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Abstract. This is a study of a problem in geodesy with methods from complex algebraic
geometry: for a fixed number of measure points and target points at unknown position in
the Euclidean plane, we study the problem of determining their relative position when the
viewing angles between target points seen from measure points are known. In particular,
we determine all situations in which there is more than one solution.
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1 Introduction

Let t > 0 and m > 0 be integers. We consider the problem of identifying the relative position of
t + m unknown points p1, . . . , pt, q1, . . . , qm in the Euclidean plane from the angles ]qj (pi, pk),
for 1 ≤ i < k ≤ t and 1 ≤ j ≤ m. We call p1, . . . , pt the target points and q1, . . . , qm the measure
points (see Fig. 1).
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Figure 1. An example with t = 4 and m = 2, namely with four target points p1, . . . , p4 and two measure

points q1, q2.

Apparently, all angles can be computed from the angles ]qj (p1, pk) for 2 ≤ k ≤ t and
1 ≤ j ≤ m, since ]qj (pi, pk) = −]qj (p1, pi) + ]qj (p1, pk). So the dimension of given data is
m(t− 1), and the dimension of the unknown data is 2(m+ t− 2); in order that the problem is
not undetermined, we should have

0 ≤ m(t− 1)− 2(m+ t− 2) = (m− 2)(t− 3)− 2.

In the two cases where equality holds, there are in general two solutions, namely there exist two
(m+ t)-tuples of points in the plane both fitting with the data about the angles.

To explain the situation for t = m = 4, we introduce the profile of a fixed sequence ~p
of target points, as the two-dimensional set of all possible measurement results from various
measure points. Then we decompose our problem into two steps. First, we interpolate the profile
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surface from the given angles. Once the profile is determined, additional measure points (and the
corresponding measured angles) do not reveal any more information on the position of the target
points. Then we determine the target points from the profile. Remarkably, it turns out that for
target sequences ~p with t = 4, there is in general a second sequence ~p ′ with the same profile.

Similarly, we treat the case m = 3 and t = 5 by introducing the co-profile of a sequence ~q
of measure points, namely the two-dimensional set of measurements of target points from ~q;
however, the situation is not entirely symmetric to the case of the profile because here we need
in addition one target point in order to define the co-profile. In this case, additional target
points (and the corresponding measured angles) do not reveal any more information on the
position of the measure points and the prescribed target point.

Section 2 is devoted to the introduction of profile and co-profile for arbitrary t and m. In
Section 3, we determine the situations where the profile or the co-profile cannot be uniquely
determined, also paying attention to non-general situations. In Section 4 we identify the target
points once the profile is known. We determine the situations where this is not uniquely possible.
Once we know the target points, the determination of the measure points from the profile is not
problematic. The complete discussion is summarized in Theorem 4.6.

Strictly speaking, the two solutions for the general case m = t = 4 cannot be distinguished
algebraically, by means of testing polynomial equalities. But angle measurement also gives
information corresponding to inequalities, namely we can detect on which of the two rays of
a line a certain target point lies. Taking this additional information into account, one can
distinguish the two solutions in many cases, but not in all of them. This aspect is discussed in
more detail in Section 5.

The majority of the results in this paper is not new. The stated problem is equivalent to
the reconstruction of a set of points in the plane from images by a one-dimensional calibrated
camera. The paper [1] (also contained, in expanded form, in [9]) explains the two solutions for
the case m = 3 by a theorem of planar geometry. There the authors also describe a duality
exchanging the role of measure points and target points, except for one target point that has to
keep its role as a target point; using this duality, the existence of two solutions for t = 4 is ex-
plained as well. A similar duality is also known for the uncalibrated case (see [10]), where three
fixed target points keep their role instead of one, and also for two-dimensional pictures of points
in 3-space (see [2]). The two solutions for the general case appear also in the one-dimensional
uncalibrated case in [10]; indeed, the calibrated case can be reduced to the uncalibrated case by
considering the two cyclic points of the Euclidean plane as additional target points. The clas-
sification of exceptional cases with infinitely many solutions in Theorem 4.6 seems to be new, as
well as the discussion of ambiguities taking direction information into account (Theorem 5.4).
However, we think that our uniform discussion of the ambiguities has some value. Also, the
results are obtained by general theorems in algebraic geometry, without technical computations;
a single exception is Remark 4.5, which is not used in the remaining part of the paper.

2 Algebraic description of given data

Notation. Throughout the paper we will often use the adjective general talking about points
or measurements: as it is often done in algebraic geometry, here we mean that a property is
general if it holds for a Zariski open set of a space parametrizing the objects we are interested
in. Hence when we say that a property holds for “general t target points ~p and m measure
points ~q ” we mean that the set of pairs (~p, ~q) for which the property does not hold is a variety
of dimension less than 2(m+ t).

