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Abstract. Observables ‘are observed’ whereas beables just ‘are’. This gives beables more
scope in the cosmological and quantum domains. Both observables and beables are enti-
ties that form ‘brackets’ with ‘the constraints’ that are ‘equal to’ zero. We explain how
depending on circumstances, these could be, e.g., Poisson, Dirac, commutator, histories,
Schouten–Nijenhuis, double or Nambu brackets, first-class, gauge, linear or effective con-
straints, and strong, weak or weak-effective equalities. The Dirac–Bergmann distinction in
notions of gauge leads to further notions of observables or beables, and is tied to a number of
diffeomorphism-specific subtleties. Thus we cover a wide range of notions of observables or
beables that occur in classical and quantum gravitational theories: Dirac, Kuchař, effective,
Bergmann, histories, multisymplectic, master, Nambu and bi-. Indeed this review covers
a representatively wide range of such theories: general relativity, loop quantum gravity,
histories theory, supergravity and M-theory.

Key words: observables; classical and quantum gravity; problem of time; constrained dy-
namics
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1 Introduction

This review covers a topic – observables and beables – which spans classical dynamics and
quantum mechanics, with the canonical perspective of each of quantum cosmology and quantum
gravity particularly in mind.

Observables/beables [38, 39, 55, 56, 57, 58, 71, 88, 93, 106, 107, 131, 137, 155, 152] are often
considered to be objects whose ‘brackets’ with ‘the constraints’ are ‘equal to’ zero:

∣[CC,BB]∣ ‘=’ 0. (1.1)

Here CC denotes the constraints and BB denotes the beables; C and B index for now general sets
of each of these. ∣[ , ]∣ is usually a Lie bracket such as a Poisson bracket in classical dynamics
or a quantum commutator. As a Lie bracket, it obeys the Jacobi identity

∣[X, ∣[Y,Z]∣]∣ + cycles = 0.

However, there are a number of different possibilities for which brackets, which constraints and
even which notion of equality can be involved. Thus we will first need to discuss each of these
more primary entities (Sections 1.1–1.7) with additionally some types of constraint having ties to
notions of gauge. Additionally, there are notions of gauge not tied to constraints which furnish
a further conception of observables/beables along the lines of Bergmann [38, 39]. After this,
we can return to considering the more composite notions that are observables and beables, in
Sections 1.8–1.10.
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We do first consider the distinction between observables and beables. This began with
Bell [36], and is the difference between entities being observed and entities simply being. The
circumstances under which observables occur are then a subset of those in which beables do,
in the sense that ‘being observed’ is a subset of ‘being’. Moreover, from a beables perspective,
defining what ‘observing’ is is unnecessary, so conceptualizing in terms of beables is a freeing
from having to define this.

Two contexts in which beables are relevant are 1) whole-universe or closed-system modelling,
and 2) at the quantum level. Bell pointed out that 1) is already an issue at the classical level [34].
This is due to observers living within such a universe rather than affording a ‘God’s eye’ view
from outside. (Also observers did not exist in the early universe.) On the other hand, 2) has more
widespread relevance due to the connection between the notion of observation and the quantum
measurement problem [142, 165]; Bell furthermore extended the notion of beables to QFT in [35].

Along lines e.g. recently argued for by Kent [102], beables are furthermore an appropriate
concept for a number of types of realist interpretation of QM. (This is as opposed to e.g. in-
strumentalist interpretation; see e.g. [94] for an introduction to different types of interpretation
of QM.) The Bohmian approach is one branch of realist interpretations in which the name and
concept of ‘beables’ is widely used [31, 35, 45, 51, 72, 83, 116, 139, 148, 145, 162]. Moreover,
histories approaches (see [70, 84, 97], or Appendix A for a summary) can also be thought of in
terms of beables. The beables concept additionally comes hand-in-hand with QM wavefunction
collapse due to decoherence [100] by natural phenomena as opposed to by observation. I.e. in the
Universe, processes such as dust grains being decohered by CMB photons [99] are more typical
than processes specifically involving observers making quantum measurements. Finally, beables
are also appropriate in the contextual realist interpretation of QM by Isham and Doering [61]1.
Among these realist approaches, histories and decoherence play further role in this review.

As a third context combining the previous two, quantum cosmology is substantially distinct
from QM. The measurement problem is further aggravated in this setting, for which the usual
Copenhagen interpretation of QM can no longer apply. Quantum cosmology has its own distinct
conceptualization of histories and decoherence [77, 84, 100]. Yet the concept of beables continues
to be appropriate in quantum cosmology.

Henceforth I use ‘beables’ unless the situation specifically requires use of the word ‘obser-
vables’.

1.1 Outline of constrained dynamics and various kinds of constraints

Denote the generalized configurations of a physical system by QA.2 E.g. particle positions in
mechanics, field values in field theory, or spatial 3-metrics hij on a fixed topological manifold Σ
in the geometrodynamical formulation of general relativity (GR): Wheeler’s [168] formulation
of GR as evolving spatial 3-geometries. The space of possible values that the QA can take is
the configuration space q [110], e.g. RNd for N particles in dimension d, or the space Riem(Σ)
of hij ’s for geometrodynamics. A given (for now finite) classical physical system’s equations of
motion can be taken to follow from the Lagrangian L(QA, Q̇A).3 The QA then have conjugate

1This approach is based on multi-valued context-dependent truth valuations via use of Topos Theory to
reinterpret the foundations of QM. As such this approach is given here as motivation for realist approaches, but
further details of it lie beyond the scope of this review.

2In this review, sans-serif capital letters are used as generalized indices, lower-case Latin letters are used for
spatial indices, and lower-case Greek letters for spacetime ones. Primed and unprimed indices index the same
objects throughout this review. Following [93, 106], I use ( ) for functions, [ ] for functionals, and ( ; ] for
mixed function-functionals. This leaves { } without commas for actual brackets. I then use bold font to clearly
distinguish Poisson brackets { , } and other brackets playing analogous roles in defining notions of beables.

3Here ˙ is ∂/∂t for t a notion of time for one’s theory, which includes in some cases ∂/∂λ for λ a meaningless label
time. This formula and the rest in this section are for finite models such as mechanics or minisuperspace (homo-
geneous GR), but have well-known extensions to field theories (including GR and alternative theories of gravity).
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momenta

PA ∶= ∂L/∂Q̇
A. (1.2)

One can additionally pass (via a so-called Legendre transformation) from QA and Q̇A variables
and a Lagrangian function of these, L(QA, Q̇A), to QA and PA variables and a Hamiltonian
function of these, H(QA, PA). Phase space is the space of both the QA and the PA as equipped
with the Poisson brackets

{F, G} ∶= ∂F

∂QA

∂G

∂PA
−
∂F

∂PA

∂G

∂QA
.

From a more geometrical perspective, Poisson brackets are well-known to be recastable in terms
of a symplectic form [17]. These notions readily extend to field theories by upgrading to suitable
functionals and including suitable integrals over one’s notion of space.

Moreover, passage from a Lagrangian perspective to a Hamiltonian one can be nontrivial.
Furthermore, it is the Hamiltonian perspective which possesses a systematic treatment of con-
straints, due to Dirac [56, 88]. The Hamiltonian perspective additionally offers a more direct
link to quantum theory. The above nontriviality is due to the array

∂2L/∂Q̇A∂Q̇A′ (= ∂PA′/∂Q̇
A)

– associated with the Legendre transformation – in general being non-invertible, by which
the momenta cannot be independent functions of the velocities. Thus there are relations
CC(Q

A, PA) = 0 between the momenta; these are standardly termed constraints. (In this re-
view, constraints are highlighted by exclusive use of the calligraphic font.) Moreover, the above
array also features in the reformulation of the Euler–Lagrange equations as

Q̈A′∂2L/∂Q̇A∂Q̇A′
= ∂L/∂QA

− Q̇A′∂2L/∂QA∂Q̇A′ .

Due to this, the noninvertibility has additional significance as accelerations not being uniquely
determined by QA, Q̇A.4

Constraints are usefully classified in a number of ways, including the following due to
Bergmann and Dirac [56, 88].

Primary constraints arise purely from the form of the Lagrangian; these are the relations
between the momenta by which the above-mentioned Legendre transformation maps onto only
a submanifold of the full phase space.

Secondary constraints, on the other hand, arise via use of the equations of motion. One
intuitively valuable case of this concerns constraints arising from the propagation of existing
constraints using the equations of motion.

Weak equality is equality up to additive functionals of the constraints; this holds on the
constraint surface (defined as the surface within phase space where the totality of the constraints
vanishes).

First-class constraints are then those whose classical brackets with all the other constraints
vanish weakly; these are indexed by F. This can also be described in terms of no new entities –
constraints or further kinds mentioned below – arising from the bracket operation acting on CF
and a general CC. Geometrically, these are characterized as the brackets that vanish on the
version of constraint surface upon which all first-class constraints vanish. Ab initio, the classical
brackets involved are Poisson brackets.

Second-class constraints are then simply defined by exclusion as those constraints that fail
to be first-class.

4For simplicity, this review’s range of physical theories restricts itself to no higher than second-order theories.
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Moreover, one can always in principle handle second-class constraints by passing from Poisson
to Dirac brackets,

{F,G}∗ ∶= {F,G} − {F,CS}{CS,CS′}−1{CS′ ,G}.
Here the –1 denotes the inverse of the given matrix whose S indices index irreducibly [56, 88]
second-class constraints. (Irreducibly here refers to these constraints not being combineable in
any manner so as to separate out any further functionally-independent first-class constraints.)
Then the classical brackets role played ab initio by the Poisson brackets gets taken over by the
Dirac brackets. Moreover, e.g. [88, 146] exposit how Dirac brackets can be viewed geometrically
as a more reduced formulation’s version of Poisson brackets. The particular Dirac brackets
formed once no second-class constraints remain illustrates the concept of ‘final classical brackets’
forming a ‘final classical brackets algebra’ of constraints. (This is in contrast with näıve Poisson
brackets as an ‘incipient’ notion of bracket.) First-class constraints use up 2 degrees of freedom
each; second-class, only 1.

Some constraints are regarded as gauge constraints; however exactly which constraints these
comprise is disputed. What is agreed upon is that second-class constraints are not gauge con-
straints; all gauge constraints use up two degrees of freedom. Dirac [56] conjectured a forteriori
that all first-class constraints are gauge constraints5, so using up 2 degrees of freedom would
then conversely imply being a gauge constraint. However Section 2 outlines how this conjecture
has been refuted, alongside various other perspectives on the status of gauge constraints.

Gauge-fixing conditions FX may then be applied to whatever gauge theory (though one re-
quires the final answers to physical questions to be gauge-invariant). These are a means of
removing gauge freedom by fixing a choice of gauge, though physical answers are required to
end up in gauge-invariant form.

As a final remark, second-class constraints can always in principle6 be handled by alter-
natively thinking of them as ‘already-applied’ gauge fixing conditions that can be recast as
first-class constraints by adding suitable auxiliary variables to one’s configuration space or
phase space. By doing this, a system with first- and second-class constraints can be turned into
a more redundant description of a system with just first-class constraints. Sets of first-class
constraints obtained in this way are known as effective constraints [33].

1.2 Examples of constraints in theoretical physics

Most of the theories given here are used as recurring examples in this review; using multiple
examples in reviews is in the tradition of Isham [93] and Kuchař [106]. I enumerate the example
theories and models in this review with fixed example numbers 0 to 10 to keep these recurrences
manifest.

Example 1. Electromagnetism in vacuo has the7

(Gauss constraint) G ∶= ∂iπ
i
= 0.

