R2R3/2,

Y (x1, x2, x3) =

(
−iL2 + µ1

x3
x1
R1 − µ3

x1
x3
R3

)
R1R2 + µ1R3 + µ3R1 +R1R3/2, (28)

Z(x1, x2, x3) =

(
iL3 + µ1

x2
x1
R1 − µ2

x1
x2
R2

)
R1 + µ1R2 + µ2R1 +R1R2/2.

They satisfy the commutations relations (24) with the structure constants (25). In this realiza-
tion, the Casimir operator of the Bannai–Ito algebra has the expression

U(x1, x2, x3) =
[
S(4)

]2
+ µ21 + µ22 + µ23 − 1/4.

3.3 Relationship between the two realizations

Let us now make explicit the relationship between the realization (20) of the Racah algebra (17)
by the constants of motion of the generic superintegrable system on the 2-sphere governed by the
Hamiltonian (19) and the realization (28) of the Bannai–Ito algebra (24) by the joint symmetries
of the total sCasimir operator S(4) and the generic superintegrable system with reflections on
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the 2-sphere described by the Hamiltonian (3.2). In view of the relation (21), we consider the
quadratic combinations

A(x1, x2, x3) =
1

4

[
X2(x1, x2, x3)−X(x1, x2, x3)R2R3 −

3

4

]
,

B(x1, x2, x3) =
1

4

[
Y 2(x1, x2, x3)− Y (x1, x2, x3)R3R1 −

3

4

]
, (29)

C(x1, x2, x3) =
1

4

[
Z2(x1, x2, x3)− Z(x1, x2, x3)R1R2 −

3

4

]
.

Remark 2. Let us note that the combinations (29) differ from those considered in (10) since
they involve the reflection operators R1, R2 and R3. This is related to the fact that the opera-
tors (28) realize in this case a central extension of the Bannai–Ito algebra with the total Casimir
operator Q(4)(x1, x2, x3) arising in the structure “constants”, see (25).

A direct calculation shows that the operators A, B and C have the expressions

A(x1, x2, x3) =
1

4

[
L2
1 +

(
x22 + x23

)(µ2(µ2 −R2)

x22
+
µ3(µ3 −R3)

x23

)
− 1

]
,

B(x1, x2, x3) =
1

4

[
L2
2 +

(
x23 + x21

)(µ3(µ3 −R3)

x23
+
µ1(µ1 −R1)

x21

)
− 1

]
, (30)

C(x1, x2, x3) =
1

4

[
L2
3 +

(
x21 + x22

)(µ1(µ1 −R1)

x21
+
µ2(µ2 −R2)

x22

)
− 1

]
.

These expressions are seen to correspond to the ones in (20) with ki having the expression

ki = (µi −Ri/2), i = 1, 2, 3. (31)

It is directly verified that the operators A(x1, x2, x3), B(x1, x2, x3) and C(x1, x2, x3) commute
with all the reflections. As a consequence, their algebraic properties are not affected by the
operator-valuedness of the ki. It follows that the operators (30) provide a realization of the
Racah algebra (17) where

λi =
1

4

(
µ2i − µiRi −

3

4

)
,

for i = 1, 2, 3 and where λ4 corresponds to the Hamiltonian (19) with the ki as in (31).

4 Conclusion

In this paper we have provided embeddings of the Racah into the Bannai–Ito algebra in two
different realizations. On the one hand, we have shown that in the standard realization of the
Bannai–Ito algebra on the space of polynomials, certain quadratic combinations of the Bannai–
Ito generators realize a central extension of the Racah algebra. On the other hand, we have
shown that in the realization of the Bannai–Ito algebra by the constants of motion of the generic
second-order superintegrable on the 2-sphere with reflections, again quadratic combinations of
the Bannai–Ito generators involving reflections satisfy the Racah algebra relations with structure
constants that depend on reflections.

The results presented here establish that the Racah algebra is embedded into the Bannai–Ito
algebra. This supports the assertion that the Bannai–Ito algebra can in fact be considered as
more fundamental than the Racah algebra, the former being essentially the “square-root” of
the latter. In view of the deep relationship between the Racah and Bannai–Ito algebras with
the Racah/Wilson and Bannai–Ito polynomials, it should be possible, in principle, to derive the
main properties of the Racah/Wilson polynomials from those of the Bannai–Ito polynomials. It
would be of interest to investigate this possibility.
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