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Abstract. In this article we develop some elementary aspects of a theory of symmetry in
sub-Lorentzian geometry. First of all we construct invariants characterizing isometric classes
of sub-Lorentzian contact 3 manifolds. Next we characterize vector fields which generate
isometric and conformal symmetries in general sub-Lorentzian manifolds. We then focus
attention back to the case where the underlying manifold is a contact 3 manifold and more
specifically when the manifold is also a Lie group and the structure is left-invariant.
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1 Introduction

1.1 Basic notions and motivation

Sub-Lorentzian geometry is a relatively new subject although it does fall within the scope
of broader perspectives on geometry. For instance the work of Berestovskii and Gichev [4]
on metrized semigroups is perhaps the broadest perspective one could take on the subject or
alternatively a more closely related generalisation is the notion of para-CR-geometry see [18].

The aim in this work is to look specifically at sub-Lorentzian geometry and so in this section
we only present the notions that are required for the formulation of the main results of the
paper. For more details and facts concerning sub-Lorentzian geometry, the reader is referred
to [12] and the references therein (see also [17, 20]). The structures which support the sub-
Lorentzian structures in this paper are identical to those which support the analogous structures
in the sub-Riemannian setting and so the reader is also referred to the paper of Agrachev and
Barilari [1] and the paper of Falbel and Gorodski [8] for background on these structures.

Let M be a smooth manifold. A sub-Lorentzian structure on M is a pair (H, g), where H
is a bracket generating distribution of constant rank on M , and g is a Lorentzian metric on H.
A triple (M,H, g), where (H, g) is a sub-Lorentzian structure on M , will be called a sub-
Lorentzian manifold.
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For any q ∈M , a vector v ∈ Hq will be called horizontal. A vector field X on M is horizontal
if it takes values in H. We will denote the set of all local horizontal vector fields by Γ(H). To
be more precise, X ∈ Γ(H) if and only if X is a horizontal vector field defined on some open
subset U ⊂M .

A nonzero vector v ∈ Hq is said to be timelike (resp. spacelike, null, nonspacelike) if g(v, v) < 0
(resp. g(v, v) > 0, g(v, v) = 0, g(v, v) ≤ 0), moreover the zero vector is defined to be spacelike.
Similarly, vector fields are categorized analogously according to when their values lie in exactly
one of the four categories mentioned above. An absolutely continuous curve γ : [a, b] −→ M
is called horizontal if γ̇(t) ∈ Hγ(t) a.e. on [a, b]. A horizontal curve γ : [a, b] −→ M is timelike
(spacelike, null, nonspacelike) if γ̇(t) is timelike (spacelike, null, nonspacelike) a.e. on [a, b].

If (H, g) is a sub-Lorentzian metric on M then, as shown in [15], H can be represented as
a direct sum H = H− ⊕ H+ of subdistributions such that rankH− = 1 and the restriction
of g to H− (resp. to H+) is negative (resp. positive) definite. This type of decomposition will
be called a causal decomposition of H. Now, by a time (resp. space) orientation of (M,H, g)
we mean an orientation of the vector bundle H− −→ M (resp. H+ −→ M). This definition
requires some explanations since causal decompositions are not unique. So suppose that we are
given two causal decompositions H = H−1 ⊕H

+
1 = H−2 ⊕H

+
2 and that the bundles H−i −→M

(resp. H+
i −→ M), i = 1, 2, are oriented. We say that the two orientations of H−1 −→ M and

H−2 −→M (resp. of H+
1 −→M and H+

2 −→M) define the same time (resp. space) orientation

of (M,H, g) if around any point of M there exist local sections X
(i)
1 of H−i −→M which agree

with the given orientations of H−i −→M (resp. local sections X
(i)
2 , . . . , X

(i)
k of H+

i −→M which

agree with the given orientations of H+
i −→ M), i = 1, 2, such that g

(
X

(1)
1 , X

(2)
1

)
< 0 (resp.

det
(
g
(
X

(1)
i , X

(2)
j

)
i,j=2,...,k

> 0
)
; by k we denote the rank of H.

Since a line bundle is orientable if and only if it is trivial, time orientability of (M,H, g) is
equivalent to the existence of a continuous timelike vector field on M . A choice of such a timelike
field is called a time orientation of (M,H, g).

Suppose that (M,H, g) is time oriented by a vector field X. A nonspacelike v ∈ Hq will
be called future (resp. past) directed if g(v,X(q)) < 0 (resp. g(v,X(q)) > 0). A horizontal
curve γ : [a, b] −→ M is called timelike future (past) directed if γ̇(t) is timelike future (past)
directed a.e. Similar classifications can be made for other types of curves, e.g. nonspacelike
future directed etc. If q0 ∈ M is a point and U is a neighborhood of q0, then by the future
timelike (nonspacelike, null) reachable set from q0 relative to U we mean the set of endpoints of
all timelike (nonspacelike, null) future directed curves that start from q0 and are contained in U .

Now we define a very important notion that will play a crucial role in the sequel. As it is
known [12], any sub-Lorentzian structure (H, g) determines the so-called geodesic Hamiltonian
which is defined as follows. The existence of the structure (H, g) is equivalent to the existence
of the fiber bundle morphism G : T ∗M −→ H covering the identity defined by G(λ) = (λp|Hp)],
where λ ∈ T ∗pM and ] denotes the musical isomorphism. In particular, if v, w are any horizontal
vectors, then g(v, w) = 〈ξ,Gη〉 = 〈η,Gξ〉 whenever ξ ∈ G−1(v), η ∈ G−1(w). The geodesic
Hamiltonian is the map h : T ∗M −→ R defined by

h(λ) =
1

2
〈λ,Gλ〉 .

If X1, . . . , Xk is an orthonormal basis for (H, g) with a time orientation X1, then

h|T ∗qM (λ) = −1

2
〈λ,X1(q)〉2 +

1

2

k∑
i=2

〈λ,Xi(q)〉2 .

A horizontal curve γ : [a, b] −→ M is said to be a Hamiltonian geodesic if there exists Γ :
[a, b] −→ T ∗M such that Γ̇ = ~h(Γ) and π(Γ(t)) = γ(t) on [a, b]; by π : T ∗M −→ M we denote
the canonical projections, and ~h is the Hamiltonian vector field corresponding to h.
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Let γ : [a, b] −→M be a nonspacelike curve. The non-negative number

L(γ) =

∫ b

a
|g(γ̇(t), γ̇(t))|1/2 dt

is called the sub-Lorentzian length of a curve γ. If U ⊂ M is an open subset, then the (local)
sub-Lorentzian distance relative to U is the function d[U ] : U×U −→ [0,+∞] defined as follows:
For q1, q2 ∈ U , let Ωnspc

q1,q2(U) denote the set of all nonspacelike future directed curves contained
in U which join q1 to q2, then

d[U ](q1, q2) =

{
sup {L(γ) : γ ∈ Ωnspc

q1,q2(U)} : Ωnspc
q1,q2(U) 6= ∅,

0 : Ωnspc
q1,q2(U) = ∅

(if Ωnspc
q,q (U) is non-empty for a q ∈ U then d[U ](q, q) =∞). A nonspacelike future directed curve

γ : [a, b] −→ U is called a U -maximizer if d[U ](γ(a), γ(b)) = L(γ). It can be proved (see [12])
that every sufficiently small subarc of every nonspacelike future directed Hamiltonian geodesic
is a U -maximizers for suitably chosen U .

Suppose now that we are given two sub-Lorentzian manifolds (Mi, Hi, gi), i = 1, 2. A diffeo-
morphism ϕ : M1 −→M2 is said to be a sub-Lorentzian isometry, if dϕ(H1) ⊂ H2 and for each
q ∈M1, the mapping dϕq : (H1)q −→ (H2)ϕ(q) is a linear isometry, i.e., for every v1, v2 ∈ (H1)q
it follows that

g1(v1, v2) = g2(dϕq(v1), dϕq(v2)).

