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Abstract. We examine the various indices defined on pairs of almost commuting unitary
matrices that can detect pairs that are far from commuting pairs. We do this in two
symmetry classes, that of general unitary matrices and that of self-dual matrices, with an
emphasis on quantitative results. We determine which values of the norm of the commutator
guarantee that the indices are defined, where they are equal, and what quantitative results
on the distance to a pair with a different index are possible. We validate a method of
computing spin Chern numbers that was developed with Hastings and only conjectured to
be correct. Specifically, the Pfaffian–Bott index can be computed by the “log method” for
commutator norms up to a specific constant.
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1 Introduction

In the past decade, in condensed matter physics, certain systems with gapped Hamiltonians were
found to fall into two basic types. Some were perturbations of completely trivial systems, and
some were found to be far from all completely trivial systems. These are now called “ordinary
insulators” and “topological insulators” respectively. It is observed that a path of systems
perturbing a topological insulator to an ordinary insulator must at some point have closed the
gap. Physicists use K-theory, both real and complex, to determine which insulators are which.

An older mathematical situation springs to mind here. Given C∗-relations [14] in a form
where they can hold exactly and also hold approximately, it was found that these approximate
solutions fell into two basic types. Some are close to exact solutions, and others are far away
from all exact solutions. The latter were called “phantom approximate solutions” [2]. These
approximate solutions were often found in matrix algebras Mn(C), but also in C∗-algebras. In
either case, the main tools for distinguishing phantom from ordinary approximate solutions were
constructions in complex K-theory.

The most basic set of C∗-relations are the relations, in the unital category,

u∗u = 1, uu∗ = 1, v∗v = 1, vv∗ = 1, uv = vu.

?This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in
honor of Marc A. Rieffel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html

mailto:loring@math.unm.edu
http://www.unm.edu/~loring/
http://dx.doi.org/10.3842/SIGMA.2014.077
http://www.emis.de/journals/SIGMA/Rieffel.html


2 T.A. Loring

There is generally no big distinction between u being “almost unitary” and being unitary, so
we often study almost commuting unitaries in C∗-algebras, meaning unitaries u and v with
‖[u, v]‖ ≤ δ for some small δ greater than zero.

There is a direct connection between almost commuting unitary matrices and certain classes
of finite models of topological insulators, explored in [11, 16, 17]. In that research, many
interesting mathematical conjectures and questions were raised, some of which we address here.
Any serious numerical study of topological insulators must take into account the scattering
method [7] of Fulga and his coauthors, which utilizes the sparseness of the matrices modeling
both position observables and the Hamiltonian. That method still utilizes the Pfaffian–Bott
index [16], discussed below, but as a secondary calculation after a dimension reduction from 3D
to 2D.

What we wish to emphasize here are aspects of phantom approximate solutions that are
similar to the behavior in topological insulators. The connection between these two fields of
study is certainly greater than what has been explored to date.

Most of the theorems regarding approximate solutions to C∗-relations are completely non-
quantitative. There is often an constant δ0, unknown except for the fact that it is positive, so
that nice things happen with relations hold to within at most δ0. One of the goals in this context
is to develop efficient numerical algorithms. When working numerically, a constant like 10−10

can act effectively like zero. Thus the desire for quantitative results.

A natural question regarding a pair of unitary matrices that almost commute is: how close
is this to a pair that actually commutes? The answer to this question necessarily involves
the K-theory of the two-torus. Let us review how this connection arose.

There is a particularly practical equation for the projection e in M2(C(T2)) that has rank
one and first Chern class one. The formula is similar to that of the Rieffel projections [20] in
the irrational rotation algebras, specifically

e(z, w) =

[
f(z) g(z) + h(z)w

g(z) + h(z)w 1− f(z)

]
,

where f , g and h are certain real functions defined on the unit circle.