The aim of this section is to associate to any given tuple ~p of target points a projective variety,
called the profile of ~p, and to any given tuple ~q of measure points together with a prescribed
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target point p1 another projective variety, called the co-profile of ~q and p1. These two varieties
encode information about, respectively, all possible measurements of ~p from any measure points,
and measurements with respect to ~q and p1 of any possible target point.

Notation. For target points, we use real coordinates (u, v), and we introduce complex coordi-
nates w = u + iv and w = u − iv. For measure points, we use real coordinates (x, y), and we
introduce complex coordinates z = x+ iy and z = x− iy.

The first aspect to clarify is how we model measurements, namely angles. We decide to
model them by complex numbers with modulus 1. More precisely, if the measure point q has
complex coordinate z and the target points p1 and p2 have complex coordinates w1 and w2, one
can check that the angle ]q(p1, p2) is given by the complex number (z−w1)(z−w2)

|(z−w1)(z−w2)| . We fix now

pairwise distinct target points p1, . . . , pt (with real/complex coordinates as above). Hence we
can define a map R2 \ {p1, . . . , pt} −→ Ct−1 sending

z = x+ iy 7→
(

(z − w1)(z − w2)

|(z − w1)(z − w2)|
, . . . ,

(z − w1)(z − wt)

|(z − w1)(z − wt)|

)
.

This map is far from being algebraic. In order to make it algebraic, we start by squaring each
coordinate of the image (this corresponds to multiplying all angles by a factor of 2) and then
homogenize with respect to a new variable, which we place in first position, so that the domain
becomes a projective space. What we obtain has the following expression, which still involves
complex conjugation, so it is not yet what we are looking for:

f~p : R2 \ {p1, . . . , pt} −→ Pt−1
C ,

z 7→
(
F1(z) : . . . : Ft(z)

)
,

F1(z) = (z − w1)(z − w2) · · · (z − wt),

F2(z) = (z − w1)(z − w2) · · · (z − wt),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Ft(z) = (z − w1)(z − w2) · · · (z − wt).

We proceed towards our goal to obtain an algebraic map, and in particular we want to make f~p
into a rational map between projective varieties. To do so we choose the following injection1

of R2 into P1
C × P1

C:

R2 −→ P1
C × P1

C,

(x, y) 7→ (x+ iy : 1)× (x− iy : 1)︸ ︷︷ ︸
=(z:1)×(z:1)

.

Then we can extend the previously defined map f~p to a map from P1
C×P1

C, which we still denote
by f~p. If we take coordinates (α1 : β1)× (α2 : β2) on P1

C × P1
C, the new map is given by

f~p : P1
C × P1

C 99K P
t−1
C ,

(α1 : β1)× (α2 : β2) 7→
(
G1(α, β) : . . . : Gt(α, β)

)
.

The components Gj of f~p are obtained from the previously defined polynomials Fj by substi-
tuting all factors (z − wi) with (α1 − β1wi) and all factors (z − wi) with (α2 − β2wi). Thus we
see that this is a rational map between complex projective varieties.

1The choice of P1
C × P1

C, instead of, for example, P2
C, will be justified a posteriori by the fact that in this way

we will be able to prove some properties of the map f~p in an easier way.
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Remark 2.1. Note that, since during the construction of f~p we take the squares of the involved
quantities (this corresponding to multiplication by 2 of the angles), we have that f~p(q) determines
the measured angles only modulo π. This is a consequence of the use of complex numbers: since
complex numbers are not ordered, the “complex-valued” part of our angle measurement device
is unable to tell two opposite directions of the same line apart.

Remark 2.2. If we remove the last target point and we consider ~p∗ = (p1, . . . , pt−1), then the
map f ~p∗ is equal to f~p composed with the projection Pt−1

C → Pt−2
C given by (s1 : . . . : st) 7→ (s1 :

. . . : st−1).

Definition 2.3. The Zariski closure of the image of the map f~p is an algebraic surface S~p ⊂ Pt−1
C ,

which we call the profile of ~p.

Proposition 2.4. If t ≥ 3, then the measurement map f~p is a birational map from the plane to
the profile of ~p, for any point sequence ~p of pairwise distinct points.

Proof. First, assume that t = 3. We recall a well-known (for surveying or land navigation
purposes; see for example [8]) geometric construction of a left inverse of the measurement map:
for each q ∈ R2, the oriented angle ]q(p1, p2) modulo π determines a circle on which q lies.
Similarly, the oriented angle ]q(p1, p3) modulo π determines another circle. The two circles
intersect in p1 and in a second point, which must be q. It is straightforward to express this
geometric construction as a rational map in the angles.