5This is in Dirac’s sense of ‘gauge constraint’ as per Section 1.3.
6To [88]’s precursor statement, I add the caveat ‘locally’, because gauge-fixing conditions themselves in general

are not global entities.
7Some notation for this subsection is as follows. I use capital Latin indices for particle labels or internal

indices, depending on context. Ai is the electromagnetic vector potential with conjugate momentum πi. qI are
particle positions with conjugate momenta p

I
and masses mI . The 4-d spacetime is the pair (m, gµν). Here m

is the spacetime topological manifold and gµν is a metric that provides this with semi-Riemannian geometrical
structure. gµν = gµν(X

ρ
), for Xρ spacetime coordinates. The 3-d spaces are pairs (Σ, hij) for a fixed topological

manifold Σ. Thus such dynamical study restricts m to be of the simple form Σ × I for I some kind of interval
in R. Moreover, this fixed spatial topological space is taken in this review to be a compact without boundary
one. Finally Σ additionally comes equipped with suitable differential and metric structure. hij = hij(x

k
), for xk

spatial coordinates, is a spatial metric, with determinant h, covariant derivative Di, Ricci scalar R = R(xe;hfg],
and conjugate momenta pij with trace p.
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This arises from variation with respect to the electromagnetic potential Φ. One also has πΦ = 0,
for πΦ the momentum conjugate to Φ. These are both first-class, and use up 2 degrees of freedom
each, so one passes from Ai, Φ and their conjugate momenta’s redundant 4×2 phase space degrees
of freedom per space point to just 2×2. This is in accord with electromagnetic waves consisting
of just 2 transverse modes. This G is uncontroversially a gauge constraint, associated with the
U(1) group. Further Gauss constraints that share these conceptual properties feature in many
other theories. Examples of such are in 1) pure Yang–Mills theory (with internal index I: GI),
2) the scalar and fermionic gauge theories that one can associate with each of electromagnetism
and Yang–Mills theory. (See [167] for more details of 1) and 2)).

Example 2. Barbour–Bertotti’s [7, 28] scaled relational particle mechanics has the

(zero total momentum constraint) P ∶=
N

∑
I=1

p
I
= 0, and

(zero total angular momentum constraint) L ∶=
N

∑
I=1

qI × p
I
= 0.

Here I runs over particle labels 1 to N . These constraints from variation with respect to some
translational and rotational auxiliary variables respectively; relatedly, these constraints generate
the Euclidean group of translations and rotations. They are first-class and use up 2 degrees of
freedom per constraint degree of freedom. Thus one passes from a redundant configuration
space RNd (in dimension d) to a reduced configuration space RNd/Eucl(d). This amounts to
removing Newton’s absolute space from mechanics. Note that these are again not internal gauge
constraints, but they are uncontroversially gauge constraints once more. Molecular physics has
similar classical kinematics in its zero angular momentum case; the nonzero angular momentum
case, however, has a more complicated fibre bundle structure (consult [113] if interested in this
difference).

Example 3. Arnowitt–Deser–Misner (ADM)’s geometrodynamical formulation of GR
(Fig. 1) involves the

(momentum constraint) Mi ∶= −2Djp
j
i = 0.

This arises from variation with respect to ADM’s shift N i. Mi is first-class, and uses up 2
degrees of freedom per space point. It is also uncontroversially a gauge constraint, with the
spatial diffeomorphisms Diff(Σ) as the corresponding gauge group.

Figure 1. ADM split of spacetime m with respect to spatial hypersurfaces Σ. nµ is the normal to the

hypersurface, N is the lapse (time elapsed) and N i is the shift (point identification map). Together, these

form a strutting: how to fit together adjacent hypersurfaces within spacetime. For later use, 1) the normal

to the spatial hypersurface Σ then takes the computational form nµ = [N−1,−N−1N i]. 2) Nµ ∶= [N,N i]

is the spacetime 4-vector of auxiliaries, with conjugate momenta Pµ.

The feature of using up degrees of freedom in pairs also applies to the GR

(Hamiltonian constraint) H ∶= {pijp
ij
− p2

/2}/
√
h −

√
hR = 0.

In the ADM formulation of GR this also arises as a secondary constraint from variation with re-
spect to the lapse N . On the other hand, in the Baierlein–Sharp–Wheeler or related forms
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of GR [23, 25], H arises rather as a primary constraint corresponding to the action being
reparametrization invariant along the lines of (1.3). The same is true for relational particle
mechanics’

(energy constraint) E ∶=
N

∑
I=1

p2
I/2mI + V (qI) = E,

as argued below (V is here the potential function). Thus the below two examples illustrate that
the primary-secondary distinction is artificial in that it is malleable by change of formalism.
Thus we will avoid that distinction in this review other than possibly pointing out others’
claims that concern it (and counterexamples).

Example 2 relational particle mechanics’ energy constraint E arises as a primary constraint
from their Jacobi-type action [7, 28, 110]8

S = ∫ Ldλ = 2∫
√
T{E − V }dλ,

T = δIJmI{q̇
I
− ȧ − {ḃ × qI}}{q̇J − ȧ − {ḃ × qJ}}/2. (1.3)

Moreover in this case the way the purely quadratic form of the Lagrangian causes the constraint
to arise is in close analogy to Pythagoras’ theorem/direction cosines summing to one.

Example 4. Then the Baierlein–Sharp–Wheeler or related formulations [23, 25] of GR
have the GR Hamiltonian constraint H arise as one primary constraint per space point in close
analogy to Example 4 working.

1.3 Interlude: notions of gauge theory

One conceptually useful way of introducing gauge theory9 is by letting g be a group of trans-
formations held to be physically redundant that acts on q (or sometimes, when specified in this
review, on phase space). This group (‘gauge group’), the constraints and gauge theory can then
be inter-related as follows.

1) The mathematically-disjoint auxiliaries gG are g-auxiliaries that encode the group action
of g. (Mathematically-disjoint means like Φ not being part of a larger tensorial package in the
sense that the longitudinal piece of Aa is part of the larger entity Aa itself.) Then at least in the
set of examples given above, first-class secondary constraints arise from variation with respect
to mathematically-disjoint auxiliary variables. Furthermore, the effect of this variation is to
additionally use up part of an accompanying mathematically coherent block that however only
contains partially physical information; this is clear in the above discussions of electromagnetism.

2) The disjoint auxiliary variables are moreover often in correspondence with a group of
redundancies g. Variation with respect to the mathematically disjoint auxiliary variable gG

produces the gauge constraints, denoted GAUGEG for clarity. We then do not need to isolate
the latter for many purposes: E.g. in the case of electromagnetism, the Gauss constraint G
associated with this pair already arises from varying with respect to the auxiliary Φ. It is much
more convenient to obtain G in this way because Φ is a mathematically isolated object and so one
can entirely straightforwardly vary with respect to it. This is one reason why the most habitual –
and sometimes the only possible – redundant formulations of gauge theories are useful to work
with. Some theoreticians (contrast with Section 2.1) preclude from 2) the reparametrization
and refoliation groups on grounds that they are dynamically distinct. The included groups,

8Here a and b are translational and rotational auxiliaries respectively. mI are particle masses, E is the total
energy and T is the kinetic term.

9We take this to have a wider meaning than just the typical gauge theories of particle physics. It covers also
e.g. the gauge theories in molecular physics [113], relational particle mechanics [7, 28], cosmological perturbation
theory [30, 117], and those associated with various kinds of diffeomorphisms (see e.g. [40, 126]).
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the constraints corresponding to which are first-class and linear – denoted LIN L – fall under
Barbour’s best matching paradigm (outlined in Appendix A) and correspond to redundancies
in the instantaneous configurations10.

The precluded constraints are quadratic constraints (corresponding to strutting ‘orthogonal’
to the instantaneous configurations: see Fig. 1). Ways in which refoliation is more subtle than
reparametrization are outlined in Section 1.7. In the commonly-encountered physical theories,
the diagnostic for the precluded constraints is that they have quadratic and not linear dependence
in the constraints; hence I denote these by QUAD.

Note that naming a g as a candidate gauge group can be a formalism-dependent rather than
theory-dependent statement. On the one hand, it is at least in principle possible to rewrite
a theory possessing a gauge freedom in terms of true dynamical degrees of freedom alone (see
also Section 3.1). (This ‘in principle’ does not imply that the equations one would need to
solve to do so can be solved.) On the other hand, variable numbers of auxiliary degrees of
freedom can be added, and some such cause different gauge constraints to appear or to recast
existing non-gauge constraints as gauge ones. These considerations parallel those for removing
second-class constraints in Section 1.1. Moreover notions 1) and 2) can be applied, for a subset
of theories, to the subset of constraints that are linear. I.e. that subset of theories for which
QUAD (or any other nonlinear constraint) is not an integrability of the linear constraints LIN L

(see Section 1.7 for a counterexample). Thus here LIN L constitutes a subalgebraic structure
(taken to cover both subalgebras and subalgebroids, see Section 1.7) of constraints.

There are of course further conceptualizations of gauge and of gauge theory [41, 138, 166, 167].
For instance, one can do so in terms of the presence of free functions in the solution of the
equations of motion or of making global symmetries local.

A further, older distinction between different uses of the word ‘gauge’ concerns what a the-
ory is a gauge theory of, e.g., QA alone, QA and PA, whole paths, or histories. Bergmann’s
early position [38] was that that gauge theory concerns whole paths (dynamical trajectories):
path-gauge notion. This is in contrast to Dirac’s perspective [55, 56] that gauge theory con-
cerns data at a given time: data-gauge notion (called ‘D’ by Bergmann and Komar [39], albeit
that stood for ‘Dirac’ rather than for ‘data’)11. I.e. gauge group action in spacetime versus
spatial/configurational/canonical settings.

1.4 More examples of constraints toward quantum gravitational theories

Example 5. Ashtekar Variables formulation of GR’s constraints are12

GI ∶=DiE
i
I = 0, Mi ∶= E

jIFjiI = 0, H ∶= εIJKE
iIEjJFKij = 0.

Example 6. Proca theory (the massive counterpart of electromagnetism) is a simple example
of a theory with a second-class constraint [124]

C ∶= ∂iπ
i
+m2Φ = 0.

10Thus the corresponding notion of gauge is instantaneous, i.e. along the lines of Dirac’s notion and not
Bergmann’s, as discussed below.

11N.B. path-gauge and data-gauge are definitions of notions of gauge, as opposed to particular choices of gauge
within a particular notion of gauge such as Coulomb gauge or Lorenz gauge for electromagnetism). In this review,
I also take ‘history’ to mean more than just a dynamical path; at the quantum level these are paths that are
furthermore decorated with projection operators. Also N.B. that this review’s namings are preferentially based
on each entity’s conceptual content – true name – rather than on e.g. the name of who discovered it, or on how
the entity was once thought about prior to developments in its conceptual understanding. Of course, upon first
introduction of such terms, I give what aliases they are or have been known by.

12I present just the complex case for simplicity. EiI is the SU(2) equivalent of electric field flux. FijI is the
corresponding field strength. EiI is now also geometrically a particular kind of bein (‘square root’ of the spatial
metric configuration variable), and yet has been recast as a momentum variable by canonical transformation.
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This indeed uses up only 1 degree of freedom, so this theory has 1 more physical mode than
electromagnetism itself. Gravitational theories with second-class constraints include 1) Einstein–
Cartan theory [101], 2) Einstein–Dirac theory (i.e. GR with spin-1/2 fermion matter as required
for a full model of the known fields of nature) [52], 3) supergravity [52, 53, 64, 124, 154] (on the
one hand supersymmetric particles are being sought for at the LHC, and on the other hand this
review reveals a number of further ways in which supergravity differs from GR).

Example 7. Locally-Lorentz constraints in first-order formulations have constraints JAB
(and conjugate; the capital indices here are specifically 2-spinor indices). These occur in e.g. in
Einstein–Dirac theory and supergravity.

Example 8. Supersymmetric constraints, a particular case of which in gravitational theories
are supergravity’s constraint SA (and conjugate).

See e.g. [52] for explicit forms for JAB and SA (these details are not required for this review,
which only makes use of the form of the algebraic structure of the constraints).