The straight-forward plan in [13] was to compute the K-theory of a ∗-homomorphism ϕ :
C(T2)→ A by examining the associated commuting unitary elements U = ϕ(u0) and V = ϕ(v0)
of the AF algebra A and the projection

e(U, V ) =

[
f(V ) g(z) + h(V )U

g(V ) + U∗h(V ) 1− f(V )

]
(1.1)

where u0 and v0 are the canonical generating unitaries in C(T2). Unitaries in an AF algebra
are well-known to be the limits of direct sums of unitary matrices, and so commuting unitaries
are determined by sequences of almost commuting matrices. In the specific situation of [13],
U = lim(Un ⊕An) and V = lim(Vn ⊕Bn) where An, Bn were commuting unitary matrices and
Un, Vn were unitary matrices with ‖[Un, Vn]‖ → 0.

Equation (1.1) applies also to a pair of almost commuting unitary matrices such as Un and Vn.
The result is not a projection, but a hermitian matrix with a large gap at 1

2 in its spectrum.
The K-theory of ϕ was easily evaluated once the spectrum of e(Un, Vn) and e(An, Bn) were
understood.

The more interesting discovery in [13] was that formula (1.1) can be used to define what
is now called the Bott index of a pair of almost commuting unitary matrices. This index can
distinguish pairs of commuting matrices close to commuting pairs from those that are far from
commuting pairs.
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There is ambiguity in the choice of f , g and h. There are other ambiguities, discussed in [2],
such that the fact that h(z)w could just as well been interpreted as

1

2
{h(V ), U} =

1

2
(h(V )U + Uh(V )).

To get good quantitative results about the distance to the closest commuting pair of unitary
matrices, we will select our functions and formulas very carefully.

In 1986 the only numerical computation of the Bott index that was practical involved rela-
tively small matrices where V was diagonal. Today we have from physics [7, 11, 16] large matrices
where neither is diagonal. The cost of computing f(V ), g(V ) and h(V ) depends heavily on the
choices in the scalar functions on the circle.

We end up with choices for f , g and h that are very similar to the smooth functions illustrated
in [13], although we don’t select them to have rapidly decreasing Fourier coefficients. We select
functions that are well approximated by degree-five trigonometric polynomials and where the
Fourier series are relatively easy to calculate.

Soon after the Bott index was introduced, we found in joint work with Exel [6] that a simpler
formula based on winding numbers can be used. We only proved that this formula worked for
sufficiently small commutator norms. Here we will find a concrete δ0 so that ‖[U, V ]‖ ≤ δ0
implies the two invariants are equal.

We begin with a survey, and some improved theorems, of the winding number index of [6].
Our expectation is that quantitative results regarding almost commuting matrices will be useful
in applications, especially in relation to topological insulators [7, 11, 16].

We follow mathematical conventions, so U∗ refers to the conjugate-transpose. To accommo-
date time reversal invariance in physics, we need to consider what in physics is called the dual
operation,[

A B
C D

]]
=

[
DT −BT

−CT AT

]
. (1.2)

Specific unitary matrices that can be studied in the context of a free particle system on
a finite lattice on a two-torus are essentially complex-valued position operators that have been
compressed to low energy space. These are actually not quite unitary, but one can consider the
unitary parts of their polar decomposition. These then are almost commuting unitary matrices
that carry a lot of information about the original system [11, § 1.1].

When the system has fermionic time reversal symmetry, the resulting unitary matrices will
be self-dual. The correct matrix problem to study is then almost commuting self-dual matrices.
The invariant [16] that can be used to show that some pairs are bounded away from commuting
self-dual unitary pairs is the sign of

Pf(Q∗(2e(U, V )− I)Q),

where Q is a specific matrix discussed below that creates anti-symmetry in the formula so that
the Pfaffian makes sense. The resulting index we called the Pfaffian–Bott index [16].

The Pfaffian–Bott index of the unitary matrices associated to certain 2D systems has, for
large system size, been proven [11, Lemma 5.8.] to equal the spin Chern number of that system.
It is perhaps more accurate to say that this Pfaffian–Bott index equals Kitaev’s Z/2 index for
finite 2D systems in class AII.

An alternate way to compute a Bott index [6, Definition 2.1], equal to the Bott index for
small commutators, involves taking the logarithm of one of the unitaries. It was surprising to
find that this method, when adapted to the self-dual case, seemed to generate better data in
a numerical study of disordered topological insulators [16, 17].
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We show in the final section that this method of computing the Pfaffian–Bott index gives
the correct answer for commutator norms up to a specific constant. There is a separate issue of
how to compute approximate logarithms of almost unitary matrices, and how to be sure to get
a self-dual output given a self-dual input. That is discussed in a separate paper [15].