Of course, any isometry maps timelike curves from M1 to timelike curves on M2. The same for
spacelike and null curves. Moreover isometries preserve the sub-Lorentzian length of nonspacelike
curves. If (Mi, Hi, gi), i = 1, 2, are both time- and space-oriented, then we can distinguish among
all isometries those that preserve one of the orientations or both of them. More precisely, suppose
that ϕ : M1 −→ M2 is an isometry. Let H1 = H−1 ⊕H

+
1 be a causal decomposition with given

orientation on H±1 . Let (H−2 )ϕ(q) = dϕq(H
−
1 )q, and (H+

2 )ϕ(q) = dϕq(H
+
1 )q, q ∈ M . Then H2 =

H−2 ⊕H
+
2 is again a causal decomposition where the summands H±2 inherit the orientation carried

from H±1 by ϕ. Now we say that ϕ preserves time (resp. space) orientation if the orientations
of H−2 (resp. H+

2 ) induced by ϕ agrees with the time (resp. space) orientation of (M2, H2, g2). An
isometry that preserves time and space orientation will be called a ts-isometry. It is clear that
any ts-isometry preserves Hamiltonian geodesics, maximizers, and local sub-Lorentzian distance
functions. Notice furthermore that the set of all isometries (M,H, g) −→ (M,H, g) is a Lie
group and the set of all ts-isometries forms a connected component containing the identity.

A sub-Lorentzian manifold (M,H, g) is called a contact sub-Lorentzian manifold, if H is
a contact distribution on M . Among sub-Lorentzian manifolds, those which are contact seem
to be the easiest to study and hence well known. Contact sub-Lorentzian manifolds are studied
for instance in papers [9, 10, 11, 14, 17, 19, 20, 21]. The investigations go in two directions.
The first addresses global aspects, e.g., in [10, 11] the Heisenberg sub-Lorentzian metric is
treated. More precisely, the future timelike, nonspacelike and null reachable sets from a point
are computed, and a certain estimate on the distance function is given. Moreover, it is shown
that the future timelike conjugate locus of the origin is zero, while the future null conjugate
locus equals the union of the two null future directed Hamiltonian geodesics starting from the
origin. In turn, in [20] and [11] it is proved that the set reachable from the origin by future
directed timelike Hamiltonian geodesics coincides with the future timelike reachable set from
the origin. In [20] the authors also study the set reachable by spacelike Hamiltonian geodesics
and prove the uniqueness of geodesics in the Heisenberg case. Next, in the papers [20, 21] the
so-called H-type groups (i.e. higher-dimensional analogues of the 3D Heisenberg group) with
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suitable sub-Lorentzian metrics are studied, and the main emphasis is put on the problem of
connectivity by geodesics, i.e. given two points q1, q2, figure out how many geodesics joining q1

to q2 exist. A similar problem is also dealt with in [19]. On the other hand, in [17] the group
SL(2,R) with the sub-Lorentzian metric is studied. As it will become clear below, the cases
of the Heisenberg group and that of SL(2,R) are especially interesting for us because these are
exactly the cases that arise when the invariant h̃ (defined below) vanishes. The other direction
of studies concerns the local situation and is based on the construction (see, e.g., [9, 13, 14]) of
local normal forms. Such local normal forms depend on two functional parameters and permit
to view general structures as perturbations of flat ones. This fact allows to generalize some
global results that hold in the flat case to local results for general structures describable by the
mentioned normal forms.

As one can see, problems connected with isometric and conformal symmetry have not been
examined in an explicit sense although in broader contexts such as parabolic geometry and
Cartan’s equivalence, there are applicable results. The aim of this paper is to embark on filling
this gap. More precisely, first we construct invariants for contact sub-Lorentzian manifolds
(M,H, g) with dimM = 3, more or less in the way as it is done in the contact sub-Riemannian
case – cf. [1]. Our invariants are: a (1, 1)-tensor h̃ on H and a smooth function κ on M . Then,
we consider in some detail the case that M is a 3-dimensional Lie group such that h̃ = 0. It
turns out that in such a case M is locally either the Heisenberg group or the universal cover of
SL(2,R). In these two cases we describe infinitesimal isometries and more generally infinitesimal
conformal transformations.

1.2 The content of the paper

In Section 2 we construct invariants for ts-oriented contact sub-Lorentzian metrics on 3D man-
ifolds. The construction follows the ideas of [1], however the full analogy does not exist due
to the special character of indefinite case. Our main invariants for a manifold (M,H, g) are:
a smooth (1, 1)-tensor h̃ on H and a smooth function κ on M . These invariants provide nec-
essary conditions for two contact sub-Lorentzian manifolds to be locally ts-isometric. We also
consider another invariant χ arising from the eigenvalues of h̃ which to a lesser extent also distin-
guishes the structure. The question as to whether {h̃, κ} is a complete set of invariants requires
deeper analysis using Cartan’s theory and is deferred to a forthcoming paper with Alexandr
Medvedev [16].

In Section 3 we define and prove basic properties of infinitesimal sub-Lorentzian isometries
and conformal transformations. Then we notice that the invariant h̃ can be expressed in terms
of the restricted Lie derivative of the metric g in the direction of the Reeb vector field. The
immediate consequence of this latter fact is that the Reeb vector field X0 is an infinitesimal
isometry if and only if h̃ vanishes identically.

Section 4 covers some other implications of certain combinations of the invariants vanishing.
In particular we demonstrate (see Proposition 4.5) that without any assumptions on orientation,
the condition χ = 0 and h̃ 6= 0 implies the existence of line sub-bundle L → M of H on which
the metric g is equal to zero. We then begin to focus on the condition h̃ = 0, where κ comes to
the fore. For example, when M is a simply connected Lie group, we show that h̃ = 0 and κ = 0
implies that M is the Heisenberg group – cf. Corollary 4.11, and h̃ = 0 and κ 6= 0 implies that M
is the universal cover of SL(2,R) – see Corollary 4.12. This contrasts with the sub-Riemannian
case where a third group, namely SU(2), also appears.

Section 6 is devoted to computing infinitesimal isometries and infinitesimal conformal trans-
formations using Cartan’s equivalence method and Appendix presents an example of an isomet-
rically rigid sub-Lorentzian structure.

Finally, the appendix presents possible applications of our invariants to a non-contact case.
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2 Constructing the invariants

2.1 Preliminaries

Let (M,H, g) be a contact sub-Lorentzian manifold, dimM = 3, which is supposed to be both
time and space oriented or ts-oriented for short. Since H is of rank 2, any causal decomposition
H = H− ⊕H+ splits H into a direct sum of line bundles. So in this case a space orientation is
just a continuous spacelike vector field, and consequently H admits a global basis. Let us fix
an orthonormal basis X1, X2 for (H, g), i.e.

g(X1, X1) = −1, g(X1, X2) = 0, g(X2, X2) = 1,

where X1 (resp. X2) is a time (resp. space) orientation. From now on we will work with ts-
invariants, i.e., with invariants relative to ts-isometries. However, when reading the text the
reader will see that the space orientation is only an auxiliary notion here and most of the results
do not depend on it (some of them do not depend on an orientation at all).

Let ω be a contact 1-form such that H = kerω. Without loss of generality we may assume
that ω is normalized so that

dω(X1, X2) = ω([X2, X1]) = 1.

Next, denote by X0 the so-called Reeb vector field on M which is defined by

ω(X0) = 1, dω(X0, ·) = 0. (2.1)

It is seen that X0 is uniquely determined by ts-oriented sub-Lorentzian structure. Using (2.1)
it is seen that the action of adX0 preserves the horizontality of vector fields, i.e.

adX0(Γ(H)) ⊂ Γ(H). (2.2)

Now (similarly as in [1]) we introduce the structure functions. Thanks to (2.2) and (2.1) we
have

[X1, X0] = c1
01X1 + c2

01X2, [X2, X0] = c1
02X1 + c2

02X2,

[X2, X1] = c1
12X1 + c2

12X2 +X0. (2.3)

Let ν0, ν1, ν2 be the dual basis of 1-forms: 〈νi, Xj〉 = δij , i, j = 0, 1, 2. Rewriting (2.3) in
terms of νi’s we have

dν0 = ν1 ∧ ν2, dν1 = c1
01ν0 ∧ ν1 + c1

02ν0 ∧ ν2 + c1
12ν1 ∧ ν2,

dν2 = c2
01ν0 ∧ ν1 + c2

02ν0 ∧ ν2 + c2
12ν1 ∧ ν2. (2.4)

Differentiating the first equation in (2.4) we obtain 0 = dν1∧ν2−ν1∧dν2 = (c1
01 +c2

02)ν0∧ν1∧ν2

from which it follows that

c1
01 + c2

02 = 0. (2.5)

2.2 Induced bilinear form and linear operator

In the introduction we defined the geodesic Hamiltonian h which can be written as

h = −1

2
h2

1 +
1

2
h2

2,
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where hi(λ) = 〈λ,Xi〉, i = 1, 2. We also consider the function h0(λ) = 〈λ,X0〉 and observe
that by definition both h and h0 are invariant with respect to ts-oriented structure (H, g).
Therefore, it is the same with their Poisson bracket {h, h0} which, when evaluated at q ∈ M ,
gives a symmetric bilinear form

{h, h0}q : T ∗qM × T ∗qM −→ R.