1.5 Different kinds of notions of equality in the principles of dynamics

We already explained weak equality in Section 1.1: ‘up to functionals of the first-class con-
straints’. ‘Strong equality’ means equality in the usual sense13. E.g. Isham [93] points out the
possibility of making the strong equality demand in defining notions of beables. Finally, Batalin
and Tyutin [33] consider equality up to effective constraints, denoted by the symbol ≋. I term
this effective weak equality. Moreover, one person’s effective formulation could have been written
down ab initio by another as a formulation happening to have no second-class constraints, so
this is not so large a distinction.

1.6 Different kinds of brackets

We have already encountered the Poisson brackets and the Dirac brackets in Section 1.1. A dis-
tinct generalization of the Poisson bracket – to mixtures of bosonic and fermionic species – is
Poisson bracket here generalizes to the Casalbuoni brackets [50]

{F,G}C ∶=
∂F

∂QA

∂G

∂PA
− (−)

εF εG ∂G

∂QA

∂F

∂PA
.

Here εA is the Grassmann parity of species A: 1 for bosons and −1 for fermions. This also
readily generalizes to field-theoretic form. It obeys the Grassmannian generalization of the
Jacobi identity,

{{F,G}C,H}C(−1)εF εH + cycles = 0.

The quantum commutator counterpart of the above types of brackets is covered in Section 1.9.
See Section 7 for yet further types of classical and quantum brackets.

1.7 Algebraic structures resulting from the introduction of brackets

Given a type of bracket, there is the additional issue of mathematical type of the algebraic
structure formed by entering the theory’s constraints into that type of brackets. It is well
known that if the right hand side is of the form of a sum of (structure constants) × constraints,
the brackets of constraints constitute a Lie algebra. However, if instead structure functions
materialize, one has a more general structure termed an algebroid [42, 46, 160]. This clearly

13E.g. [88] give a form for this as a linear combination of constraints. I however retain the general definition
for its subsequent use in studying global effects.
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structurally precedes the notions of beables and of beables algebraic structures, through using
a strict subset of the structures that this requires.

Example 1. Gauss constraints form Lie algebras. These can be Abelian (electromagne-
tism)14

{(G∣χ), (G∣ζ)} = 0,

or non-Abelian (Yang–Mills theory)

{(GI ∣χI), (GJ ∣ζJ)} = fIJK(GK ∣χIζJ)

for Lie algebra structure constants fIJ
K .

Example 2. 3-d relational particle mechanics has

{Pi,Pj} = 0, {Li,Lj} = εijkLk, {Pi,Lj} = εijkPk.
The meanings of these are, respectively, that the Li form an SO(3) subalgebra of rotations, the
Pi form an Abelian subalgebra of translations, and Pi is a good Li vector. All other Poisson
brackets for this model are zero.

Example 3 or 4. Spatial diffeomorphisms by themselves form an infinite-dimensional Lie
algebra,

{(Mi∣L
i
), (Mj ∣M

j
)} = (Mk∣[L,M]∣k). (1.4)

Here Li(z) and Mi(z) are vectorial smearing functions and ∣[ , ]∣ is the standard Lie bracket.
Example 3 or 4. In the case of full GR as geometrodynamics, the constraints’ Poisson

brackets are [56] (1.4),

{(H∣K), (Mi∣L
i
)} = (£LH∣K), (1.5)

{(H∣J), (H∣K)} = (Mih
ij
∣J
←→
∂ iK). (1.6)

Here J(z), K(z) are scalar smearing functions, £ is the well-known Lie derivative of differential

geometry [147], and X
←→
∂ iY ∶= (∂iY )X − Y ∂iX (a notation familiar from QFT).

(1.5) means thatH is a ‘good object’ (a scalar density) under spatial diffeomorphisms Diff(Σ).
(1.6), however, is more complicated in both form and meaning. Firstly, it uncontroversially
means that the linear Mi arises as an integrability of the quadratic H. Secondly, the presence
of hij(hkl) on its right-hand side is a structure function. Thus this bracket renders the overall
algebraic structure more complicated than a Lie algebra. It is, rather, an algebroid: specifically
the Dirac algebroid [56, 42]. This is entirely unlike the unsplit GR’s spacetime diffeomorphisms
Diff(m) which form a genuine Lie algebra paralleling that of Diff(Σ).
H’s distinction from GR theories’ linear constraints has further fuel than E ’s from relational

particle mechanics linear constraints, as follows. i) Refoliation invariance is a hidden invariance.
(This is as opposed to an invariance that is manifest in the canonical formulation itself. In
particular, one needs to foliate spacetime in order to have a canonical formulation, and one
cannot directly see refoliation invariance within any particular foliation.) ii) (1.6) implies that
GR’s linear momentum constraintMi is an integrability condition that follows from the existence
of H. Thus it ceases to be possible to consider QUAD and LIN L piecemeal in generally-
relativistic theories. iii) It is specifically the presence of H that causes the algebraic structure
of these constraints to be an algebroid. Structure functions are needed to accommodate the

14This is given with smearing functions χ(z) and ζ(z). More generally, (CZ∣A
Z
) ∶= ∫ d

3z CZ(z
i;hjk]A

Z
(zi)

denotes an ‘inner product’ notation for the smearing of a Z-tensor density valued constraint CZ by an opposite-
rank Z-tensor smearing with no density weighting, AZ.
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variety of possible foliations; see e.g. [95, 96, 112, 153] for further discussions of the ‘group
action’ involved.

Example 5. The Ashtekar variables’ algebraic structure of constraints [18, 155] is much like
geometrodynamics’, but with an extra Gauss-type constraint included. This further includes
a bracket between two SU(2) Yang–Mills–Gauss constraints (these simply commute with the
two other constraints). It is the bracket of two H’s that continues to cause difficulty, and for
reasons unchanged from the geometrodynamical case’s.

Examples 6 and 7. See e.g. [52, 161] for what is known about the Einstein–Dirac and
supergravity constraint algebras. In particular, supergravity is an example of a subset of the
linear constraints – the supersymmetry constraints – having the supergravity counterpart of the
quadratic H as their integrability condition. This follows from [52, 154]

{(SA∣θA), (SA′ ∣θA′)}∗C ∝ i(γAA
′

∣HAA′) + terms with JAB or its conjugate as a factor.(1.7)

HereHAA′ ∶= nAA′H⊥+eAA′ iMi packages together the supergravity Hamiltonian and momentum
constraints using the normal n and spinor-valued 1-form e. (Less importantly, θA and θA

′

are
fermionic smearing functions, whereas γAA

′

(θB, θB
′

) is some composite of these that is itself
another smearing function.) (1.7) is the basis for a number of significant new results in this
review.

(1.7) can furthermore be interpreted [154] in terms of SA being a square root of H in parallel
to how the Dirac operator is well known to be a square root of the Klein–Gordon one. This may
provide reasons why H is, after all, not so fundamental. However, it should be cautioned that
whereas Dirac’s corresponding fermions were observationally vindicated, this is not the case to
date as regards superpartner particles. This can be taken as a limitation on arguing against
the fundamentality of quadratic constraints like H on the grounds of their being supplanted in
supersymmetric theories.

To sum up, schematically, for a theory with constraints, the constraint algebra is

∣[CF,CF′]∣ ≈ 0. (1.8)

Indexing these constraints by F’s indicates that they are first-class. Any second-class ones there
were have been removed by one of the following. a) Extension, in which case it indeed involves
a Poisson bracket, effective E-index and effective weak equality symbol ≋. b) Passing to the
Dirac bracket whilst leaving the F-index and weak equality symbol untouched.

1.8 Classical notions of beables

Finally, a theory with constraints and brackets possesses a further class of conceptually important
objects: those that form (usually) weakly zero brackets with the constraints,

∣[CF,BB]∣ ≈ 0. (1.9)

Comparing (1.8) and (1.9) implies that the CF themselves are in some sense beables. However,
already CF ≈ 0, so we are really looking for further quantities that are not trivial in this way.
Let us call these other quantities proper beables; the rest of the article will always mean ‘proper
beables’ whenever it says ‘beables’. Together, (1.8), (1.9) and closure of beables carry no non-
trivial algebraic structure at the level of weak equality than just the closure of beables. This
is because they are just the conditions for a direct product with the weakly-Abelian constraint
algebra.

In all cases beables themselves are to close as an algebraic structure under the same type of
bracket that they are defined by. E.g. if BB are beables in the sense of (1.1), then ∣[BB,BB′]∣
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are too. I.e. this bracket object itself obeys property (1.1). This is by two uses of (1.1) in the
Jacobi identity with two B’s and one C:

∣[CF, ∣[BB,BB′]∣]∣ = −∣[BB, ∣[BB′ ,CF]∣]∣ − ∣[BB′ , ∣[CF,BB]∣]∣ = 0. (1.10)

On the other hand, two uses of (1.1) in the less usual Jacobi identity with two C’s and one B,

∣[BB, ∣[CF,CC′]∣]∣ = −∣[CF, ∣[CF′ ,BB]∣]∣ − ∣[CF′ , ∣[BB,CF]∣]∣ = 0, (1.11)

enforces the following. A particular notion of beables BB corresponding to forming zero brackets
with a subset of a theory’s constraints CC is only self-consistent if BB also forms zero brackets
with ∣[CF,CF′]∣. I.e. with the algebraic closure of that subset of constraints. Thus one can
only consistently adopt subsets of constraints that are furthermore subalgebraic structures with
respect to the given brackets.

Different notions of beables then concern different subalgebraic structures of constraints.
Classical Dirac beables (Section 3) are functionals DD = FD[Q

A, PA] that classical-bracket-
commute with all of a theory’s first-class constraints CF then using the Poisson, Dirac or the
enlarged bracket for the purpose of assigning beables

{CF,DD} ≈ 0 (1.12)

is the standard form for this. Batalin and Tyutin also introduced a weak effective equality
version [33]. In the case in which time evolution is generated by a constraint, Dirac beables are
also known as constants of the motion alias perennials [29, 37, 62, 68, 75, 76, 107, 109, 169].
True [132, 133, 134] alias complete observables/beables [135, 136] (which at least [155] also terms
evolving constant of the motion) are also a notion of this kind. They involve operations on
a system each of which produces a number that can be predicted if the state of the system is
known. See Section 3 for examples.

Note 1. If there were second-class constraints, we would pass to Dirac or extended brackets,
whence they are absent and then define Dirac beables as before but in terms of this new bracket.

Note 2. The name ‘constants of the motion’ conventionally follows from a generally-covariant
(at least in Henneaux and Teitelboim’s sense [88]) theory’s total Hamiltonian being of the form
H = ∫Σ dΣ ΛFCF for multiplier coordinates ΛF. Then

dDD/dt = {DD,H} = {DD,∫
Σ

dΣ ΛFC
F} = ∫

Σ
dΣ ΛF{DD,C

F} ≈ 0, (1.13)

with the last equality following from (1.12). Thus it would appear that ‘nothing happens’ (a
type of frozen argument), though Section 5.4 attributes this to a fallacy.

Note 3. ’t Hooft [150] used a notion of ‘beables’ that are conceptually disjoint from his notion
of ‘changeables’; as a frozen notion, however, ’t Hooft’s notion of beables is more stringent than
the notion of beables used in this review.

On the other hand, classical Kuchař beables [29, 37, 62, 103, 107, 109, 169] (Section 2) are
functionals KK = FK[Q

A, PA] that classical-brackets-commute with all linear constraints

{KK,LIN L} ≈ 0.

Kuchař beables are more straightforward to construct; see Section 2 for examples. These corre-
spond to an uncontroversial if perhaps somewhat restrictive notion of gauge invariance. Namely
the one given in Section 1.3 in terms of the gauge group g that corresponds to the linear con-
straints LIN L. Kuchař beables are then gauge-invariant quantities in the ‘Dirac’ sense familiar
from electromagnetism and the canonical formulation of particle physics. Using Kuchař beables
reflects treating QUAD distinctly from LIN L; see Section 2 for further motivation for this.
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N.B. that weak and effective-weak notions are tied to the uncontroversial notion of first-class
constraints rather than to gauge constraints. In the case of standard canonical formulations GR,
effective is equivalent to first-class, and so effective-weak is equivalent to weak.