Our results are principally stated in terms of unitary matrices. However, the study of almost
commuting unitary elements of C∗-algebras is not that different. We know this because we know
that the soft-torus is RFD (residually finite-dimensional) [1].

2 The winding number invariant

Given two unitary matrices U and V with δ = ‖[U, V ]‖, we find

‖V UV ∗U∗ − I‖ = ‖[U, V ]‖

and so by the spectral theorem

σ(V UV ∗U∗) ⊆ {z ∈ T | |z − 1| ≤ δ}.

Thus when δ < 2 we can define (V UV ∗U∗)t for t between 0 and 1, using a branch of xt with
discontinuity on the negative x-axis. This is a continuous path of unitary matrices from I to
V UV ∗U∗ and

det(V UV ∗U∗) = det(I) = 1,

so t 7→ det((V UV ∗U∗)t) is a loop on the unit circle. We define ω(U, V ) to be the winding
number of this path.

This winding number invariant is very computable. There are a few alternate formulas,
including

ω(U, V ) = Tr

(
1

2πi
log(V UV ∗U∗)

)
due to Exel [4, Lemma 3.1]. This we easily prove: since in some basis V UV ∗U∗ is diagonal and
unitary,

V UV ∗U∗ =

e
iθ1

. . .

eiθn


for some −π < θj < π and

Tr

(
1

2πi
log (V UV ∗U∗)

)
=

1

2πi
Tr

iθ1 . . .

iθn

 =
1

2π

∑
θj

and

det
(
(V UV ∗U∗)t

)
= det

e
itθ1

. . .

eitθn

 =
∏

eitθj

and this path has winding number

ω (U, V ) =
1

2π

∑
θj .
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Lemma 2.1 ([6, p. 367]). When U and V are commuting unitary matrices, ω(U, V ) = 0.

Proof. In this case the path of determinants is the constant path. �

Lemma 2.2 ([5]). For

U =


0 1
1 0

1
. . .
. . . 0

1 0

 , V =


eiπ/n

e2iπ/n

. . .

e−iπ/n

1


we have ω(U, V ) = −1.

Proof. We find V UV ∗U∗ = e−
2πi
n I and so

1

2πi
Tr(log(V UV ∗U∗)) =

1

2πi
Tr

(
−2πi

n
I

)
= −1. �

It is easy to modify the example in Lemma 2.2 to get a pair of unitary matrices with ‖[U, V ]‖ =
δ and ω(U, V ) = n for any 0 < δ < 2 and any n.

Theorem 2.3. Consider a pair of unitary matrices with ‖[U, V ]‖ = δ < 2. If ω(U, V ) 6= 0 then
the distance to a commuting pair of unitary matrices exceeds

√
2, meaning

‖U − U1‖+ ‖V − V1‖ >
√

2,

whenever U1 and V1 are unitary matrices with U1V1 = V1U1. Indeed,

‖U − U1‖+ ‖V − V1‖ ≥
√

2 +
√

4− ‖[U, V ]‖2.

The proof of this will be broken into lemmas and propositions. Theorem 2.3 is a variation
on the main result in [5]. That result had a smaller lower bound, but the bound applied to the
distance to any pair of commuting matrices, not just commuting unitary matrices.

Lemma 2.4. Suppose ‖[U0, V0]‖ < 2. If ‖[U1, V1]‖ < 2 and ω(U0, V0) 6= ω(U1, V1) then for any
continuous path Us of unitary matrices from U0 to U1, and for any continuous path Vs of unitary
matrices from V0 to V1, there must be at least one s0 so that ‖[Us0 , Vs0 ]‖ = 2.

Proof. We will use a homotopy argument. If no such s0 exists then

(s, t) 7→ det
(
(VsU

∗
s V
∗
s Us)

t
)

is a homotopy between the path that determines ω(U0, V0) and the path that determines
ω(U1, V1). Therefore the winding numbers of these paths are equal. �

Proposition 2.5. Suppose ‖[U, V ]‖ < 2. If ‖[U1, V1]‖ = 2, then

‖U − U1‖+ ‖V − V1‖ ≥
√

2− ‖[U, V ]‖.