If λ ∈ T ∗qM then λ =
3∑
i=0

hi(λ)νi(q) and

Lemma 2.1. {h, h0}q = −c1
01h

2
1 + (c1

02 − c2
01)h1h2 + c2

02h
2
2.

Proof. The formula follows from {h, h0} = −h1{h1, h0} + h2{h2, h0}, where we substitute
{hi, h0}(λ) = 〈λ, [Xi, X0]〉, and then use (2.3). �

In the assertion of Lemma 2.1 and in many other places below we write cijk for cijk(q).

It follows that {h, h0}q(λ, ·) = 0 whenever λ ∈ H⊥q (by definition H⊥q is the set of such
covectors λ ∈ T ∗qM that 〈λ, v〉 = 0 for every v ∈ Hq), so in fact

{h, h0}q : T ∗qM/H⊥q × T ∗qM/H⊥q −→ R.

Let us recall (mutually inverse) musical isomorphisms determined by the metric g; these are
] : H∗ −→ H and [ : H −→ H∗, where by definition (ν1)] = −X1, (ν2)] = X2, (X1)[ = −ν1,
(X2)[ = ν2. Now it is easy to see that the bundle morphism G : T ∗M −→ H from the
introduction induces for each q a natural identification

Fq : T ∗qM/H⊥q −→ Hq, F ([α]) = (α|Hq
)],

where [α] stands for the class of α ∈ T ∗qM modulo H⊥q ; more precisely, H⊥q is spanned by ν0,
and F ([ν1]) = −X1, F ([ν2]) = X2. This permits us to define a bilinear symmetric form h̄q :
Hq ×Hq −→ R by

h̄q(v, w) = {h, h0}q
(
F−1
q (v), F−1

q (w)
)
.

Its matrix in the basis X1(q), X2(q) is(
−c1

01 −1
2

(
c1

02 − c2
01

)
−1

2

(
c1

02 − c2
01

)
c2

02

)
. (2.6)

Finally we define a linear mapping h̃q : Hq −→ Hq by the following formula:

h̃q(v) =
(
h̄q(v, ·)

)]
.

Using (2.6), it is seen that the matrix of the operator h̃q in the basis {X1(q), X2(q)} is equal to(
c1

01
1
2(c1

02 − c2
01)

−1
2(c1

02 − c2
01) c2

02

)
. (2.7)
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2.3 The ts-invariants

By our construction, the eigenvalues and determinant of h̃q as well as h̃q itself, are all invariants
for the ts-oriented structure (H, g). Clearly det h̃q = c1

01c
2
02 + 1

4(c1
02 − c2

01)2 = −(c1
01)2 + 1

4(c1
02 −

c2
01)2. Since, in view of (2.5), the trace of h̃q is equal to 0, the eigenvalues of h̃q are equal to

±
√
−(c1

01)2 + 1
4(c1

02 − c2
01)2. We can choose

χ = −
(
c1

01

)2
+

1

4

(
c1

02 − c2
01

)2
as a functional ts-invariant for our structure. In analogy with the sub-Riemannian case [1, 2, 7],
we consider the functional ts-invariant defined as follows:

κ = X2

(
c1

12

)
+X1

(
c2

12

)
−
(
c1

12

)2
+
(
c2

12

)2 − 1

2

(
c2

01 + c1
02

)
.

Unlike the sub-Riemannian case where χ and κ play the crucial role, it is h̃ and κ that play the
crucial role in the sub-Lorentzian setting.

Proposition 2.2. κ is indeed a ts-invariant.

2.3.1 Proof of Proposition 2.2

Let X1, X2 is an orthonormal basis with a time orientation X1 and a space orientation X2,
and let cijk be structures functions determined by this basis. Next, let θ = θ(q) be a smooth
functions and consider an orthonormal basis Y1, Y2 given by

Y1 = X1 cosh θ +X2 sinh θ, Y2 = X1 sinh θ +X2 cosh θ. (2.8)

Then Y1 (Y2) is a time (space) orientation, and of course

X1 = Y1 cosh θ − Y2 sinh θ, X2 = −Y1 sinh θ + Y2 cosh θ.

Let dijk be the structure functions determined by the basis Y1, Y2, i.e.

[Y1, Y0] = d1
01Y1 + d2

01Y2, [Y2, Y0] = d1
02Y1 + d2

02Y2,

[Y2, Y1] = d1
12Y1 + d2

12Y2 +X0.

In order to prove Proposition 2.2 we need the following lemma.

Lemma 2.3. The following formulas hold true:

d1
02 = −X0(θ) + c1

02 cosh2 θ − c2
01 sinh2 θ +

(
c1

01 − c2
02

)
sinh θ cosh θ,

d2
02 =

(
c2

01 − c1
02

)
sinh θ cosh θ + c2

02 cosh2 θ − c1
01 sinh2 θ,

d1
01 = c1

01 cosh2 θ − c2
02 sinh2 θ +

(
c1

02 − c2
01

)
sinh θ cosh θ,

d2
01 = −X0(θ) + c2

01 cosh2 θ − c1
02 sinh2 θ +

(
c2

02 − c1
01

)
sinh θ cosh θ,

d1
12 =

(
c1

12 −X1(θ)
)

cosh θ −
(
X2(θ) + c2

12

)
sinh θ,

d2
12 =

(
X1(θ)− c1

12

)
sinh θ +

(
X2(θ) + c2

12

)
cosh θ. (2.9)

Proof. All formulas are proved by direct calculations. For instance, using (2.8) we write

[Y2, Y1] = [X1 sinh θ +X2 cosh θ,X1 cosh θ +X2 sinh θ]

= −X1(θ)X1 +X2(θ)X2 + [X2, X1].
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Then using (2.8) and (2.3) we arrive at

−X1(θ)X1 +X2(θ)X2 + c1
12X1 + c2

12X2 +X0

= −X1(θ)(Y1 cosh θ − Y2 sinh θ) +X2(θ)(−Y1 sinh θ + Y2 cosh θ)

+ c1
12(Y1 cosh θ − Y2 sinh θ) + c2

12(−Y1 sinh θ + Y2 cosh θ) +X0,

from which the fifth and sixth equations in (2.9) follow. �

Now, using Lemma 2.3, we see that

1

2

(
d2

01 + d1
02

)
= −X0(θ) +

1

2

(
c2

01 + c1
02

)
. (2.10)

and (
d1

12

)2 − (d2
12

)2
=
(
X1(θ)− c1

12

)2 − (X2(θ) + c2
12

)2
. (2.11)

Finally, we compute Y2(d1
12) + Y1(d2

12). To this end let us write

Y2(d1
12) + Y1(d2

12) = I + II, (2.12)

where

I = X2(c1
12) +X1

(
c2

12

)
− [X2, X1](θ)

= X2(c1
12) +X1

(
c2

12

)
− c1

12X1(θ)− c2
12X2(θ)−X0(θ)

and

II = −c1
12X1(θ)−X2

2 (θ)− c2
12X2(θ) +X2

1 (θ).

Combining (2.10), (2.11) and (2.12) completes the proof of Proposition 2.2.
In summary, our basic ts-invariants are: a smooth function κ on M and a (1, 1) tensor h̃

on H.

3 Sub-Lorentzian infinitesimal isometries
and conformal transformations

In this section (M,H, g) is a fixed sub-semi-Riemannian manifold, rankH and dimM are arbi-
trary.

Definition 3.1. A a diffeomorphism f : M −→ M is called a conformal transformation of
(M,H, g) if (i) dqf(Hq) ⊆ Hf(q) for every q ∈M , (ii) there exists a function ρ ∈ C∞(M), ρ > 0,
such that

g(dqf(v), dqf(w)) = ρ(q)g(v, w)

for every q ∈M and every v, w ∈ Hq. If ρ = 1 then f is an isometry of (M,H, g).

