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Abstract. In this paper, we give an alternative approach to the theory of locally compact
quantum groups, as developed by Kustermans and Vaes. We start with a von Neumann
algebra and a comultiplication on this von Neumann algebra. We assume that there exist
faithful left and right Haar weights. Then we develop the theory within this von Neumann
algebra setting. In [Math. Scand. 92 (2003), 68–92] locally compact quantum groups are
also studied in the von Neumann algebraic context. This approach is independent of the
original C∗-algebraic approach in the sense that the earlier results are not used. However,
this paper is not really independent because for many proofs, the reader is referred to
the original paper where the C∗-version is developed. In this paper, we give a completely
self-contained approach. Moreover, at various points, we do things differently. We have
a different treatment of the antipode. It is similar to the original treatment in [Ann. Sci.
École Norm. Sup. (4) 33 (2000), 837–934]. But together with the fact that we work in the
von Neumann algebra framework, it allows us to use an idea from [Rev. Roumaine Math.
Pures Appl. 21 (1976), 1411–1449] to obtain the uniqueness of the Haar weights in an early
stage. We take advantage of this fact when deriving the other main results in the theory.
We also give a slightly different approach to duality. Finally, we collect, in a systematic way,
several important formulas. In an appendix, we indicate very briefly how the C∗-approach
and the von Neumann algebra approach eventually yield the same objects. The passage
from the von Neumann algebra setting to the C∗-algebra setting is more or less standard.
For the other direction, we use a new method. It is based on the observation that the Haar
weights on the C∗-algebra extend to weights on the double dual with central support and
that all these supports are the same. Of course, we get the von Neumann algebra by cutting
down the double dual with this unique support projection in the center. All together, we
see that there are many advantages when we develop the theory of locally compact quantum
groups in the von Neumann algebra framework, rather than in the C∗-algebra framework.
It is not only simpler, the theory of weights on von Neumann algebras is better known and
one needs very little to go from the C∗-algebras to the von Neumann algebras. Moreover,
in many cases when constructing examples, the von Neumann algebra with the coproduct
is constructed from the very beginning and the Haar weights are constructed as weights
on this von Neumann algebra (using left Hilbert algebra theory). This paper is written in
a concise way. In many cases, only indications for the proofs of the results are given. This
information should be enough to see that these results are correct. We will give more details
in forthcoming paper, which will be expository, aimed at non-specialists. See also [Bull.
Kerala Math. Assoc. (2005), 153–177] for an ‘expanded’ version of the appendix.
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1 Introduction

Let M be a von Neumann algebra and ∆ a comultiplication on M (see Definition 2.1 for a precise
definition). The pair (M,∆) is called a locally compact quantum group (in the von Neumann
algebraic sense) if there exist faithful left and right Haar weights (see Definition 3.1). This
definition is due to Kustermans and Vaes (see [9]).

In their fundamental papers [6] and [7], Kustermans and Vaes develop the theory of locally
compact quantum groups in the C∗-algebraic framework and in [9], they show that both the
original C∗-algebra approach and the von Neumann algebra approach give the same objects.
There is indeed a standard procedure to go from a locally compact quantum group in the C∗-
algebra setting to a locally compact quantum group in the von Neumann algebra sense (and
vice versa).

In this paper, we present an alternative approach to the theory of locally compact quantum
groups. The basic difference is that we develop the main theory in the framework of von
Neumann algebras (and not in the C∗-algebraic setting as was done in [6] and [7]). It is well-
known that the von Neumann algebra setting is, in general, simpler to work in. To begin with,
the definition of a locally compact quantum group in the von Neumann algebra framework is
already less complicated than in the C∗-algebra setting. Also the theory of weights on von
Neumann algebras is better known than the theory of weights on C∗-algebras. One has to be
a bit more careful with using the various topologies, but on the other hand, one does not have
to worry about multiplier algebras.

We also describe a (relatively) quick way to go from a locally compact quantum group in the
C∗-algebraic sense to a locally compact quantum group in the von Neumann algebraic sense.
We do not need to develop the C∗-theory to do this. In some sense, this justifies our choice.
Remark that the other direction, from von Neumann algebras to C∗-algebras, is the easier one
(and standard).

However, the difference of this work with the other (earlier) approaches not only lies in the
fact that we work in the von Neumann algebra framework. We also have a slightly different
approach to construct the antipode (see Section 2). We do not use operator space techniques
(as e.g. in [28]). This in combination with the use of Connes’ cocycle Radon–Nikodym theorem
(an idea that we found in earlier works by Stratila, Voiculescu and Zsido, see [17, 18, 19]) allows
us to obtain uniqueness of the Haar weights in an earlier stage of the development. This in turn
will yield other simplifications.

Finally, our approach in this paper is also self-contained. In their paper on the von Neumann
algebraic approach [9], Kustermans and Vaes do not really use results from the earlier paper
on the C∗-algebra approach [7], but nevertheless, it is hard to read it without the first paper
because of the fundamental references to this first paper. In fact, we also rely less on results from
other papers (e.g. on weights on C∗-algebras or about manageability of multiplicative unitaries)
as is done in the original works. Also for the proofs that are omitted, this is the case. Moreover,
where possible, we avoid working with unbounded operators and weights (more than in the
original papers) but we try to use bounded operators and normal linear functionals. We do not
use operator valued weights at all.

The content of the paper is as follows. In Section 2 we work with a von Neumann algebra and
a comultiplication. We consider the antipode S, together with an involutive operator K on the
Hilbert space that implements the antipode in the sense that, roughly speaking, S(x)∗ = KxK
when x ∈ D(S). The right Haar weight is needed to construct this operator K and the left
Haar weight is used to prove that it is densely defined. This last property is closely related
with the right regular representation being unitary. Also in this section, we focus on various
other densities. It makes this section longer than the others, but the reason for doing so is
that these density results are closely related with the construction of the antipode and the
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operator K. Finally, in this section, we modify the definition of the antipode so that it becomes
more tractable. We discuss its polar decomposition (with the scaling group (τt) and the unitary
antipode R) and we prove the basic formulas about this modified antipode, needed further in
the paper.

Our approach here is not so very different from the way this is done by Kustermans and Vaes
in the sense that we use the same ideas. Among other things, we also use Kustermans’ trick to
prove that the right regular representation is unitary. A sound knowledge of various aspects of
the Tomita–Takesaki theory and its relation with weights on von Neumann algebras is necessary
for understanding the arguments. However, we avoid the use of operator valued weighs. We will
include the necessary background in the notes we plan to write [37] but including more details
here would make this paper too long.

In Section 3 we give the main results. One of these results is the uniqueness of the Haar
weights. The formulas involving the scaling group (τt) and the unitary antipode R, proven
in Section 2, together with Connes’ cocycle Radon–Nikodym theorem, are used to show the
uniqueness. Here, our approach is quite different from the original one in [6] and [7] and uses
an idea found in [18]. From the uniqueness, and again using basic formulas involving the scaling
group and the unitary antipode from Section 2, the main results are relatively easy to prove.

In Section 4 we treat the dual. This is more or less standard. Our approach is again slightly
different in the way we use the results obtained in Sections 2 and 3. Also, since we are basically
only considering the von Neumann algebra version, the construction of the dual is somewhat
simpler.

In Section 5 we collect a set of formulas. The main ingredients are the various objects (the left
and right Haar weights with their modular structures, the left and right regular representations,
the antipode with the scaling group and the unitary antipode, the operators on the Hilbert space
implementing these automorphism groups, . . . ), for the original pair (M,∆), as well as for the

dual pair (M̂, ∆̂). In fact, this section and these formulas can well be used as a fairly complete
chapter needed to work with locally compact quantum groups.

In Section 6 we draw some conclusions and discuss possible further research along the lines
of this paper.

We have chosen to discuss the procedure to pass from the C∗-algebraic locally compact
quantum groups to the von Neumann algebraic ones in Appendix A. We do this because it is
not really needed for the development of the theory as it is done in this paper. Here again, our
approach is rather different from the original one. The main idea is to pass first to the double
dual A∗∗ of the C∗-algebra A. Then it is quickly proven that the supports of the invariant
weights (of the type used in this theory), are all the same central projection in the double
dual. Cutting down the double dual by this central projection gives us the von Neumann
algebra M . The coproduct, as well as the Haar weights, are obtained by first extending the
corresponding original objects to the double dual and then restricting them again to this von
Neumann algebra M . The converse is standard and of course makes use of the results in the
paper. A more or less independent treatment of the connection of the two approaches is found
in an expanded version of this appendix, see [36]. We also use Appendix A to say something
more about the relation of our approach with the one by Masuda, Nakagami and Woronowicz
(in [12] and [13]).

In this paper, we will not give full details. We give precise definitions and statements, but
often we will only sketch proofs. We give sufficiently many details so that the reader should be
‘convinced’ about the result. In fact any reader, familiar with the Tomita–Takesaki theory in
relation with the theory of weights on von Neumann algebras, should be able to complete the
proofs without too much effort. On the other hand, for the less experienced reader, we refer to
a forthcoming paper Notes on locally compact quantum groups [37]. These notes are intended as
lecture notes on the subject, for (young) researchers who want to learn about locally compact
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quantum groups. So full details of the proofs of the results in this paper will be found there.
This style of writing allows us to keep this paper reasonable in size, while on the other hand,
we still are able to make it, to a great extent, self-contained. In Appendix A we give even less
details because this is not so essential for the development here. In [36] an expanded version of
this appendix is found, but again, for more details we refer to [37]. Finally let us also refer to
the book of Timmermann [25] for an overview of the theory of multiplier Hopf ∗-algebras and
algebraic quantum groups, within the context of the theory of locally compact quantum groups.
Much information about the purely algebraic theory can be found there and this can be helpful
to understand the technically far more difficult analytical theory. Also the original papers on
the theory of multiplier Hopf (∗)-algebras [31] and [33], although certainly not necessary for
understanding this paper, can be helpful.

We would like to emphasize the importance of the original work by Kustermans and Vaes,
also for this alternative treatment. We do not really use results from their work, but certainly
we have been greatly inspired by their results and techniques. Without their pioneering work,
this paper would not have been written. It is worthwhile mentioning that the PhD Thesis of
Vaes [26] (for those who have access to this work) is easier to read than the original paper [7].
Also the paper by Masuda, Nakagami and Woronowicz [13], treating independently the theory
of locally compact quantum groups, has helped us to develop our new approach. Throughout
the paper, we will not always repeat to refer to the original works, but we will do so where we
feel this is appropriate.

Let us now finish this introduction with some basic references and standard notations used
in this paper. We will also say something about the difference in conventions used in the field.

When H is a Hilbert space, we will use B(H) to denote the von Neumann algebra of all
bounded linear operators on H. We use M∗ for the space of normal linear functionals on a von
Neumann algebra M and in particular B(H)∗ for normal linear functionals on B(H). When ω is
a such a functional, we use ω for the linear functional defined by ω(x) = ω(x∗)− = ω(x∗) (where
in all these cases, the − stands for complex conjugation). On one occasion, we will also need the
absolute value |ω| and the norm ‖ω‖ of a normal linear functional. If ξ and η are two vectors
in the Hilbert space H, we will write 〈 · ξ, η〉 to denote the normal linear functional ω on B(H)
given by x 7→ 〈xξ, η〉. In this case we have e.g. ω(x) = 〈xη, ξ〉 and, provided ‖ξ‖ = ‖η‖ = 1, that
|ω|(x) = 〈xξ, ξ〉 and ‖ω‖ = 1.

We refer to [20, 23, 24] for the theory of C∗-algebras and von Neumann algebras.

We will work with normal semi-finite weights on von Neumann algebras and with lower semi-
continuous densely defined weights on C∗-algebras. We will use the standard notations for the
objects associated with such weights. If e.g. ψ is a normal semi-finite weight on a von Neumann
algebra M , we will use Nψ for the left ideal of elements x ∈M such that ψ(x∗x) <∞. AlsoMψ

will be the hereditary ∗-subalgebra N ∗ψNψ of M , spanned by the elements x∗y with x, y ∈ Nψ.
We will use the G.N.S.-representation associated with such a weight. The Hilbert space will be
denoted by Hψ while Λψ is used for the canonical map from Nψ to the space Hψ. We will let the
von Neumann algebra act directly on its G.N.S. space, i.e. we will drop the notation πψ. The
modular operator on Hψ (in the case of a faithful weight) will be denoted by ∇ (and not by ∆

because we reserve ∆ for comultiplications). We will use (σψt ) for the modular automorphisms.

Again we refer to [24] for the theory of weights on C∗-algebras and von Neumann algebras,
as well as for the modular theory and its relation with weights. See also [16]. For the original
work on left Hilbert algebras, there is of course [22].

We will be using various (continuous) one-parameter groups of automorphisms. We assume σ-
weak continuity, but one can easily see that σ-weak continuity for one-parameter groups of ∗-
automorphisms implies also continuity for the stronger operator topologies (like the σ-strong
or even the σ-strong-∗ topology). We also have that the map t 7→ ω ◦ αt is continuous for
any ω ∈ M∗ with the norm topology on M∗ when α is a continuous one-parameter group of
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automorphisms. We will be interested in analytical elements and the analytical generator α i
2

of

such a one-parameter group α. A few things can be found in Chapter VIII of [24] and a nice
reference is also Appendix F in [13]. It seems to be better to first define the analytical generator
for the action of R on M∗, dual to the one-parameter group (because this is norm continuous),
and define the analytical generator on M by taking the adjoint. Doing so, we get that the linear
map α i

2
is closed for the σ-weak topology and that the analytical elements form a core with

respect to the σ-strong-∗ topology.
When we write the tensor product of spaces, we will always mean completed tensor products.

In the case of two Hilbert spaces, this is the Hilbert space tensor product. In the case of
C∗-algebras, it is understood to be the minimal C∗-tensor product. Finally, for von Neumann
algebras we take the usual von Neumann algebra (i.e. the spatial) tensor product.

Unfortunately, there are a number of different conventions used in this field by different
authors/schools. In Hopf algebras e.g. it is common to endow the dual of a (finite-dimensional)
Hopf algebra with a coproduct simply by dualizing the product (see e.g. [1]) whereas in the
theory of locally compact quantum groups, usually the opposite coproduct on the dual is taken.
In the earlier works on Kac algebras (see [4]), the left regular representation is defined as the
adjoint of what is commonly used now. Kustermans and Vaes work mainly with the left regular
representation (as in the case of Kac algebras), whereas Baaj and Skandalis (in [2]) and Masuda,
Nakagami and Woronowicz (in [13]) prefer the right regular representation as their starting point.
Also a different convention in [13] is used for the polar decomposition of the antipode.

In this paper, we will mainly follow the conventions used by Kustermans and Vaes in their
original papers. In a few occasions, mostly as a consequence of the difference in approach, we
will choose slightly different conventions. In that case, we will clearly say so. It will only be
the case in the process of obtaining the main results. In the formulation of the main results,
we will be in accordance with the conventions in the papers of Kustermans and Vaes. Also the
papers [34] and [8] are interesting as short survey papers.

2 The antipode: construction and properties. Densities

Let M be a von Neumann algebra and denote by M⊗M the von Neumann tensor product of M
with itself. Recall the following definition which is the basic ingredient of this paper. Let us
also assume that M acts on the Hilbert space H in standard form.

Definition 2.1. Let ∆ be a unital and normal ∗-homomorphism from M to M ⊗M . Then ∆
is called a comultiplication on M if (∆ ⊗ ι)∆ = (ι ⊗∆)∆ (coassociativity), where ι is used to
denote the identity map from M to itself.

The standard example comes from a locally compact group G. We take M = L∞(G) and
define ∆ on M by ∆(f)(r, s) = f(rs) whenever f ∈ L∞(G) and r, s ∈ G. We identify M ⊗M
with L∞(G×G).

A preliminary definition of the antipode and first properties. We first define the
following subspace of the von Neumann algebra M .

Definition 2.2. For an element x ∈ M we say that x ∈ D0 if there is an element x1 ∈ M
satisfying the following condition:

• For all ε > 0 and vectors ξ1, ξ2, . . . , ξn, η1, η2, . . . , ηn in H, there exist elements p1, p2, . . . ,
pm, q1, q2, . . . , qm in M such that∥∥∥xξk ⊗ ηk −∑

j
∆(pj)(ξk ⊗ q∗j ηk)

∥∥∥ < ε,
∥∥∥x1ξk ⊗ ηk −∑

j
∆(qj)(ξk ⊗ p∗jηk)

∥∥∥ < ε

for all k.
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We will see later that, because of forthcoming assumptions, we will have x1 = 0 if x = 0.
Therefore it will be possible to define a linear map S0 on D0 by letting S0(x) = x∗1. Then for
this map one can prove the following properties:

i) if x ∈ D0, then S0(x)∗ ∈ D0 and S0(S0(x)∗)∗ = x,

ii) if x, y ∈ D0, then xy ∈ D0 and S0(xy) = S0(y)S0(x),

iii) the map x→ S0(x)∗ is closed for the strong operator topology on M .

The properties i) and iii) are immediate consequences of the definition while ii) is obtained
using a simple calculation. We refer to similar arguments given in the proofs of Propositions 2.9
and 2.10. However, remark that we will not really use these results for S0.

This operator would be a candidate for the antipode (see the following remarks), but we
will not define the antipode like this but rather through its polar decomposition (see the
Definitions 2.22 and 2.23 later in this section). It is expected that the two definitions coin-
cide, but we have not been able to show this. Fortunately, it is not necessary for the further
development in this paper.