If ‖[U1, V1]‖ < 2 and ω(U1, V1) 6= ω(U, V ), then

‖U − U1‖+ ‖V − V1‖ ≥
√

4−
(

max(‖[U, V ]‖, ‖[U1, V1]‖)
)2
.

More generally, ‖U − U1‖+ ‖V − V1‖ is greater than or equal to√
2 + 2

√
1− 1

4
‖[U, V ]‖2

√
1− 1

4
‖[U1, V1]‖2 −

1

2
‖[U, V ]‖‖[U1, V1]‖.
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Figure 1. The solid curve shows the minimum radius in the gap at −1 in with spectrum of V UV ∗U∗

for unitaries U and V , as a function of δ = ‖[U, V ]‖. The lower curve show the minimum distance one

must go to find a pair with winding number index either undefined or different.

Proof. We can connect U = U0 to U1 by an analytic path of unitary matrices Ut of length
2 arcsin(12‖U0 − U1‖). Similarly we have an analytic path Vt from V = V0 to V1 of length
2 arcsin(12‖V0 − V1‖). We now bound the length of the path Wt = VtUtV

∗
t U
∗
t in two ways. We

compute the derivative W ′t of t 7→Wt, and since ‖W ′t‖ ≤ 2‖U ′t‖+ 2‖V ′t ‖ we see that

Length(Wt) ≤ 4 arcsin

(
1

2
‖U0 − U1‖

)
+ 4 arcsin

(
1

2
‖V0 − V1‖

)
.

On the other hand, if µk(t) is an analytic choice of eigenvalues for Wt then we know from [6,
p. 374] that |µ′k(t)| ≤ ‖W ′t‖. One of these paths of eigenvalues must hit −1, and yet

|µk(t)− 1| ≤ ‖[Ut, Vt]‖

for t = 0 and t = 1, so

Length(Wt) ≥ 2π − 2 arcsin

(
1

2
‖[U0, V0]‖

)
− 2 arcsin

(
1

2
‖[U1, V1]‖

)
.

Therefore

4 arcsin
‖U0 − U1‖

2
+ 4 arcsin

‖V0 − V1‖
2

≥ 2π − 2 arcsin
‖[U0, V0]‖

2
− 2 arcsin

‖[U1, V1]‖
2

.

We need to know the smallest value of ‖U0−U1‖+ ‖V0− V1‖ that can be achieved, and for this
it suffices to minimize these subject to the constraint

4 arcsin
‖U0 − U1‖

2
+ 4 arcsin

‖V0 − V1‖
2

= 2π − 2 arcsin
‖[U0, V0]‖

2
− 2 arcsin

‖[U1, V1]‖
2

.

This is the problem of placing 6 chords that are adjacent to each other that go around the unit
circle, with two chords fixed of length ‖[U0, V0]‖ and ‖[U1, V1]‖, while the other four come in
pairs, two of length x and two of length y. The minimizing of 2x + 2y occurs when we set one
length, say y, to zero, with the other the arc length corresponding to arc length π minus half
the arc length occupied by the two fixed chords, so

2 arcsin

(
1

2
x

)
= π − arcsin

(
1

2
‖[U0, V0]‖

)
− arcsin

(
1

2
‖[U1, V1]‖

)
.
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We conclude

‖U0 − U1‖+ ‖V0 − V1‖ ≥ 2 sin

(
1

2

(
π − arcsin

(
1

2
‖[U0, V0]‖

)
− arcsin

(
1

2
‖[U1, V1]‖

)))
.