Along with conformal transformations and isometries we consider their infinitesimal variants.

Definition 3.2. A vector field Z on (M,H, g) is called an infinitesimal conformal transformation
(resp. infinitesimal isometry) if its flow ψt consists of conformal transformations (isometries).

Let us note a simple lemma.
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Lemma 3.3. Let Z be a vector field on M and denote by ψt its flow. Then the following
conditions are equivalent:

(a) adZ : Γ(H) −→ Γ(H);

(b) dqψ
t : Hq −→ Hψt(q) for every q ∈M and every t such that ψt is defined around q.

Proof. Although the result is known, we give a proof for the sake of completeness.
(a) ⇒ (b) Following [23], we fix a point q and consider a basis X1, . . . , Xk of H defined on

a neighborhood U of q. By our assumption, there exist smooth functions αij , i, j = 1, . . . , k,

such that adZ Xi =
k∑
j=1

αijXj on U and it follows that if vi(t) = (ψt∗Xi)(q) = dψtXi(ψ
−tq) then

v̇i(t) =
(
ψt∗ adZ Xi

)
(q) =

k∑
j=1

(
αij ◦ ψ−t

)
(q)
(
ψt∗Xj

)
(q) =

k∑
j=1

βij(t)vj(t),

where βij(t) = (αij ◦ ψ−t)(q). For any covector λ ∈ T ∗qM which annihilates Hq, i.e., 〈λ, v〉 = 0
for every v ∈ Hq, we obtain a system of linear differential equations for the functions wi(t) =
〈λ, vi(t)〉, i = 1, . . . , k:

ẇi(t) =

k∑
j=1

βij(t)wj(t)

with initial conditions wi(0) = 0, i = 1, . . . , k, since vi(0) = Xi(q) ∈ Hq. Therefore vi(t) = 0
and (ψt∗Xi)(q) ∈ Hq every t for which vi(t) is defined, i = 1, . . . , k.

(b)⇒ (a) Take a point q, then for every t such that |t| is sufficiently small, we have (ψt∗X)(q) ∈
Hq and it follows that (adZ X)(q) = d

dt |t=0(ψ−t∗ X)(q) ∈ Hq. �

Suppose now that f : M −→ M is a diffeomorphism such that df(H) = H and let T be
a tensor of type (0, 2) on H. We define a pull-back f̃∗ : Γ(H)× Γ(H) −→ C∞(M) by(

f̃∗T
)
q
(X,Y ) = Tf(q)(dqf(X), dqf(Y )),

where X,Y ∈ Γ(H) (tilde indicates that we restrict to horizontal vector fields). We can
now reformulate the definition of conformal transformations in a manner consistent with semi-
Riemannian geometry:
f is a conformal transformation of (M,H, g) if and only if there exists a function ρ ∈ C∞(M),

ρ > 0, such that f̃∗g = ρg (if ρ = 1, f is an isometry).
Suppose that Z is a vector field on M such that adZ : Γ(H) −→ Γ(H) and let ψt denote

the (local) flow of Z. Using Lemma 3.3, again by analogy to the classical geometry, we can
define a local operator L̃ZT : Γ(H)× Γ(H) −→ C∞(M) which will be called the restricted Lie
derivative:(

L̃ZT
)
(q) =

d

dt

∣∣∣∣
t=0

((
ψ̃t
)∗
T
)
(q). (3.1)

It turns out that

Proposition 3.4. A vector field Z is an infinitesimal conformal transformation of (M,H, g) if
and only if the following conditions hold:

(i) adZ : Γ(H) −→ Γ(H), and

(ii) there exists a function µ ∈ C∞(M) such that L̃Zg = ug.
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Proof. Remembering that we use only horizontal vector fields, the proof is the same as in the
classical geometry. Again ψt is the flow of Z.

“⇒” By Lemma 3.3 we know that (i) is satisfied. If (ψ̃t)∗g = ρtg, where for each t the
function ρt is smooth and positive, then it follows that

L̃Z
((
ψ̃t
)∗
g
)

=
d

ds

∣∣∣∣
s=0

(
ψ̃s
)∗(

ψ̃t
)∗
g =

d

dt

(
ψ̃t
)∗
g =

d

dt
(ρtg) = ρ̇tg.

On the other hand, we also have that

L̃Z
((
ψ̃t
)∗
g
)

= L̃Z(ρtg) = X(ρt)g + ρt
(
L̃Zg

)
,

and so we see that L̃Zg = µg, where

µ =
ρ̇t −X(ρt)

ρt

(note that ρ0 = 1).
“⇐” From Lemma 3.3 we know that dψt preserves H. From (ii) and (3.1) we have

d

dt

(
ψ̃t
)∗
g =

(
ψ̃t
)∗(

L̃Zg
)

=
(
ψ̃t
)∗

(µg) =
(
µ ◦ ψt

)(
ψ̃t
)∗
g,

which implies that (ψ̃t)∗g = ρtg, where

ρt(q) = exp

∫ t

0
µ(ψs(q))ds. �

By direct calculation we obtain(
L̃Zg

)
(X,Y ) = Z(g(X,Y ))− g(adZ X,Y )− g(X, adZ Y ) (3.2)

for every X,Y ∈ Γ(H), which gives the following two corollaries:

Corollary 3.5. Z is an infinitesimal conformal transformation of (M,H, g) if and only if there
exists a function µ ∈ C∞(M) such that for every X,Y ∈ Γ(H)

Z(g(X,Y )) = g(adZ X,Y ) + g(X, adZ Y ) + µg(X,Y ).

Corollary 3.6. Z is an infinitesimal isometry of (M,H, g) if and only if for every X,Y ∈ Γ(H)

Z(g(X,Y )) = g(adZ X,Y ) + g(X, adZ Y ).

Furthermore:

Corollary 3.7. If Z is an infinitesimal conformal transformation or isometry of (M,H, g) then
for every n ≥ 2 and every X,Y ∈ Γ(H)

n∑
k=0

(
n

k

)
g
(

adkZ X, adn−kZ Y
)

= 0. (3.3)

Proof. Fix a point q ∈M . Under the above notation, for any n ∈ N and sufficiently small |t|

ρt(ψ
tq)g

(
X(ψtq), Y (ψtq)

)
= g
(
dψtqψ

−t(X), dψtqψ
−t(Y )

)
= g

(
n∑
k=0

tk

k!
(adkZ X)(q),

n∑
m=0

tm

m!
(admZ Y )(q)

)
+ o(tn). (3.4)

Using Corollary 3.5 we can remove from (3.4) terms of order 0 and 1 with respect to t. What
we obtain is

n∑
k=2

tk
∑
i+j=k

1

i!j!
g
((

adiZ X
)
(q),

(
adjZ Y

)
(q)
)

+ o(tn) = 0

for |t| sufficiently small, which gives (3.3). �
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4 Some properties of invariants

In this section we assume all sub-Lorentzian manifolds to be ts-oriented. Let us start from an
obvious observation.

Proposition 4.1. Let (Mi, Hi, gi), i = 1, 2, be a contact 3-dimensional ts-oriented sub-Lorent-
zian manifolds. Denote by χi, κi, h̃i the corresponding objects defined by (Hi, gi), i = 1, 2.
If ϕ : (M1, H1, g1) −→ (M2, H2, g2) is a local ts-isometry, then χ1 = ϕ∗χ2, κ1 = ϕ∗κ2, and
h̃1 = ϕ∗h̃2.

Fix a contact 3-dimensional sub-Lorentzian manifold (M,H, g). First of all let us notice how
the invariant h̃ can be expressed in terms of the restricted Lie derivative of the metric g in the
direction of the Reeb field. Indeed, knowing (3.2) it is clear that for every q ∈ M and every
v, w ∈ Hq

h̄q(v, w) =
1

2

(
L̃X0g

)
(q)(v, w). (4.1)

Such an approach allows to define higher-order invariants, namely those that correspond to the
bilinear forms

h̄(l)
q (v, w) =

1

2

(
L̃lX0

g
)
(q)(v, w), l = 2, 3, . . . .

In this way, however, we will not obtain any formulas involving the structure functions ci12.

Using (4.1) we obtain the following proposition and corollary thereof.