Remark 2.3.

i) The definition of S0 above is inspired by a result in Hopf (∗-)algebra theory (see [1]
and [21]). Indeed if (H,∆) is a Hopf algebra with antipode S and if a ∈ H, then using the
Sweedler notation, we get

a⊗ 1 =
∑
(a)

a(1) ⊗ a(2)S(a(3)) =
∑
(a)

∆(a(1))(1⊗ S(a(2))).

So, if we have a Hopf ∗-algebra and if we write
∑
j
pj ⊗ qj =

∑
(a)

a(1) ⊗ S(a(2))
∗, we get

∑
j

∆(qj)(1⊗ p∗j ) =
∑
(a)

∆(S(a(2))
∗)(1⊗ a∗(1)) =

∑
(a)

S(a(3))
∗ ⊗ S(a(2))

∗a∗(1) = S(a)∗ ⊗ 1.

If we do not have a ∗-structure, we have a similar formula, but we loose the symmetry.

ii) This formula can also be illustrated in the case M = L∞(G) where G is a locally compact
group. In this case we know that S(f)(r) = f(r−1) when f ∈ L∞(G) and r ∈ G. If we
approximate

f(r) = f
(
rs · s−1

)
'
∑
i
pi(rs)qi(s−1),

we get∑
i
qi(rs)pi(s) ' f(s · (rs)−1) = f(r−1).

iii) We have used the above idea in the construction of the antipode for Hopf C∗-algebras
in [28]. In fact, also the construction of the antipode in the paper [7] uses this idea, but
that is less obvious.

iv) The well-definedness of S0 in the general case is a problem and it is also not clear whether
or not there are even non-trivial elements in D0. As we will see later in this section, the
left and right Haar weights will be used to solve this problem.

v) One of the nice aspects however of this approach to the antipode is that it does not depend
on the possible choices of the left and the right Haar weights.
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The reader should have these remarks in mind further in this section.

The involutive operator K implementing the antipode. In what follows, we will
see how the existence of the Haar weights eventually leads to, not only the well-definedness of
this preliminary antipode S0, but also gives the density of the domain D0. But as we already
mentioned, we will not define the antipode in this way. On the other hand, we will do something
similar and define a map like S0( · )∗, but on the Hilbert space level.

To do this, we will now assume the existence of a right Haar weight. We recall the definition
(see e.g. [9]).

Definition 2.4. Let M be a von Neumann algebra and ∆ a comultiplication on M (as in
Definition 2.1). A right Haar weight on M is a faithful, normal semi-finite weight on M such
that

ψ((ι⊗ ω)∆(x)) = ω(1)ψ(x),

whenever x ∈M , x ≥ 0 and ψ(x) <∞ and when ω ∈M∗ and ω ≥ 0 (right invariance).

We will now further in this section fix a right Haar weight ψ.

We consider the G.N.S.-representation of M for ψ. Let Nψ be the set of elements x ∈M such
that ψ(x∗x) < ∞. We will use Λψ to denote the canonical map from the Nψ to Hψ. As usual,
we extend ψ to the ∗-subalgebra Mψ (defined as N ∗ψNψ). We have 〈Λψ(x), Λψ(y)〉 = ψ(y∗x)
for all x, y ∈ Nψ. We consider M as acting directly on Hψ (i.e. we drop the notation πψ) and
so we will write xΛψ(y) = Λψ(xy) when x ∈M and y ∈ Nψ.

We refer to [16] and [24] for details about weights and the G.N.S.-construction for weights.

Also by now, the construction of the right regular representation has become standard. We
recall it here and refer to e.g. [7] and [9] as well as to [4] (and also [37]) for details.

Proposition 2.5. There exists a bounded operator V from Hψ ⊗H to itself, characterized (and
defined) by

((ι⊗ ω)V )Λψ(x) = Λψ((ι⊗ ω)∆(x)),

whenever x ∈ Nψ and ω ∈ B(H)∗. It has its ‘second leg’ in M , i.e. V ∈ B(Hψ)⊗M and satisfies
the following formulas:

i) V ∗V = 1 (i.e. V is an isometry),

ii) V (x⊗ 1) = ∆(x)V for all x ∈M ,

iii) (ι⊗∆)V = V12V13 (where we use the standard ‘leg numbering’ notation).

Roughly speaking we have V (Λψ(x) ⊗ ξ) =
∑
(x)

Λψ(x(1)) ⊗ x(2)ξ when we use the Sweedler

notation ∆(x) =
∑
(x)

x(1) ⊗ x(2) for x ∈M .

Recall that the invariance is used to get that (ι ⊗ ω)∆(x) ∈ Nψ when x ∈ Nψ, a result
which is needed to define V as above. Also it is the right invariance that implies that V is an
isometry. It is known that in general it seems impossible to show that V is a unitary without
further assumptions. In our approach, we will get unitarity in some sense as a ‘byproduct’ of
the further study of the antipode (see Proposition 2.15). Because we do not yet know that V
is unitary, we need to formulate condition ii) as we have done and we can not (yet) write
∆(x) = V (x⊗ 1)V ∗. This will follow later.

It is easy to show that in the case M = L∞(G), the operator V is indeed intimately related
with the right regular representation of G on L2(G) (with the right Haar measure on G). Recall
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that the right Haar weight on L∞(G) is obtained by integration with respect to the right Haar
measure on G.

The next step is to construct the operator S0( · )∗ on the Hilbert space level, in this case,
on Hψ. It will be denoted by K. The definition is very much as in Definition 2.2.

Definition 2.6. Let ξ ∈ Hψ. We say that ξ ∈ D(K) if there is a vector ξ1 ∈ Hψ satisfying the
following condition:

For all ε > 0 and vectors η1, η2, . . . , ηn in H, there exist elements p1, p2, . . . , pm, q1, q2, . . . , qm
in Nψ such that∥∥∥ξ ⊗ ηk − V (∑

j
Λψ(pj)⊗ q∗j ηk

)∥∥∥ < ε,
∥∥∥ξ1 ⊗ ηk − V (∑

j
Λψ(qj)⊗ p∗jηk

)∥∥∥ < ε

for all k.

Remark that this definition is indeed similar to Definition 2.2 because, roughly speaking, the
operator V is the map p⊗ q∗ 7→ ∆(p)(1⊗ q∗) on the Hilbert space level.

Again, we would like to define the operator K by Kξ = ξ1 but we need the following result.

Lemma 2.7. Let ξ and ξ1 be as Definition 2.6 and assume ξ = 0. Then also ξ1 = 0.

Proof. In this proof, we will take for H the space Hψ with the G.N.S.-representation of M .
Take vectors η1 and η2 in Hψ and ε > 0. By assumption we have elements (pj) and (qj)

in Nψ so that∥∥∥∑
j

Λψ(pj)⊗ q∗j η1
∥∥∥ < ε,

∥∥∥ξ1 ⊗ η2 − V (∑
j

Λψ(qj)⊗ p∗jη2
)∥∥∥ < ε. (2.1)

Recall that by assumption ξ = 0 and that V is isometric.
Now take any pair ρ1, ρ2 of right bounded vectors in Hψ. Recall that a vector ρ ∈ Hψ is

called right bounded if there is a bounded operator, necessarily unique and denoted as π′(ρ),
satisfying xρ = π′(ρ)Λψ(x) for all x ∈ Nψ.

Then we have∑
j
〈Λψ(pj)⊗ q∗j η1, π′(ρ1)∗η2 ⊗ ρ2〉 =

∑
j
〈π′(ρ1)Λψ(pj)⊗ η1, η2 ⊗ qjρ2〉

=
∑
j
〈pjρ1 ⊗ η1, η2 ⊗ π′(ρ2)Λψ(qj)〉 =

∑
j
〈ρ1 ⊗ π′(ρ2)∗η1, p∗jη2 ⊗ Λψ(qj)〉.

It follows that∣∣∣∑
j
〈Λψ(qj)⊗ p∗jη2, π′(ρ2)∗η1 ⊗ ρ1〉

∣∣∣ ≤ ∥∥∥∑
j

Λψ(pj)⊗ q∗j η1
∥∥∥‖π′(ρ1)∗η1 ⊗ ρ2‖

≤ ε‖π′(ρ1)∗η1‖‖ρ2‖.

This implies that

|〈ξ1 ⊗ η2, V (π′(ρ2)
∗η1 ⊗ ρ1)〉| ≤

∥∥∥ξ1 ⊗ η2 − V (∑
j

Λψ(qj)⊗ p∗jη2
)∥∥∥‖V (π′(ρ2)

∗η1 ⊗ ρ1)‖

+
∣∣∣〈V (∑

j
Λψ(qj)⊗ p∗jη2

)
, V (π′(ρ2)

∗η1 ⊗ ρ1)
〉∣∣∣

≤ ε‖π′(ρ2)∗η1‖‖ρ1‖+ ε‖π′(ρ1)∗η1‖‖ρ2‖.

This is true for all ε. Therefore we have

〈ξ1 ⊗ η2, V (π′(ρ2)
∗η1 ⊗ ρ1)〉 = 0
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for all right bounded vectors ρ1, ρ2 and all η1 in Hψ. Because the set of vectors π′(ρ2)
∗η1 ⊗ ρ1

span a dense subspace of Hψ ⊗ Hψ, we see that ξ1 ⊗ η2 is orthogonal to the range of V . But
as it clearly also belongs to the range of V (as will follow from (2.1) above), it has to be zero.
Hence ξ1 = 0. This completes the proof. �

This argument is not fundamentally different from a similar argument in [7].

Definition 2.8. If ξ ∈ D(K) and if ξ1 is as in Definition 2.6, we set Kξ = ξ1.

Remark that our operator K is essentially the operator G∗ in the work of Kustermans and
Vaes (as we will see later – cf. e.g. Remark 5.10). Therefore it should not be a surprise that the
techniques used above to define K and to show that it is well-defined are similar as those used
in [7]. Observe that we will not use the symbol G for this operator as this is commonly used to
denote a locally compact group.

Just as in the case of Definition 2.2, we get easily the following results.

Proposition 2.9.

i) If ξ ∈ D(K), then Kξ ∈ D(K) and K(Kξ) = ξ.

ii) K is a closed operator.

Proof. i) This is immediately clear from the symmetry we have in Definition 2.6.
ii) Assume that we have a sequence (ξi) in D(K) and two vectors ξ, ξ′ in Hψ so that ξi → ξ

and Kξi → ξ′. We have to show that ξ ∈ D(K) and Kξ = ξ′. In other words, we must verify
that the pair (ξ, ξ′) satisfies the condition in Definition 2.6.

Therefore take ε > 0 and vectors (ηk) in H. First choose an index i0 so that

‖ξ ⊗ ηk − ξi0 ⊗ ηk‖ < ε and ‖ξ′ ⊗ ηk −Kξi0 ⊗ ηk‖ < ε

for all k. Then choose the elements (pj) and (qj) as in Definition 2.6 for the pair (ξi0 ,Kξi0).
These elements will now also satisfy the inequalities for the original pair (ξ, ξ′), with 2ε instead
of ε. This is what we had to show. �

The counterpart of the other result for S0, namely that S0(xy) = S0(y)S0(x) when x, y ∈ D0,
is the following.

Proposition 2.10. Let x ∈ D0 and assume that x1 is as in Definition 2.2. If ξ ∈ D(K) then
xξ ∈ D(K) and Kxξ = x1Kξ.

Proof. Take a pair (x, x1) of elements in M satisfying the condition as in Definition 2.2. Take
ξ ∈ D(K) and put ξ1 = Kξ. We must show that the pair (xξ, x1ξ1) satisfies the conditions as
in Definition 2.6.

To show this, take ε > 0 and vectors (ηk) in H. First choose elements (pi) and (qi) in M so
that ∥∥∥xξ ⊗ ηk −∑

i
∆(pi)(ξ ⊗ q∗i ηk)

∥∥∥ < ε,
∥∥∥x1ξ1 ⊗ ηk −∑

i
∆(qi)(ξ1 ⊗ p∗i ηk)

∥∥∥ < ε

for all k as in Definition 2.2. Next take ε′ > 0 and choose elements (rij) and (sij) in Nψ so that∥∥∥ξ ⊗ q∗i ηk − V (∑
j

Λψ(rij)⊗ s∗ijq∗i ηk
)∥∥∥ < ε′,∥∥∥ξ1 ⊗ p∗i ηk − V (∑

j
Λψ(sij)⊗ r∗ijp∗i ηk

)∥∥∥ < ε′
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for all i and all k as in Definition 2.6. Then we find for all k on the one hand∥∥∥xξ ⊗ ηk − V (∑
ij

Λψ(pirij)⊗ s∗ijq∗i ηk
)∥∥∥ ≤ ‖xξ ⊗ ηk −∑

i
∆(pi)(ξ ⊗ q∗i ηk)‖

+
∥∥∥∑

i
∆(pi)(ξ ⊗ q∗i ηk)− V

(∑
ij

Λψ(pirij)⊗ s∗ijq∗i ηk
)∥∥∥

≤ ε+
∥∥∥∑

i
∆(pi)

(
(ξ ⊗ q∗i ηk)− V

(∑
j

Λψ(rij)⊗ s∗ijq∗i ηk
))∥∥∥

≤ ε+
∑
i
‖pi‖

∥∥∥ξ ⊗ q∗i ηk − V (∑
j

Λψ(rij)⊗ s∗ijq∗i ηk
)∥∥∥ ≤ ε+ ε′

∑
i
‖pi‖.

Similarly on the other hand∥∥∥x1ξ1 ⊗ ηk − V (∑
ij

Λψ(qisij)⊗ r∗ijp∗i ηk
)∥∥∥ ≤ ε+ ε′

∑
i
‖qi‖

for all k.
If we choose ε′ so that ε′

∑
i
‖pi‖ < ε and ε′

∑
i
‖qi‖ < ε, we can complete the proof. �

A possible proof of the formula S0(xy)∗ = S0(x)∗S0(y)∗ when x, y ∈ D0 would be of the same
type as the one above.

As an important consequence of the above proposition we find that, if D(K) is dense and
if x and x1 are as in Definition 2.2, then x = 0 will imply x1 = 0. Indeed, it will follow that
x1Kξ = 0 for all ξ ∈ K and by Proposition 2.9i) we have that the range of K is equal to D(K).

Density of the domain of the operator K. For the following step, we need a left Haar
weight on M . It is used to produce (enough) elements in D(K) and in D0. Recall that a left
Haar weight is a faithful normal semi-finite weight ϕ on M satisfying left invariance, i.e.

ϕ((ω ⊗ ι)∆(x)) = ω(1)ϕ(x),

whenever x ∈M , x ≥ 0 and ϕ(x) <∞ and when ω ∈M∗ and ω ≥ 0. For a left Haar weight we
have the left regular representation. We use Hϕ for the G.N.S.-space and Λϕ : Nϕ → Hϕ for the
associated canonical map. Again we let M act directly on Hϕ (i.e. we drop the notation πϕ as
we did before with ψ). Later we will identify the two Hilbert spaces Hϕ and Hψ in such a way
that the actions of M are the same (see the end of Section 3).

The left regular representation is considered in the next proposition.

Proposition 2.11. There is a bounded operator W on H⊗Hϕ, characterized (and defined) by

((ω ⊗ ι)W ∗)Λϕ(x) = Λϕ((ω ⊗ ι)∆(x)),

when x ∈ Nϕ and ω ∈ B(H)∗. Now, the ‘first leg’ of W sits in M , that is W ∈M ⊗B(Hϕ) and
we have:

i) WW ∗ = 1 (i.e. W is a co-isometry),

ii) (1⊗ x)W = W∆(x) for all x ∈M ,

iii) (∆⊗ ι)W = W13W23.

Here, roughly speaking, we have W ∗(ξ⊗Λϕ(x))=
∑
(x)

x(1)ξ⊗Λϕ(x(2)) when ∆(x)=
∑
(x)

x(1)⊗x(2)

formally. Observe the difference in convention (using the adjoint) when compared with the right
regular representation (cf. Proposition 2.5). The proof of this proposition however is completely
similar as for the right regular representation.

In order to use W to construct elements in D(K) and in D0, we need different steps. We
formulate different lemmas as some of the results will be needed later. First we have the
following.
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Lemma 2.12. Let ω ∈ B(Hϕ)∗ and x = (ι ⊗ ω)W and x1 = (ι ⊗ ω)W , then x ∈ D0 and x1
satisfies the conditions as in Definition 2.2.

Proof. Assume that ω = 〈 · ξ, η〉. Take an orthonormal basis (ξj) in Hϕ. Define

pj = (ι⊗ 〈 · ξj , η〉)W and qj = (ι⊗ 〈 · ξj , ξ〉)W.

Using the formula (∆⊗ ι)W = W13W23 (Proposition 2.11), we find∑
j

∆(pj)(1⊗ q∗j ) = (ι⊗ ι⊗ ω)(((∆⊗ ι)W )(1⊗W ∗))

= (ι⊗ ι⊗ ω)(W13W23W
∗
23) = (ι⊗ ι⊗ ω)W13 = x⊗ 1

and similarly∑
j

∆(qj)(1⊗ p∗j ) = (ι⊗ ι⊗ ω)(W13W23W
∗
23) = (ι⊗ ι⊗ ω)W13 = x1 ⊗ 1.