For t > 3, a left inverse can be given as the projection to the first three coordinates followed
by the inverse for the case t = 3 above. �

Notation. The inverse of the measurement map is called the resection map.

Remark 2.5. From the geometric construction above, it is clear that the measurement map is
injective outside the circle through any triple of points pi, pj , pk (or the line through pi, pj , pk
if the points are collinear).

Here is a description of the profile.

Lemma 2.6. If t ≥ 3, then the profile surface S~p ⊂ Pt−1
C has degree t−2 and passes through the

t+ 1 points (1 : . . . : 0), . . . , (0 : . . . : 1), (1 : . . . : 1). Its ideal is generated by the 2× 2 minors of
a 2× (t− 2) matrix whose entries are linear forms.

Proof. The functions G1, . . . , Gt have bidegree (1, t−1). The base locus of f~p consists of t simple
base points corresponding to p1, . . . , pt, hence the degree of the image is 2(t− 1)− t = t− 2. For
an explanation regarding the previous formula we refer to [3, Appendix A]2. For r ∈ {1, . . . , t},
the image of the line α2 − β2wr is the point (0 : . . . : 1 : . . . : 0) (with 1 at position r); the point
(1 : . . . : 1) appears as the image of the point at infinity (1 : 0)× (1 : 0).

Because deg(S~p) = codim(S~p) + 1, we have a surface of minimal degree. Such a surface is
determinantal, and the generators of its ideal are well-known (see for example [5]). �

We come to the definition of the co-profile: for this purpose let us fix a tuple ~q = (q1, . . . , qm)
of measure points and a target point p1. We consider the map R2 −→ Cm associating to each

2Here the author clarifies [3, equation (5.1)] using arguments from intersection theory. The only difference
between our formula and [3, equation (5.1)] is that in the latter one considers homogeneous polynomials of
degree n, and this justifies the term n2 appearing there, while in our formula we have bihomogeneous polynomials
of bidegree (1, t − 1), yielding the term 2(t− 1). The term t in our formula, given by the t simple base points,
corresponds to the term

∑
p∈Z

e(IZ,p,OP2,p) in [3, equation (5.1)].
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target point p ∈ R2 the m-tuple of angles
(
]q1(p1, p), . . . ,]qm(p1, p)

)
. Performing analogous

homogeneization and operations as before we obtain a rational map:

f ′~q,p1 : P1
C × P1

C 99K Pm
C ,

(α1 : β1)× (α2 : β2) 7→
(
G′0(α, β) : . . . : G′m(α, β)

)
Definition 2.7. The Zariski closure of the image of the map f ′~q,p1 is an algebraic surface S′~q,p1 ⊂
Pm
C , which we call the co-profile of ~q and p1.

Lemma 2.8. If m ≥ 2, then the co-profile map f ′~q,p1 is birational, and the co-profile surface
S′~q,p1 ⊂ Pm

C has degree m−1 and passes through the m+ 1 points (1 : . . . : 0), . . . , (0 : . . . : 1), (1 :
. . . : 1). Its ideal is generated by the 2 × 2 minors of a 2 × (m − 1) matrix whose entries are
linear forms.

Proof. For the inverse of f ′~q,p1 , there is again a geometric construction: when we know ]q1(p1, p)
and ]q2(p1, p), then we can construct p by intersecting the two lines determined by the angles
above.

The proof of the statement on S′~q,p1 is analogous to the proof of Lemma 2.6, with some changes
in the details: the functions G′0, . . . , G

′
m have bidegree (1,m), the base points correspond to

q1, . . . , qm and the point at infinity (1 : 0) × (1 : 0); the images of the exceptional lines are the
points (1 : . . . : 0), . . . , (0 : . . . : 1), and the point (1 : . . . : 1) appears as the image of p1. �

3 An interpolation problem

As remarked in the Introduction, we are going to solve our problem in two steps. The first
step, discussed in this section, is to compute the profile of a tuple ~p from a fixed number m of
measurements. The task is to find a surface of known degree, and we know m+ t+ 1 points on
the surface, namely m points from measurements and t+1 points from Lemma 2.6. We call this
step profile interpolation. Once the profile is computed, we know all possible measurements up
to π, hence additional values obtained with the “complex angle measurement device”, namely
the map f~p, do not provide more information. Analogously, one can try to compute the co-profile
of ~q and p1 from other t− 1 target points. We will see that the solution of this problem is not
always unique, namely there may exist more than one profile/co-profile matching the given data.

If we are given t target points ~p and m measure points ~q, then we can form an m × (t − 1)
matrix M~p,~q, called the double angle matrix :

M~p,~q =


(
]q1(p1, p2)

)2
. . .