Proposition 4.2. The Reeb vector field X0 is an infinitesimal isometry for (H, g) if and only
if h̃q = 0 for every q ∈M .

Corollary 4.3. If the Reeb vector field X0 is an infinitesimal isometry for (H, g) then χ = 0
everywhere.

Proposition 4.2 shows one of the ways how to produce sub-Lorentzian isometries. This is
important because we know very little examples of such maps.

Next we study the effect on the invariants when we dilate the structure. To this end suppose
that we have a sub-Lorentzian ts-oriented structure (H, g) which is given by an orthonormal
frame X1, X2 with a time (resp. space) orientation X1 (resp. X2). Let s > 0 be a constant.
Consider the sub-Lorentzian structure (H ′, g′) defined by assuming the frame X ′1 = sX1, X ′2 =
sX2 to be orthonormal with the time (resp. space) orientation X ′1 (resp. X ′2). The normalized
one form ω′ which defines H ′ is given by ω′ = 1

s2
ω, i.e., dω′(X ′1, X

′
2) = ω′([X ′2, X

′
1]) = 1. It

follows that the Reeb field is now s2X0. Then it is easy to see that (2.3) can be rewritten as

[X ′1, X
′
0] = c′101X

′
1 + c′201X

′
2, [X ′2, X

′
0] = c′102X

′
1 + c′202X

′
2,

[X ′2, X
′
1] = c′112X

′
1 + c′212X

′
2 +X ′0,

where c′ijk = scijk. As a corollary we obtain

Proposition 4.4. Let χ, κ, h̃ (resp. χ′, κ′, h̃′) be the ts-invariants of the sub-Lorentzian struc-
ture defined by an orthonormal basis X1, X2 (resp. by X ′1 = sX1, X ′2 = sX2). Then

χ′ = s2χ, κ′ = s2κ, h̃′ = sh̃.
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4.1 The case χ = 0, h̃ 6= 0

Next let us assume that χ(q) = 0 but h̃q 6= 0 (i.e. c1
01 6= 0) everywhere. As we shall see we are

given an additional structure in this case. Indeed, the correspondence q −→ ker h̃q defines an
invariantly given field of directions. We can distinguish two cases: (i) c1

01 = 1
2(c1

02 − c2
01), and

(ii) c1
01 = −1

2(c1
02 − c2

01). In the first case the matrix of h̃q is of the form(
c1

01 c1
01

−c1
01 −c1

01

)
and ker h̃q is spanned by X1(q)−X2(q) for each q. In the second case the matrix of h̃q is equal to(

c1
01 −c1

01

c1
01 −c1

01

)
and ker h̃q is spanned by X1(q)+X2(q). Thus in the considered case there exists a line sub-bundle
L −→ M of H on which g is equal to zero. Of course this result is trivial under assumption
on ts-orientation because then H admits a global orthonormal basis X1, X2 and we have in
fact two such subbundles, namely Span{X1 + X2} and Span{X1 − X2}. What is interesting
here is that the condition χ = 0, h̃ 6= 0 does not depend on the assumption on orientation.
Indeed, notice that if we change a time (resp. space) orientation keeping space (resp. time) one
then h̃ is multiplied by −1 (because so is X0). Moreover the condition χ = 0, h̃ 6= 0 means
that h̃ is a non-zero map with vanishing eigenvalues, the fact being independent of possible
multiplication by −1. Therefore the condition χ = 0, h̃ 6= 0 makes sense even for an unoriented
contact sub-Lorentzian structures. In this way we are led to the following proposition.

Proposition 4.5. Suppose that (M,H, g) is a contact sub-Lorentzian manifold (we don’t make
any assumptions on orientation). If χ(q) = 0 and h̃q 6= 0 for every q ∈ M then there exists
a line sub-bundle L −→M of H on which g is equal to zero.

Proof. Fix an arbitrary point q ∈M . Let Y1, Y2 be an orthonormal basis for (H, g) defined on
a neighborhood U of q, where Y1 is timelike and Y2 is spacelike. Supposing Y1 (resp. Y2) to be
a time (resp. space) orientation we can apply the above construction of ts-invariants obtaining
the corresponding objects χU and h̃U . By our assumption and the above remark χU = 0, h̃U 6= 0
on U , and we get an invariantly defined line sub-bundle LU −→ U : U 3 q −→ ker(h̃U )q =:
LU (q). We repeat the same construction around any point q ∈ M , which results in the family
{LU −→ U}U⊂M of line sub-bundles, indexed by elements U of an open covering of M . By
construction LU (q) = LU ′(q) for any q ∈ U ∩ U ′. �

Let us note that if M is simply connected, then the assertion of Proposition 4.5 holds true
no matter the values of χ and h̃ are, because in this case the metric (H, g) admits a global
orthonormal frame, see [15].

4.2 The case h̃ = 0

We begin with the following proposition which is clear because X0 is an infinitesimal isometry.

Proposition 4.6. If h̃ = 0 then X0(κ) = 0, i.e., κ is constant along the trajectories of X0.

By (2.7) the assumption h̃ = 0 implies

c1
01 = c2

02 = 0, c1
02 = c2

01.
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We will write c = c1
02 = c2

01. Now (2.3) takes the form

[X1, X0] = cX2, [X2, X0] = cX1, [X2, X1] = c1
12X1 + c2

12X2 +X0. (4.2)

Rewriting as above (4.2) in terms of the dual forms νi we arrive at

dν0 = ν1 ∧ ν2, dν1 = cν0 ∧ ν2 + c1
12ν1 ∧ ν2, dν2 = cν0 ∧ ν1 + c2

12ν1 ∧ ν2. (4.3)

Lemma 4.7. The following identities hold

−X1(c)− cc2
12 +X0

(
c1

12

)
= 0, X2(c)− cc1

12 +X0

(
c2

12

)
= 0.

Proof. The lemma is obtained upon applying the exterior differential to both sides of the
second and the third equation in (4.3). �

Our next aim, which will be achieved in the next subsection, is to find a hyperbolic rotation
of our frame X1, X2 so that (4.2) significantly simplifies. More precisely we want to kill the
terms ci12, i = 1, 2. To this end let us introduce the following 1-form

η = (κ+ c)ν0 + c1
12ν1 − c2

12ν2 (4.4)

whose significance will become evident below.

Proposition 4.8. dη = dκ ∧ ν0.

Proof. Computations give

dη = dκ ∧ ν0 +
(
−X1(c)− cc2

12 +X0

(
c1

12

))
ν0 ∧ ν1 +

(
−X2(c) + cc1

12 −X0

(
c2

12

))
ν0 ∧ ν2

+
(
κ+ c−X2

(
c1

12

)
−X1

(
c2

12

)
+
(
c1

12

)2 − (c2
12

)2)
ν1 ∧ ν2.

To end the proof we use Lemma 4.7 and the definition of κ. �

4.3 The simply-connected Lie group case

Suppose that our contact sub-Lorentzian manifold (M,H, g) is such thatM is a simply-connected
Lie group and H, g are left-invariant; this means that left translations of M are sub-Lorentzian
isometries (note that any left-invariant bracket generating distribution on a 3-dimensional Lie
group is necessarily contact). In such a case, clearly, χ and κ are constant. We also remark
that unlike the general situation, the assumption on ts-orientation is no longer restrictive since
groups are parallelizable manifolds. As above, assume that h̃ = 0 everywhere.

Recalling our aim formulated in the previous subsection we prove the following lemma.

Lemma 4.9. There exists a smooth function θ : M −→ R such that X1(θ) = c1
12, X2(θ) = −c2

12.

Proof. Suppose that such a function θ exists. Then

X0(θ) = [X2, X1](θ)− c1
12X1(θ)− c2

12X2(θ)

= X2

(
c1

12

)
+X1

(
c2

12

)
−
(
c1

12

)2
+
(
c2

12

)2
= κ+ c,

and it follows that

dθ = X0(θ)ν0 +X1(θ)ν1 +X2(θ)ν2 = (κ+ c)ν0 + c1
12ν1 − c2

12ν2 = η,

where η is defined by (4.4). Thus to prove the existence of θ it is enough to show that η is exact.
Since M is simply-connected we must show that dη = 0. This is however clear by Proposition 4.8
and the fact that κ is a constant. �
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Now we apply to our frame X1, X2, the hyperbolic rotation by the angle θ specified above.
As a result, the frame Y1, Y2 given by (2.8) satisfies

Proposition 4.10.