The sums converge in the strong operator topology.
This gives the result for elements ω of the form 〈 · ξ, η〉. Then it follows for all ω ∈ B(Hϕ)∗

by approximation. �

Remark that only the essential properties of W are used in the above argument and that it
is not necessary to have a left regular representation, associated to a left Haar weight. Only the
conditions i) and iii) of Proposition 2.11 are needed.

Compare this lemma with Proposition 5.6 in [28] where a similar argument is found. Observe
again that one of the differences between this approach to the antipode and the one in [28] lies
in the fact that we avoid the use of operator space techniques here.

Later we will combine this result with the property proven in Proposition 2.10 (cf. Proposi-
tion 2.16).

In a similar way, elements in the domain of K are constructed, but here we have to be a bit
more careful. First we have the following lemma.

Lemma 2.13. If c ∈ Nψ and ω ∈ B(Hϕ)∗ we have (ι⊗ ω(c · ))W ∈ Nψ.

Proof. If we let x = (ι⊗ ω(c · ))W , we get

x∗x ≤ ‖ω‖(ι⊗ |ω|)(W ∗(1⊗ c∗)(1⊗ c)W ) = ‖ω‖(ι⊗ |ω|)(∆(c∗)W ∗W∆(c))

≤ ‖ω‖(ι⊗ |ω|)(∆(c∗)∆(c)) = ‖ω‖(ι⊗ |ω|)(∆(c∗c)).

As ψ is right invariant and c ∈ Nψ, we get also x ∈ Nψ. �

Observe that we do not need that W is unitary. It is sufficient for this argument that
W ∗W ≤ 1 and this is true for a co-isometry.

Now the following result should not come as a surprise.

Lemma 2.14. Let c, d ∈ Nψ and ω ∈ B(Hϕ)∗ and define ξ = Λψ((ι ⊗ ω(c · d∗))W ). Then
ξ ∈ D(K) and Kξ = Λψ((ι⊗ ω(d · c∗))W ).

Proof. The proof of this lemma is based on the same decomposition as in Lemma 2.12.
Take ω of the form 〈 · ξ′, η′〉 where ξ′ and η′ are vectors in Hϕ. Take an orthonormal basis (ξj)

in Hϕ. Define elements in M as before by

pj = (ι⊗ 〈 · ξj , c∗η′〉)W, qj = (ι⊗ 〈 · ξj , d∗ξ′〉)W.

By Lemma 2.13 we have pj , qj ∈ Nψ. This is necessary for the use of Definition 2.6.
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We know that∑
j

∆(pj)(1⊗ q∗j ) = x⊗ 1,
∑
j

∆(qj)(1⊗ p∗j ) = x1 ⊗ 1,

where

x = (ι⊗ 〈 · d∗ξ′, c∗η′〉)W, x1 = (ι⊗ 〈 · c∗η′, d∗ξ′〉)W

as in Lemma 2.12, with convergence in in the strong operator topology. Because now all these
elements belong Nψ, using the properties of the map Λψ, we will also have

V
(∑

j
Λψ(pj)⊗ q∗j η

)
= Λψ(x)⊗ η, V

(∑
j

Λψ(qj)⊗ p∗jη
)

= Λψ(x1)⊗ η

for all η ∈ H. Now convergence will be in the norm topology of the Hilbert space tensor product.
Then it follows from Definition 2.6 that Λψ(x) ∈ D(K) and that KΛψ(x) = Λψ(x1). This is
what we had to show. �

Having these results, we are ready to show that the domain of K is dense. Simultaneously,
we obtain that the right regular representation V is unitary. Indeed, as the proof of the two
results are intimately related, we formulate them below in one proposition.

Proposition 2.15. The operator V is unitary. And the operator K is densely defined.

Proof. For the proof of the first statement, we use Kustermans’ trick as in [7]. Define

K = sp
{

Λψ((ι⊗ ω(c · ))W ) | c ∈ Nψ, ω ∈ B(Hϕ)∗
}
,

where by sp we mean the closed linear span.
Consider V as acting on the space Hψ ⊗Hϕ by taking Hϕ for H.
Consider the notations of Lemma 2.14, but with d = 1. In this case ξ = Λψ((ι⊗ ω(c · ))W ).

Using the same techniques as in the proof of Lemmas 2.12 and 2.14, we find that ξ ⊗ η is
approximated by finite sums of the form

∑
V (Λψ(pj)⊗ q∗j η) for any η ∈ Hϕ. Because ξ, as well

as all the elements Λψ(pj) belong to K, we find that K ⊗Hϕ ⊆ V (K ⊗Hϕ).
On the other hand, we have the formula

(ι⊗ ϕ)((∆(x∗)(1⊗ y)) = (ι⊗ 〈 ·Λϕ(y),Λϕ(x)〉)W,

whenever x, y ∈ Nϕ. This follows easily from the defining formula for W in Proposition 2.11.
We can now approximate any linear functional of the form ω(c · ) by functionals of the form
〈 ·Λϕ(y),Λϕ(x)〉, where we take y ∈ Nϕ and x ∈ Nϕ ∩ N ∗ψ. Moreover, we can approximate any
element in M∗ by linear functionals of the form ϕ( · y) with appropriate elements y ∈ Nϕ. As
a consequence of all these carefully chosen approximations, we find that also

K = sp
{

Λψ((ι⊗ ω)∆(x)) |x ∈ Nψ, ω ∈M∗
}
.

Consequently we see that also V (Hψ ⊗Hϕ) ⊆ K ⊗Hϕ.
By a combination of the two results above and using that V is isometric, we get K = Hψ.

Therefore V is unitary.
As we also have

K = sp
{

Λψ((ι⊗ ω(c · d∗))W ) | c, d ∈ Nψ, ω ∈ B(Hϕ)∗
}
,

we get from K = Hψ that D(K) is dense. �
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Compare the proof of this proposition with arguments found in [7, Section 3.3].
By symmetry, of course also the left regular representation W associated to any left Haar

weight will be unitary. Observe that we now can rewrite the formulas ii) of Proposition 2.5
and ii) of Proposition 2.11 as ∆(x) = V (x⊗ 1)V ∗ and ∆(x) = W ∗(1⊗ x)W respectively.

The unitarity of the regular representations can also be proven in an other, perhaps shorter
(still essentially the same) way, but because we also need the density of the domain D(K) of K,
we have chosen to prove these results together as above.

It should not come as a surprise that the density of D(K) is essentially the same result as
saying that the isometry V is in fact a unitary. Indeed, when D(K) is dense, it follows that
for any ξ ∈ Hψ and any η ∈ H, the vector ξ ⊗ η can be approximated with elements in the
range of V (cf. Definition 2.6). Roughly speaking, this says that the map p⊗ q 7→ ∆(p)(1⊗ q),
considered on the Hilbert space level, has dense range. Later, at the end of this section, we will
see that this map on M ⊗M also has dense range. This in turn will be a consequence of the
density of D0 (cf. Proposition 2.21 below). Remark that, although there are similarities, the two
density results are different because the topologies considered are different.

The antipode and its polar decomposition. We have now shown that the domain D(K)
of the operator K is dense and as we mentioned already (see the remark following Proposi-
tion 2.10) it would now be possible to define the antipode as the map S0 given by S0(x) = x∗1
(cf. the remark following Definition 2.2). It would still be necessary to show that also the
domain D0 of S0 is dense.

Eventually we will see that indeed, the space D0 is dense (see Proposition 2.21 below). But
first we will construct the antipode by means of its polar decomposition. Some of the formulas
needed to do this will also play an important role in the next section where we obtain the main
results.

Let us first formulate a result that easily follows from combining Lemma 2.12 with Proposi-
tion 2.10.

Proposition 2.16. For any ξ ∈ D(K) and ω ∈ B(Hϕ)∗, we have that ((ι⊗ω)W )ξ ∈ D(K) and

K((ι⊗ ω)W )ξ = ((ι⊗ ω)W )Kξ.

Next we need a similar formula, but for the other leg of W . And because eventually we
will need all of this to obtain uniqueness of the Haar weights, we will work with two left Haar
weights ϕ1 and ϕ2. We will use the left regular representations for these two left Haar weights
and we will use W1 and W2 to denote them. We will in what follows consider these operators
as acting on the spaces Hψ ⊗Hϕ1 and Hψ ⊗Hϕ2 respectively.

We then have the following result.

Proposition 2.17. Let Tr be the closure of the operator Λϕ1(x) 7→ Λϕ2(x∗) with x ∈ Nϕ1 ∩N ∗ϕ2
.

If ξ ∈ D(Tr) then ((ω ⊗ ι)W ∗1 )ξ ∈ D(Tr) for all ω ∈ B(Hψ)∗ and

Tr((ω ⊗ ι)W ∗1 )ξ = ((ω ⊗ ι)W ∗2 )Trξ.

Proof. Fix ω ∈ B(Hψ)∗. First we prove the formula for ξ = Λϕ1(x) with x ∈ Nϕ1 ∩ N ∗ϕ2
. We

get

((ω ⊗ ι)W ∗1 )Λϕ1(x) = Λϕ1((ω ⊗ ι)∆(x))

by the definition of W1, see Proposition 2.11. Then, because also (ω ⊗ ι)∆(x) ∈ Nϕ1 ∩N ∗ϕ2
, we

get from the definition of Tr that

Tr(((ω ⊗ ι)W ∗1 )Λϕ1(x)) = Λϕ2((ω ⊗ ι)∆(x∗)) = ((ω ⊗ ι)W ∗2 )Λϕ2(x∗)

= ((ω ⊗ ι)W ∗2 )TrΛϕ1(x).
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The result for any vector ξ ∈ D(Tr) follows because Tr is the closure of the map Λϕ1(x) 7→
Λϕ2(x∗) with x ∈ Nϕ1 ∩N ∗ϕ2

. �

Now we will combine the above result with the similar formula for K, applied for both W1

and W2. Compare with results in [7, Section 5.2].

Proposition 2.18. With the notations as before, we have the equality

(K ⊗ Tr)W1 = W ∗2 (K ⊗ Tr).

Proof. Take vectors ξ ∈ D(K), ξ′ ∈ D(K∗), η ∈ D(Tr) and η′ ∈ D(T ∗r ). Remember that
ξ, ξ′ ∈ Hψ while η ∈ Hϕ1 and η′ ∈ Hϕ2 .

i) We first use the formula with K (as proven in Proposition 2.16). Then we find

〈W2(Kξ ⊗ Trη), ξ′ ⊗ η′〉 = 〈((ι⊗ 〈 ·Trη, η′〉)W2)Kξ, ξ
′〉 = 〈K((ι⊗ 〈 · η′, Trη〉)W2)ξ, ξ

′〉
= 〈((ι⊗ 〈 · η′, Trη〉)W2)ξ,K

∗ξ′〉− = 〈W2(ξ ⊗ η′),K∗ξ′ ⊗ Trη〉−.

Next we write this last expression as

〈((〈 · ξ,K∗ξ′〉 ⊗ ι)W2)η
′, Trη〉−.

If we now use the formula with Tr from Proposition 2.17, we find by a similar calculation that
this is equal to

〈W ∗1 (ξ ⊗ η),K∗ξ′ ⊗ T ∗r η′〉−.

This implies the inclusion W2(K ⊗ Tr) ⊆ (K ⊗ Tr)W ∗1 .
ii) On the other hand, if we proceed as above, but now first using the formula for Tr and

then the formula for K, we find

〈W ∗2 (Kξ ⊗ Trη), ξ′ ⊗ η′〉 = 〈W1(ξ ⊗ η),K∗ξ′ ⊗ T ∗r η′〉−.

This in turn implies the inclusion W ∗2 (K ⊗ Tr) ⊆ (K ⊗ Tr)W1.
If we take the first inclusion and apply W ∗2 from the left and W1 from the right, we get

(K⊗Tr)W1 ⊆W ∗2 (K⊗Tr). If we combine this with the previous inclusion, we get the result. �

This formula is very important for the further development in Section 3. Of course, we can
also replace both W1 and W2 by W associated with any left Haar weight ϕ. We will use both
cases in the next section when we show that Haar weights are unique. In this section, we will use
it (with W ) to construct the antipode and to prove some more density results as we announced.

In order to use our formula, we need to consider the polar decomposition of the operators
involved.

Notation 2.19. Let K be the operator on Hψ as defined in Definitions 2.6 and 2.8. Now let T
be the closure of the map Λϕ(x) 7→ Λϕ(x∗) where x ∈ Nϕ ∩N ∗ϕ. We use

K = IL
1
2 and T = J∇

1
2

to denote the polar decompositions of these operators.

The properties of all these operators are well-known and easy consequences of the fact that K
and T are conjugate linear and involutive. We have e.g. that J∇J = ∇−1 so that J∇itJ = ∇it
(because J is conjugate linear). Similarly for the operators I and L. See e.g. Chapter VI in [24].

Remember that, roughly speaking, our operator K coincides with the operator G∗ in [7] and
therefore, that the operator L is essentially the operator N−1 in [7, Section 5]. See also Section 5,
in particular Remark 5.10.

If we apply Proposition 2.18 to the case ϕ1 = ϕ2 = ϕ, we get (K⊗T )W = W ∗(K⊗T ) whereW
is the left regular representation associated with ϕ. As a consequence of the uniqueness of the
polar decomposition, we get the following result.
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Proposition 2.20. We have (I ⊗ J)W (I ⊗ J) = W ∗ and also (Lit ⊗∇it)W (L−it ⊗∇−it) = W
for all t ∈ R.

In the next section, we will use similar formulas, but for two weights and we will combine
them with these formulas here to get uniqueness of the Haar weights.

We will now show in the next proposition that the left leg of W is dense in M . Therefore,
the above formulas will allow us to define maps R : M → M and τt : M → M for all t by
R(x) = Ix∗I and τt(x) = LitxL−it. These maps will give us the polar decomposition of the
antipode (see Definition 2.23 below).

We first need the following observation. Denote by (σϕt )t∈R the modular automorphisms
on M defined by σϕt (x) = ∇itx∇−it. Similarly let us define the one-parameter group of automor-
phisms (τt) on B(Hψ) by τt = Lit · L−it. Then it follows from the second formula in Propo-
sition 2.20 and from ∆(x) = W ∗(1 ⊗ x)W for all x ∈ M that ∆(σϕt (x))) = (τt ⊗ σϕt )∆(x) for
all x ∈ M . From this formula, it follows that the space of slices, spanned by the elements
(ω ⊗ ι)∆(x) with x ∈ M and ω ∈ M∗ will be left invariant under the modular automorphisms
(σϕt )t∈R. We will need this for the proof of the following proposition (see in [7, Proposition 1.4]).

Proposition 2.21. Let W be the left regular representation associated with some left Haar
weight ϕ as before. Then the following three subspaces of M

i) {(ι⊗ ω)W |ω ∈ B(Hϕ)∗},
ii) sp{(ι⊗ ω)∆(x) |x ∈M, ω ∈M∗},
iii) sp{(ω ⊗ ι)∆(x) |x ∈M, ω ∈M∗}

are σ-weakly dense in M .

Proof. We will only consider i) and ii) because the density in iii) will follow by symmetry.
We first claim that the spaces in i) and in ii) have the same closure. This follows from the

formula

(ι⊗ ϕ)((∆(x∗)(1⊗ y)) = (ι⊗ 〈 ·Λϕ(y),Λϕ(x)〉)W

with x, y ∈ Nϕ considered already in the proof of Proposition 2.15.
Let us now denote by Me the closure of the space in i). We have to show that this is equal

to M .
It follows from the fact that W satisfies the pentagon equation, that Me is a subalgebra

of M . Because Me is also the closure of the space in ii) and this is obviously self-adjoint, we get
that Me is a ∗-subalgebra of M .

In the proof of Proposition 2.15, we have seen that the space

sp
{

Λψ((ι⊗ ω)∆(x)) |x ∈ Nψ, ω ∈M∗
}

is dense in Hψ. Standard approximation techniques give that also

sp
{

Λψ((ι⊗ ω)∆(x)) |x ∈ Nψ ∩N ∗ψ, ω ∈M∗
}

is still dense in Hψ. This will imply that the space Λψ(Nψ ∩N ∗ψ ∩Me) is dense in Λψ(Nψ ∩N ∗ψ).
We have seen in a remark preceding this proposition, that the space of slices in iii) is inva-

riant by the modular automorphisms of ϕ. Similarly, the modular automorphism σψt leaves Me

invariant. So the space Λψ(Nψ ∩ N ∗ψ ∩Me) will be invariant under the modular unitaries ∇it
(where we use ∇ for the modular operator associated with the right Haar weight ψ). It follows
that also Λψ(Nψ ∩N ∗ψ ∩Me) is dense in Λψ(Nψ ∩N ∗ψ) with respect to the #-norm (cf. Section 1
in Chapter VI in [24]). Then, from a result in Hilbert algebra theory (see Lemma 5.1 and the
proof of Theorem 10.1 in [22]), it will follow that also Nψ ∩ N ∗ψ ∩Me is dense in M . Therefore
we have that Me = M . This completes the proof of the proposition. �
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From this proposition and taking into account Lemma 2.12, it follows that the map p⊗ q 7→
∆(p)(1 ⊗ q) has dense range in M ⊗M . Indeed, one can approximate elements of the form
x ⊗ 1 by linear combinations of elements of the form ∆(p)(1 ⊗ q) when x ∈ D0 (by the very
definition of D0) and as now this domain is shown to be dense, we can do this for any x ∈ M .
By multiplying with elements of M in the second factor, we get the density of ∆(M)(1 ⊗M).
By symmetry, we also have that ∆(M)(M ⊗ 1) will be dense in M ⊗M . Also compare with the
remark following Proposition 2.15.