(
]q1(p1, pt)

)2
...

...(
]qm(p1, p2)

)2
. . .

(
]qm(p1, pt)

)2
 .

In this way the rows of M~p,~q are the input for profile identification, while the columns of M~p,~q

are the input for co-profile identification.

We start with the case t = 4. Here the profile is a quadric surface in P3
C.

Proposition 3.1. If t = 4, then the profile can be computed from 4 measurements, in general.

Proof. The linear space of quadratic forms in 4 variables is 10-dimensional, and each point gives
a linear condition on it. For general measurements, the 4 points in S~p from the measurements
and the 5 points from Lemma 2.6 give linear independent conditions, and so there is a one-
dimensional solution space which determines the profile uniquely. �
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Remark 3.2. If t > 4, then it is also possible to compute the profile from 4 general mea-
surements. For instance, if ~p = (p1, . . . , p5), then we can compute the profiles S1 and S2 of
(p1, p2, p3, p4) and of (p1, p2, p3, p5), respectively. Then the profile of ~p is the closure of the set{

(x0 : x1 : x2 : x3 : x4) ∈ P4
C
∣∣ (x0 : x1 : x2 : x3) ∈ S1 and (x0 : x1 : x2 : x4) ∈ S2

}
.

As the parameter counting argument in the Introduction suggests, we can remove one measure
point if t ≥ 5 and still have a finite number of solutions. Here is the precise statement.

Proposition 3.3. For t = 5 and m = 3, there are in general two solutions for the profile
interpolation problem.

Proof. In this case the profile is a rational cubic surface in P4
C. By [6, Example 3.4], there are

exactly two such cubic surfaces passing through 9 points in general position in P4
C. Interestingly,

the proof there uses Gale duality, which seems to be tightly related to the correspondence
between the m points on the profile and the t − 1 points on the co-profile given by a double
angle matrix M~p,~q: in both cases, in fact, the coordinates of the two sets of points are given by
the rows of a matrix and its transpose. �

Intuitively, increasing t should increase the amount of information, so we may think that for
t > 5 and m = 3, we have only a single solution for the profile interpolation problem. We will
see later that this is not the case. What is true is that considering also the co-profile increases
the amount of insight.

Proposition 3.4. If m = 3 and t ≥ 5, then the co-profile can be uniquely computed, in general.

Proof. The statement is analogous to Proposition 3.1: again, we have to interpolate 9 or more
points via a quadric surface in P3

C. �

Proposition 3.5. For t = 4 and m = 4, there are in general two solutions for the co-profile
interpolation problem.

Proof. Here the situation is as in Proposition 3.3: we have to interpolate 9 points using cubic
surfaces in P4

C. �

Proposition 3.6. For m = 3 and t > 5, there are in general two solutions for the profile
interpolation problem. Dually, for m > 4 and t = 4, there are in general two solutions for the
co-profile interpolation problem.

Proof. If m = 3 and t = 5, then we know two possible candidates for the profile, giving two
possible candidates for the position of measure/target points; however the two co-profiles must
be equal by Proposition 3.4. But if we know the co-profile, then any measurements from new
target points does not give any additional information about the position of the old target points.
Therefore we will never be able to tell the true profile, no matter how many new target points
we introduce.

The proof of the dual statement is analogous. �

So far we completed the description of the profile/co-profile interpolation in the general case,
and we summarize the results in Theorem 3.7.

Theorem 3.7. Let ~p and ~q be general t and m-tuples of points in R2. Then the following
tables summarize the number of possible profiles and co-profiles compatible with the double angle
matrix M~p,~q:
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Table 1. Number of profiles fitting, in general,

a given double angle matrix.

m \ t 3 4 5 or more

3 1 ∞ 2
4 or more 1 1 1

Table 2. Number of co-profiles fitting, in ge-

neral, a given double angle matrix.

m \ t 3 4 5 or more

3 ∞ ∞ 1
4 or more ∞ 2 1

In Theorem 3.10 we analyze those cases for which for a general choice of the points ~p and ~q
there is a unique profile or co-profile, but for some special choices there may be more than one
profile/co-profile, and we identify how these special choices look like. Considering Tables 1 and 2
we see that, in general, we have uniqueness for the profile if m = t = 3 or if m ≥ 4 and t ≥ 4,
and for the co-profile if m ≥ 3 and t ≥ 5. Notice that if t = 3, then the profile is equal to P2

C,
and so in this case it can never happen, even in special situations, that the profile is not unique.

Notation. A cyclic cubic curve is a plane cubic curve passing through the two cyclic points
at infinity, with homogeneous coordinates (0 : 1 : ±i). In the embedding of R2 into P1

C × P1
C

that we use, the equation of a cyclic curve has bidegree (2, 2) and passes through the point
(1 : 0)× (1 : 0).