[Y1, X0] = −κY2, [Y2, X0] = −κY1, [Y2, Y1] = X0.

Proof. It follows directly from facts proved in Subsections 4.2, 4.3, from (4.2), and from
Lemma 2.3. �

We observe here the difference between the sub-Riemannian case where the brackets have
the form

[Y1, X0] = κY2, [Y2, X0] = −κY1, [Y2, Y1] = X0.

We remark that in the sub-Riemannian case Agrachev and Barilari [1] obtain the following
results: κ = 0 implies M is isometric to the Heisenberg group, κ > 0 implies M is isometric
to SU2 and κ < 0 implies M is isometric to the universal cover of SL2. In the sub-Lorentzian
case SU2 does not arise. To be precise we have the following corollaries of Proposition 4.10.

Corollary 4.11. If M is a simply-connected Lie group such that h̃ and κ vanish identically,
then M is isometric to the Heisenberg group.

Corollary 4.12. If M is a simply-connected Lie group such that h̃ vanishes and κ 6= 0, then it
is isometric to a sub-Lorentzian structure on S̃L2(R) induced by the Killing form.

Before proving Corollary 4.12 let us recall some basic facts about the Killing form and Cartan
decompositions. For any Lie algebra g the Killing form is the symmetric bilinear form defined by
K(X,Y ) = Trace(adXadY ). The Killing form has the following invariance properties:

1) K([X,Y ], Z) = K(X, [Y,Z]),

2) K(T (X), T (Y )) = K(X,Y ) for all T ∈ Aut(g).

If g is simple then any symmetric bilinear form satisfying the first invariance condition is
a scalar multiple of the Killing form and Cartan’s criterion states that a Lie algebra is semisimple
if and only if the Killing form is non-degenerate.

A Cartan involution is any element Θ ∈ Aut(g) such that Θ2 = I and

〈X,Y 〉Θ = −K(X,Θ(Y ))

is positive definite. Corresponding with Θ we have a Cartan decomposition g = t ⊕ p, where t
and p are the eigenspaces corresponding with the eigenvalues 1 and −1 respectively. Since Θ is
an automorphism, it follows that [t, t] ⊆ t, [t, p] ⊆ p and [p, p] ⊆ t. Moreover, the Killing form is
negative definite on t and positive definite on p.

The standard Cartan involution on sl2 is given by Θ(A) = −AT . In this case we have that
t = span{f1} and p = span{f2, f0}, where

f0 =
1

2

(
−1 0
0 1

)
, f1 =

1

2

(
0 1
−1 0

)
, f2 =

1

2

(
0 1
1 0

)
,

and the Lie brackets are

[f2, f1] = f0, [f1, f0] = f2, [f2, f0] = f1.
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The Killing form for sl2 is given by K(A,B) = 4Tr(AB) and so the bilinear form B(A,B) =
1
2K(A,B) satisfies

B(f0, f0) = 1, B(f1, f1) = −1, B(f2, f2) = 1,

B(f0, f1) = 0, B(f0, f2) = 0, B(f1, f2) = 0.

Thus we have two choices: 1) He = span{f1, f2} or 2) He = span{f1, f0}. In each case, by

left translation, we obtain left-invariant sub-Lorentzian structures on S̃L2(R) satisfying h̃ = 0.
An isometry between these two structures is induced by Lie algebra automorphism T , where
Tf0 = f2, Tf1 = −f1 and Tf2 = f0.

Proof of Corollary 4.12. First we observe that the matrices

e0 =
1

2

(
κ 0
0 −κ

)
, e1 =

1

2

(
0 1
κ 0

)
, e2 =

1

2

(
0 1
−κ 0

)
,

form a basis of sl2 and the bracket relations are [e2, e1] = e0, [e1, e0] = −κe2, [e2, e0] = −κe1.
Furthermore K(e1, e1) = 2κ, K(e2, e2) = −2κ, and K(e1, e2) = 0. Since we assume the sub-
Lorentzian structure on M is left-invariant, the metric must be the left translation of the metric
B(A,B) = − 1

2κK(A,B) on TeM = sl2. Since M is simply connected it must be the universal
cover of SL2(R). �

We remark that in general

K(e0, e0) = 2κ2, K(e1, e1) = 2κ, K(e2, e2) = −2κ,

K(e0, e1) = 0, K(e0, e2) = 0, K(e1, e2) = 0,

and so the corresponding Cartan involution is given by

Θ(e0) = −e0, Θ(e1) = −e1, Θ(e2) = e2.

Hence t = span{e2} and p = span{e1, e0}. If |κ| 6= 1, then since K(e0, e0) = 2κ2, the only choice
we have for a sub-Lorentzian structure induced by the Killing form is He = span{e1, e2}.

The null lines in sl2 are span{e1 − e2} and span{e1 + e2}. Furthermore if we set

n0 = e3, n1 =
1√
2

(e1 − e2), n2 =
1√
2

(e1 + e2)

then

[n2, n1] = n0, [n1, n0] = κn1, [n2, n0] = −κn2.

If we set He = span{n1, n2} and define

B(n1, n1) = −1, B(n2, n2) = 1, B(n1, n2) = 0,

then the induced left-invariant structure on S̃L2(R) is isometrically distinct from the cases above,
indeed

h̃ = κ

(
1 0
0 −1

)
.
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5 Infinitesimal sub-Lorentzian transformations
on groups with h̃ = 0

5.1 Introduction

In this section we determine the conformal and isometry groups for the Heisenberg group and
the universal cover of SL2. In particular we will see that in both cases the local infinitesimal
conformal transformations are given by sl3.

In the context of this paper it would be natural to construct the vector fields using the criteria
developed in Section 3, however this leads to complicated systems of PDEs which we cannot
provide explicit proof concerning solutions. Instead we apply Cartan’s equivalence method which
leads to the general solution without having to solve PDEs.

In work in preparation with Alexandr Medvedev [16] we explore further the application of the
Cartan approach to sub-Lorentzian geometry. In particular the invariants discussed here appear
in a much more systematic manner and a complete description of all left-invariant sub-Lorentzian
structures on 3-dimensional Lie groups will be given.

We also remark that on the subject of conformal classification of left-invariant sub-Rieman-
nian structures on 3-dimensional Lie groups there is the very recent arXiv paper of Boarotto [5].

5.2 Preliminaries

The assumption h̃ = 0 implies that the Lie algebra of M has the form given in Proposition 4.10.
So as to make the notation a little less confusing in the calculations that ensue, we rewrite the
Lie algebra in the following form

[X1, X3] = κX2, [X2, X3] = κX1, [X1, X2] = X3.

We denote the ordered dual frame by θ = {θ1, θ2, θ3} and observe that by Cartan’s formula the
structure equations of this coframe are

dθ1 = κθ3 ∧ θ2, dθ2 = κθ3 ∧ θ1, dθ0 = θ2 ∧ θ1.

Moreover the sub-Lorentzian metric has the form θ2� θ2− θ1� θ1. It follows that the subgroup
of G ⊂ GL(3) which acts on θ and leaves the metric conformally invariant modulo terms of the
form η � θ3, consists of matrices of the former cosh(t) er sinh(t) a

er sinh(t) er cosh(t) b
0 0 e2r

 .

Hence a local diffeomorphism f : M →M is conformal if and only if

f∗θ = gfθ, (5.1)

where gf : M → G. Thus the conformal symmetry problem is exactly to find all local
diffeomorphisms which satisfy (5.1) which is precisely a Cartan equivalence problem.

5.3 Overview of Cartan’s algorithm

For the details we refer the reader to [24]. The first step in Cartan’s algorithm is to pass to
the equation f∗dθ = d(gfθ) and lift the problem to M × G. In this context the lift of θ is
given by the partial coframe Θ ⊂ T ∗(M × G), where Θ(p,g) = gθp. The lift of f is defined by

f̃(p, g) = (f(p), ggf (p)−1) and it follows that

f̃∗Θ = Θ and f̃∗dΘ = dΘ. (5.2)
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If Π ⊂ T (M ×G)∗ is any subset complementary to Θ then the structure equations for the lifted
partial coframe take the form:

dΘ = Π ∧Θ + TΘ ∧Θ

and T is referred to as the torsion. It follows from (5.2) that if f is a local conformal diffeomor-
phism then T ◦ f̃ = T , however in general this equation is not the end of the story. Roughly
speaking all the higher-order coframe derivatives of T must also be invariant under composition
with f̃ , see [24, Theorem 14.24] for a precise statement. Fortunately in our case this will not be
an issue.