We finish this section by the definition of the antipode S and its polar decomposition and by
formulating an important property which will be frequently used in the next sections.

Definition 2.22. Define R : M →M by R(x) = Ix∗I and τt : M →M by τt(x) = LitxL−it.

It is a consequence of the density result i) in Proposition 2.20 and Proposition 2.21 that these
maps do leave M invariant. We have that R and τt commute because I and Lit commute for all t.
The automorphisms (τt) are called the scaling automorphisms whereas the anti-automorphism R
is called the unitary antipode. Together they represent what is commonly referred to as the polar
decomposition of the antipode:

Definition 2.23. The antipode S is defined as the composition Rτ− i
2

where τ− i
2

is the analytic

generator associated with the one-parameter group (τt) in the point − i
2 .

Recall, as was already mentioned in the introduction, that the analytic generator is defined
first on the predual M∗ and then on M by taking the adjoint.

In the next sections, we will (essentially) no longer need the operators K, I and L (they
will be replaced by other, more adapted operators, see Section 5). We will use the unitary
antipode R and the scaling group (τt). The main results in this section involving K, I and L
can be restated solely in terms of R and τt. This is e.g. quite obvious for the two formulas in
Proposition 2.20 (and for the similar result involving two left Haar weights, see a remark in the
beginning of Section 3, before Proposition 3.2).

It is somewhat harder with Proposition 2.16, but the following result can be shown about
the antipode as defined in Definition 2.23.

Proposition 2.24. For any ω ∈ B(Hϕ)∗ we have that (ι ⊗ ω)W ∈ D(S) and S((ι ⊗ ω)W ) =
(ι⊗ω)(W ∗). The space of such elements is invariant under the scaling automorphisms (τt) and
it is a core for S.

Indeed, formally, from Proposition 2.16, we get KxK = x∗1 when x = (ι ⊗ ω)W and x1 =
(ι⊗ ω)(W ∗). Now

KxK = IL
1
2xL−

1
2 I = R

(
τ− i

2
(x)
)∗
.

One has to be somewhat careful, but the argument can be made precise. Furthermore, because
of the second formula in Proposition 2.20, the space of such elements (ι⊗ω)W will be invariant
under the scaling automorphisms and as this space is dense in M , it will be a core for S. See
e.g. [37] for details.

We will refer to this result when in the sequel, we write loosely (S ⊗ ι)W = W ∗.

3 The main results about (M,∆)

In Section 2, we have introduced the antipode and obtained some results about density. We also
proved an important formula and some consequences of it. In this section, we will prove the
main results about a locally compact quantum group and its related objects (such as the left
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and right Haar weights, the modular automorphism groups, the scaling group and the unitary
antipode, . . . ). In the next section, we will treat the dual and in the fourth section we will prove
the main results about the objects associated with a locally compact quantum group in relation
with those of the dual.

But first it is appropriate to formulate here the precise definition of a locally compact quan-
tum group (in the von Neumann algebraic setting), see [9].

Definition 3.1. Let M be a von Neumann algebra. Let ∆ be a comultiplication on M . The
pair (M,∆) is called a locally compact quantum group if there exist a left and a right Haar
weight.

The correct definition of a comultiplication on a von Neumann algebra M was given in
Definition 2.1. It is a unital normal ∗-homomorphism from M to M ⊗M satisfying coassocia-
tivity. A right Haar weight is a faithful normal semi-finite weight on M that is right invariant
(see Definition 2.4). A left Haar weight is a faithful normal semi-finite weight on M that is left
invariant.

In this section, (M,∆) will be a locally compact quantum group (in the sense of the above
definition) and ψ will be a right Haar weight and ϕ, ϕ1 and ϕ2 will denote left Haar weights.
We will use the notations and results of the previous section.

A first major objective is to prove that Haar weights are unique. We consider the two left
Haar weights ϕ1 and ϕ2. We denote by (ut)t∈R the Connes’ cocycle Radon–Nikodym derivative
of ϕ1 w.r.t. ϕ2 and we will show that ut is a scalar multiple of 1 for each t. This will imply that
the two weights are proportional.

Our starting point will be the formula in Proposition 2.18. Whereas in the previous section,
we have used this formula for the case of one invariant weight, now we will also use it for the
two different weights ϕ1 and ϕ2.

Recall that we use W1 and W2 for the left regular representations associated with ϕ1 and ϕ2

respectively. And as in the previous section, we denote by Tr the closure of the operator

Λϕ1(x) 7→ Λϕ2(x∗) where x ∈ Nϕ1 ∩ N ∗ϕ2
. Let Tr = Jr∇

1
2
r be the polar decomposition. Remark

that ∇r is an operator on Hϕ1 and that Jr maps Hϕ1 to Hϕ2 . Recall that we use K = IL
1
2 for

the polar decomposition of K. From Proposition 2.18, we know that (K⊗Tr)W1 = W ∗2 (K⊗Tr).
Then, as in Proposition 2.20, it follows from the uniqueness of the polar decompositions that
Lit ⊗ ∇itr commutes with W1 for all t. This result can be restated without the use of the
operator L. We simply write e.g. (τt ⊗ ι)W1 = (1 ⊗∇−itr )W1(1 ⊗∇itr ). We refer to the remark
following Definition 2.23.

Let us also use T1 for the closure of the operator Λϕ1(x) 7→ Λϕ1(x∗) with x ∈ Nϕ1 ∩N ∗ϕ1
and

T1 = J1∇
1
2
1 for its polar decomposition. It is known from the relative modular theory (see e.g.

Section 3 in Chapter VIII of [24]) that ut = ∇it1∇−itr . Then the following result follows easily.

Proposition 3.2. For each t ∈ R we have ∆(ut) = 1⊗ ut.

Proof. We just saw that (Lit⊗∇itr )W1(L
−it⊗∇−itr ) = W1 for all t ∈ R. If we combine this with

the formula ii) in Proposition 2.20 of the previous section (for W1), we get (1⊗ut)W1(1⊗u∗t ) =
W1. Because W ∗1 (1⊗ x)W1 = ∆(x) for all x ∈M , we get the result. �

If the right Haar weight ψ is bounded, we can immediately apply it on the formula above
and get ψ(ut)1 = ψ(1)ut so that ut must be a scalar multiple of the identity for all t. We will
be able to conclude this, also in general, but we need a finer argument.

Before we complete this argument, recall that we have defined R : M →M by R(x) = Ix∗I
and τt : M → M by τt(x) = LitxL−it (see Definition 2.22). Again we will also use (σϕt )t∈R to



18 A. Van Daele

denote the modular automorphisms on M defined by σϕt (x) = ∇itx∇−it for the given left Haar
weight ϕ.

We get a first set of important formulas.

Theorem 3.3. For all x ∈M and t ∈ R we have

i) ∆(σϕt (x)) = (τt ⊗ σϕt )∆(x),

ii) ∆(τt(x)) = (τt ⊗ τt)∆(x),

iii) ∆(R(x)) = (R⊗R)∆′(x),

where ∆′ is obtained from ∆ by composing it with the flip map on M ⊗M .

Proof. As we saw already, the first formula is an immediate consequence of the second formula
in Proposition 2.20 because ∆(x) = W ∗(1 ⊗ x)W for all x ∈ M . The formulas ii) and iii)
follow in a straightforward way from the definitions and the formulas in Proposition 2.20 and
again ∆(x) = W ∗(1 ⊗ x)W , combined also with (∆ ⊗ ι)W = W13W23. For the third formula,
take adjoints to get (∆ ⊗ ι)W∗ = W ∗23W

∗
13 and apply the flip map on the first two factors to

get (∆′ ⊗ ι)W ∗ = W ∗13W
∗
23. Then iii) follows from W ∗ = (I ⊗ J)W (I ⊗ J) and the definition

of τt. In fact, formula ii) can also be obtained from i) using coassociativity and the density ii)
in Proposition 2.21. �

In order to complete the proof of the uniqueness of the left Haar weights, we also need the
following result.

Proposition 3.4. If x ∈M and ∆(x) = 1⊗x or ∆(x) = x⊗1, then x must be a scalar multiple
of 1.

Proof. We will assume that ∆(x) = x⊗ 1 and prove that x is a scalar multiple of 1. The other
property (which is the one we really need) will follow by symmetry.

So assume that x ∈ M and that ∆(x) = x ⊗ 1. Take a function f on R of the type
f(t) = exp(−p(t− q)2) with p, q ∈ R and define

y =

∫
f(t)σϕt (x) dt and z =

∫
f(t)τt(x) dt.

Because ∆(x) = x⊗1 and ∆(σϕt (x)) = (τt⊗σϕt )∆(x) = τt(x)⊗1, we get ∆(y) = z⊗1. Take any
w ∈ Mϕ (= N ∗ϕNϕ). Then, because y is analytic with respect to (σϕt ), we have also yw ∈ Mϕ

(see e.g. Section 2 of Chapter VIII in [24]). Therefore we can apply ϕ to the second leg of the
equation ∆(yw) = (z ⊗ 1)∆(w) and use left invariance of ϕ to get ϕ(yw)1 = ϕ(w)z. Because
this holds for all w ∈Mϕ, it follows from the faithfulness of ϕ that y and z are scalar multiples
of the identity. Because this is true for all such functions f , this can only happen when x itself
is a scalar multiple of 1. �

Now we are ready to obtain the uniqueness of the Haar weights.

Theorem 3.5. Any two left Haar weights on a locally compact quantum group are equal (up to
a scalar). Similarly for right Haar weights.

Proof. Combining Proposition 3.2 where we have shown that ∆(ut) = 1⊗ ut for all t and the
previous result, we find that ut is a scalar multiple of 1 for all t. This implies that the two
weights ϕ1 and ϕ2 are proportional.

This result is not explicitly stated in Section 3 of Chapter VIII in [24], but it follows easily
as in the proof of e.g. Corollary 3.6 in Chapter VIII of [24]. The result for right Haar weights
follows by symmetry. �
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Because of this result, we will in what follows use (σt) for the modular automorphisms of a left
Haar weight (in stead of (σϕt ) as we did before). We will use (σ′t) for the modular automorphisms
of a right Haar weight.

From the fact that R flips the coproduct, it follows that ϕ ◦ R is right invariant when ϕ is
left invariant. From now on, we will assume that ϕ is a fixed left Haar weight and we will take
the right Haar weight ψ to be this composition ϕ ◦R.

Now, here is another couple of formulas.

Theorem 3.6. For all x ∈M and t ∈ R we have

i) R(σt(x)) = σ′−t(R(x)),

ii) ∆(σ′t(x)) = (σ′t ⊗ τ−t)∆(x).

The first property is a consequence of ψ = ϕ◦R and the fact that R is an anti-homomorphism.
It can be shown using e.g. the K.M.S. property of weights w.r.t. the modular automorphisms.
Having i), clearly ii) will follow from i) and iii) in Theorem 3.3. We could have obtained the
second formula of this theorem also by symmetry, but then we would not be sure that we had
the same scaling group.

From the uniqueness of the Haar weights, we get easily that the scaling automorphisms (τt)
leave the Haar weights relatively invariant.

Theorem 3.7. There exists a strictly positive number ν so that ϕ◦ τt = ν−tϕ and ψ ◦ τt = ν−tψ
for all t ∈ R.

Proof. It follows from ∆◦τt = (τt⊗τt)◦∆ that ϕ◦τt is also left invariant and so, by uniqueness,
it is a scalar multiple of ϕ. As this is true for all τt, we get a strictly positive number ν such
that ϕ ◦ τt = ν−tϕ for all t. Composing with R and using that R and τt commute, we get also
ψ ◦ τt = ν−tψ for all t. �

From the fact that ϕ is relatively invariant under τt, it follows that τt commutes with all the
modular automorphisms (σs)s∈R of the left Haar weight. This can be seen in different ways.
One can e.g. use the one-parameter group of unitaries (vt) defined on Hϕ by

vtΛϕ(x) = ν
1
2
tΛϕ(τt(x))

and the fact that these unitaries commute with the map T (as defined in Notation 2.19). The
result then follows from the uniqueness of the polar decomposition of T . Similarly, τt will
commute with all the modular automorphisms (σ′s)s∈R of the right Haar weight. It is not so
hard to get that then also the modular automorphisms of the left Haar weight commute with
the modular automorphisms of the right Haar weight. Indeed, fix s, t ∈ R and denote γ = σtτ−t
and γ′ = σ′sτs. From the formulas i) and ii) in Theorem 3.3 and ii) in Theorem 3.6 we get

∆(γ(x)) = (ι⊗ γ)∆(x), ∆(γ′(x)) = (γ′ ⊗ ι)∆(x)

for all x. It follows that ∆(γγ′(x)) = ∆(γ′γ(x)) for all x. This will imply γγ′ = γ′γ. And as τ
and σ commute, as well as τ and σ′, we can conclude from this that also σ and σ′ will commute.
So we get the following result.

Theorem 3.8. All the automorphism groups σ, σ′ and τ mutually commute.

Now we will show that ψ is relatively invariant w.r.t. the modular automorphism group σ
and that ϕ is relatively invariant w.r.t. the modular automorphism group σ′, with (essentially)
the same scaling factor ν. Observe that also this result would imply that σ and σ′ commute.
However, we will use that σ and σ′ commute to prove the following theorem.
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Theorem 3.9. We have ψ ◦ σt = ν−tψ and ϕ ◦ σ′t = νtϕ for all t ∈ R.

Proof. Take x ∈ Mψ and consider the formula ∆(σt(x)) = (τt ⊗ σt)∆(x) (Theorem 3.3.i).
If we also have that σt(x) ∈ Mψ, we can use ψ ◦ τt = ν−tψ (Theorem 3.7), and we find
that ψ(σt(x)) = ν−tψ(x) by invariance. Because the weights ψ ◦ σt and ν−tψ have the same
modular automorphism group (because σ and σ′ commute), it will follow (from Proposition 3.16
of Chapter VIII in [24]) that these weights are the same if we can show that the ∗-subalgebra
Mψ ∩ σ−t(Mψ) is dense. This is what we will do now.

Take any x ∈ Nψ and take a function f on R as in the proof of Proposition 3.4 to define
y =

∫
f(s)σ′s(x)ds. We know that y is still in Nψ and analytic with respect to σ′. Because σ

commutes with σ′, also σ−t(y) will be analytic and so, as before, Nψσ−t(y) ⊆ Nψ. On the
other hand, Nψσ−t(y) ⊆ σ−t(Nψ) because y ∈ Nψ and Nψ is a left ideal. So we have produced
elements in the intersection of Nψ and σ−t(Nψ). It is not hard to conclude that this intersection
is dense, as well as the intersection Mψ ∩ σ−t(Mψ). This completes the proof of the first part
of the theorem.

The second formula is obtained from the first one by using i) of Theorem 3.6. �

Remark that the proof of this result is different from the original one. In [7], first a stronger
form of right invariance for ψ is needed.

Now we can add one more relation of the type proven in Theorems 3.3 and 3.6.

Theorem 3.10. For all x ∈M we have ∆(τt(x)) = (σt ⊗ σ′−t)∆(x) for all t ∈ R.

Proof. Because of the relative invariance of ϕ under both τt and σ′t, we have one-parameter
groups of unitaries (vt) and (wt) on Hϕ satisfying

vtΛϕ(x) = ν
1
2
tΛϕ(τt(x)), wtΛϕ(x) = ν−

1
2
tΛϕ(σ′t(x))

for all x ∈ Nϕ and all t. When W is the left regular representation as before, it follows from the
equations ∆ ◦ τt = (τt ⊗ τt)∆ and ∆ ◦ σ′t = (σ′t ⊗ τ−t)∆ that

(1⊗ v∗t )W ∗(1⊗ vt) = (τt ⊗ ι)W ∗, (1⊗ vt)W ∗(1⊗ wt) = (σ′t ⊗ ι)W ∗.

If we apply R⊗J( · )∗J to the second equation, we get because J commutes with wt and vt that

(1⊗ w∗t )W ∗(1⊗ v∗t ) = (σ−t ⊗ ι)W ∗.

If we combine all of this with the formula (∆⊗ι)W = W13W23 as we did before, we can conclude
that ∆ ◦ τt = (σt ⊗ σ′−t)∆ on the left leg of W . As this leg is dense, we get the result. �

The unitary groups (vt) and (wt), defined in the proof of this theorem, will play an important
role further. This will be seen in Section 5 where we will recall the definitions.

From the fact that ψ is relatively invariant under the modular automorphisms of ϕ, we also
get the following important result.

Theorem 3.11. There exists a unique, non-singular, positive self-adjoint operator δ, affiliated
with M such that ψ = ϕ

(
δ

1
2 · δ

1
2

)
. This operator satisfies σt(δ) = νtδ and σ′t(δ) = νtδ. It is

invariant under the automorphisms (τt) and R(δ) = δ−1. We also have the relation σ′t(x) =
δitσt(x)δ−it.