Classical partial observables are a point of view that began with Rovelli’s works [47, 48,
132, 133, 134] though one might view [54, 121] as forerunners in some respects. See also [57,
58, 135, 138] and the reviews [137, 152, 155]. Partial observables do not require commutation
with any constraints. Partial observables involve classical or QM operations on the system that
produces a number that is measurable but possibly totally unpredictable even if the state is
perfectly known (contrast with the definition of total/Dirac observables). The physics then lies
in considering pairs of these objects, with correlations between them encoding extractable purely
physical information. I.e. correlations of two partial observables are predictable; in particular the
value of a partial observable A subject to another partial observable B taking a particular value
is predictable, in which case partial observable B is playing a ‘clock’ role. It is not however clear
exactly which partial observables correspond to realistic and accurate clocks. Nor is it clear how
a number of other facets of the problem of time can be addressed via these [4, 7, 93, 106, 107].
What is clear is that the partial observables approach’s correlations are themselves functions
on the constraint surface and commute with the constraints; as such they furnish complete or
Dirac observables/beables, according to one’s interpretation.

Section 4 then covers local versus global notions of beables, and Section 5 covers Pons et
al. diffeomorphism-specific work [98, 127, 128, 129, 130, 131]. The latter also covers how
Bergmann observables/beables follow from his and various collaborators’ position on the notion
of gauge [16, 38, 39].

1.9 Quantum notions of beables

The quantum versions of the definitions of beables (see Section 6 for more detail) involve self-
adjoint operators that form zero quantum commutators with the quantum constraints

[Â, B̂] = ÂB̂ − B̂Â,

quantum Dirac beables are: D̂D such that [D̂D, ĈF]Ψ = 0, (1.14)

quantum Kuchař beables are: K̂K such that [K̂K, L̂IN L]Ψ = 0. (1.15)

Objects ŜM obeying [Q̂UAD, ŜM]Ψ = 0 are conventionally termed S-matrix quantities, after the
QM’s scattering matrix for interaction processes. Furthermore, these do not carry background-
dependence connotations due to corresponding to ‘scattering processes’ in configuration space
rather than in space itself. Clearly then for quantum beables, Kuchař and S-matrix ⇒ Dirac.
Quantum partial observables are defined exactly as before too, though now ‘produce a number’
carries inherent probabilistic connotations.

1.10 The problem of beables

The problem of beables [4, 7, 56, 93, 106, 137] is but one facet of the problem of time [4, 5, 7,
93, 106] (see Appendix A for other facets of this). It concerns that in the Kuchař and especially
Dirac conceptualizations, it is hard to construct a sufficiently large set of beables to describe
physical theory, in particular for gravitational theory.

Strategies for dealing with the problem of beables include considering each of the Kuchař and
Dirac positions on the nature of beables to be sufficient. Kuchař beables can also be viewed
as a potentially useful halfway house in the construction of Dirac beables. Partial observables
as a problem of observables/beables strategy is along the lines of this problem being held to be
a misunderstanding of the true nature of observables/beables. Partial observables are, rather,
entities that are measurable but unpredictable by themselves, predictions here involving rather
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correlations between more than one such. On the other hand, another strategy is to use partial
observables as intermediates toward obtaining Dirac observables/beables.

2 Kuchař beables

2.1 Further motivation for Kuchař beables

1) The Dirac conjecture (Section 1.1) is false by e.g. a technically constructed but not physically
motivated counterexample given in [88]: L = exp(y)ẋ2/2 suffices, with its px = 0 constraint being
first-class but not associated with a gauge symmetry.

2) The conjecture is contested on further grounds by e.g. Kuchař [109] and Barbour–Fos-
ter [29]; this is furthermore directly at odds with [88]. I point out here that this discrepancy is due
to [88] allowing for t-dependent canonical transformations, Cant. These map reparametrization-
invariant actions to non-reparametrization-invariant actions; QUAD is then also not an invariant
form under Cant. On the other hand, one has to presume that Cant are not licit in Barbour-type
relational perspectives, in which space/configuration space and timelessness are primary. Here
temporal relationalism (Appendix A) is implemented by reparametrization-invariant actions,
and the principles of dynamics is reformulated to suit there being no primary notion of time.
Consequently QUAD and LIN L are qualitatively different types of entities in this perspective.

3) Kuchař beables are, moreover, simpler to find than Dirac ones; Kuchař was motivated by
this rather than 2).

4) A set of Kuchař beables can be extended to produce a set of Dirac beables (see Section 3.3).

One problem of beables strategy is that Kuchař beables are all [29, 37, 62, 103, 106, 107, 109,
169]. Finding Kuchař beables is uncontroversially a timeless pursuit through its not involving
the quadratic Hamiltonian constraint. The downside is that a constraint of this kind remains
as a frozen equation at the quantum level. Thus one has to concoct some kind of emergent-time
or timeless scheme to deal with this (see Appendix A).

2.2 Examples of Kuchař beables posed

I denote a sufficient set of Kuchař beables to describe one’s theory by KK.

Example 0. For theories with no linear constraints such as the Jacobi formulation of mechan-
ics or Misner’s minisuperspace [7], Kuchař beables are just any quantities (subject to a caveat
and rephrasing in Section 4).

Example 2. Kuchař beables for scaled relational particle mechanics obey

{Li,KK} ≈ 0, {Pi,KK} ≈ 0. (2.1)

Also in the elsewise often simpler case of Example 2.b: pure-shape relational particle mecha-
nics [7] (shapes are relative-angle and ratio of relative separation information)

{D,KK} ≈ 0. (2.2)

Here D ∶=
N

∑
I=1

qI ⋅ p
I

is the zero dilational momentum constraint.

Example 1. Kuchař beables for electromagnetism obey

{G,KK} ≈ 0,

and similarly for Yang–Mills theory and the gauge theories that can be associated with each of
these.
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Example 3 or 4. For GR-as-geometrodynamics, Kuchař beables obey

{Mi,KK} ≈ 0. (2.3)

Example 5. For GR in Ashtekar variables, Kuchař beables obey

{Mi,KK} ≈ 0, {GI ,KK} ≈ 0. (2.4)

Counter-example 7. Kuchař beables are not well-defined for supergravity. This is because
the SA’s algebraic primality over H – that the commutator of two SA produces H (1.7) but not
vice versa – means that supergravity’s LIN L do not form a subalgebraic structure of constraints.
Then by the Casalbuoni brackets version of (1.11), a consistent notion of beables/observables
cannot be associated with supergravity’s LIN L. Thus the notion of Kuchař beables is not
available for supergravity, whether as a problem of beables resolution in itself or as a well-
defined halfway house in the construction of Dirac beables.

2.3 Kuchař beables examples resolved

Example 0 is straightforward to resolve. Additionally, if linear constraints have been reduced
out by whatever means, then one has arrived at a situation with equal status to Example 0. This
is then the case for Examples 2 and 2.b. Pure-shape relational particle mechanics is simpler [6]:
classical Kuchař beables are functionals of the shapes SA and their conjugate shape momenta PS

A,

KK = {FK[S
A,PS

A]}.

For scaled relational particle mechanics, classical Kuchař beables are functionals of a scale
variable σ, its conjugate scale (dilational) momentum Pσ and the shape and shape momenta,

KK = {FK[S
A, σ,PS

A,Pσ]}.

For example, for the scaled relational triangle [3], the shape space is the sphere. Using mass-
weighted relative Jacobi vectors ρ

1
, ρ

2
(Fig. 2a) convenient forms for the shapes are Θ =

2 arctan(ρ2/ρ1) and Φ = arccos (ρ
1
⋅ρ

3
/ρ1ρ3). These are geometrically the spherical polar coordi-

nates on the shape space sphere (Fig. 2c). The scaled relational triangle also has a scale variable:

the moment of inertia, I =
2

∑
i=1
ρ2
i , or sometimes more conveniently its square root [7, 113]. The

relational triangle’s pure-shape momenta are then a relative angular momentum (between the
base and the median) conjugate to Φ and a relative dilational momentum (dilatation of the
base’s length relative to the median’s length) The relational triangle’s scale momentum is an
overall dilatation.

Shape and scale space is R3 topologically but not metrically (though it is conformally flat).
The corresponding ‘Cartesian’ coordinates are the Hopf–Dragt coordinates [7, 113] (after the
well-known Hopf map: S3 → S2):

Dra1 ∶= 2ρ
1
⋅ ρ

2
, Dra2 ∶= 2{ρ

1
× ρ

2
}3, Dra3 ∶= ρ2

2
− ρ1

2. (2.5)

These and their conjugate momenta ΠDra
i are a useful repackaging of the information in the

above scale-shape split objects. Then

KK ∶= {FK[Drai,ΠDra
i ]}. (2.6)

See [6] for their relational quadrilateral counterparts and [7] for the relational N -a-gon case
covered in less detail.
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Figure 2. The relational triangle. a) Relative Jacobi vectors. X is the centre of mass of particles 1

and 2. b) Their magnitudes, base and median labels, and the angle between them. c) The triangle-

land sphere, with what triangles correspond to which points, is 6 copies of the given 1/3-hemisphere:

Kendall’s spherical blackboard [7]. The 6 copies correspond to different possible labellings of the trian-

gle. D is a double collision, M is a merger and E is the equilateral triangle configuration. In comparison

with Wheeler’s well-known depiction of Superspace(Σ) [168], both are clearly spaces of spaces, but the

relational triangle’s clearly has the simpler mathematics that renders it of further use as a model arena.

Example 1. i) The electric field E and the magnetic field B are Kuchař beables for elec-
tromagnetism. ii) The Wilson loops

Wγ[A
i
] = exp(i∮

γ
Ai(y)dy

i
)

(here γ is a path in space) are also Kuchař beables for electromagnetism. Furthermore ii)
generalizes to Yang–Mills theory upon introducing tracing over the internal indices. These loop
variables form an overcomplete set of such beables (there are Mandelstam identities between
them); this point is well-covered in e.g. [67]. As regards the significance of this example, the
counterpart of such loops in the Ashtekar variables case are indeed the loops in loop quantum
gravity.

Formal strategy 1) One can also act with g and then perform an operation involving the
whole of g (e.g. summing, integrating, averaging, taking an inf, sup or extremum) in order to
construct formally g-invariant expressions that serve as Kuchař beables [10].

Formal strategy 2) In some cases also one knows formally what the g-invariant expressions
are. ‘Formal’ here refers to not having a concrete basis of these such as the above Hopf–Dragt
coordinates for triangleland.

Example 3 or 4. For GR as geometrodynamics the classical Kuchař beables are, formally
as per strategy 2), functionals of the 3-geometries and associated momenta,

KK = {FK[Geom,ΠGeom
]}.

Following strategy 1) instead, one can use entities integrated over all space (but they are not
local) or integrated over Diff(Σ) (but the measure of integration in such expressions remains
formal).

Example 5. For Ashtekar variables formulations of GR, to commute with Mi in addition
to with GI , one needs to consider the diffeomorphism-invariant classes of loops; this coincides
with the mathematical definition of knots. Classical Kuchař beables are then, formally in the
sense of strategy 2), functionals of knots and associated momenta,

KK = {FK[Knot,ΠKnot
]}.

Example 6. The more standard (canonically untransformed) bein presentation of GR in-
volves using the configuration space Bein(Σ) in place of Riem(Σ). Then Diff(Σ) and the local
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Lorentz transformations are quotiented out in order to pass to a reformulation of the informa-
tion contained in Superspace(Σ). Nor is this an empty variant of formalism since inclusion of
fermions (e.g. Einstein–Dirac theory) requires reformulation away from metric variables.