The main idea in the Cartan algorithm is to exploit the freedom of choice of Π so as to
minimise the torsion T . There are three processes involved in minimising torsion, namely group
reduction, absorption and prolongation. A reduction of the structure group can be carried out
when the condition f∗θ = gfθ for some gf : M → G implies that gf : M → G′ ⊂ G. Reductions
reveal themselves as coefficients in T depending only on group parameters. Such coefficients
can be set to a convenient constant value as long as invertibilty is not violated. An example
of such a phenomena that the reader may be familiar with occurs in the contact equivalence
problem in dimension 3, i.e., if initially we assume that g = (gij) and g31 = g32 = 0 then it
transpires that g33 = g11g22 − g12g21.

Absorption utilises the fact, that pointwise, each element of Π is a Maurer-Cartan form on G
plus a linear combination of the Θi. We choose the coefficients of the Θi so that T has as many
zero coefficients as possible.

In summary the element T kij ∈ T is the coefficient of Θi∧Θj in the expression for dΘk. If T kij
is independent of absorption parameters then it gives a group reduction by setting it equal to ±1
or 0 and the choice is made so as not to violate invertibilty. If T kij is dependent on absorption

parameters then we solve one of these parameters so that T kij = 0. The aim of the algorithm is
to reduce the group to {Id} through a sequence of reduction and absorption cycles.

If after the first reduction and absorption we get G = Id then the resulting T consists
of the basic invariants for the equivalence problem. Otherwise not all group parameters are
normalised and absorption parameters may remain undetermined with no torsion coefficients
available to normalise them. In this case the problem must be prolonged which means that the
free absorption parameters are understood as the groups parameters for a structure group G(1)

associated with a new equivalence problem on M × G. Specifically we write Π = $ + FΘ,
where F consists of the free absorption parameters, and consider the equivalence problem for
the partial coframe Θ∪$ ⊂ T ∗(M ×G) with structure group G(1) consisting of matrices of the
form (

I 0
F I

)
.

In this context Θ∪Π ⊂ T ∗(M×G×G(1)) is a lift of Θ∪$ and we repeat the procedure: augment,
reduce and absorb . . . , until eventually we get an equivalence problem where the structure group
reduces to the identity and all absorption coefficients are determined. Of course it can happen
that the process will not lead to such a situation, but when it does, the result is the structure
equations of a certain Cartan connection on M .

5.4 Calculations

To begin we lift and define one forms Θi on M ×G by settingΘ1

Θ2

Θ3

 =

er cosh(t) er sinh(t) a
er sinh(t) er cosh(t) b

0 0 e2r

θ1

θ2

θ3
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and augment the set {Θ1,Θ2,Θ3} ⊂ T ∗(M ×G) with the following forms:

Π1 = α1 +
1

2
be−2rΘ1 −

1

2
ae−2rΘ2 −

(
B1 + abe−4r

)
Θ3,

Π2 = α2 −
3

2
ae−2rΘ1 +

3

2
be−2rΘ2 +

(
a2e−4r + κe−2r −B2

)
Θ3,

Π3 = α3 −B1Θ1 −B2Θ2 −B3Θ3,

Π4 = α4 +
((
a2 + b2

)
e−4r −B2

)
Θ1 −

(
2abe−4r +B1

)
Θ2 −B4Θ3.

The coefficients of the Θi in Πj are determined by absorbing torsion and the αj are the
Maurer–Cartan forms:

α1 = dr, α2 = dt, α3 = (da− adr − bdt)e−2r, α4 = (db− bdr − adt)e−2r.

The coefficients B1, . . . , B4 are undetermined parameters from absorption and so a prolongation
is required. We write

Π1 = $1 −B1Θ3, Π2 = $2 −B2Θ3, Π3 = $3 −B1Θ1 −B2Θ2 −B3Θ3,

Π4 = $4 −B2Θ1 −B1Θ2 −B4Θ3.

and consider the equivalence problem M ×G given by the ordered basis

{Θ1,Θ2,Θ3, $1, $2, $3, $4} (5.3)

with structure group G(1) consisting of matrices of the form

(
I 0
R I

)
, where R =


0 0 −B1

0 0 −B2

−B1 −B2 −B3

−B2 −B1 −B4

 .

The ordered basis {Θ1,Θ2,Θ3,Π1,Π2,Π3,Π4} is now viewed as the lift of (5.3) to the 11-
dimensional manifold M×G×G(1) and again is augmented by forms {Ω1,Ω2,Ω3,Ω4} ⊂ T ∗(M×
G×G(1)). We get the following reductions of the structure group G(1):

B2 =
1

4
a2e−4r +

3

4
b2e−4r +

1

4
e−2rκ, B3 =

1

2
b
((
a2 − b2

)
e−6r + e−4rκ

)
,

B4 =
1

2
a
((
a2 − b2

)
e−6r + e−4rκ

)
and so M ×G×G(1) becomes an 8-dimensional manifold and we only need Ω = Ω4 to augment.

Finally after absorption we arrive at the structure equations:

dΘ1 = Π1 ∧Θ1 + Π2 ∧Θ2 + Π3 ∧Θ3,

dΘ2 = Π1 ∧Θ2 + Π2 ∧Θ1 + Π4 ∧Θ3,

dΘ3 = 2Π1 ∧Θ3 −Θ1 ∧Θ2,

dΠ1 =
1

2
Π4 ∧Θ1 −

1

2
Π3 ∧Θ2 − Ω ∧Θ3,

dΠ2 =
3

2
Π4 ∧Θ2 −

3

2
Π3 ∧Θ1,

dΠ3 = Π3 ∧Π1 −Π4 ∧Π2 − Ω ∧Θ1,

dΠ4 = Π4 ∧Π1 −Π3 ∧Π2 − Ω ∧Θ2,
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dΩ = 2Ω ∧Π1 −Π4 ∧Π3. (5.4)

The structure equations for the isometries are obtained similarly but do not require prolon-
gation. The structure group is as above except r = 0 and the structure equations are:

dΘ1 = Π ∧Θ2, dΘ2 = Π ∧Θ1, dΘ3 = Θ2 ∧Θ1, dΠ = κΘ2 ∧Θ1. (5.5)

In both sets of structure equations the coefficients are all constant and as a consequence
the symmetries of these structure equations are given by the Lie group which they define (see
the remarks following [24, Theorem 8.22]). By construction the lift of our original symmetry
is a symmetry of the structure equations and must therefore be given by the action of the Lie
group which the structure equations define.

From (5.5) we see that the isometries are at most a 4-dimensional Lie group. By Tanaka’s
theory [25], the maximal dimension is reached when κ = 0 and the structure equations are those
of the Heisenberg group extended by the action of a particular strata preserving derivation of
the Heisenberg algebra. The Lie algebra of this group has the form

[e1, e2] = e3, [e4, e1] = e2, [e4, e2] = e1,

where {e1, e2, e3} is a basis for the Heisenberg algebra and e4 is the derivation.
The Killing form for the conformal structure equations is

K =



0 0 0 0 0 0 −7 0
0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 6
0 0 0 12 0 0 0 0
0 0 0 0 4 0 0 0
0 6 0 0 0 0 0 0
−7 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0


.

Since detK 6= 0 (= −3048192) and K is indefinite with signature + + + + − − −, the Lie
algebra must be sl3, i.e., the only 8-dimensional simple Lie algebras are sl3, su3 and su2,1,
however su3 and su2,1 are ruled out by the indefiniteness and signature. Alternatively one can
simply compute the Lie brackets of the vector fields dual to the system of one forms and check
that it isomorphic to sl3. We should remark that Ian Anderson’s MAPLE DifferentialGeometry
packages were an indispensable tool used in the calculations outlined above.

The fact that κ is not present in (5.4) implies that the universal cover of SL2(R) and the
Heisenberg group both have SL3(R) as the conformal symmetry group and consequently are
conformally equivalent, see [22, Proposition 2.3.2] and [6, Section 2.5]. We thus have the following
conformal Darboux theorem.

Theorem 5.1. All left-invariant sub-Lorentzian structures on the universal cover of SL2(R)
such that h̃ = 0 are locally conformally equivalent to the sub-Lorentzian Heisenberg group.