First remark that we have formulated the above results in terms of the unbounded operator δ.
It is quite obvious what is meant by this for all the formulas in the formulation, except for the
first one. This will have to be interpreted with the use of the Connes’ cocycle Radon–Nikodym
derivative as we will see in the proof. We refer to Corollary 3.6 in Section VIII of [24] and to [27]
for more details. In fact, when possible, we will rather consider the equivalent formulas in terms
of the unitary operators (δit) in order to avoid this kind of (technical) difficulties.
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Proof. Consider the weights ϕ and ψ = ϕ ◦ R and consider the cocycle Radon–Nikodym
derivative. We will write ut = (Dψ : Dϕ)t for all t. For any automorphism α of M , we have

(Dψ ◦ α : Dϕ ◦ α)t = α−1(Dψ : Dϕ)t

and if we apply this with α = σs and if we use that ϕ ◦ σs = ϕ and ψ ◦ σs = ν−sψ, we get
σs(ut) = νistut for all t and all s. Because us+t = usσs(ut) we easily calculate that (ν−

1
2
it2ut)

is a one-parameter group of unitaries in M . Therefore, there exists a non-singular positive
self-adjoint operator δ, affiliated with M , such that ut = ν

1
2
it2δit for all t. This gives us the

element δ such that, at least formally, ψ = ϕ(δ
1
2 · δ

1
2 ). Takesaki (Chapter VIII in [24]) treats

this situation in the case ν = 1 whereas Vaes [27] considers the general case.

Because ψ and ϕ are scaled with the same factor by the automorphisms τs we must have that
ut and hence also δ is invariant under τs. Because ψ = ϕ ◦ R and ϕ ◦ R = ψ we will get that
R(ut) = u−t and so R(δ) = δ−1. Because σt(us) = νistus we obtain σt(δ) = νtδ and finally, if
we apply R to this last formula, we get the other one σ′t(δ) = νtδ.

The last statement is standard. �

One also has the formula ∆(δ) = δ ⊗ δ but this is not so easy to get. One possible way to
prove this formula can be found in the original work [7]. Another proof is found in [13]. We will
still give an other argument but for this, we need some more results and so we postpone the
proof of this formula (see Remark 5.16).

It is possible to realize the GNS-representation of ψ in the Hilbert space Hϕ. One can show

that any element x ∈M with the property that xδ
1
2 is bounded and belongs to Nϕ is an element

of Nψ. In that case Λψ(x) = Λϕ(xδ
1
2 ). Moreover, it is not hard to prove that there are enough

elements like that and that Λψ is completely determined in this way. All this is proven by left
Hilbert algebra techniques. Details can be found e.g. in [27], see also [37].

4 The dual (M̂, ∆̂)

In this section, we start with a locally compact quantum group (M,∆) as in Definition 3.1 and

we will construct the dual (M̂, ∆̂). We will also show that repeating the procedure gives the
original pair (M,∆).

We take a left Haar weight ϕ and the right Haar weight ψ obtained from it by composing
with the unitary antipode R (see the remark before Theorem 3.6 in the previous section). We
will, as explained also at the end of the previous section, identify Hψ with Hϕ by defining Λψ

from Nψ to Hϕ by Λψ(x) = Λϕ(xδ
1
2 ) for the appropriate elements x. Observe again that this

is compatible with the actions of M on both spaces. Moreover, because we have uniqueness of
the Haar weights, it is no longer necessary to use the subscript ϕ when considering the Hilbert
space. So, from now on, we will simply use H for Hϕ. In other words, we will be working solely
within the Hilbert space Hϕ and denote it by H.

We consider the left regular representation W of (M,∆) associated with the left Haar weight
as in Proposition 2.11. With the above conventions, we get that W acts on H ⊗ H and that
W ∈M ⊗ B(H). Then also W satisfies the pentagon equation W12W13W23 = W23W12.

We will make use of the antipode S and its polar decomposition S = Rτ− i
2
. We will also use

that the space of elements of the form (ι⊗ ω)W with ω ∈ B(H)∗ is invariant under the scaling
group (τt), that it is a core for S and that S((ι ⊗ ω)W ) = (ι ⊗ ω)W ∗. We will refer to this
property when we write formally (S ⊗ ι)W = W ∗. For details see Proposition 2.24.

The dual von Neumann algebra and the dual coproduct. First the underlying von
Neumann algebra M̂ is defined.
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Definition 4.1. Let M̂ be the σ-weak closure of the subspace {(ω ⊗ ι)W |ω ∈M∗} of B(H).

With this definition, the dual von Neumann algebra M̂ also acts on the space H (which
is Hϕ). In some sense, this means that from the very beginning, we identify the ‘spaces’ L2(G)

and L2(Ĝ), thus not using the ‘Fourier transform’ explicitly. We come back to this remark later
in this section when we construct the dual left Haar weight.

It follows from the fact that W is a multiplicative unitary, that the subspace C of B(H),
defined as {(ω ⊗ ι)W |ω ∈ M∗}, is a subalgebra of B(H). In order to have that its closure is
a von Neumann algebra, we will use the following result (which will also be needed further in
this section).

Lemma 4.2. Consider the one-parameter group of automorphisms (τt) on M and its dual
on M∗. If ω ∈M∗ is analytic and if ω1 is defined as ω ◦ τ− i

2
◦R, then

((ω ⊗ ι)W )∗ = (ω1 ⊗ ι)W.

Conversely, if ω, ω1 ∈ M∗ and satisfy the above equation, then ω1(x) = ω(S(x)∗)− = ω(S(x))
for all x ∈ D(S).

Proof. Recall that formally (S ⊗ ι)W = W ∗ and that S = Rτ− i
2
. Now, it is not so hard to

show rigorously that the first statement of the lemma is correct.
Conversely, let ω, ω1 ∈M∗ and assume that ((ω ⊗ ι)W )∗ = (ω1 ⊗ ι)W . If x = (ι⊗ ρ)W with

ρ ∈ B(H)∗, then

ω1(x) = ρ((ω1 ⊗ ι)W ) = ρ((ω ⊗ ι)W )− = ω((ι⊗ ρ)W )− = ω(S(x)∗)−.

Now, because the ‘left leg’ of W is a core for S, we will also get the desired formula for all
x ∈ D(S). �

Now the following (standard) result can be shown.

Proposition 4.3. M̂ is a von Neumann algebra and W ∈M ⊗ M̂ .

Proof. Again consider the subspace C defined by {(ω ⊗ ι)W |ω ∈ M∗} (without taking the
closure). By the first statement of the lemma and using that such analytic elements are dense,

we get that the closure M̂ is self-adjoint. It acts non-degenerately on H because W is a unitary.
Therefore we have that M̂ will be a von Neumann algebra on H.

The second statement follows from the commutation theorem for tensor products of von
Neumann algebras. �

We see from the above that also the norm closure of the space C is a C∗-algebra, acting
non-degenerately on the Hilbert space H. It is denoted by Â and it will be considered further in
Appendix A where we treat the relation between the von Neumann algebra approach and the
C∗-algebra approach.

Remark that it is not immediate that these subalgebras Â and M̂ are self-adjoint. Usually
either regularity (cf. [2]) or manageability (cf. [38]) of the multiplicative unitary W is used. Here
we use a result which is closely related to manageability, but (in some sense) also weaker than
manageability. As explained already in the introduction, we avoid the use of the concept of
manageability.

Finally we also want to mention the following. Because ∆(x) = W (1 ⊗ x)W ∗ for x ∈ M , it

follows from Proposition 3.4 that M∩M̂ ′ = C1. Indeed, if x ∈M∩M̂ ′ then W (1⊗x) = (1⊗x)W

because x ∈ M̂ ′ and so ∆(x) = 1⊗ x. By Proposition 3.4 we get x ∈ C1.

Now we proceed to define the coproduct ∆̂ on M̂ . We first formulate the following result.
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Lemma 4.4. We have W (y ⊗ 1)W ∗ ∈ M̂ ⊗ M̂ for all y ∈ M̂ .

This result is standard and easy to prove. It follows from the definition of M̂ , the formula
W23W12W

∗
23 = W12W13 and the fact that W ∈M ⊗ M̂ .

Now it is easy to define the coproduct ∆̂. As is common in the theory of locally compact
quantum groups, we use the flip in the following definition.

Definition 4.5. We let ∆̂(y) = χ(W (y ⊗ 1)W ∗) for y ∈ M̂ where χ is the flip on the tensor

product M̂ ⊗ M̂ .

It is clear, using the previous lemma, that ∆̂ is a unital and normal ∗-homomorphism from M̂
to M̂ ⊗ M̂ . The coassociativity follows in the standard way from the pentagon equation.

Construction of the left Haar weight ϕ̂ on (M̂, ∆̂). The next step is the construction

of the Haar weights on the dual (M̂, ∆̂). We will first construct the left Haar weight ϕ̂ and later
discuss the existence of the right Haar weight ψ̂. We will follow the (more or less) standard
procedure.

We begin with the construction of the map Λ̂ (which later will be closed and give the map Λϕ̂
associated with the dual left Haar weight ϕ̂). The definition looks somewhat strange although
it is well-known in the theory of Kac algebras. Let us give here a short motivation using the
algebraic theory of multiplier Hopf algebras with integrals [33].

In [33] the Fourier transform â of an element a is defined as the linear functional ω = ϕ( · a).
Now it is well-known that the multiplicative unitary W is essentially the duality (see e.g. [30] for
the Hopf algebra case and [3] for the case of algebraic quantum groups). So, formally, we have
â = (ω ⊗ ι)W when ω = ϕ( · a). As we remarked already before, the ‘spaces’ L2(G) and L2(Ĝ)
are identified which means (again formally) that we want Λϕ̂(â) = Λϕ(a). This formula is
rewritten as

〈Λϕ̂(â),Λϕ(x)〉 = 〈Λϕ(a),Λϕ(x)〉 = ϕ(x∗a) = ω(x∗),

whenever x ∈ Nϕ.

Therefore the following definition is not a surprise.

Definition 4.6. Define a subspace N̂ of M̂ and a linear map Λ̂ : N̂ → H as follows. We
say that an element y of M̂ belongs to N̂ if there exists a linear functional ω ∈ M∗ such that
y = (ω ⊗ ι)W and a vector ξ ∈ H such that 〈ξ,Λϕ(x)〉 = ω(x∗) for all x ∈ Nϕ. Then we set

Λ̂(y) = ξ.

As before, Λϕ is the canonical map from Nϕ to H. Remark that ω is uniquely determined
by y because the left leg of W is dense in M (cf. Proposition 2.21) and that ξ is completely
determined by ω because Λϕ(Nϕ) is dense in H. It is also clear that N̂ is a subspace and that Λ̂
is linear and injective.

In the next lemma, we will show that there are enough elements in this space N̂ . We will
need right bounded vectors in H. Recall that these are elements η ∈ H such that there exist
a bounded operator, denoted by π′(η), satisfying π′(η)Λϕ(x) = xη for all x ∈ Nϕ. Such vectors
form a dense subspace and the space of operators π′(η) with η right bounded, is dense in the
commutant M ′ of M (see e.g. Chapter VI in [24]).

Lemma 4.7. Let ξ, η ∈ H and assume that η is right bounded. Let ω = 〈 · ξ, η〉 and y = (ω⊗ι)W .

Then y ∈ N̂ and Λ̂(y) = π′(η)∗ξ. In particular, N̂ is σ-weakly dense in M̂ and the space Λ̂(N̂ )
is dense in H.
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Proof. If ξ, η ∈ H and if η is right bounded, we have for all x ∈ Nϕ that

ω(x∗) = 〈x∗ξ, η〉 = 〈ξ, xη〉 = 〈ξ, π′(η)Λϕ(x)〉 = 〈π′(η)∗ξ,Λϕ(x)〉.

So, if y = (ω ⊗ ι)W , then y ∈ N̂ and Λ̂(y) = π′(η)∗ξ.

Because the space of right bounded vectors is dense in H, we see that N̂ is dense in M̂ . And
because the space of operators π′(η) with η right bounded is dense in M ′, we get that also the
space Λ̂(N̂ ) is dense in H. �

We also have the following.

Lemma 4.8. Let ω, ω1 ∈ M∗ and y = (ω ⊗ ι)W and y1 = (ω1 ⊗ ι)W . If y ∈ N̂ then also
y1y ∈ N̂ and Λ̂(y1y) = y1Λ̂(y).

Proof. For any x ∈ Nϕ we have

〈y1Λ̂(y),Λϕ(x)〉 = 〈Λ̂(y), y∗1Λϕ(x)〉 = 〈Λ̂(y), ((ω1 ⊗ ι)(W ∗))Λϕ(x)〉

= 〈Λ̂(y),Λϕ((ω1 ⊗ ι)∆(x))〉 = ω(((ω1 ⊗ ι)∆(x))∗)

= ω((ω1 ⊗ ι)∆(x∗)) = (ω1ω)(x∗),

where ω1ω is defined as usual by (ω1ω)(a) = (ω1 ⊗ ω)∆(a) for all a ∈ M . Remark that we
have used the definition of W ∗ as given in Proposition 2.11. Finally it is easy to see that
y1y = ((ω1ω) ⊗ ι)W using the pentagon equation and the formula ∆(a) = W ∗(1 ⊗ a)W for
a ∈M . �

The left Haar weight ϕ̂ will be obtained by constructing a left Hilbert algebra. Definition 4.6
and Lemmas 4.7 and 4.8 clearly provide the first steps. We need one more lemma before we can
come to the main part of the construction.

Lemma 4.9. Consider the set N̂0 of elements y ∈ N̂ so that y∗ has the form (ω1 ⊗ ι)W for

some ω1 ∈M∗. Then N̂0 is still σ-weakly dense in M̂ and also Λ̂(N̂0) is still dense in H.

Proof. Take ω = 〈 · ξ, η〉 with ξ, η ∈ H and assume that η is right bounded. We know from
Lemma 4.7 that y, defined as (ω ⊗ ι)W , is in N̂ and that Λ̂(y) = π′(η)∗ξ. Now, because of
Lemma 4.2, we need such elements with ω analytic with respect to (τt).

To construct such elements, define a one-parameter group of unitaries (vt) on H (as in the

proof of Theorem 3.10) by vtΛϕ(x) = ν
1
2
tΛϕ(τt(x)) when x ∈ Nϕ. It is clear that τt(x) = vtxv

∗
t

for all x ∈ M . It will be possible to take the vector ξ above so that it is analytic with respect
to (vt). And because every vt will map right bounded elements to right bounded elements, we
will also be able to take η analytic and still right bounded. Then ω will be analytic and of the
required form. This will give us the result of the lemma. �

Now we come to the main step in the construction of the left Hilbert algebra we need to get
the dual weight ϕ.

Proposition 4.10. Let A = Λ̂(N̂ ∩ N̂ ∗). We can equip A with the ∗-algebra structure inherited
from N̂ ∩ N̂ ∗. If we denote y by π(ξ) when y ∈ N̂ ∩ N̂ ∗ and ξ = Λ̂(y), then we have

i) both A and A2 are dense in H,

ii) π(ξ) is a bounded operator for all ξ ∈ A,

iii) π is a ∗-representation of A.
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Proof. It follows from the definition of N̂ and Lemma 4.8 that N̂ is a subalgebra of M̂ and
so N̂ ∩ N̂ ∗ is a ∗-subalgebra of M̂ . Because Λ̂ is injective, we can equip A with the ∗-algebra
structure of N̂ ∩ N̂ ∗.

To prove i), we use the previous lemma. Indeed, if we take y, y1 in the set N̂0, we see that
both y∗y1 and y∗1y will be in N̂ and this will provide us with enough elements in N̂ ∩ N̂ ∗. And

because this set is dense in M̂ and also Λ̂(N̂ ∩ N̂ ∗) is dense, we get i).
Statements ii) and iii) are immediate consequences of the notations. �

There is now only one point missing for A to be a left Hilbert algebra. It is also needed that
the ∗-operation in A, usually denoted by ξ 7→ ξ], is preclosed. This will be a consequence of the
following lemma.

Lemma 4.11. If y ∈ N̂ ∩ N̂ ∗ then

〈Λ̂(y∗),Λϕ(a)〉 = 〈Λ̂(y),Λϕ(S(a∗))〉−,

whenever a ∈ Nϕ, a∗ ∈ D(S) and S(a∗) ∈ Nϕ.

Proof. Take y ∈ N̂ ∩ N̂ ∗ and let ω, ω1 be in M∗ so that y = (ω ⊗ ι)W and y∗ = (ω1 ⊗ ι)W .
From Lemma 4.2 we know that ω1(x) = ω(S(x)∗)− for all x ∈ D(S). If now a is as in the
formulation of the lemma, it will follow from the definition of Λ̂ that

〈Λ̂(y∗),Λϕ(a)〉 = ω1(a
∗) = ω(S(a∗)∗)− = 〈Λ̂(y),Λϕ(S(a∗))〉−

and the result will follow. �

So in order to prove that the involution in A is preclosed, we just need to argue that there
are enough elements a as in the lemma. This is the content of the next lemma.

Lemma 4.12. The set of elements Λϕ(a) with a ∈ Nϕ such that also a∗ ∈ D(S) and S(a∗) ∈ Nϕ
is dense in H.

Proof. Take a ∈ Nϕ. Formally we have

S(a∗) = Rτ− i
2
(a∗) = R(τ i

2
(a))∗ = R(τ i

2
(a)δ

1
2 )∗δ

1
2 .