Example 7. For supergravity, one cannot just quotient out the linear constraint generated
supersymmetric generalization of Diff(Σ) because of of LIN L not forming a subalgebraic struc-
ture of constraints. Thus ‘SuperSuperspace(Σ)’ – the näıve supersymmetric generalization of
Wheeler’s Superspace(Σ) for GR as geometrodynamics – turns out not to be well-defined. In
this case, one has to consider the fully reduced configuration space and the full notion of Dirac
beables as per Section 3.

Example 8. (subcase of geometrodynamics of cosmological relevance). Kuchař beables
for perturbatively inhomogeneous cosmology about a homogeneous isotropic S3 minisuperspace
with single scalar field matter are exposited in [11] based on the earlier work in [30, 81, 85, 111,
117, 143, 163, 164]. These are in terms of a countable infinity of mode coefficients for the small
perturbations. These constitute an explicit S3 basis much like the Hopf–Dragt coordinates for
relational triangle. This demonstrates how some regimes of GR are simpler and are usefully
modelled by relational particle mechanics such as this review’s relational triangle model.

Example 9. Other models for which Kuchař beables are known include a few midisuper-
spaces (inhomogeneous but still nontrivially symmetric models that are more amenable to cal-
culations than fully general models). For instance, a) some spatially compact without boundary
Gowdy models [157]. These are once again functions of an infinite number of mode coefficients.
b) Some open15 midisuperspace models with known Kuchař beables are the cylindrical gravita-
tional wave [104] and spherically symmetric gravitational models [108].

3 Classical Dirac beables

3.1 Motivation for Dirac beables

Perhaps instead the problem of beables is to be resolved by finding Dirac beables. These however
may be difficult objects to construct in practise. E.g. explicit construction of Dirac beables is
subject to the caveat of requiring explicit solution of a model’s dynamics [90, 144], which is in
general blocked due to the onset of chaos. Each of the Kuchař beables and partial observables
positions can be interpreted as a halfway houses toward construction of Dirac beables. The
former is clearly by applying one further partial differential equations restriction to one’s set of
Kuchař beables: the commutation also with the quadratic constraint. The latter is via methods
developed by Dittrich and Thiemann [57, 58, 155].

3.2 Examples of Dirac beables problems posed

Example 1. In electromagnetism, Yang–Mills theory and the gauge theories associated with
each, Dirac is equivalent to Kuchař for beables, so just take what is said in Section 2 about
these theories’ beables. This is also the case for temporally-absolute configurationally-relational
mechanics.

Example 0. There is just one condition to be solved for each of spatially absolute mechanics
and minisuperspace:

{E ,DD} ≈ 0, {H,DD} ≈ 0. (3.1)

15In Examples 8 and 9, I just give citations to keep this review of manageable length. Aside from here, I also
restrict this review to universes that are spatially compact without boundary. Asymptotically-flat models have
further notions of asymptotic observables/beables and interior observables/beables. Also far from all open models
are asymptotically flat, so the study widens further upon consideration of open models. Likewise we do not have
space in this review to consider the notion of observables/beables in holographic theories.
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Example 2. Relational particle mechanics have just one more condition to be solved on top
of an already-solved set of conditions (2.1), (2.2) with KK Ð→ DD. It is schematically also of
the form (3.1).

Example 3 or 4. GR as geometrodynamics and in terms of Ashtekar variables both have
just one more condition to be solved on top of a given set of conditions, the KK Ð→DD of (2.3)
and (2.4) respectively.

Example 7. Having presented a reason why the problem of finding Kuchař beables/obser-
vables for supergravity is not well-defined, I now pose the question of finding a full set of classical
and then quantum Dirac beables/observables for supergravity. This in fact appears to be a new
question, just beyond the frontier in [52] of finishing to construct the classical Dirac brackets
algebra for supergravity.

3.3 Examples of Dirac beables problems solved

For Example 0, i) See e.g. [19] for a direct construction of classical Dirac beables for minisuper-
space.

ii) Halliwell [77] gave a classical-level construct; for a simple k-d particle mechanics model
and δ(k) the k-d delta function, it is of the form

A(q,q0,p0) = ∫

+∞

−∞
dt δ(k)(q − qcl

(t)).

Here qcl(t) is a configuration space vector valued classical solution labelled by initial data
q0, p0. It is necessary in this construct to treat the whole path rather than just segments
of it. This is because elsewise the endpoints of segments contribute right-hand-side terms to
{H,A}. Whilst these Dirac beables are built out of histories, the final constructs themselves are
integrals over all times, by which these are indeed beables as opposed to histories beables (see
Section 7.2 for these). This construct extends both to minisuperspace GR [77, 79, 80] and to
the triangleland relational particle mechanics [3] subcase of Example 2 formulated in terms of
its Kuchař beables (2.6), which provides a solution to Example 2. The latter case involves use
of the three Hopf–Dragt coordinates of (2.5) in place of the 3-d case of q, Thus additionally it
is an example of building on the halfway house of having constructed a set of Kuchař beables.

For Example 3 or 4, as regards GR beyond minisuperspace, i) see [11] for some Dirac beables
for the Halliwell–Hawking model.

ii) Dirac beables are sometimes also explicitly known [157] for some of the Gowdy midisu-
perspace models.

iv) In outline, Dittrich’s [57, 58] general formal power series expansion objects for GR are of
the form

Dφ =
∞
∑
n=0

1

n!
{F}n{φ,C}(n).

Here φ are dynamical fields, Fµ ∶= Xµ − Y µ(Xµ) is a gauge-fixing equation for Y µ spacetime
scalar functions, and Cµ are particular linear combinations of the GR constraints [88]. Also
{ , }(n) is an ‘n times iterated Poisson bracket’, i.e. n Poisson brackets nested inside each

other. Each Cµ is contracted with that on one power of Fµ. See [57, 58] for the conceptually
relevant points of how this construct 1) exemplifies proceeding to Dirac beables via a partial
observables halfway house. 2) That it involves some partial observable acting as a clock variable
for the others. See also [59, 60] for an outline of this perturbative approach in which an Abelian
set of constraints is iteratively produced, alongside the application of this construction to the
important case of inhomogeneous cosmological perturbations. This approach has already been
recently covered in [57, 58, 131, 152, 155], so I detail it here no further.
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The explicit construction problems of Section 3.1 do not affect Halliwell’s formal expressions
integrated over all time, but do also apply to Dittrich’s power-series construct.

4 Local observables and beables: fashionables and degradeables

That coordinates are not in general globally defined on closed configuration spaces follows
from S2 being e.g. the shape space for 3 particles in 2-d. Furthermore, classical beables brack-
ets are partial differential equation conditions. Partial differential equation solutions seldom
form a globally-coherent whole (e.g. they seldom admit global well-posedness or explicit global
solutions). This is far more serious a mathematical problem than a mere patching together of
coordinates.

Fashionables are observables that are local in time and space.
Degradeables, on the other hand are beables that are local in time and space.
These are fitting nomenclature for local versions of these concepts along the lines of the

expressions ‘fashionable in Italy’, ‘fashionable in the 1960’s’, ‘degradeable within a year’ and
‘degradeable outside of the fridge’ all making good sense. Additionally, fashion is in the eye of
the beholder – observer-tied, whereas degradeability is a mere matter of being rather than of any
observing. Note that the above use in detail of this nomenclature is my own [3]. Bojowald et
al. [43, 44, 89, 91] had previously introduced the term ‘fashionables’ without making distinction
between observables and beables, i.e. their use of the name ‘fashionables’ covers both of my uses
of ‘fashionables’ and ‘degradeables’. Moreover, [43, 44, 89, 91] also provide computations for
these quantities, which serve for either of these interpretations, thus also providing a means
of constructing what I term degradeables if one adopts a realist interpretation of QM. [43,
44, 89, 91] furthermore exemplify patching. Patching quite clearly ties well with the partial
observables approach, though this notion applies also to the Kuchař and Dirac conceptualizations
of observables or beables. See Section 6 for further details of Bojowald et al. work at the quantum
level.

As further examples, in fact, examples of Section 2 are in general but Kuchař degradeables
rather than globally well defined Kuchař beables.

Also, Dittrich’s power series construct depends on the ‘clock variable’ conjugate to the con-
straint being well-defined, which is in general only local.

Finally, Halliwell’s integration over all time construct has the global problem that one’s
choice of time function does not generally hold throughout space or for all values of that time.
There is an issue of operational useabilty for entities that require evaluation over all of history.
Non-globality of many emergent and hidden times clashes with how the version of Halliwell’s
construct based on integrating over finite time intervals fails to commute with H.

5 Diffeomorphism-specific issues with classical beables

Passing from ordinary gauge theory to GR substantial increases conceptual and technical com-
plexity. I begin by recollecting two early no-go results about Dirac beables.

5.1 Kuchař’s and Torre’s no-go theorems

Kuchař’s no-go theorem [105]. Nonlocal objects of the form

∫
Σ

d3xKij(x
k;hlm]pij(x) (5.1)

are not Dirac beables (for Kij some general spatial tensor-valued mixed function-functional).
This result makes use that metric concomitants are in general built out of covariant derivatives
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of the Riemann tensor. It then proceeds by proving inductively on the number of covariant
derivatives that Kij cannot contain concomitants with that number of covariant derivatives, by
use of algebraic and integrability arguments.

Torre’s no-go theorem [156] (see also [14, 49, 158]). Local functionals

T(xi;hkl, p
nm

]

are not Dirac beables either. This uses that local observables correspond to local ‘hidden sym-
metry’ but that the latter’s cohomological classification then leaves no viable options.

5.2 Interpretations of diffeomorphisms

For s some differential manifold, I make standard use of Diff(s) for the diffeomorphisms (usually
actively interpreted). Diff(m) and Diff(Σ) are then cases of particular relevance.

Diff(m) = {ε(Xµ
)}

corresponding to coordinate transformations16 Xµ → X̃µ = fµ(Xν). However GR is invariant
under a larger group [39]: the diffeomorphism-induced gauge group,

Digg(m) ∶= {ε(Xµ;φΓ
(Xµ

)]}.

Here φΓ(Xµ) denote the fields in one’s theory (metric gµν(X
µ) and matter fields). Digg(m)

might also be denoted BK(m) after Bergmann and Komar [39], though they themselves referred
to it as the ‘Q-group’, and Pons, Salisbury and Sundermeyer prefer to use the Bergmann–Komar
name for the final group in this subsection. Incidentally, the existence of this larger invariance
does not by itself dictate that it is the gauge group. One can argue rather for freedom to choose
different suitably compatible groups to be physically irrelevant, and then consider the outcome
of each theory [13]. Inconsistencies and observational unviability then serve to kill off choices
not realized in nature. Adopting Digg(m) invariance feeds into one type of resolution of the
frozen formalism problem (see Appendix A), so there are theoretical reasons for considering this
group.

Next,

Data(m) ∶= {ε(Xµ;φΓ
CD(Xµ

)]}.

Here ‘CD’ denotes ‘depends on the fields only via the Cauchy data on a spatial hypersurface Σ.
This notion was adopted by Dirac, and so Bergmann–Komar called it ‘D-group’. The associated
invariance concerns transformations that are unchanged under 4-d coordinate transformations
that reduce to it on initial Σ on which the canonical Cauchy data are defined. E.g. any spatial
3-vector, hab or pab are Data-invariant. Dirac adopted this since his application of Poisson
brackets is appropriate to Data(m) but not to Diff(m) or Digg(m).