6 Rigid example

By definition, any left translation is an isometry of a left-invariant structure and so the dimension
of the isometry group is at least 3, and from the previous section the dimension of the isometry
group is at most 4. The goal of this section is to show that the extreme case of no isometries
can occur but obviously not for a left invariant structure. A relatively straight forward example
comes from the geometry of second-order ODEs.
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To a given second-order ODE

u′′ = Q(x, u, u′), (6.1)

where Q is smooth, we associate three 1-forms given by

ω1 = du− pdx, ω2 = dp−Q(x, u, p)dx, ω3 = dx, (6.2)

which are regarded as one forms jet space J1(R,R) with coordinates by (x, u, p), where x is the
independent variable, u is the dependent variable and p = u′, see [24].

In particular a curve γ(x) = (x, u(x), p(x)) in J1(R,R) defines a solution to (6.1) if and
only if γ∗ωi = 0, i = 1, 2 (one can easily show that the vanishing of the two pull-backs is
equivalent to y′(x) = p(x) and in turn to u′′(x) = Q(x, u(x), u′(x))). A local diffeomorphism
Φ : R × R −→ R × R is called a point transformation or point symmetry of (6.1) if and only if
it maps the graph of a solutions to (6.1) onto graphs of solutions to (6.1).

Any local diffeomorphism Φ : R×R −→ R×R can always be prolonged to a local diffeomor-
phism Φ̂ : J1(R,R)→ J1(R,R) by setting Φ̂(x, u, p) = (x̃, ũ, p̃), where

(x̃, ũ) = Φ(x, u) and p̃ =
dũ

dx̃
.

By direct calculation it follows that Φ is a point symmetry of (6.1) if and only if there exists
smooth functions ai, i = 1, . . . , 5, such that

Φ̂∗ω1 = a1ω
1, Φ̂∗ω2 = a2ω

1 + a3ω
2, Φ̂∗ω3 = a4ω

1 + a5ω
3.

A classical problem in the geometric theory of ODEs is the classification of second-order ODEs
with respect to point transformations. The fundamental result is as follows (see [24, Theo-
rem 12.19]):

Theorem 6.1. The point transformation symmetry group of a second-order ordinary differential
equation has dimension at most eight. Moreover, the equation admits an eight-dimensional
symmetry group if and only if it can be mapped by a point transformation to the linear equation
u′′ = 0, which has symmetry group SL(3).

Thus the equation u′′ = 0 has the maximal possible point symmetry group while at the other
end of the scale the following equation

u′′ =
((
x+ x2

)
eu
)′

(6.3)

has no nontrivial point symmetries (see [24, p. 182]).

Any equation (6.1) defines through the forms (6.2) a conformal class of contact sub-Lorentzian
metrics. Indeed, let H = kerω1, L1 = kerω1 ∩ kerω2 and L2 = kerω1 ∩ kerω3. Clearly, H is
a contact distribution that splits into the union of line bundles: H = L1⊕L2. Similarly as in the
classical situation (cf. [3]) the splitting can be viewed as the field of null cones for a Lorentzian
metric on H. Of course all such metrics are conformally equivalent. In particular, it is seen that
all solutions to (6.1) are determined by the trajectories of the null field ∂

∂x + p ∂
∂u +Q(x, u, p) ∂∂p

spanning L1.

Proposition 6.2. Fix an equation (6.1) and let (H, g) be a sub-Lorentzian metric belonging
to the conformal class of sub-Lorentzian metrics induced by this equation. Then any isometry
of (H, g) which is isotopic to the identity is in fact a point symmetry of the considered equation.
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Proof. Let F : J1 −→ J1 be an isometry of (H, g) as in the hypothesis of the proposition.
Then, obviously, dF (H) ⊂ H and dF (Li) ⊂ Li, i = 1, 2. Using the above notation this last
remark is equivalent to the equations F ∗ω1 = a1ω

1, F ∗ω2 = a2ω
1 + a3ω

2, F ∗ω3 = a4ω
1 + a5ω

3

for some smooth functions ai, i = 1, . . . , 5. If (locally) we set F = (F1, F2, F3), then the first
and the third equation shows that F1 and F2 do not depend on p, which means that F is the
first jet prolongation of a diffeomorphism of the (x, u)-space. This last statement is equivalent
to saying that F is a point symmetry of (6.1). �

Let U be a neighborhood of 0 in R3 and consider any sub-Lorentzian structure (U,H, g)
belonging to the conformal class of equation (6.3).

Corollary 6.3. The algebra of infinitesimal isometries of (U,H, g) is trivial.

Proof. Indeed, suppose that X is an infinitesimal isometry with flow ψt. Since ψt is an isometry
of (U,H, g) isotopic to the identity, it follows from Proposition 6.2 that ψt is a point symmetry
of (6.3) and therefore ψt = id. Consequently we must have X = 0. �

We remark that the construction of sub-Lorentzian structure from an ODE as above is a par-
ticular example of a more general theory relating ODEs and what is sometimes called a para-cr
structure. On this subject we refer the reader to [18].

7 Appendix

In this appendix we would like to draw the reader’s attention to some possible applications of
the invariants to non-contact cases. Consider the simplest such case, namely the Martinet case.
Martinet sub-Lorentzian structures (of Hamiltonian type) were studied in [13]. Let (M,H, g)
be a sub-Lorentzian manifold where (H, g) is a Martinet sub-Lorentzian structure (or a metric).
That is, there exists a hypersurface S, the so-called Martinet surface, with the following proper-
ties:

1) H is a contact structure on M\S,

2) dim(Hq ∩ TqS) = 1 for every q ∈M ,

3) the field of directions L : S 3 q −→ Lq = Hq ∩ TqS is timelike.

It is a standard fact that trajectories of L are abnormal curves for the distribution H. Ob-
viously our construction of the invariants can be carried out on the contact sub-Lorentzian
manifold (M\S,H|M\S , g|M\S). In this way we can produce necessary conditions for two Mar-
tinet sub-Lorentzian structures to be ts-isometric. More precisely, let (Mi, Hi, gi) be Martinet
sub-Lorentzian manifolds such that (Hi, gi) are ts-oriented Martinet sub-Lorentzian metrics for
i = 1, 2. Suppose that ϕ : (M1, H1, g1) −→ (M2, H2, g2) is a ts-isometry, then since abnormal
curves are preserved by diffeomorphisms, ϕ(S1) = S2, where Si is the Martinet surface for Hi,
i = 1, 2. It follows that ϕ induces a ts-isometry ϕ̃ = ϕ|M1\S1

: (M1\S1, H1|M1\S1
, g1|M1\S1

) −→
(M2\S2, H2|M2\S2

, g2|M2\S2
). Therefore, using results from Section 4 we arrive at

χ1 = ϕ̃∗χ2, κ1 = ϕ̃∗κ2, and h̃1 = ϕ̃∗h̃2,

where χi, κi, h̃i are the corresponding invariants for (Mi\Si, Hi|Mi\Si
, gi|Mi\Si

), i = 1, 2.

As one might expect, the invariants become singular when one approaches the Martinet
surface. Indeed, let us look at the following example.
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Example 7.1. Consider the simplest Martinet sub-Lorentzian structure, namely the flat one
(cf. [13]). This structure is defined on R3 by the orthonormal frame

X1 =
∂

∂x
+

1

2
y2 ∂

∂z
, X2 =

∂

∂y
− 1

2
xy

∂

∂z
,

where we assume X1 (resp. X2) to be a time (resp. space) orientation. The Martinet surface
in this case is S = {y = 0}, and we can write H = Span{X1, X2} = kerω for ω defined as
ω = 2

3
1
ydz −

1
3ydx + 1

3xdy. Clearly, dω(X1, X2) = 1, and as usual we define the Reeb field X0

on R3\S with equations dω(X0, ·) = 0, ω(X0) = 1. Direct computation yields

X0 = −1

y

∂

∂x
+ y

∂

∂z
.

Moreover

[X2, X1] =
1

y
X1 +X0, [X1, X0] = 0, [X2, X0] =

1

y2
X1,

from which we finally obtain

h̃ =

(
0 1

2
1
y2

−1
2

1
y2

0

)
, χ =

1

4

1

y4
, and κ = −5

2

1

y2
.
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