We find

2 sin

(
1

2

(
π − arcsin

(
1

2
‖[U0, V0]‖

)
− arcsin

(
1

2
‖[U1, V1]‖

)))
=
√

2

√
1− cos

(
π − arcsin

(
1

2
‖[U0, V0]‖

)
− arcsin

(
1

2
‖[U1, V1]‖

))

=
√

2

√
1 + cos

(
arcsin

(
1

2
‖[U0, V0]‖

)
+ arcsin

(
1

2
‖[U1, V1]‖

))

=

√
2 + 2

√
1− 1

4
‖[U0, V0]‖2

√
1− 1

4
‖[U1, V1]‖2 −

1

2
‖[U0, V0]‖‖[U1, V1]‖

and so, setting ∆ = max(‖[U0, V0]‖, ‖[U1, V1]‖), we find

‖U0 − U1‖+ ‖V0 − V1‖ ≥

√
2 + 2

√
1− 1

4
∆2

√
1− 1

4
∆2 − 1

2
∆2 =

√
4−∆2. �

We now get to a difficult question. Is the winding number invariant the only obstruction to
closely approximating U and V by commuting unitary matrices? It is important here that we
stick with the operator norm in defining “close approximation” as the answers to these sort of
questions can change dramatically if considering the Frobenius norm [8, 9, 19, 21]. (In particular,
see the discussion in Section III in [19].) Results such as this also change dramatically when the
matrices come from different symmetry classes, as seen in [17].

There is an answer, but it is only a non-quantitative, nonconstructive result for small δ. This
we proven in joint work with Eilers and Pederson and we restate it here. Also it matters that
we are only interested in results for unitaries in Md(C) that are independent of d [10, 12].

Theorem 2.6 ([3, Theorem 6.15]). For any ε > 0, there is a δ in (0, 2) so that, whenever U
and V are unitary matrices in Md(C) with ‖[U, V ]‖ ≤ δ and ω(U, V ) = 0, there exist unitary
matrices U1 and V1 in Md(C) so that

‖U − U1‖+ ‖V − V1‖ ≤ ε

and [U1, V1] = 0.

A serious limitation of the invariant ω(U, V ) is that it does not generalize to unitaries in
general C∗-algebras, as it depends crucially on the determinant. Another limitation is that we
don’t know how to modify it to work in other symmetry classes. For example if we have self-dual
unitary matrices, so U ] = U and V ] = V , where ] is a specific generalized involution detailed
below, we find

(V UV ∗U∗)] = U∗V ∗UV

and so generally V UV ∗U∗ is not self-dual.
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3 A direct K-theory invariant – the Bott index

We need functional calculus of unitary matrices, also called matrix functions in applied math-
ematics. An example is above where we applied the logarithm to a unitary matrix. Generally
speaking, for the functional calculus f(V ) to be defined for a unitary matrix we need f defined
on the circle. One diagonalizes V via another unitary Q and applies f on the diagonal, so

V = Q

e
iθ1

. . .

eiθd

Q∗ =⇒ f(V ) = Q

f(eiθ1)
. . .

f(eiθ2)

Q∗.

However, most of our calculations will involve Fourier series, and traditionally those are defined
in terms of scalar functions that are periodic.

Definition 3.1. Assume then that f is periodic of period 2π we define f [V ] as f̃(V ) where
f̃(z) = f(−i log(z)). In other words,

V = Q

e
iθ1

. . .

eiθd

Q∗ =⇒ f [V ] = Q

f(θ1)
. . .

f(θ1)

Q∗.

When f has uniformly convergent Fourier series, this is easier:

f(x) =
∞∑

n=−∞
ane

inx =⇒ f [V ] =
∞∑

n=−∞
anV

n. (3.1)

Definition 3.2. Define

f(x) =
1

128
(150 sin(x) + 25 sin(3x) + 3 sin(5x))

and

g =

{
0, x ∈ [−π

2 ,
π
2 ],√

1− f2, x /∈ [−π
2 ,

π
2 ],

h =

{√
1− f2, x ∈ [−π

2 ,
π
2 ],

0, x /∈ [−π
2 ,

π
2 ],

which are shown in Fig. 2. For any unitaries set

B(U, V ) =

(
f [V ] g[V ] + 1

2 {h[V ], U}
g[V ] + 1

2 {h[V ], U∗} −f [V ]

)
.

We have in mind unitary matrices, but let us look briefly at the more abstract situation. If
we have commuting unitary matrices u and v in a unital C∗-algebra A then we have, by the
spectral theorem, a ∗-homomorphism ϕ : C(T2)→ B.