We allow cyclic cubics to be reducible. There are two reducible cases: a line and a circle, or
a conic and the line at infinity.

We start treating the base cases.

Lemma 3.8. Suppose that t = 4 and m ≥ 4 and that the profile is not uniquely determined
by the double angle matrix M~p,~q, or that t ≥ 5 and m = 3 and the co-profile is not uniquely
determined by the double angle matrix M~p,~q. Then there exists a cyclic cubic curve that contains
all target points and all measure points, or a line that contains all target points.

Proof. First, assume t = 4 and m ≥ 4, so that the profile surface S is a quadric surface in P3
C.

Moreover we assume that the profile is not unique. This is equivalent to the fact that the m+ 5
points f~p(q1), . . . , f~p(qm) and (1 : . . . : 0), . . . , (0 : . . . : 1) and (1 : . . . : 1) are contained in the
intersection with a second quadric Q. The pullback under f~p of any plane section of S is a divisor
of P1

C × P1
C of bidegree (1, 3) passing through p1, . . . , p4, therefore the pullback of any quadric

section is a divisor of bidegree (2, 6) passing with multiplicity at least 2 through p1, . . . , p4.
In addition, by hypothesis Q passes through the point (1 : . . . : 0), which is the image of an
exceptional divisor E1, namely the unique curve of bidegree (0, 1) passing through p1. Hence the
pullback of Q contains this divisor E1. Similarly, the pullback contains the other 3 exceptional
divisors E2, E3 and E4. If we remove these components, it remains a curve of bidegree (2, 2)
passing through p1, . . . , p4. It must contain the preimage of (1 : . . . : 1), which is the point
(1 : 0) × (1 : 0), and all measure points q1, . . . , qm. So we have found a cyclic cubic curve as
stated in the thesis.

The proof for the dual assertion assuming non-uniqueness of the co-profile is similar. �

Example 3.9. Consider the case t = m = 4 where all 4 target points p1, . . . , p4 lie on a circle
and the 2 measure points q1 and q2 lie on the same circle, as in Fig. 2. In this case all 8 points
lie on a (reducible) cyclic cubic, given by the union of the circle and a line.

Since all p1, . . . , p4, q1 and q2 lie on the same circle, we have the equalities

]q1(p1, pk) = ]q2(p1, pk) for all k ∈ {2, 3, 4},

which imply that the conditions imposed by q1 and q2 to the linear space of quadratic forms in
4 variables as in the proof of Proposition 3.1 are not independent. This means that there exists
at least a two-dimensional linear space of such forms, this ensuring the existence of infinitely
many possible profiles for the pair (~p, ~q).
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p1

p2
p3

p4q1

q2
q3

q4

Figure 2. An example of a configuration of target and measure points for which the profile is not

unique: the four target points lie on a circle, two measure points lie on the same circle, and the other

two measure points lie on a line.

It would be nice now to use an inductive argument (on the number of target or measure
points) to establish the same result as in Lemma 3.8 for all remaining cases. Unfortunately, in
each induction step we encounter new possibilities, making a uniform description difficult to
achieve. Because of this, we prefer to strengthen the hypotheses of our theorem in order to get
rid of these “spurious” cases.

Theorem 3.10. Assume that, for given sequences ~p of target points and ~q of measure points,
either m ≥ 4 and the profile is not uniquely determined by the double angle matrix M~p,~q, or
t ≥ 5 and the co-profile is not uniquely determined by the double angle matrix M~p,~q. Assume
furthermore that no 5 target points and no 4 measure points are cocircular or collinear. Then
there exists a cyclic cubic curve that contains all target points and all measure points.

Proof. Let us start analyzing the case when t = 5 and m ≥ 4. We try to reduce to Lemma 3.8.
By hypothesis we know that the profile is not unique. If now we consider any subset ~p ′ of four
points out of the five points of ~p, we have that the profile of ~p ′ and ~q may or may not be unique.
Notice that if we could find two four tuples ~p ′ and ~p ′′ for which the profile is unique, then by
Remark 3.2 we would be able to reconstruct the profile of ~p and ~q uniquely, and this is against
the assumption. Hence there can be at most one 4-subtuple ~p ′ for which the profile is unique.
So we can distinguish two cases:

Case i. For all 4-subtuples ~p ′, the profile is not uniquely determined. Then by Lemma 3.8
we have that all points ~p ′ and ~q lie on a cyclic cubic for each ~p ′. We can consider the linear
system of all cyclic cubics through q1, . . . , qm. It defines a rational map g : (P1

C × P1
C) 99K PN

C ,
where N is the rank of the linear system (namely its dimension as a projective space). Since 4
real points in the plane give independent conditions for interpolating a cyclic cubic, it follows
that N ≤ 3. Suppose now that the linear system giving g does not have any fixed component.
Then because any four target points lie on cyclic cubic, it follows that any four of their images
under g lie on hyperplane. Hence by a linear algebra argument all images of the target points lie
on a hyperplane, and this hyperplane corresponds to a cyclic cubic curve as stated in the thesis.
If the linear system has some fixed component then this fixed component can only be a circle
or a line, and this contradicts the hypothesis, since we supposed that no 4 measure points are
cocircular or aligned.