I denote the final group of particular interest by PDigg(m): the projected version of Digg(m).
Pons, Salisbury and Sundermeyer [131] refer to this as the Bergmann–Komar group, since it is
also given in [39]. However, it is surely more natural in talking about the two new groups
in [39] to name this one by its distinctive feature of being a projection. This is as opposed to
trying to find a less clear distinctive feature that refers to the larger group. I note moreover

16Infinitesimal transformations Xµ
→ X̃µ can be written as Xµ

− X̃µ
= εµ. Viewed as solutions in terms

of phase space variables, the right hand side functions here are so-called descriptors (a fairly standard gauge-
theoretic notion, see e.g. [15, 39]). For GR, descriptors are arbitrary functions of Xµ, hij but not of N or N i.
Section 3.3’s Fµ, the below ξµ and Section 5.5’s Weyl scalars can each be viewed as particular uses of descriptors.
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that Bergmann and Komar themselves did not themselves know about this group’s geometrical
interpretation in terms of projection. This was, rather, later elucidated by Pons, Salisbury and
Shepley [128]. Before considering this interpretation, it is worth pointing out the form of the
group:

PDigg(m) = {ε(Xµ;φΓ
(Xµ

)] ∈ Digg(m) ∣ ε = nµ(Xν
)ξ0

− δµa ξ
a}. (5.2)

Here, the ξµ are descriptors (see footnote 16) of the particular form ξµ(Xµ;φP(Xµ)]. φP de-
notes a set of metric and matter fields that now specifically exclude the GR lapse and shift.
Finally, Hµ denotes the 4-vector of constraints [H,Mi]. Then the projecting in question is from
configuration–velocity space to phase space, i.e. associated with a Legendre map. It effectively
means that the induced gauge group for QA, PA is smaller than that for QA, Q̇A. Thus PDigg’s
‘P’ can be taken to stand for ‘phase’ as well as for ‘projection’. In effect, Digg(m) itself cannot
be completely realized in phase space (and Diff(m) is not meaningful in this sense either); this
is what motivates adopting PDigg(m) instead. The corresponding active canonical phase space
transformation is (see Fig. 1 for the meaning of Pµ)

Gξ = Pµξ̇
µ
+ {Hµ +N

ρfνµρPν}ξ
µ.

Also here, fνµρ(hij) are the Dirac algebroid’s structure functions wrapped up in the spacetime
tensor form corresponding to expressing the constraints as a spacetime vector Hµ.

Bergmann and Komar [39] also posited a number of relations between the groups involved.
This led them to conclude that Dirac and Bergmann beables turn out to coincide, but they
provide no proofs for the underlying relations and this claim has since been contested [114, 169].

5.3 The difference between a Hamiltonian and a gauge generator

The next two subsections are based on the ‘scholium’ presented in dialogue form [130, pp. 21–22],
and in Section 3.3 of [131].

The ‘evolution’ generator δt{NµHµ + Ṅ
µPµ} does serve to replace solutions at time t by the

original solutions evaluated at t−dt. However, this is merely its action on one particular member
of each equivalence class of solutions. I.e. the particular member for which the lapse and shift
form the chosen explicit function Nµ as per Fig. 1. Its action on all other members of these
equivalence classes generates variations different from global time translations.

In more detail, points p ∈ S = {the space of the dynamical fields φ} are specific spacetimes
plus matter fields when relevant: solutions of the equations of motion as described in a particular
coordinatization. Also use D to denote the data for the dynamical fields on some spatial hyper-
surface that is labelled by ‘initial time’ t0. Given a specific selection of the arbitrary functions of
the dynamical variables λµ, the corresponding Dirac Hamiltonian is H(t) = NµHµ + λ

µPµ. This
dictates – via the Poisson brackets – the time evolution in p. In particular, for an infinitesimal dt,
this Hamiltonian gives what the field data D′ are on the subsequent spatial hypersurface labelled
by t0 + δt. If we carry out this procedure for all times t, it of course results in a ‘null operation’:
we have remained exactly at the same point p ∈ S. This simply reflects that the dynamics as
described by a given observer takes place within a given spacetime in a given coordinatization.

Next consider the gauge generator that, after suitable choice of the descriptors, happens to
coincide in its mathematical form with the Dirac Hamiltonian at time t0. By this coincidence,
its action likewise transforms the field data D into D′. However, these data D′ are now to
be interpreted at time t0, since the notion of gauge transformations in question are equal-time
actions. What has occurred is that we have moved from p to another, albeit gauge-equivalent,
spacetime p′. (I.e. it is mathematically another point in S, but it corresponds to the same
physics.) Then suppose we undertake the same procedure for any time t whilst continuing to
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assume that the descriptors at time t match up with the lapse and shift at t. Then we end up
having mapped the whole spacetime p to p′. Notice that the field configurations in p and p′

differ solely as regards their time labels. Thus a passive diffeomorphism t→ t − δt renders both
descriptions mathematically identical. This demonstrates that the gauge generator’s capacity to
mimic the Hamiltonian is conceptually unrelated to there being real physical evolution in a given
spacetime p. Thus dynamical evolution in p is not the same thing as gauge action on p.

5.4 The ‘nothing happens’ fallacy

‘(1.13) means that nothing happens’ is a common type of frozen argument (Appendix A discusses
others). However, the inference that ‘nothing happens’ is a fallacy on the following grounds [130].

On the one hand, following from the preceding subsection, we have an ‘evolved configura-
tion’ D′ lying to the future of of an ‘initial configuration’ D. On the other hand, D and D′ are
related by a gauge transformation. Since ‘gauge transformations do not change the physics’,
we deduce that ‘the physics’ in D and D′ are the same. So the future configuration is gauge-
equivalent to the initial configuration and therefore ‘nothing happens’. The fallacy comes from
each of the two hands using a single common language for two sets of things that are in fact
conceptually different in each case. Recollect from Section 1.3 that there are two notions of
gauge transformation: Dirac’s and Bergmann’s. There are furthermore also two corresponding
notions of ‘the physics’. The second hand involves mapping solutions of the equations of motion
to other such solutions, and so requires the ‘entire field configurations’ of a ‘whole-path’, ‘whole-
history’ or ‘whole-spacetime’ physics perspective, and thus involves Bergmann’s notion of gauge.
In contrast, the first hand involves ‘configurations at a given time t0’ (D and D′), i.e. a ‘time-
sliced’ physics’ dynamical perspective, and thus involves Dirac’s notion of gauge. Thus the two
hands in fact use both distinct notions of ‘gauge’ and corresponding distinct notions of ‘the
physics’. Since the ‘nothing happens’ argument does not take these differences into account,
it is rendered fallacious. See [98, 127, 129, 155] for further support of this point. Finally,
this resolution of the ‘nothing happens paradox’ corresponds to the distinction between time-
dependent beables DD(t) for t an intrinsic coordinate scalar that constitutes a gauge fixing, as
opposed to just a constant DD as occurred in the opening paragraph (see Section 3.4 of [131]
for more on this point). Clearly the former are not ‘constants of the motion’ !

5.5 Using Weyl scalars as observables/beables

The Weyl scalars are spacetime scalars; they are built from the Weyl tensor irreducible part of
the spacetime Riemann tensor. See [69] for their detailed forms (not needed for this review’s
discussion). The Weyl scalars are of value as per below, as well as being foundational for the
Newman–Penrose formulation of GR [122, 123].

The Weyl scalars can additionally be considered as a concrete proposal [39, 127] for observ-
ables/beables in the sense of Bergmann. Indeed Bergmann and Komar17 converted the spatial
components of the spacetime Riemann tensor and contractions with the spatial hypersurface
normal nµ to be purely in terms of canonical variables (meaning in this case hab, p

ab and not N
or N i). Thus the Weyl scalars can be written in terms of the canonical variables, as befits many
of the expectations about observables/beables. In this application, they are to be interpreted
as intrinsic coordinates, and also as ‘making use of a set of scalars as a gauge fixing’. Finally
note that these scalars can in principle be observed locally and in a convenient manner, e.g. by
use of a Szekeres gravitational compass [149].

17Note that while this subsection involves the same authors as the previous four subsections it concerns a largely
disjoint idea.
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5.6 Comments

Revisiting Torre’s no-go theorem. [127] posits that Torre proves nonexistence of constant-
in-time observables = constants of the motion, built as spatial integrals. This is as opposed to
dealing with Bergmann observables such as the Weyl scalars. On the other hand, Dittrich and
Thiemann’s approach [57, 58, 155] gets round the Torre no-go by [130, 131] involving series of
Cauchy data derivatives that are in principle up to infinite order. Finally, Halliwell’s classical
construct avoids Torre’s by not being local in space or time and it avoids Kuchař’s by not being
of form (5.1).

Connection with partial observables approaches. [127] is supportive as is [130] as
per above, and [129]. [130] does limit support in the sense of insisting partial observables be
spacetime scalars (a standard tenet of internal time approaches). However [127] argues for Weyl
scalars exemplifying partial observables (which of course do in this case comply with being
spacetime scalars). Thus Dittrich and Thiemann’s works on observables/beables has wider
conceptual support/motivation than is often acknowledged. I.e. these avoid the Kuchař and
Torre no-go results and are aligned with the works of Pons, Salisbury, Shepley and Sundermeyer
and preceding works by Bergmann and Komar.

Reparametrization-invariant model counterpart. Some of this section’s issues already
have nontrivial counterparts for RI theories. In place of Diff(m), one has

(reparametrizations) R = {ε(t)},

and in place of in place of Digg(m), one has

Rigg = {ε(t; qi(t)]}

(reparametrization-induced gauge group). Finally, in place of PDigg(m), one has

PRigg = {ε(t; qi(t)] ∈ Rigg ∣ ε = ξ(t; qi(t)]/N}.

(That is obtained by applying the formula for nµ in Fig. 1 to (5.2) and truncating to 1-d.)
How complete these reparametrization invariant counterparts are as a model of diffeomorphism-
induced groups remains to be worked out in detail.

Also note that Lee–Wald’s tie between Digg(m) nontriviality and GR algebroid fails to work
for Rigg, limiting the extent to which Rigg functions as a toy model for Digg(m).

Pitts’ work. I finally mention to keep an eye on Pitts’ concurrently produced work that
follows in part from the work from Bergmann through to Pons et al., starting with [125].

6 Beables at the quantum level

The simplest notion of QM observables concerns self-adjoint operators which therefore have
real eigenvalues and to that extent are realistic. This is prior to gauge-theoretic considerations,
which are a further restriction on such operators.

Strategy 1. One has classical beables beforehand, one can attempt to promote them to
quantum ones. This might occur at the level of kinematical quantization [92] or be viewed
as a process in addition to that. In either case, one finds that one needs to select a classical
subalgebra of objects to promote to quantum operators. Perfectly good classical beables can
fail to be quantum beables. This parallels how perfectly good classical symmetries fail to be
quantum symmetries due to anomalies arising, in the sense that both are bracket obstructions
upon passing from classical to quantum brackets. Thus one might term the above phenomenon
a ‘beables anomaly’. Schematically, for whichever appropriate pairing of classical and quantum
types of bracket,

{B,CC} ‘=’ 0 /⇒ [B̂, ĈC]Ψ = 0.
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Whether this occurs is moreover dependent twice over on operator-ordering ambiguities (in
the beable operators and in the constraint operators). The outcome of the preceding further-
more heavily depends on choice of operator ordering assumed. Additionally, trying to promote
known classical beables to quantum ones also falls afoul of the multiple choice problem (see
Appendix A).

Strategy 2. One might also start afresh in the quest to find observables/beables at the
quantum level. This makes particular sense upon realizing that in general the classical and
quantum brackets correspond to different algebras due to global effects entering at the quantum
level [92]. In general, the entities that commuted with the classical constraints with respect to
one brackets structure should not be expected to result in quantum operators that commute
with the quantum constraints with respect to an algebraically-distinct brackets structure!

An issue affecting both strategies in the case of loop quantum gravity is that one has yet
to attain a satisfactory form for the quantum Hamiltonian constraint, which would then be
required as an entity that enters the definition of Dirac beables. Another issue affecting both
strategies for any sufficiently general theory is as follows. Whereas strategy 1 directly follows
on from what is in general a practical impossibility – general classical solution of equations as
complicated as the Einstein field equations of GR – it is hard to believe that strategy 2’s starting
afresh at the quantum level would simplify this problem. Indeed, Dirac [56] commented that
QM seldom simplifies situations that are already complicated at the classical level.