Let us adopt the convention that K0 will be defined by hermitian elements with spectrum
within {−1, 1} instead of the usual description using projections, which are just hermitian ele-
ments with spectrum within {0, 1}. Then ϕ pushes forward the Bott element

β = [B(z, w)]−
[(

1 0
0 −1

)]
to [B(u, v)]−

[(
1 0
0 −1

)]
.

If we have ‖[u, v]‖ = δ for small delta, then we can imagine something weaker than a ∗-
homomorphism, ψ : C(T2)→ B, and attempt the push-forward.
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Figure 2. Functions for the standard Bott index (trig method).

Working heuristically, we simply create [B(u, v)] and expect that this will be hermitian and
with spectrum close to being contained in {−1, 1}. Now we apply functional calculus χ(B(u, v))
(this is spectral flattening in physics) and define the Bott index of this pair as

χ(B(u, v))−
[(

1 0
0 −1

)]
in K0(B).

This construction can be formalized in many ways. Exel [4] defined the soft torus Aδ as the
universal unital C∗-algebra generated by two elements uδ and vδ subject to being unitary with
‖[uδ, vδ]‖ ≤ δ. The only restriction on δ is δ < 2. He calculated the K-theory of Aδ, showing
that the natural map ρδ onto C(T2) = A0 is an isomorphism on K-theory. From u and v we get
a commuting diagram

Aδ

γ

""
ρδ
��

C(T2) B

and can defined a very abstract index of (u, v) as γ∗ ◦ ((ρδ)∗)
−1(β).

Computationally, spectrally flattening an invertible matrix can be expensive. Most impor-
tantly, doing so will destroy sparseness, should it initially exist. Therefore, in the special case
B = Mn(C) we use the signature. Abstractly this is counting eigenvalues, but numerically there
are many options for algorithms.

Now we resume discussion of the special case of unitary matrices. For an invertible, hermitian
matrix A we define its signature Sig(A) as the number (with multiplicity) of positive eigenvalues
minus the number of negative eigenvalues. We will prove that ‖[U, V ]‖ ≤ 0.206007 forces B(U, V )
to be invertible. Notice that if A is in Mn(C) and if n is even then Sig(A) must be even.
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Figure 3. In both: solid curve on top is the guaranteed spectral gap in B(U, V ) for a given δ. The

dashed curve is the distance one can move where it is proven the gap will not close. The dotted curve in

the left plot is 19
20

√
1− 5δ. The dotted curve on the right is 1

5

√
1− 5δ.

Remark 3.3. Monte Carlo methods have generated numerical evidence that the gap in B(U, V )
actually closes at about δ = 0.85.

Definition 3.4. If ‖[U, V ]‖ ≤ 0.206007 define κ(U, V ), the Bott index of (U, V ), as the integer

κ(U, V ) =
1

2
Sig(B(U, V )).

It should be noted that setting

γ1 = f(θ2), γ2 = g(θ2) + h(θ2) cos(θ1), γ3 = h(θ2) sin(θ1)

defines the coordinates of a map from T2 → S2 ⊆ R3 that has mapping degree one. Also notice
gh = 0 and f2 + g2 + h2 = 1.

Theorem 3.5. Suppose U and V are unitaries and δ = ‖[U, V ]‖ ≤ 0.206007.

1. The hermitian matrix B(U, V ) has a spectral gap at 0 of radius at least 19
20

√
1− 5δ. Indeed,

the gap is at least as large as the function of δ plotted as a solid curve in Fig. 3.

2. The distance ‖U−U1‖+‖V −V1‖ needed so that B(U1, V1) has 0 in its spectrum is at least
1
5

√
1− 5δ. Indeed, this distance is at least as large as the function of δ plotted as a dashed

curve in Fig. 3.

We will prove Theorem 3.5 in Section 5, and it will be a lot of work. Moreover, the gap here
is much smaller than we saw for V UV ∗U∗. Why do we bother? The point is symmetry.