Case ii. There exists a 4-subtuple ~p ′ for which the profile is unique, but for any other 4-
subtuple ~p ′′ the profile is not unique. After possibly relabeling the points we can assume that
~p ′ = (p2, p3, p4, p5). We can define a map g : (P1

C × P1
C) 99K PN

C as in Case i. Suppose that
the linear system Λ of cyclic cubics through q1, . . . , qm does not have any fixed component.
Then by hypothesis we have that each 4-tuple of points

(
g(p1), g(pi), g(pj), g(pk)

)
lies on the

same plane for all i, j, k ∈ {2, 3, 4, 5}. This forces g(p2), . . . , g(p5) to lie on the same plane, but
this contradicts the hypothesis, since the profile of ~p ′ = (p2, p3, p4, p5) is unique. Hence the
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linear system Λ has a fixed component, but this means that the measure points are collinear or
cocircular. Hence under our hypothesis Case ii never arises.

If now t is arbitrary, we can argue as before showing that at most one t − 1 tuple of target
points admits a unique profile, and use induction on t since the hypothesis ensures that Case ii
never happens.

The proof for the dual assertion assuming non-uniqueness of the co-profile is similar, but
with one modification. If m ≥ 4 and t ≥ 5, then the linear system of cyclic cubics through all
target points defines the rational map g : (P1

C × P1
C) 99K PN

C , where N is the rank of the linear
system (which, in this case, is less than or equal to 2). Here is the modification: 5 real points
may fail to give independent conditions for interpolating a cyclic cubic, and this happens if and
only if the all target points are collinear. However this situation is ruled out by the hypothesis,
so we have the thesis. �

4 Point identification

We are turning to the task of determining the target points p1, . . . , pt, assuming we already know
the surface S~p ⊂ Pt−1

C , describing all possible results of measurements modulo π. This problem
can only be solved up to similarities, namely rotations, translations and dilations. For t = 3,
the problem is clearly not solvable, because in that case S~p = P2

C does not give any information
on the target points.

Proposition 4.1. If t ≥ 5 and the target points are not collinear, then the point identification
problem has a unique solution.

Proof. One sees that it is enough to prove the statement for t = 5. To do this, one can proceed
algebraically, showing that point identification boils down to solving systems of linear equations
admitting in general a unique solution. Otherwise one can use the following argument. We
assume that no 4 points are collinear. If we consider four points pi, pj , pk, ph out of the five,
there exists a unique measure point qijkh such that both angles ]qijkh(pi, pk) and ]qijkh(pj , ph)
are zero (modulo π). In fact this point is given by the intersection of the two diagonals −−→pipk
and −−→pjph. Then one performs the following construction: take the three tuples (p1, p2, p3, p4),
(p1, p2, p5, p4) and (p1, p2, p3, p5) and denote by q1, q2 and q3 the points q1234, q1254 and q1235
respectively, as in Fig. 3.

p1 p2

p3

p4

p5

q2
q1

q3

β
α

γ

Figure 3. Identification of 5 points from the knowledge of their profile.

Since by hypothesis we know the profile of p1, . . . , p5, then we know the angles α = ]q1(p1, p2),
β = ]q2(p1, p2) and γ = ]q3(p1, p2) (modulo π). Then one sees that the angle ]p5(p1, p2) is
equal to β + γ − α, namely it is completely determined by the profile. By symmetry, all
angles ]pk(pi, pj) are completely determined by the profile, hence the solution is unique up to
similarities.

If 4 points are collinear, and the 5th is not, then the above construction can still be applied
to obtain enough angles, allowing to reconstruct the points up to similarity. �
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Remark 4.2. For collinear target points, the situation is also quite clear: two collinear tuples
of measure points have the same profile if and only if they are projectively equivalent.

Lemma 4.3. If m ≥ 4, then the point identification problem from the co-profile has a unique
solution.