For such an element to be again in Nϕ, we need that τ i
2
(a)δ

1
2 is well-defined and in Nϕ. We

need two results to obtain such elements. First observe that ϕ is relatively invariant w.r.t.
the automorphisms (τt) and so also Nϕ is invariant and standard techniques allow to produce
elements a ∈ Nϕ that are analytic w.r.t. (τt). Next we know that the elements δis are analytic
w.r.t. the modular automorphisms (σt) and so Nϕδis ⊆ Nϕ for all s. This will allow us to

produce elements a ∈ Nϕ such that aδ
1
2 is well-defined and still in Nϕ. The two techniques

together will give us enough of the desired elements. �

We know from Section 2 that the operator K is essentially the map Λψ(x) 7→ Λψ(S(x)∗).
A simple (formal) argument then shows that the map Λϕ(x) 7→ Λϕ(S(x∗)) is essentially the

operator K∗. So we expect that the map Λ̂(y) 7→ Λ̂(y∗) will be nothing else but the operator K.
It does not seem to be easy to prove this result exactly. In the next section, we will find a way
around this problem by (in some sense) ‘redefining’ these maps (see Remark 5.10). We will then
also take up again the argument that we sketch here in the proof of Lemma 4.12 (see the proof
of Theorem 5.11).

For the moment, there is no need to get this more precise result. Indeed, if we combine all
the previous results, we find that A is a left Hilbert algebra and this is what we need. Then
we can use the general procedure to construct a faithful normal semi-finite weight from a left
Hilbert algebra (see Chapter VII in [24]) and we will arrive at the following theorem.
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Theorem 4.13. There exists a normal faithful semi-finite weight ϕ̂ on M̂ such that the G.N.S.-
representation can be realized in H, satisfying N̂ ⊆ Nϕ̂ and such that the canonical map Λϕ̂ is

the closure of Λ̂ on N̂ .

Proof. We have the left Hilbert algebra Λ̂(N̂ ∩ N̂ ∗) sitting inside H. The canonical weight ϕ̂
associated to this left Hilbert algebra has the property that elements in N̂ ∩N̂ ∗ belong to Nϕ̂ and

that ϕ̂(y∗y) = 〈Λ̂(y), Λ̂(y)〉 for such elements. The rest follows from standard Hilbert algebra
theory and the construction method of the associated weight. �

The left invariance of ϕ̂ and the associated regular representation. Now we need
to show that ϕ̂ is left invariant on the pair (M̂, ∆̂). When this is done, we can easily construct

the right Haar weight on (M̂, ∆̂). Indeed, as in the proof of Theorem 3.3, we will have that

∆̂(R̂(y)) = χ(R̂⊗ R̂)∆̂(y) whenever y ∈ M̂ where as before χ denotes the flip and where here R̂

is defined on M̂ by R̂(y) = Jy∗J . Recall that J is the modular conjugation associated with ϕ as
defined in Notation 2.19. Therefore a right Haar weight can be constructed from the left Haar
weight on M̂ by composing it with this map R̂. We will show later, in Section 5, that the use
of the notation R̂ is justified (see Proposition 5.12).

This will give us that the pair (M̂, ∆̂) is again a locally compact quantum group. In order to
show that repeating the procedure will bring us back to the original locally compact quantum
group (M,∆), we will prove that the left regular representation of the dual is nothing else but
the unitary ΣW ∗Σ where as is common, Σ denotes the flip operator on the tensor product
H⊗H.

We will prove this result first because it can be used to show that the dual left Haar weight ϕ̂
is indeed left invariant. In other words, the main result left to prove is the following.

Proposition 4.14. Define the unitary Ŵ = ΣW ∗Σ on H⊗H. Then (ω ⊗ ι)∆̂(y) ∈ Nϕ̂ and(
(ω ⊗ ι)Ŵ ∗

)
Λϕ̂(y) = Λϕ̂

(
(ω ⊗ ι)∆̂(y)

)
,

whenever y ∈ Nϕ̂ and ω ∈ B(H)∗.

Proof. First take y ∈ N̂ and let ω ∈ M∗ be such that y = (ω ⊗ ι)W . Take any ρ ∈ M̂∗
and put y1 = (ρ ⊗ ι)∆̂(y). Since ∆̂(y) = χ(W (y ⊗ 1)W ∗) (cf. Definition 4.5), it follows from
a straightforward calculation (using the pentagon equation) that y1 = (ω( · c) ⊗ ι)W where
c = (ι⊗ ρ)W . Then, when a ∈ Nϕ, we have

ω(a∗c) = 〈Λ̂(y), c∗Λϕ(a)〉 = 〈cΛ̂(y),Λϕ(a)〉

and it follows that y1 ∈ N̂ and that Λ̂(y1) = cΛ̂(y). This precisely means that

Λ̂
(
(ρ⊗ ι)∆̂(y)

)
= ((ι⊗ ρ)W )Λ̂(y) =

(
(ρ⊗ ι)Ŵ ∗

)
Λ̂(y).

This proves the result when y ∈ N̂ . The general case follows because Λϕ̂ on Nϕ̂ is the closure

of Λ̂ on N̂ . �

Now it is not hard to prove left invariance of ϕ̂.

Proposition 4.15. The weight ϕ̂, as constructed in Proposition 4.13, is left invariant on
(M̂, ∆̂).
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Proof. Take y ∈ Nϕ̂. Take also a vector ξ ∈ H and let ω = 〈 · ξ, ξ〉. Consider an orthonormal
basis (ξi) in H. Then we have

(ω ⊗ ι)∆̂(y∗y) =
∑

y∗i yi,

where yi = (〈 · ξ, ξi〉 ⊗ ι)∆̂(y). We know from the previous proposition that yi ∈ Nϕ̂ and that

Λϕ̂(yi) = ziΛϕ̂(x) where zi = (〈 · ξ, ξi〉 ⊗ ι)Ŵ ∗. And because∑
z∗i zi = (〈 · ξ, ξ〉 ⊗ ι)(ŴŴ ∗) = ω(1)1,

it follows that

ϕ̂((ω ⊗ ι)∆̂(y∗y)) =
∑

ϕ̂(y∗i yi) =
∑
〈z∗i ziΛϕ̂(y),Λϕ̂(y)〉 = ω(1)ϕ̂(y∗y).

This proves invariance. �

Observe that the invariance is proven by first constructing the candidate for the left regular
representation and using that this is a unitary. This is a standard technique (e.g. see the
construction of the Haar weight in [35]).

Now we are almost ready for the main result. We just need that there is also a right invariant
Haar weight. This will follow from the next proposition (a result that was already announced
earlier).

Proposition 4.16. Define R̂ on M̂ by R̂(y) = Jy∗J , where as before, J is the modular conju-
gation associated with the weight ϕ on M (cf. Notation 2.19). Then R̂ is an involutive ∗-anti-

automorphism of M̂ that flips the coproduct ∆̂.

This all essentially follows from the formula i) in Proposition 2.20 (compare also with the
proof of iii) in Theorem 3.3).

As an immediate consequence, we get that the weight ψ̂, defined as the composition of ϕ̂
with R̂, will be a right invariant weight. Therefore we have completed the proof of the following,
main result.

Theorem 4.17. The pair (M̂, ∆̂) (as constructed in Definitions 4.1 and 4.5), is a locally compact
quantum group (in the sense of Definition 3.1).

In the next section we will argue that the involutive ∗-anti-automorphism R̂ is indeed the
unitary antipode on the dual and that this notation is consistent. In fact, we will obtain more
formulas in the next section relating the objects of the original quantum group (M,∆) with

those of the dual (M̂, ∆̂).

The bidual. We finish this section with some remark about biduality. We have the following
result.

Theorem 4.18. The dual of (M̂, ∆̂) is again (M,∆).

This follows from the fact that the regular representation Ŵ of the dual coincides with ΣW ∗Σ
(cf. Proposition 4.14).

Let us now make a comparison with the theory of (multiplier) Hopf algebras. There the dual
is usually equipped with the coproduct, dual to the product and not with the opposite coproduct
as we have done here. It is obvious that in that case, the dual of the dual is the original algebra
with the original coproduct. If, as is done here in the operator algebra approach, the dual is
equipped with the opposite coproduct, then one might expect that the dual of the dual will yield
the original algebra but with both the opposite product and the opposite coproduct. That this
is not seen here is simply a result of the treatment. There is no problem as the unitary antipode
is a map that converts the product to the opposite product and the coproduct to the opposite
coproduct.
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5 A collection of formulas

In this section, we collect many of the formulas relating the various objects associated with
a locally compact quantum group and its dual. We will not give all the possible relations (as
there are many), but the most important ones. Other equalities can easily be obtained from
the ones that we prove. Again it should be mentioned that we do not get really new results but
that some of the results are proven in a slightly other fashion than in the original papers by
Kustermans and Vaes. Also the formulas are organized in another (perhaps more systematic)
way.

Fix a locally compact quantum group (M,∆) and consider the dual (M̂, ∆̂) as constructed
in the previous section. In this section we will freely use the definitions and notations of the
previous sections. When appropriate we will explicitly recall the necessary notions and results.

We will do so with the following definition and notations (some of them introduced already
in the proof of Theorem 3.10).

Definition 5.1. Define continuous one-parameter groups of unitaries (ut), (vt) and (wt) on H
by

utΛϕ(x) = Λϕ(σt(x)), vtΛϕ(x) = ν
1
2
tΛϕ(τt(x)), wtΛϕ(x) = ν−

1
2
tΛϕ(σ′t(x)),

when x ∈ Nϕ.

The relative invariance of ϕ with respect to (τt) and (σ′t) respectively is used to justify the
definitions of (vt) and (wt). Recall from Theorems 3.7 and 3.9 that ϕ◦τt = ν−tϕ and ϕ◦σ′t = νtϕ
(where ν is the scaling constant). Of course ut = ∇it for all t. We have just introduced this
notation in order to have some more symmetry. In what follows, we will use either of these two
notations for this one-parameter group.

Remark 5.2.

i) We have that vt = P it where P is the operator defined in [7, Definition 6.9]. Because
of the special role of this operator (see further), and because we want to be as close as
possible to the notations used in the papers by Kustermans and Vaes, we will further in
this section use P it as well as vt (whatever is more convenient), just as in the case of ∇it
and ut.

ii) It can be verified that wtΛψ(x) = Λψ(σ′t(x)) for all x ∈ Nψ. Therefore, wt = ∇it where ∇
is the modular operator associated with the right Haar weight ψ on M . Also in this case
we will use ∇it as well as wt.

In the following proposition we formulate a first relation involving some of these operators.

Proposition 5.3. We have ∇it = δit(JδitJ)∇it for all t.

This result follows because σ′t(x) = δitσt(x)δ−it for all x ∈ M and σs(δ
it) = νistδit (see

Theorem 3.11). Indeed, take x ∈M and assume that xδ
1
2 is bounded and belongs to Nϕ. Then

the following calculation is justified. We have

∇itΛψ(x) = Λψ(σ′(x)) = Λϕ
(
σ′t(x)δ

1
2
)

= ν−
1
2
tΛϕ
(
σ′t
(
xδ

1
2
))

= ν−
1
2
tΛϕ
(
δitσt

(
xδ

1
2
)
δ−it

)
= ν−

1
2
tδitJσ− i

2

(
δit
)
JΛϕ

(
xδ

1
2
)

= ν−
1
2
tν

1
2
tδitJδitJΛϕ

(
xδ

1
2
)

and we get the result.
Observe that δit and JδitJ commute and that also ∇it commutes with the product δit(JδitJ).
From the definitions of these unitaries and using that the automorphism groups involved

mutually commute (cf. Theorem 3.8), we also get the following formulas.
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Proposition 5.4.

i) All the unitaries (ut), (vt) and (wt) mutually commute and they all also commute with the
modular conjugation J .

ii) We have

σt(x) = utxu
∗
t , σ′t(x) = wtxw

∗
t , τt(x) = vtxv

∗
t

for all x ∈M and t ∈ R.

We will now introduce some more operators of the same type as in Definition 5.1. Later we
will justify the notations used in this definition.

Definition 5.5. Define a conjugate linear, involutive operator Ĵ and a non-singular, positive
self-adjoint operator ∇̂ on H by

ĴΛϕ(x) = Λψ(R(x)∗), ∇̂itΛϕ(x) = Λϕ
(
τt(x)δ−it

)
,

whenever x ∈ Nϕ and t ∈ R.

First recall the following from the remark made at the end of Section 3. If x ∈ M and
R(x)∗δ

1
2 is bounded and belongs to Nϕ, then R(x)∗ ∈ Nψ and

Λψ(R(x)∗) = Λϕ
(
R(x)∗δ

1
2
)
.

In fact, for any x ∈ M we have that x ∈ Nϕ if and only if R(x)∗ ∈ Nψ because ψ(R(x∗x)) =

ϕ(x∗x). It follows that Ĵ is well-defined and that it is isometric. Because R(δ) = δ−1, we will
have that Ĵ2 = 1.

Also τt(x)δ−it ∈ Nϕ whenever x ∈ Nϕ. To show that the map Λϕ(x) 7→ Λϕ(τt(x)δ−it)
is isometric and that we get indeed a one-parameter group of unitaries, we can either make
a straightforward calculation or use the formula that we obtain in Proposition 5.6 below.

It is also straightforward to show that Ĵ and ∇̂it commute for all t ∈ R.
From the definition, we immediately get the following relation.

Proposition 5.6. We have ∇̂it = JδitJP it for all t.

This formula is an easy consequence of the definitions and again of the fact that σs(δ
it) =

νistδit. Observe that also here the operators JδitJ and P it commute.

Proposition 5.7. We have R(x) = Ĵx∗Ĵ and τt(x) = ∇̂itx∇̂−it for all x and all t.

Again these two formulas are easy consequences of the definitions. Remark that here we get
another one-parameter group of unitaries that implements the scaling group τt (compare with
Proposition 5.4).

Recall that we also had the formulas R(x) = Ix∗I and τt(x) = LitxL−it (see Definition 2.22).
Indeed, there are reasons to believe that we have I = Ĵ and L = ∇̂. We will come back to this
problem later (cf. Remark 5.10).

Now we will prove some new relations.

Proposition 5.8. We have ∇it = Ĵ∇−itĴ for all t.

The result follows easily from the fact that R(σt(x)) = σ′−t(R(x)) for all x ∈ M (cf. Theo-
rem 3.6) and σt(δ) = νtδ (Theorem 3.11).

This is one useful formula involving the operator Ĵ . Another one is the following relation be-
tween the left regular representation W associated with ϕ and the right regular representation V
associated with ψ on M .
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Proposition 5.9. We have V =
(
Ĵ ⊗ Ĵ

)
ΣW ∗Σ

(
Ĵ ⊗ Ĵ

)
.

Recall that here Σ denotes the flip on H⊗H.

The proof is straightforward. Formally we can write, with the Sweedler notation ∆(x) =
x(1) ⊗ x(2) (without the summation sign because we are using this symbol for something else
here) and using that R flips the coproduct:

V
(
Ĵ ⊗ Ĵ

)
(Λϕ(x)⊗ ξ) = V

(
Λϕ
(
R(x)∗δ

1
2
)
⊗ Ĵξ

)
= V

(
Λψ(R(x)∗)⊗ Ĵξ

)
= Λψ(R(x(2))

∗)⊗R(x(1))
∗Ĵξ = Λϕ

(
R(x(2))

∗δ
1
2
)
⊗ Ĵx(1)ξ

=
(
Ĵ ⊗ Ĵ

)
(Λϕ(x(2))⊗ x(1)ξ),

when x ∈ Nϕ and ξ ∈ H. We see that indeed (Ĵ ⊗ Ĵ)V (Ĵ ⊗ Ĵ) = ΣW ∗Σ.

As we mentioned already, we will show later that Ĵ is the modular conjugation associated
with ϕ̂ on M̂ and therefore we will get ĴM̂ Ĵ = M̂ ′ and V ∈ M̂ ′ ⊗M .

It would be possible to include more relations at this point, but we will postpone this. First
we will show that indeed Ĵ and ∇̂ are the modular conjugation and the modular operator of ϕ̂.

In Section 2, we have mentioned that formally KΛψ(x) = Λψ(S(x)∗) for well chosen elements
x ∈ Nψ. From the proof of Lemma 4.12 we also expect that K∗Λϕ(x) = Λϕ(S(x∗)) for certain
elements x ∈ Nϕ. We have mentioned these formulas only for a better understanding and
motivation. We did not use these formulas in any argument.

Now, as promised, we want to look at these formulas in a correct way. Remember that we use
K = IL

1
2 to denote the polar decomposition of K and that K∗ = IL−

1
2 . As we have seen in the

previous section (see Lemma 4.11), we expect K to be the closure of the map Λϕ̂(y) 7→ Λϕ̂(y∗)
for y ∈ Nϕ̂ ∩N ∗ϕ̂.

We will prove a closely related result. It is not quite the same as we explain in the following
important remark.

Remark 5.10.

i) Formally we have

Ĵ∇̂
1
2 Λϕ(x) = ĴΛϕ

(
τ− i

2
(x)δ−

1
2
)

= Λϕ
(
R
(
τ− i

2
(x)
)∗
R
(
δ−

1
2
)∗
δ

1
2
)

= Λϕ(S(x)∗δ)

and

Ĵ∇̂−
1
2 Λϕ(x) = ĴΛϕ

(
τ i
2
(x)δ

1
2
)

= Λϕ
(
R
(
τ i
2
(x)
)∗
R
(
δ

1
2
)∗
δ

1
2
)

= Λϕ(S(x∗))

for appropriate elements x ∈ Nϕ. Therefore we expect that indeed K = Ĵ∇̂
1
2 and so

I = Ĵ and L = ∇̂. However, although this result is likely to be true, it is not clear how to
prove it.

ii) We will not worry about this question (in this paper). After all we only have used I
and Lit in the formulas R(x) = Ix∗I and τt(x) = LitxL−it and these formulas remain true
when I and L are replaced by Ĵ and ∇̂ (cf. Proposition 5.7). In other words, we can safely
replace I by Ĵ and L by ∇̂ in the relevant formulas.

iii) We plan to look at this problem closer in the notes [37]. See also [9] but remark again that
the operator K here should be compared with the operator G∗ (see e.g. the introduction
and Corollary 2.9 in [9]).