The quantum problem of beables is then that, whichever of the above strategies one employs,
it is hard to come up with a sufficient set of these for quantum-gravitational physics.

6.1 Resolution of Heisenberg picture form of frozen formalism problem

Adopting Section 5.4’s interpretation of the ‘nothing happens paradox’ entails resolution of the
quantum frozen formalism problem in its Heisenberg picture form. If this problem is resolved
in the Heisenberg picture, it would often also be argued that it is resolved in the Schrödinger
picture due to these two pictures standardly being unitarily equivalent. On the other hand,
Rovelli would appear to differ in this regard [137], by giving the Heisenberg picture a privileged
status in quantum gravity.

The existence of a Heisenberg resolution furthermore demotivates timeless approaches such
as the näıve Schrödinger interpretation [86, 159], conditional probabilities interpretation [121],
Page’s approach [119, 120], Gambini–Porto–Pullin’s [65, 66], Barbour’s [24, 27] and other forms
of fully timeless records theory [2, 9] (see Appendix A for this terminology).

On the other hand, I argued that histories theory (also see Appendix A) is distinct in this
regard, as are ‘time from change’ approaches [8, 26, 137]. There are possibly additionally
positions intermediate between the previous two sentences’. E.g. the well-known path integral
approaches and ‘records within histories’ approaches [2, 3, 9, 70, 77, 78, 79, 80].

Finally note that such a frozen formalism problem resolution does not amount to a resolution
of the quantum problem of beables itself.

6.2 Examples of quantum beables

Quantum Dirac beables obey (1.14), where all second-class constraints have been priorly dealt
with at the classical level by Dirac brackets or extension to effective phase space. On the other
hand, quantum Kuchař beables obey (1.15), and are applicable in cases for which the L̂IN L

form a closed algebraic structure under quantum commutators.

Examples 0 and 2. In the absense of any linear constraints, Kuchař beables remain trivial
at the quantum level. [19] also gives some explicit examples of minisuperspace quantum Dirac
beables. Explicit quantum Kuchař beables for the relational triangle follow from adopting the
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Hopf–Dragt coordinates, their conjugate momenta and an SO(3)’s worth of shape momenta as
the kinematical quantization for that model [3].

On the other hand, some general features of indirect constructs are as follows.

Universal Example 1. Any operator Ô can be inserted into the construction

ÔD ∶= ∫ dt exp(iH0t)Ô exp(−iH0t) (6.1)

for a suitable notion of time (e.g. label time λ in minisuperspace or Newtonian time in mechan-
ics), which again needs to run over all values of time rather than just some interval. Formal
field-theoretic generalizations of this construct are also straightforward. DeWitt’s [54] early
treatment of construction (6.1) further specialized to the semiclassical case. Marolf [115] then
treated such objects in the case of QM at the perturbative level.

Example 3. Another means of attaining observables/beables in the case of GR, exposited
by Giddings, Marolf and Hartle, involves integrating Ô over all of spacetime [71]. These authors
consider attaining locality by smearing with delta functions.

Universal Example 2. Halliwell’s semiclassical Dirac beables construction for theory with
no linear constraints consists of the class functional18

ĈR[qf,q0] ∶= θ (∫
∞

−∞
dt fR(qf(t)) − ε)P (qf,q0) exp(iS(qf,q0)).

Once again, the specific example is mechanics but has also been considered for minisuper-
space [77] and triangleland relational particle mechanics [3]. For the first two cases, it is a S-
matrix construct since there are no linear constraints; in the last case it is a nontrivial Dirac
beables construct since this case has linear constraints to overcome too. Note that this is an
example of ‘starting afresh’ with a new structure rather than of trying to promote Halliwell’s
distinct classical construct to the quantum level. The class functional can then be used to
re-express the decoherence functional between pairs of histories η, η′19

Dec[η, η′] = ∫
η
Dq∫

η′
Dq′ exp(i{S[q(t)] − S[q′(t)]}ρ(q0,q

′
0)

=∭ DqfDq0Dq
′
fĈη[qf,q0]Ĉη′[q

′
f,q

′
0]Ψ(q0)Ψ(q′0).

Note that the semiclassical Halliwell and quantum Marolf constructs indeed provide examples
of beables rather than of histories beables (a notion along the lines of Section 7.2). In each case,
this is due to the history content being integrated out by the integration over all t. Moreover,
by involving a t-integral, Halliwell’s semiclassical object is not local in time, which, as for the
classical counterpart, would however be a desirable property in a beable that can be used in
practise. As in the classical counterpart, the above object manages to commute with Ĥ only
by having its integrals run over all time, which is often incompatible in practise with the global
nonexistence of e.g. emergent and hidden timefunctions (Appendix A). On the other hand,
Anastopoulos’ distinct histories-based construct [1] does not have to involve the whole real line.
The end-product of this is, however, a histories beable, whereas Halliwell’s construct returns in
the end just a beable.

A further concern here is whether difficulties ensue if one subsequently forms functionals
out of the Kuchař beables (specifically, class functionals). That provides commutation with
QUAD, but now a functional of beables is not necessarily an beable compatible with one’s

18Here, qcl
(t) is the classical trajectory, q0, p0 is initial data, θ is the step function, fR is the characteristic

function of region R, ε is a small real number, S(qf,q0) is the classical action between qf and q0. See [82] for the
detailed form of the prefactor function P .

19Here Dq is a measure and is a ρ a density matrix.
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previously determined beables. Thus the multiple choice problem (Appendix A) is looming as
a reason for breakdown of the Halliwell procedure being applied to produce nontrivially-Kuchař
Dirac observables. And yet, LIN L is absent by this stage. Thus it is not [L̂IN L, K̂K]Ψ = 0
failing to imply that [L̂IN L, ̂F(x;KK]]Ψ = 0 also holds. Rather it is an issue of whether the class
functionals furnish a compatible set among themselves if they are to now be regarded as beables.

Note also that quantization complicates status of beables via the subalgebra selection criterion
(and its own associated multiple choice problem). Are the quantum Dirac beables well-defined
as functionals of the quantum Kuchař beables?

Additionally, note that Halliwell’s 2009 version of class functionals [79] is more complicated
than the above treatment but succeeds in additionally avoiding the additional manifestation of
frozenness that is the ‘watched kettles never boil’ quantum zeno problem.

Does using Halliwell’s more intricate histories-theoretic machinery have any advantages over
DeWitt’s and Marolf’s constructs? The answer is yes at the level of handling whole-universe
issues and problem of time approaches, but whether there is practical equivalence between each
approach’s type of objects remains uninvestigated.

As a final example, consider Bojowald et al. [43, 44, 89, 91] fashionables approach at the
semiclassical level. Here, use is made of a moments expansion to bypass the inner product
problem. The fashionables are real-valued, but solving the constraints gives that this approach’s
notion of time goes complex around the semiclassical regime’s turning points. Moreover, in this
approach a time variable’s imaginary part becoming significant is a diagnostic for that time
variable ceasing to be a ‘good clock’, due to the onset of non-unitarities in the evolution brought
about by the global problem of time (Appendix ??).

7 Various further brackets and corresponding notions of beables

7.1 Multisymplectic approach

In this approach (see e.g. [87]), the ∂/∂t in the standard definition of momentum (1.2) is ex-
tended to a ∂/∂xX for X taking m > 1 values. Then the conventional Hamiltonian curve of the
standard ∂/∂t case, associated with the one tangent vector, is replaced by a multivector notion
corresponding to m tangent vectors. The standard case’s Poisson bracket’s corresponding sym-
plectic form is now replaced by a multisymplectic form. The notion of bracket associated with
this is the Schouten–Nijenhuis bracket: a graded Lie bracket on the multivector fields.

The corresponding notion of observables/beables has been considered by Hélein and Kounei-
her [87] (for now in a classical, non-whole universe setting in which the observables/beables
distinction is not significant).

I finally comment that the multisymplectic approach may have difficulties via putting time
and space on even more of an equivalent footing than is usual. Whilst this is in part motivated
by a desire to reformulate or replace canonical formulations with manifestly covariant ones, one
also has to bear in mind that time and space are conceptually different entities.

7.2 Histories brackets and histories beables

Histories theory is motivated as per Appendix A and as regards providing a more natural
interpretation for quantum cosmology and a format within which decoherence applies. All of
these issues additionally fit in well with realist interpretations of QM and of quantum cosmology.
Moreover some versions of histories theory [97, 103, 140, 141] can be viewed as a distinct approach
to covariantizing the canonical formulation. In these versions, configurations QA have been
replaced by whole paths of configurations – classical histories QA(λ) – in the role of basic
canonical entities. Here λ is a label time, though it can be replaced with other notions of time
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(Appendix A) without issue. The latter are now associated with histories momenta PA(λ),
with histories brackets { , }H holding between the two. Thus the entirety of the phase space
structure has been replaced by a histories phase space structure. This is an intriguing possibility,
though it is not yet clear whether the study of dynamics based on configurations contains any
important ingredients that are lost with this paradigm shift to histories being the basic canonical
entities. In this approach, additionally, the standard notion of constraints is replaced by that
of histories constraints, CλC = C(λ)C. There are then obvious generalizations of the notions of
first- and second-class constraints, Dirac brackets, extended phase space, effective constraints
and constraint algebra, all now in terms of the histories bracket.

Histories beables [1, 103] are then histories quantities Bλ
B = B(λ)B that histories-brackets

commute [97, 140] with the histories constraints. In particular, in a theory with only first-class
constraints, there is a notion of Dirac histories beables that histories-brackets commute with all
of these histories brackets constraints,

{Dλ
H,C

λ
C}H ≈ 0.

In cases in which second-class histories constraints are initially present, this requires using the
histories version of the Dirac bracket or reformulation in terms of histories effective constraints.
Moreover, some classical theories contain the linear histories constraints LIN λ

L as a subalgebraic
structure, alongside a quadratic histories constraint QUADλ. In these cases, a notion of histories
Kuchař beables is also available:

{Kλ
H,LIN

λ
L}H ≈ 0.

Note 1. Despite both being based on classical paths, the Bergmann and histories notions of
beables are technically and conceptually distinct extensions of which gauge groups to attribute
to one’s physical theory. This is clear from the shift in basic canonical entities in the latter,
with the ensuing introduction of a histories brackets structure absent in Bergmann’s work and
with a number of subsequent parallels to Dirac’s notion of beables. Nonetheless, Savvidou [141]
showed that histories phase space can also be considered to carry representations of Digg(m).

Note 2. The above is a classical precursor for the quantum histories projection operator
(HPO) approach [97, 140]. At the quantum level, histories are paths that are furthermore
decorated by projection operators. In the HPO approach itself, time is continuous and there
is a corresponding continuum of projection operators. Quantum histories commutators [ , ]H
now replace classical histories brackets, and the final set of first-class histories constraints are
promoted to quantum operators ĈλF. Quantum histories Dirac beables are then further quantum
histories operators D̂B

λ such that

[D̂λ
H, Ĉ

λ
F]HΨ = 0.

On the other hand, for theories with a subalgebraic structure of quantum linear histories con-

straints L̂IN
λ
L, quantum histories Kuchař beables are further quantum histories operators K̂λ

B

such that

[K̂λ
H, L̂IN

λ
L]HΨ = 0.

7.3 Notions of brackets with more slots

Suppose instead that the pair QA, PA of conventional canonical theory are replaced with p ≥ 3
different types of entity. Such a theory then possesses p−1 scalar entities in place of the standard
Hamiltonian. Such a theory is additionally equipped with a generalization of the usual 2-slot
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notion of brackets to a bracket with p slots. Even 3-slot theories are relatively novel in concrete
physical examples, so I venture no further.