Proof. Let m ≥ 4 and let q1, . . . , qm be the measure points. Let p1 be a target point. Assume
that we know the co-profile surface S′ ⊂ Pm

C of ~q = (q1, . . . , qm) and p1. Choose four points
on S′ with affine coordinates on the complex unit circle, general with respect to this property.
Then the affine coordinates are the measurements of four additional target points p2, p3, p4, p5;
by generality assumptions, we may assume that there is no cyclic cubic curve passing through
all target and measure points and that the target points are neither collinear nor cocircular.
The transpose of the matrix consisting of the four coordinate vectors is now considered as an
input for profile interpolation. Since m = 4, profile interpolation is uniquely solvable; let
S ⊂ P3

C be the result. By Proposition 4.1, the profile determines p1, . . . , p5 uniquely (up to
similarity). The points q1, . . . , qm can then be obtained by the resection map (see the proof of
Proposition 2.4). �

Proposition 4.4. If t = 4, then the point identification problem for the profile has, in general,
two solutions.

Proof. Assume that p1, . . . , p4 are unknown target point in general position with a known
profile surface S ⊂ P3

C. As in the previous proof, we choose four points on S with affine coordi-
nates on the complex unit circle, general with respect to this property. Their affine coordinates
are the measurements from four unknown measurement points q1, . . . , q4. We transpose the mat-
rix consisting of these four coordinate vectors and get an input for the co-profile interpolation
problem. By Proposition 3.5, we get two solutions S′ and S′′ in P3

C. For each of these two, using
Lemma 4.3 we can then identify the points ~q = (q1, . . . , qm) and p1 uniquely, up to similarity;
by permuting target points, we can get also the remaining target points for both cases. �

Notation. For more fluent language, we call a sequence of pairwise distinct 4 points a quadri-
lateral, and the second solution to its point identification problem its twin (which is determined
up to similarity).

Remark 4.5. Here is a geometric construction for the twin quadrilateral. If the vertices of
a quadrilateral V are cocircular, then V is its own twin (in other words, it can be recognized
uniquely by point identification). Otherwise, the twin is obtained by constructing the centers
of the circles that are circumscribed to the four triangles formed by the vertices of V and then
applying a reflection to this quadrilateral (see Fig. 4).

The proof of this statement is computational: we compute the profile for a quadrilateral with
symbolic coordinates, and compare with the profile for the centers of the four circles above. This
was done using the computer algebra system Maple3.

We summarize the results we obtained so far about point identification in the following
theorem.

Theorem 4.6. Assume that (t − 3)(m − 2) ≥ 2. The problem of identifying unknown target
points p1, . . . , pt and measure points q1, . . . , qm from a given double angle matrix M~p,~q is uniquely
solvable unless we are in the following cases:

• t = 4 (here there are, in general, two solutions);

• m = 3 (here there are, in general, two solutions);

3See http://www.risc.jku.at/people/jschicho/pub/twinmaple.html.

http://www.risc.jku.at/people/jschicho/pub/twinmaple.html
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p1

p2

p3

p4

p′3
p′2

p′4

p′1

Figure 4. Construction of the twin quadrilateral: given p1, p2, p3 and p4 we consider the four circles

passing through 3 out of the 4 points. The centers of these circles give the vertices p′1, p′2, p′3 and p′4 of

the mirrored twin quadrilateral.

• all target and measure points lie on a cyclic cubic curve;

• at least 5 target points are cocircular or collinear;

• at least 4 measure points are cocircular or collinear.

5 Ambiguities for directed angles

In this last section we give a closer study of the case of 4 target points, and in particular we try
to highlight some properties relating a quadrilateral to its twin.

The complex entries of the double angle matrix M~p,~q give conditions on the lines through pi
and qj for i ∈ {1, . . . , t} and j ∈ {1, . . . ,m}, but they do not include information about the
directions, i.e. on which of the two rays the point pi is lying. In a situation where we have two
solutions for the point identification problem, it may still be possible to tell the right solution by
taking direction information into account. However our final result (see Theorem 5.4) will make
explicit that if measurements are taken from points in some prescribed region of the plane, then
a quadrilateral cannot be distinguished from its twin even if we take directions into account.

Remark 5.1. If the point identification has infinitely many solutions, then there are always
ambiguities even if we take direction information into account, because the direction information
only allows to tell finitely many cases apart.

Let ~p = (p1, . . . , p4) be a nondegenerated quadrilateral, i.e. a quadruple of points such that no
three are collinear. Then from what we saw at the end of Section 4 there is a twin quadrilateral
~p ′ = (p′1, . . . , p

′
4) and both ~p and ~p ′ have the same profile surface S ⊂ P3

C. We define the twin
map:

ρ~p,~p ′ : R2 \ {p1, . . . , p4} −→ R2,

q 7→ ρ~p,~p ′(q) :=
(
f−1~p ′ ◦ f~p

)
(q).