Now we come to the following important result.
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Theorem 5.11. Denote by T̂ the closure of the conjugate linear map Λϕ̂(y) 7→ Λϕ̂(y∗) where

y ∈ Nϕ̂ ∩ N ∗ϕ̂. Then the polar decomposition of T̂ is given by T̂ = Ĵ∇̂
1
2 (with the operators Ĵ

and ∇̂ as in Definition 5.5).

Proof. From Lemma 4.11 we know that

〈Λϕ̂(y∗),Λϕ(a)〉 = 〈Λϕ̂(y),Λϕ(S(a∗))〉−,

where y ∈ N̂ ∩ N̂ ∗ and when a ∈ Nϕ is an element such that also a∗ ∈ D(S) and S(a∗) is still

in Nϕ. It follows that T̂ is contained in the adjoint of the map Λϕ(a) 7→ Λϕ(S(a∗)) with a as
above.

As we have seen already in the proof of Lemma 4.12, we can relatively easily produce such
elements a ∈ Nϕ by requiring that a is analytic both with respect to the automorphism group τ ,
as well as with respect to multiplication from the right with the unitary group (δit). Moreover
the space of elements Λϕ(a) with such elements a will be left invariant by the operators ∇̂it. All

of this will imply that Λϕ̂(y) ∈ D(Ĵ∇̂
1
2 ) and that Ĵ∇̂

1
2 Λϕ̂(y) = Λϕ̂(y∗) whenever y ∈ N̂ ∩ N̂ ∗.

Now, a straightforward calculation shows that Λϕ̂(N̂ ∩ N̂ ∗) is invariant under the unitaries ∇̂it.
Then the result follows. �

So, we get as expected, that Ĵ is the modular conjugation and ∇̂ the modular operator
associated with the dual left Haar weight ϕ̂.

As a first consequence of this result, we get e.g. that M ∩ M̂ = C1. Indeed, just before
Lemma 4.4 in the previous section, we saw that M ∩ M̂ ′ = C1. And because ĴMĴ = M and
ĴM̂ Ĵ = M̂ ′, we get that also M ∩ M̂ = C1.

A second important consequence is the following result (see [9, Proposition 2.1]).

Proposition 5.12. The unitary antipode R̂ on M̂ is given by R̂(y) = Jy∗J . The scaling group τ̂

is given by τ̂t(y) = ∇ity∇−it for all t ∈ R whenever y ∈ M̂ .

This result can be proven in two ways. One argument uses duality as follows. We know that
the unitary antipode R on M is given by R(x) = Ĵx∗Ĵ and the scaling group by τt(x) = ∇̂itx∇̂−it

(cf. Proposition 5.7). From Theorem 5.11, we know that T̂ = Ĵ∇̂
1
2 is the polar decomposition

of the dual operator T̂ . Hence, because J∇
1
2 is the polar decomposition of the operator T

associated with the left Haar weight ϕ on M , we will get the formulas in the proposition by
duality. A second argument would be possible by using the formulas(

Ĵ ⊗ J
)
W
(
Ĵ ⊗ J

)
= W ∗ and

(
∇̂it ⊗∇it

)
W
(
∇̂−it ⊗∇−it

)
= W

and the fact that the right leg of W is dense in M̂ (and related things). Remark that these
formulas are found in Proposition 2.20 with the operators I and L in the place of Ĵ and ∇̂ but,
as we explained in Remark 5.10ii), they will still be correct.

Next we have another important consequence.

Proposition 5.13. The scaling constant ν̂ of the dual is ν−1. Furthermore, we also have

P itΛϕ̂(y) = ν−
1
2
tΛϕ̂(τ̂t(y))

for all y ∈ M̂ .

Proof. The proof of this result will use the basic formula (τt ⊗ τ̂t)W = W for all t.
Start with an element y ∈ N̂ with y = (ω ⊗ ι)W and ω ∈ M∗ so that ω(a∗) = 〈Λ̂(y),Λϕ(a)〉

for all a ∈ Nϕ. Then

〈P itΛ̂(y),Λϕ(a)〉 = 〈Λ̂(y), P−itΛϕ(a)〉 = ν−
1
2
t〈Λ̂(y),Λϕ(τ−t(a))〉 = ν−

1
2
tω(τ−t(a

∗))
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for all a ∈ Nϕ. Now we have ((ω ◦ τ−t) ⊗ ι)W = τ̂t(y) by the basic formula above. Hence, we

see that τ̂t(y) ∈ N̂ and that P itΛ̂(y) = ν−
1
2
tΛ̂(τ̂t(y)). Then this formula (as in the formulation

of the proposition) holds for all y ∈ Nϕ̂.
From this formula (and because P it is a unitary operator), it follows that ϕ̂ ◦ τ̂t = νtϕ̂ for

all t and therefore ν̂ = ν−1. �

We see that (P it) is, in some sense, a self-dual group of unitaries. One can write P̂ = P
when P̂ would be defined for the dual as P is defined for the original pair (M,∆). So, this one-

parameter group of unitaries implements the scaling group both on M and on M̂ . In combination
with the formula (S⊗ ι)W = W ∗, it will give that W is a manageable multiplicative unitary (in
the sense of [38]). As we have already mentioned however, we will not use this property as such.

We will now use a similar technique as in the proof of Proposition 5.13 to obtain more
relations. Recall that in the above proof, we used the basic formula (τt ⊗ τ̂t)W = W . First, we
will now formulate again some other results of this type.

Recall that formally we have W ∗(ξ ⊗ Λϕ(x)) =
∑
x(1)ξ ⊗ Λϕ(x(2)) (when we use ∆(x) =∑

x(1) ⊗ x(2)) with x ∈ Nϕ and ξ ∈ H. Then from the definitions of (ut), (vt) and (wt) and the
formulas

∆(σt(x)) = (τt ⊗ σt)∆(x), ∆(σ′t(x)) = (σ′t ⊗ τ−t)∆(x),

∆(τt(x)) = (τt ⊗ τt)∆(x), ∆(τt(x)) = (σt ⊗ σ′−t)∆(x),

for all x ∈M and t ∈ R, we get the following relations (see also the proof of Theorem 3.10).

Lemma 5.14. We have

(τt ⊗ ι)W = (1⊗ u∗t )W (1⊗ ut), (σ′t ⊗ ι)W = (1⊗ w∗t )W (1⊗ v∗t ),
(τt ⊗ ι)W = (1⊗ v∗t )W (1⊗ vt), (σt ⊗ ι)W = (1⊗ v∗t )W (1⊗ w∗t )

for all t ∈ R.

Each of the four formulas comes from one of the above relations, in the same order. The first
and the third formula do not give anything new. This is simply the fact that (τt ⊗ τ̂t)W = W ,

combined with the knowledge that both ut and vt implement τ̂t on M̂ .
However, using all these results, in combination with the definition of the dual map Λ̂, as

in the proof of Proposition 5.13, we obtain the following result about the modular element δ̂,
relating the left and the right Haar weights on the dual (M̂, ∆̂).

Proposition 5.15. We have δ̂it = v∗tw
∗
t where vt and wt are defined as in Definition 5.1.

Furthermore ∆̂(δ̂)it = δ̂it ⊗ δ̂it for all t.

Proof. Because we have

(σt ⊗ ι)W = (1⊗ v∗t )W (1⊗ w∗t ) = (1⊗ v∗t )W (1⊗ vt)(1⊗ v∗tw∗t ) = ((τt ⊗ ι)W )(1⊗ v∗tw∗t ),

we see that wtvt ∈ M̂ for all t.
Now if we use the same type of argument as in the proof of the previous proposition, we get

τ̂t(y)vtwt ∈ N̂ when y ∈ N̂ and

∇itΛ̂(y) = Λ̂(τ̂t(y)vtwt).

If we compare this with the earlier and similar formula

∇̂itΛϕ(y) = Λϕ
(
τt(x)δ−it

)
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for x ∈ Nϕ, we see that we must have δ̂it = v∗tw
∗
t for all t (by duality). Recall that vt and wt

commute with each other.
From the formula (σ′t ⊗ ι)W = (1⊗ w∗t )W (1⊗ v∗t ) we get

(wt ⊗ wt)W (w∗t ⊗ vt) = W

and from the formula (τt ⊗ ι)W = (1⊗ v∗t )W (1⊗ vt) we find

(vt ⊗ vt)W (v∗t ⊗ v∗t ) = W

and combining these two results, we obtain(
δ̂−it ⊗ δ̂−it

)
W
(
δ̂it ⊗ 1

)
= W

proving that ∆̂(δ̂it) = δ̂it ⊗ δ̂it. �

Remark 5.16. By duality, we also will get ∆(δit) = δit ⊗ δit for all t.
This seems to be a strange (and certainly not an obvious) way to prove this basic formula.

One could expect a more direct proof (e.g. along the lines of the proof of this formula for algebraic
quantum groups in [33]). However, an attempt to do this turns out to become quite involved
(see in [7, Section 7]). In [13], this formula is proven in a more elegant way, but also uses results,

not only about (M,∆) itself, but also about the dual (M̂, ∆̂) (see in [13, Proposition 6.12]).

Now we are ready to collect the main formulas and relations. First, we have a number of
formulas that express some of the operators in terms of the others.

Theorem 5.17. We have the following formulas for the four modular operators:

∇it =
(
Ĵ δ̂itĴ

)
P it, ∇it = δ̂−itP−it = Ĵ∇−itĴ ,

∇̂it =
(
JδitJ

)
P it, ∇̂

it
= δ−itP−it = J∇̂−itJ.

The second formula was obtained in Proposition 5.6. The first one follows e.g. by duality.
From Proposition 5.8 we get the third formula while the last one follows again by duality.

We also have a number of commutation rules. We know that P it commutes with J , Ĵ , δ and δ̂
(and as a consequence of the above relations, also with all these modular operators). We also
know that J commutes with δ̂it (because R̂(δ̂) = δ̂−1) and that Ĵ commutes with δit (because
R(δ) = δ−1). The non-trivial commutation rules are formulated in the next two theorems.

Theorem 5.18. We have

Ĵ∇−itĴ = δit(JδitJ)∇it, J∇̂−itJ = δ̂it
(
Ĵ δ̂itĴ

)
∇̂it.

The first formula is a combination of the formulas in Propositions 5.3 and 5.8. The second
one comes with duality.

Next, we get the following two basic commutation rules.

Theorem 5.19. We have δ̂isδit = ν−istδitδ̂is for all s, t ∈ R. Also ĴJ = ν
i
4JĴ .

Proof. There are several ways to prove these formulas.
To prove the first one, we can start with δ̂it = v∗tw

∗
t as obtained in Proposition 5.15. We

know that ws implements σ′s and that σ′s(δ
it) = νistδit (see Theorem 3.11). We also know that

vs implements τs and that τs(δ
it) = δit (again see Theorem 3.11). Combining these results will

yield the first formula of the theorem.
To prove the second formula one calculates (carefully) that

ĴT Ĵ = ν
i
4Tδ

1
2Jδ−

1
2J,

where T is the closure of the map Λϕ(x) 7→ Λϕ(x∗) where x ∈ Nϕ ∩ Nϕ as before (see Nota-
tion 2.19). Then the uniqueness of the polar decompostion of T gives the second formula. �
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The uniqueness of the polar decomposition of T , as used above, will also give the first formula
of Theorem 5.18. On the other hand, it would also be possible to use this formula to give a more
direct proof of the commutation rule between Ĵ and J .

If we combine the formulas of Theorem 5.17 with the commutation rules in Theorems 5.18
and 5.19, we get most (if not all) of the other commutation rules. There is no need to include
them all here (see e.g. Proposition 2.13 in [9]). Some of these formulas, e.g. the second one in
Theorem 5.19 above, giving the commutation rules between J and Ĵ is nicely illustrated in [11].

Let us now finish this section with another formula, expressing the operators P it in terms
of the other operators. It is an analytic version of Radford’s formula for the 4th power of the
antipode, proven in the case of a finite-dimensional Hopf algebra in [14] and extended to the
case of algebraic quantum groups in [3].

Theorem 5.20. We have

P−2it = δit(JδitJ)δ̂it
(
Ĵ δ̂itĴ

)
for all t.

Proof. From Theorem 5.18 we get

Ĵ∇−itĴ = δit(JδitJ)∇it

and if we replace in this formula ∇it by (Ĵ δ̂itĴ)P it two times, we arrive at the desired result. �

This is indeed one of the possible analytical versions of the formula, valid in the theory of
finite-dimensional Hopf algebras

S4(a) = δ−1
(
δ̂ . a / δ̂−1

)
δ,

where . and / are used to denote the canonical left and right actions of the dual algebra. Remark
that P 2itΛϕ(a) = νtΛϕ(τ2t(a)) and that τ−i = S2. Also δit JδitJΛϕ(a) = ν

1
2
tΛϕ(δita δ−it). To

explain the last part of the formula, one should observe that the operator δ̂it is a convolution
operator on M , but on the Hilbert space level and similarly for Ĵ δ̂itĴ . The first one is ‘left’
convolution and the second one is ‘right’ convolution.

We have now the essential formulas, all formulated in these four last theorems. Also the com-
mutation rules with the left regular representation, as formulated in Lemma 5.14, are essentially
taken care of.

One can also draw certain interesting conclusions from these formulas. If e.g. the left and
the right Haar weight on M coincide, that is when δ = 1, it will follow from the commutation
rules in Theorem 5.19 that the scaling constant ν has to be one. If both δ and δ̂ are trivial,
it will follow from the last theorem that also P = 1 and that the scaling automorphisms are
trivial. From Theorem 5.17, it will follow that all the modular automorphisms are trivial in this
case and so that all Haar weights must be traces. Surely, there are other arguments for these
statements, but it is nice to see how they follow from all these formulas.

6 Conclusion and possible further research

The original motivation for developing the theory of locally compact quantum groups was the
desire to generalize Pontryagin’s duality for locally compact abelian groups to the non-abelian
case. After various interesting, but partial solutions, a first more or less satisfactory theory was
developed in the early seventies, independently by Kac and Vainermann [29] on the one hand and
Enock and Schwarz (see [4]) on the other hand. They developed the theory of Kac algebras with
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a duality between objects of the same type, generalizing the duality between locally compact
abelian groups as studied by Pontryagin. Kac algebras have von Neumann algebras as their
underlying operator algebras.

However, later it turned out that some new examples (like the ones developed by Drinfel’d
in the theory of quantum groups and the quantum SU2(q)-group discovered by Woronowicz in
the eighties) did not fit into the theory of Kac algebras. For Kac algebras, the square of the
antipode is the identity map while this is not the case for these newer examples. It became clear
that a new, still more general theory had to be found.

At that the same time, there was the widely accepted philosophy that the expected theory
should be formulated in a C∗-algebraic framework. The reason is obvious. Locally compact
groups are topological objects and so locally compact quantum groups should be developed in
a C∗-algebraic setting. This eventually led to the results by Kustermans and Vaes as found in [6]
and [7]. A locally compact quantum groups in these papers is indeed a pair of a C∗-algebra with
a coproduct and such that Haar weights exist.

Even though the theory was developed in a C∗-setting, it was still obvious to consider also the
von Neumann algebraic version as this was from the very beginning expected to be equivalent,
as for the earlier theories. Again, this work was done by Kustermans and Vaes in [9].

In principle, the von Neumann algebraic approach in [9] is independent of the earlier C∗-
algebraic one. However, it is very hard to read the paper [9] without [7] at hand as the two are
still highly interconnected.

In this paper, we have studied locally compact quantum groups from the very beginning in
a von Neumann algebraic setting. We did not rely on the earlier obtained C∗-version. The
argument we gave in the appendix, showing how to construct a von Neumann algebraic locally
compact quantum group form a C∗-algebraic one, without the need to develop the theory first,
is crucial for this approach. In this way, we can obtain an overall treatment of the theory of
locally compact quantum groups within the easier and more tractable von Neumann algebra
context.

However, we have to admit that also the present development still requires a good knowledge
and quite some experience with the technicalities that are typically encountered in the Tomita–
Takesaki theory of left Hilbert algebras and its relation with faithful normal semi-finite weights
on von Neumann algebras.

We finish here with the following observation. In the theory of locally compact quantum
groups, the existence of the Haar weights is part of the assumptions. At the moment of this
writing, there is not yet a theory with reasonable assumptions from which the existence of the
Haar weights would follow. Only in the case of compact quantum groups (see e.g. [39] and [10])
and for discrete quantum groups (see [32]), it is possible to formulate assumptions that allow to
prove the existence of the Haar weights.

On the other hand, as it turns out, in the examples, it is not so difficult to find the Haar
weights. See e.g. [35]. And in fact, there is more. As can be seen from the discussions in [35],
see e.g. Section 6, in a certain sense, it is possible to write down a formula for the weight that
has to be the left Haar weight whenever it makes sense, that is essentially, whenever the formula
defines a semi-finite weight. This might open a path to a possible theory of locally compact
quantum groups where the existence of the Haar weights follow from the assumptions.