For theories with brackets with three slots, ∣[ , , ]∣, it is these that are to be used to determine
which constraints are first- and second-class, and then also to form the constraint algebra.
Then additionally the beables notion forming zero brackets with an entity already in the theory
(hitherto the constraints) begins to take multiple forms. Which of

∣[CC,CC′ ,BB]∣ ≈ 0, (7.1)

∣[CC,BB,BB′]∣ ≈ 0 (7.2)

(or both) do we use? I point out that it is notion (7.1) that better parallels the standard notion
of conserved quantity C, which generalizes here to dC/dt = ∣[C,H,G]∣ ≈ 0 on account of there
being two Hamiltonians, H and G. Perhaps also there are further meaningful notions of bibeables.
I.e. entities BiV such that

∣[CC,BB,BiV]∣ ≈ 0

for whichever of the preceding notions of beables. This notion is an analogous concept and
nomenclature to how a curve in 3-d has a binormal in addition to its normal and its tangent
familiar from curves in 2-d. The above concepts about beables for 3-slot brackets indeed suitably
extend to p-slot brackets. This subsection covers objects of which the next two subsections
provide important specific examples from quantum gravity programs.

7.4 Associator and Nambu brackets, e.g. for M2-branes

The associator bracket is denoted by ⟨ , , ⟩ and has the algebraic form

⟨A,B,C⟩ = A ⋅ {B ⋅C} − {A ⋅B} ⋅C

for corresponding notion of plain product operation ⋅. I.e. just as the commutator quantifies
non-commutativity ([A,B] = A ⋅ B − B ⋅ A), the associator quantifies non-associativity. The
algebra thus formed is indeed nonassociative rather than just noncommutative.

Next, the Nambu bracket [118, 151] is the completely antisymmetrized associator:

[ , , ] = ⟨ , , ⟩ + perms.

As an important application, the Bagger–Lambert–Gustavsson action [20, 21, 22, 74] is built out
of this bracket. This (Example 10) is an action for multiple N = 8 M2-branes20; this is a leading
candidate for understanding the microphysics of M-Theory.

As a simpler example, the octonians are a toy model of the associator bracket. Here [u, v,w] =
1
3{{u×v}×w+cycles} renders this bracket in terms of standard mathematics (vector products).
Dimension > 3 is required in order for this not to vanish. Were it to vanish, the condition
for it doing so is that the Jacobi identity of the subsequently in general noncommutative (but
associative) algebra holds.

For theories based on the Nambu brackets, the constraint algebra is of the form

[CF,CF′ ,CF′′] = fFF′F′′F
′′′

CF′′′ .

The constant f ’s here are manifestly antisymmetric in the first three indices (and in fact, upon
lowering the other index, totally antisymmetric). These generalize the standard Lie algebra’s

20Here N = 8 is the amount of supersymmetry and M2 denotes a spatially 2-d M-Theory brane.
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structure constants. Indeed one reason for using Nambu brackets rather than associators them-
selves is that this generalization of Lie algebra ensues. The analogue of Jacobi identity for these
brackets as regards which notions of (bi)beables close algebraically is the Filippov identity [63]

[A,B, [C,D,E]] = [[A,B,C],D,E] + [C, [A,B,D],E] + [C,D, [A,B,E]].
There is then a direct parallel of the Jacobi identity working (1.10), by which the Filippov
identity and subsequent use of each of (7.1), (7.2) or the corresponding notions of bibeable es-
tablishes that each of these notions algebraically closes. (7.1) are then quantities which associate
with pairs of constraints, whereas (7.2) are presently quantities pairs of which associate with
constraints. Bibeables are then quantities that associate with whichever first-class constraint
and whichever beable.

7.5 Master constraint program’s double bracket

The master constraint program arose in one variant of loop quantum gravity [155]. In this
approach one has just the usual QA and PA and thus just the usual underlying 2-slot brackets
notion. However, one trades one’s constraints for a single master constraint. This involves
packaging all the constraints (whether or not first-class [155]) into a single object known as the
master constraint

M ∶=
1

2
∑
C,C′
CCK

CC′
CC′ .

Here KCC′ is a positive operator on the space of square-summable sequences over the index
set C. Then the constraint surface for M coincides with that for CC = 0. The master constraint
then forms a trivial constraint algebra with itself.

Moreover, the usual notion of observables/beables is here replaced by the double 2-slot bracket
condition

{BB,{BB′ ,M}} ≈ 0 (7.3)

for master constraint observables/beables. By the general identity

{F,{F,M}}M=0 = ∑
C,C′

{F,CC}M=0KAC′{F,CC′}M=0,

the single master equation (7.3) is equivalent to the infinity of equations {BB,CC}M≈0 ≈ 0. Thus
the master equation precisely picks out weak (Dirac) observables/beables.

This notion indeed also produces a closed algebraic structure: {BB,BB′} obeys (7.3) if the BB

do. This is by use within the subsequent object built from three Poisson brackets

{{BB,BB′},{BB′′ ,M}},
of firstly the standard Jacobi identity followed by two uses of (7.3).

The idea in this program is then to quantize M itself.

8 Conclusion: a collection of frontiers

Types of constraint, types of gauge theory, types of zero, types of bracket have been discussed,
and underlie a large number of variants on the definition of observables or beables in a wide range
of (models of) gravitational theories. This remains an open field. For instance, the following
three programs have largely not yet been considered at the quantum level.
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1. The consequences of Pons et al. classical level work [130, 131].
2. Dittrich’s power series [57, 58].
3. Concrete examples of Histories Theory approaches with nontrivial diffeomorphisms [103,

141].
4. On the other hand, Halliwell’s approach [77, 79, 80] has not yet been applied to perturbative

or exact midisuperspace models; the more advanced form of this [79, 80] has not even been
applied to any examples with additional linear gauge constraints.

5. Halliwell and Marolf’s [115] approaches remain to be compared in detail with each other.
Does one of these confer greater advantages, do the two approaches produce compatible results?

6. Footnote 15 considers various further areas ripe for review that are not covered in the
present review or recent previous ones [131, 152]. One would hope then that the population of
such recent reviews would grow by a further one or two due to someone else’s further treatment
of asymptotic/boundary/holographic observables/beables in gravitational theories.

7. As outlined in this review, the beables aspect of supergravity is still in its infancy.
8. This review only touches on one of many possible applications of observables/beables to

M-theory: following on from the use of Nambu brackets in the Bagger–Lambert–Gustavsson
action.

Resolving the quantum problem of beables (and in a manner consistent with the rest of the
problem of time facets of Appendix A) remains a major and overarching open problem.

A Facets of the problem of time

The problem of time [4, 93, 106] has 9 facets stemming together from the mismatch in time
concepts between GR and QM. See [10] for a more detailed account of these and how they are
each underlied by an aspect of background independence.

Facet 1. Frozen formalism problem. The Schrödinger picture manifestation is that GR’s
quantum wave equation – the Wheeler–DeWitt equation ĤΨ = 0, is a stationary, i.e. timeless
wave equation, like ĤΨ = EΨ as opposed to ĤΨ = ih̵∂Ψ/∂t for some notion of time t. This
question is determined by the purely quadratic nature of GR’s Hamiltonian constraint H, and
in turn by the Leibnizian ‘there is no time for the universe as a whole’ temporal relationalism
principle. Strategies for resolving this facet include the following.

O. Perhaps a fundamental hidden/internal time that can be discovered within classical GR
by canonical reformulation.

A. Perhaps GR has emergent rather than fundamental time. E.g. in the semiclassical regime,
slow, heavy modes provide an approximate time by which the other fast, light modes evolve.

B. Instead one could see how much of physics can be done timelessly, e.g. via addressing
solely questions of being, rather than becoming. For example, records theory [2, 7, 9] concerns
whether a single instant contains pattern/correlation information, and whether a semblance of
dynamics or history arises from this.

C. Perhaps histories are primary instead: histories theory. At the quantum level, this involves
consistent sets of histories, fine- and coarse-graining operations and decoherence functionals for
comparing pairs of histories. Some versions [97] have furthermore a classical precursor involving
the histories brackets as outlined in Section 7.2.

One can furthermore combine schemes A-C [3, 77, 79] since i) histories contain records,
ii) histories decohereing (self-measuring) gives semiclassicality, iii) the elusive question of which
degrees of freedom decohere which others is addressed via where info is actually stored, i.e. where
the records are. Such a combination underlies Halliwell’s approach to the problem of time [77, 79]
of Sections 3.3, 6.1 and 6.2.

D. Consider QM in the Heisenberg picture instead (cf. Section 6.1), whether as a more lucid
choice or as exclusively the only choice for quantum gravity [137].
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Facet 2 – configurational relationalism – concerns dynamics with a physically irrelevant group
of transformations g acting on configuration space q. This gives rise to constraints that are linear
in the momenta. Configurational relationalism is resolved for relational particle mechanics by
Barbour’s best matching: solving the Lagrangian form of the linear constraints for the g-auxiliary
variables themselves. (This is an example of Section 2 formal strategy 1.) However this remains
unresolved as Wheeler’s well-known thin Sandwich problem [23, 32] occurs in the case of GR,
for which the linear constraint is Mi, g is Diff(Σ) and the g-auxiliary variables form the shift
vector N i.

Facet 3 is the constraint closure problem, i.e. whether the brackets of the constraints H
and Mi do not produce further conditions as per (1.4)–(1.6).

Facet 4 is the problem of beables/observables as exposited in the Introduction.

Facet 5 is spacetime relationalism. Here a physically-irrelevant group of motions acts on
spacetime m; this is usually Diff(m). This problem picks up additional nontrivialities as regards
representations and the measures in path-integral and histories formulations at the quantum
level.

Facet 6 is what happens at the quantum level to GR’s independence of foliation of spacetime
by spaces. This corresponds to the theoretical scheme being able to encode arbitrarily moving
families of observers.

Facet 7 concerns how classical spacetime is to be reconstructed [13] from space and/or
discrete notions.

Note that the Dirac algebroid for H and Mi resolves all three of 3), 6), 7) at the classical
level. However even the semiclassical counterpart of these resolutions remains unknown.

Facet 8 is a collection [12] of global complications with each of timefunctions (that could
refer to globality in time itself or in how time is defined over space), or the other facets above.
(E.g. best matching, foliations and spacetime reconstruction are in general only local constructs
and with strategies for resolving facets (e.g. only locally defined hidden and emergent times.)

Facet 9 is the multiple choice problem: that classically canonically equivalent formulations
are in general unitarily inequivalent at the quantum level [73].
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Juan-Carlos Simó, Editors J. Marsden, S. Wiggins, Springer, New York, 2000, 171–216, math-ph/9809011.

[74] Gustavsson A., Algebraic structures on parallel M2 branes, Nuclear Phys. B 811 (2009), 66–76,
arXiv:0709.1260.
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[96] Isham C.J., Kuchař K.V., Representations of spacetime diffeomorphisms. II. Canonical geometrodynamics,
Ann. Physics 164 (1985), 316–333.

[97] Isham C.J., Linden N., Continuous histories and the history group in generalized quantum theory, J. Math.
Phys. 36 (1995), 5392–5408, gr-qc/9503063.

[98] Jizba P., Pons J.M., Revisiting the gauge principle: enforcing constants of motion as constraints, J. Phys. A:
Math. Theor. 43 (2010), 205202, 20 pages, arXiv:0905.3807.

[99] Joos E., Zeh H.D., The emergence of classical properties through interaction with the environment,
Z. Phys. B 59 (1985), 223–243.

[100] Joos E., Zeh H.D., Kiefer C., Giulini D., Kupsch J., Stamatescu I.O., Decoherence and the appearance of
a classical world in quantum theory, 2nd ed., Springer-Verlag, Berlin, 2003.

[101] Kasuya M., The Einstein–Cartan theory of gravitation in a Hamiltonian form, Progr. Theoret. Phys. 60
(1978), 167–177.

[102] Kent A., Might quantum-induced deviations from the Einstein equations detectably affect gravitational
wave propagation?, Found. Phys. 43 (2013), 707–718, arXiv:1204.5961.

[103] Kouletsis I., Covariance and time regained in canonical general relativity, Phys. Rev. D 78 (2008), 064014,
22 pages, arXiv:0803.0125.
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