If p1, . . . , p4 are cocircular, then the twin quadrilateral is similar to the original one and the twin
map is just a composition of a rotation, a dilation and a translation. From now on, we assume
that the points are not cocircular.

Algebraically, the twin map can be extended to a birational automorphism of P1
C × P1

C. The
exceptional curves partition the real plane minus the exceptional locus into open connected
regions. Each open region is mapped homeomorphically to its image region. These image
regions are the result of an analogous partition by the exceptional curves of ρ~p ′,~p. This strongly
motivates our interest in the exceptional curves of the twin map. They are described in the next
proposition.
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Proposition 5.2. The exceptional curves of ρ~p,~p ′ are the four circles passing through three of
the points p1, . . . , p4.

Proof. The base locus of the twin map is equal to the set {p1, . . . , p4}. Because the image is
a smooth surface, the exceptional curves are in (−1)-classes of the blowing up Y of P1

C × P1
C at

p1, . . . , p4. The class group of Y is freely generated by the class L1 of bidegree (1, 0), the class L2

of bidegree (0, 1), and the four exceptional classes E1, E2, E3, E4 of the blowing up map. Here
is the list of all (−1)-classes in the class group of Y:

• E1, . . . , E4, corresponding to the four base points;

• L1−E1, . . . , L1−E4, L2−E1, . . . , L2−E4, corresponding to the fibers of the two projections
passing through the base points;

• L1 +L2 −E2 −E3 −E4, . . . , L1 +L2 −E1 −E2 −E3, corresponding to the circles passing
through three of the four base points.

This list is very well known, since the blow up of P1
C×P1

C at four points is isomorphic to the blow
up of P2

C at five points. Hence Y is a Del Pezzo surface of degree 4, and it contains exactly the 16
(−1)-classes listed before (for a reference, see [7, Theorems 24.3, 24.4 and 24.5] or [4, Chapter 8
and in particular the remark following Lemma 8.2.22]). In the factorization of ρ~p,~p ′ into blowing
ups and blowing downs, we have four blowing ups, so we also need to have four blowing downs.
The only choice of four (−1)-classes not containing the exceptional classes of the blowing up,
and such that it is symmetric under permutations of E1, . . . , E4 and under permutations of L1

and L2, is the choice of the four circles. �

We denote by C1, . . . , C4 the four circles mentioned in Proposition 5.2, where Ci is the circle
that does not pass through pi, for i ∈ {1, . . . , 4}. We call them the fundamental circles of ~p.

The following proposition is not really needed; we just mention it because it is a nice descrip-
tion of the structure of the partition by fundamental circles.

Proposition 5.3. The complement of the fundamental circles of a quadrilateral ~p has 10 con-
nected components. Four of them are delimited by three circles, and the other 6 are delimited by
two circles. The boundary of the unique unbounded region is constituted by 2 arcs if and only if
the quadrilateral is convex (see Fig. 5).

p1

p2

p3

p4

(a)

p1

p2 p3

p4

(b)

Figure 5. The 10 regions forming the complement of the fundamental circles of a quadrilateral: in the

convex case (a) the boundary of the unbounded region is given by 2 arcs, while in the concave case (b)

the boundary is given by 3 arcs.

If ~p is convex, then the unique region containing the intersection of the inner diagonals is
called the inner region. It is important to observe that the twin of a convex quadrilateral is
again convex, and the twin map maps the inner region to the inner region.
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Theorem 5.4. Let ~p be a nondegenerate convex quadrilateral and assume that all measure
points q1, . . . , qm (where m is arbitrary) are contained in the inner region. Let ~p ′ be the twin
quadrilateral of ~p and set q′i = ρ~p,~p ′(qi) for i ∈ {1, . . . ,m}. Then we have

]qj (p1, pi) = ]q′j
(p′1, p

′
i)

for all i ∈ {2, . . . , t} and j ∈ {1, . . . ,m}.

Proof. The construction guarantees that M~p,~q = M~p ′,~q ′ . Hence for all i ∈ {2, . . . , t} and

j ∈ {1, . . . ,m} we have the equality
(
]qj (p1, pi)

)2
=
(
]q′j

(p′1, p
′
i)
)2

, where we represent angles

by complex numbers, so that doubling the angle corresponds to squaring the complex represen-
tation. Hence the quotient of left hand side and right hand side is ±1. We consider this quotient
as a function φ from the complement of the fundamental circles to {1,−1}. It is easy to see
that this map is continuous, therefore constant on any region, since they are connected. At
the intersection of the inner diagonals the map φ assumes the value 1, therefore it is constantly
equal to 1 on the whole inner region. From this the thesis follows. �
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