A Appendix. Other approaches to locally compact
quantum groups

In this appendix, we will relate the von Neumann algebra approach (in particular, as it is treated
in this paper) with the C∗-algebra approach. We will consider the papers by Kustermans and
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Vaes [6] and [7], as well as the paper by Masuda, Nakagami and Woronowicz [13]. We will also
briefly make a comparison with the earlier paper by Masuda and Nakagami [12].

Such a comparison is certainly interesting. In fact, the relation with (the equivalent) C∗-
algebra approach is not only interesting, it is also an important feature of the theory. Neverthe-
less, because of the scope of this paper, we will be very brief here. In [36], some more details are
already found, but we refer to forthcoming papers for all the details about the material in this
appendix (e.g. for results about weights on C∗-algebras and for the theory of locally compact
quantum groups, see [37].

Now, we start with a C∗-algebra A and a comultiplication on A. Recall the definition:

Definition A.1. A comultiplication on a C∗-algebra A is a non-degenerate ∗-homomorphism ∆
from A to the multiplier algebra M(A⊗A) of the minimal C∗-tensor product A⊗A of A with
itself, satisfying coassociativity (∆⊗ ι)∆ = (ι⊗∆)∆. It is also assumed that slices (ω⊗ ι)∆(a)
and (ι⊗ ω)∆(a) belong to A for all a ∈ A and ω ∈ A∗.

Non-degenerate here means that ∆(A)(A⊗A) is dense in A⊗A. Because of this condition,
the ∗-homomorphisms ∆⊗ ι and ι⊗∆ have unique extensions (still denoted in the same way)
to unital ∗-homomorphisms from M(A ⊗ A) to M(A ⊗ A ⊗ A). Therefore, coassociativity, as
formulated above, has a meaning. Slice maps are defined from M(A ⊗ A) to M(A). So, in
general these slices (ω ⊗ ι)∆(a) and (ι ⊗ ω)∆(a) belong to M(A). In [13], it is assumed that
∆(A)(1⊗ A) and ∆(A)(A⊗ 1) are subsets of A⊗ A. Because any ω ∈ A∗ is of the form ρ(a · )
(and of the form ρ( · a)) with ρ ∈ A∗ and a ∈ A, the latter conditions will imply the conditions
in the definition above. In fact, it is shown in the theory that also these stronger conditions are
valid. See e.g. the remark following Proposition 2.21.

The following result is not so difficult to obtain.

Proposition A.2. Let (M,∆) be a locally compact quantum group (as in Definition 3.1) with
left Haar weight ϕ. Let W be the left regular representation (as introduced in Section 2) and
define A to be the norm closure of the space of slices {(ι⊗ω)W |ω ∈ B(Hϕ)∗}. Then A is a C∗-
algebra, it is a σ-weakly dense subalgebra of M and the restriction of ∆ to A is a comultiplication
on A.

It is easy to see (and a standard result about multiplicative unitaries) that A is a subalgebra.
And just as in the case of the dual (see Proposition 4.3), one can show that it is a ∗-subalgebra.
As the left leg of W is dense in M , it follows that also A is dense in M . To show that ∆ maps A
into M(A ⊗ A) is again a standard result for multiplicative unitaries (see [2]). See also the
work on manageable multiplicative unitaries (see [38] and [15]). Also here, we refer to [37] for
a detailed and independent approach.

Later in this appendix (see Definition A.10), we will recall the definition of a locally compact
quantum group in the C∗-algebra context, as given by Kustermans and Vaes in [6] and [7]. First,
we look at some results about (invariant) weights on C∗-algebras (with a comultiplication). The
first one is about the kind of weights that is used in this theory.

Proposition A.3. Let A be a C∗-algebra. Let ϕ be a faithful, densely defined, lower semi-
continuous weight on A. Denote by ϕ̃ the normal weight on the double dual A∗∗ that extends ϕ.
Denote by e the support projection of ϕ̃ in A∗∗. Then ϕ is approximately K.M.S. (see Defini-
tion 1.34 in [7]) if and only if e is a central projection in A∗∗.

Assume that ϕ is any faithful, densely defined, lower semi-continuous weight on the C∗-
algebra A. Consider its GNS representation πϕ on the Hilbert space Hϕ. Let Λϕ denote the
canonical imbedding of Nϕ in Hϕ. A vector ξ in Hϕ is called right bounded if Λϕ(a) 7→ πϕ(a)ξ,
where a ∈ Nϕ, is bounded. In some sense, there are always plenty of right bounded vectors, but
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it can happen that the space of right bounded vectors is not dense in Hϕ. If we denote by q
the projection onto the closure of the space of right bounded vectors, then q ∈ πϕ(A)′′. It turns
out to be the image of the support projection p of the unique normal extension of ϕ̃ to A∗∗

under the unique normal extension π̃ϕ of πϕ to A∗∗. Moreover, the support projection e of this
extension π̃ϕ is the central support of p.

Recall that a faithful, densely defined lower semi-continuous weight on a C∗-algebra is ap-
proximately K.M.S. if it remains faithful when extended to πϕ(A)′′. This last property essentially
means that the support of π̃ϕ in A∗∗ (which is a central projection), coincides with the support
projection of ϕ̃. This is the case if and only if the right bounded vectors are dense. So, the
above result should not come as a surprise. We refer to [37] for details. Further in this appendix,
we will speak about a weight on a C∗-algebra with central support, or shortly call it a central
weight.

Invariant weights on C∗-algebras with a comultiplication are defined as usual:

Definition A.4. Let A be a C∗-algebra with a comultiplication ∆ (as in Definition A.1).
A weight ϕ is called left invariant if ϕ((ω ⊗ ι)∆(a)) = ‖ω‖ϕ(a) whenever a ∈ A, a ≥ 0 and
ϕ(a) <∞ and when ω ∈ A∗ and ω ≥ 0. Similarly, a right invariant weight is defined.

Again, there is the following result.

Proposition A.5. Let (M,∆) be a locally compact quantum group. The restriction of the left
Haar weight ϕ to the C∗-subalgebra A of M , defined as in Proposition A.2, is a faithful, densely
defined, lower semi-continuous central and left invariant weight. Similarly for the right Haar
weight.

Proof. It is quite obvious that these restrictions are faithful, lower semi-continuous and invari-
ant weights. They are central because they are restrictions of faithful weights to a C∗-subalgebra
of the von Neumann algebra M . To show that the right invariant weight ψ is still densely defined
on the C∗-algebra A, one can use the result in Lemma 2.13. To show that also the left invariant
weight ϕ is still densely defined on the C∗-algebra, one can use that the unitary antipode R
leaves the C∗-algebra invariant (a result that follows from the formula (Ĵ ⊗ J)W (Ĵ ⊗ J) = W ∗

and the definition of R). �

Using the formulas in the proof of Theorem 3.10 (or equivalently, the ones in Lemma 5.14),
we see that the C∗-algebra A is invariant under the modular automorphism groups σ and σ′.
Therefore, the restrictions of the Haar weights ϕ and ψ are K-M-S weights (and so certainly
central). Observe also that the C∗-algebra is not only invariant under the unitary antipode, but
also under the scaling automorphisms τ , again see Lemma 5.14 (or equivalent earlier results).

We will now consider two important results. They will enable us to go quickly from the
C∗-algebra setting to the von Neumann algebra framework.

Proposition A.6. Let A be a C∗-algebra with a comultiplication ∆. Assume that ϕ is a densely
defined lower semi-continuous central weight on A. Consider the extension ϕ̃ on A∗∗ of ϕ. Also
extend ∆ to a normal and unital ∗-homomorphism ∆̃ : A∗∗ → A∗∗ ⊗ A∗∗ (the von Neumann
algebra tensor product). Then ϕ̃ is still left invariant.

One uses left Hilbert algebra theory to show that the G.N.S.-space of the extension is the same
as the original one. This result is not completely trivial but is essentially proven in Section 2
of Chapter VII on weights in [24]. Then it is shown that the extension is still invariant. The
way this is done, is similar as the invariance of the dual weight is proven in Proposition 4.15.
Essentially, the argument used to prove that left invariance of ϕ implies the formula WW ∗ = 1
for the left regular representation W , is ‘reversed’.
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Proposition A.7. As in Proposition A.6, assume that A is a C∗-algebra with a comultiplica-
tion ∆. Now assume that ϕ and ψ are non-trivial, densely defined, lower semi-continuous and
central weights on A such that ϕ is left invariant and ψ is right invariant. Then the supports
of ϕ and ψ in A∗∗ are equal.

Proof. Denote by e and f the supports of ϕ̃ and ψ̃ resp. By assumption, they are central
projections in A∗∗. By the left invariance of ϕ̃, we get ϕ̃((ω ⊗ ι)∆̃(1 − e)) = 0 for all ω ∈ A∗
with ω ≥ 0. This implies that (∆̃(1 − e))(1 ⊗ e) = 0. Because e is central, we also get
(∆̃(x∗(1 − e)x))(1 ⊗ e) = 0 for all x ∈ A∗∗ satisfying ψ̃(x∗x) < ∞. If we apply ψ̃, we get by
using right invariance, that ψ̃(x∗(1 − e)x)e = 0. So, ψ̃(x∗(1 − e)x) = 0 because e is non-zero.
Then we get f(1− e) = 0. A similar argument will give e(1− f) = 0 and therefore e = f . �

Compare this result with Theorem 3.8 in [7].

It follows immediately from this result that all invariant weights have the same support. This
implies that we have a single von Neumann algebra. Indeed, we can consider the associated von
Neumann algebra M , defined as A∗∗e, where e is the support of the non-trivial, densely defined,
lower semi-continuous, central invariant weights.

All the previous results lead to the following which is the main theorem of this appendix.

Theorem A.8. Let A be a C∗-algebra with a comultiplication ∆. Assume that there exist
faithful, densely defined lower semi-continuous weights ϕ and ψ, with central support and resp.
left and right invariant. Let M = A∗∗e where e is the support of these weights. Consider the
extension ∆̃ of ∆ to A∗∗ (as in the proof of Proposition A.6). Then restrict to M and define
∆0(x) = ∆̃(x)(e ⊗ e) for x ∈ M . This is a comultiplication on the von Neumann algebra M .
The restrictions to M of the extensions ϕ̃ and ψ̃ (as in Proposition A.3) are a left and a right
Haar weight on (M,∆0) (as in Definition 2.4 and further in Section 2). So, the pair (M,∆0) is
a locally compact quantum group in the sense of Definition 3.1.

Remark that (∆̃(1−e))(1⊗e) = 0 as we saw in the proof of Proposition A.7. Then (∆̃(e))(1⊗
e) = 1⊗ e and so ∆0(e) = e⊗ e. This guarantees that the comultiplication ∆0 on M is unital.
This is also needed to show that ∆0 is still coassociative.

So, roughly speaking, Theorem A.8 says that starting with a C∗-algebra with a comultiplica-
tion and nice invariant weights, we can associate a locally compact quantum group (in the von
Neumann algebraic sense). If we combine Proposition A.2 with Proposition A.5, we see that
also conversely, given a locally compact quantum group, we can associate a pair of a C∗-algebra
and a comultiplication with nice invariant weights.

What happens when we perform these two operations, one after the other? Do we get back
the original?

First, start with a locally compact quantum group (M,∆). Consider the C∗-algebra A as in
Proposition A.2 and restrict ∆ as in Proposition A.7. Then it is rather straightforward to show
that the construction in Theorem A.8 will yield the original pair (M,∆).

On the other hand, take a C∗-algebra A with a comultiplication ∆ and nice invariant weights.
Consider the pair (M,∆0) as in Theorem A.8. We have the following lemma.

Lemma A.9. Let W be the left regular representation for the pair (M,∆0). Then the norm
closure of the space{

(ι⊗ ω)W |ω ∈ B(Hϕ)∗
}

is the same as the norm closure of the space

sp
{

(ι⊗ ω)∆(a) | a ∈ A, ω ∈ A∗
}
.
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This result is essentially found along with the proof of Proposition 2.21.

It is not clear whether or not, this space will be all of A. So, in order to recover the original
C∗-algebra, we need the extra density conditions as they are found in the original definition of
a locally compact quantum group in the C∗-algebra setting (as given by Kustermans and Vaes
in [7]). We recall the definition here.

Definition A.10. Let A be a C∗-algebra and ∆ a comultiplication on A (as in Definition A.1).
Assume that the spaces

sp{(ι⊗ ω)∆(a) | a ∈ A, ω ∈ A∗}, sp{(ω ⊗ ι)∆(a) | a ∈ A, ω ∈ A∗}

are (norm) dense in A. Assume that there exist faithful, densely defined lower semi-continuous
weights ϕ and ψ on A, both with central support and resp. left and right invariant. Then (A,∆)
is called a locally compact quantum group in the C∗-algebraic sense.

It is only for such a pair (A,∆) that we have a complete equivalence of the C∗-algebraic and
von Neumann algebraic setting. If the density conditions are not fulfilled, in some sense, the
C∗-algebra might be too big. As we see from the previous discussion, we can pass to a smaller
C∗-algebra, invariant under the comultiplication, satisfying the conditions of Definition A.10.
However, it should be remarked that at present, there are no (obvious) examples of this phe-
nomenon.

Next, one needs to prove properties for a locally compact quantum group (A,∆) with a C∗-
algebra A and a comultiplication ∆ as in Definition A.10. These properties will follow from
the ones proven for a locally compact quantum group (M,∆) as defined in Definition 3.1.
We have already given some indications (about the stronger density conditions, the invariance
of the C∗-algebra under the modular automorphisms, the scaling automorphisms, the unitary
antipode, . . . ). But more results need to be considered. One can e.g. show relatively easy
that δit ∈M(A) for all t where δ is the modular element from Theorem 3.11. There is also the
construction of the dual Â. It can be obtained either by applying the procedure in this appendix
and find Â from M̂ (as in Propositions A.2 and A.5) or directly as the norm closure of the space
{(ω ⊗ ι)W |ω ∈M∗} (as indicated in the remark following Proposition 4.3 – compare also with
the result in Lemma A.9).

So far about the comparison of our approach in this paper, with the C∗-algebraic approach
by Kustermans and Vaes. Let us now also compare (briefly) with the approach of Masuda,
Nakagami and Woronowicz.

There is first the original work by Masuda and Nakagami [12] where locally compact quantum
groups are studied in the von Neumann algebra framework. Then, there there is the more recent
work by these two authors and Woronowicz [13] where locally compact quantum groups are
studied in the C∗-algebra setting. We will not say anything more about the first paper as in
some sense, the second one can be seen as an improvement of the first one. We refer to the
introduction of [13] for a comparison of the two papers.

The main difference between the set of axioms in [13] and those formulated by Kustermans
and Vaes is that in the first case, the antipode and its polar decomposition are assumed whereas
in [7], the antipode is constructed and its properties are proven. The same holds for our approach.

On the other hand, for this approach, as we have seen, we need to assume the existence of
both a left and a right Haar weight. This is not the case in the approach of [13] where only a left
Haar weight ϕ is assumed. However, the unitary antipode R (see Definition 1.5 in [13]) is part
of the axioms and from all the axioms, it is not so hard to obtain that R flips the coproduct
(see Proposition 2.6 in [13]). Then the composition ϕ ◦R gives a right Haar weight.

Moreover, in examples, it is often rather easy to see what this unitary antipode should be
and to verify that it flips the coproduct. Hence, usually, only one Haar weight is constructed
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explicitly while the other one is obtained by composing it with this candidate for the unitary
antipode. Therefore it is in general more easy to verify the axioms of Kustermans and Vaes.

Another (minor) difference is that in [7] weaker density conditions are needed (see earlier).
Also a stronger invariance condition is proven by Kustermans and Vaes.

It is well-known that Masuda, Nakagami and Woronowicz started with their work on locally
compact quantum groups, earlier than Kustermans and Vaes but that it took many years before
their results were published. In my opinion, it is clear that the approach of Kustermans and
Vaes, and also our approach in this paper, is better than their approach. The axioms are more
complicated and this does not really help to get the main results in a quicker way. On the other
hand, the contribution of Masuda, Nakagami and Woronowicz is of great importance to the
theory and their paper contains interesting material and nice independent results.

Let us finish this discussion by pointing out that it was in fact Kirchberg, at a conference in
Copenhagen, in 1992, who first formulated the idea of generalizing the axioms of Kac algebras
and thereby considering the polar decomposition of the antipode [5]. As far as I know, his work
was never published.
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École Norm. Sup. (4) 26 (1993), 425–488.

[3] Delvaux L., Van Daele A., The Drinfel’d double versus the Heisenberg double for an algebraic quantum
group, J. Pure Appl. Algebra 190 (2004), 59–84.

[4] Enock M., Schwartz J.-M., Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin,
1992.

[5] Kirchberg E., Discrete and compact quantum Kac algebras, Lecture at the Conference ‘Invariance in Oper-
ator Algebras’ (Copenhagen, August 1992), unpublished.

[6] Kustermans J., Vaes S., A simple definition for locally compact quantum groups, C. R. Acad. Sci. Paris
Sér. I Math. 328 (1999), 871–876.

[7] Kustermans J., Vaes S., Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4) 33 (2000),
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[19] Strătilă Ş., Voiculescu D., Zsidó L., On crossed products. II, Rev. Roumaine Math. Pures Appl. 22 (1977),
83–117.
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