Suppose U ] = U and V ] = V for unitaries in M2d(C) and with ] the generalized involution
discussed in the next section, that physicists call the dual. Then B(U, V ) is in M2d(C)⊗M2(C)
which has on it the generalized involution τ = ] ⊗ ]. In terms of real C∗-algebras, this is
a copy of M2d+2(C) with the transpose operation. In physics language, we are tensoring two
half-odd-integer spin systems to get a system with integer spin, in a non-standard basis. We
find B(U, V )τ = −B(U, V ) and so B(U, V ) defines a class in

K2(R) ∼= K−2(H) ∼= Z/2

that is computed directly in terms of the Pfaffian, hence the Pfaffian–Bott index studied in [16].
In return for a small gap, indeed no guaranteed gap if ‖[U, V ]‖ is too large, we get a construction
that is amenable to symmetries.
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Figure 4. Upper bound on the gap radius, as ‖[V,U ]‖ varies from 0 to about 0.21.

An easy upper bound on the gap radius can be found, using the example in Lemma 2.2,
shown in Fig. 4. This shows we cannot get as big a gap using B(U, V ) as was possible with
V UV ∗U∗, but that the situation is likely not as bad as Fig. 3 indicates.

Fortunately B(U, V ) is readily computable since f , g and h we chosen to have rather fast
decay in their Fourier coefficients. Thus we were able to replace (3.1) by the simpler evaluation
of order-5 trig polynomials. For applications to index studies, the following is the most useful.
We will later have a version of this for the Pfaffian–Bott index.

Proposition 3.6. Suppose ‖[U, V ]‖ ≤ 0.206007. If ‖[U1, V1]‖ ≤ 0.206007 and κ(U1, V1) 6=
κ(U, V ) then

‖U − U1‖+ ‖V − V1‖ ≥
1

5

√
1− 5‖[U, V ]‖2 +

1

5

√
1− 5‖[U1, V1]‖2.

Another consequence of Theorem 3.5 is the following.

Theorem 3.7. Suppose U and V are unitary matrices. If ‖[U, V ]‖ ≤ 0.206007 then

κ(U, V ) = ω(U, V ).

Proof. Exel [4] showed that for ‖[U, V ]‖ < 2 the winding invariant equals an abstract K-theory
invariant. In the notation of [4], this is defined in terms of bδ in K0(Aδ). It is easy to check
that as long B(u, v) has a spectral gap, where u and v are the generators of the soft torus Aδ,
the K-theory class of B(u, v) is bδ. �

Remark 3.8. The smallest δ = ‖[U, V ]‖ for which these invariants have been observed to differ,
in numerical examples, is δ ≈ 0.85.

Remark 3.9. There is ambiguity in how we define the Bott index when ‖[U, V ]‖ is large.
Exel’s abstract index in terms of the soft torus is not really computable, as there are no known
explicit formulas for bδ when δ > 0.206007. Certainly the estimates above are not optimal
so we are not sure for which δ a different formula is needed. In general, when computing
the K-theoretical obstructions to approximate representations of relations being close to exact
representations, there is ambiguity when the error in the relations is large. Ultimately, the
ambiguity does not generally matter, as was discussed at length in [2]. In the case of almost
commuting unitary matrices, both the winding number invariant and the Bott index as in
Definition 3.4 give computable invariants that, when the commutator is small, are stable in
a sizable region around the pair. More importantly, when either index is non-trivial, we know
there is a considerable distance to any pair of commuting unitary matrices.
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4 Defining the Pfaffian–Bott index

The Pfaffian of skew-symmetric matrices is not the most familiar object, and it it not clear at
the outset how it applies to a problem involving self-dual matrices. Let us start by recalling the
dual operation.

We fix

Z = ZN =

[
0 I
−I 0

]
in M2N (C) and this specifies the dual operation

X] = −ZXTZ

as above in (1.2).
When we discuss M2(M2N (C)) = M2N (C)⊗M2(C) we require the unitary

Q =
1√
2

[
I −iZ
iZ I

]
=

1√
2


I 0 0 −iI
0 I iI 0
0 iI I 0
−iI 0 0 I


which has the convenient property [11, Lemma 1.3]

Q∗X]⊗]Q = (Q∗XQ)T.

Here [
A B
C D

]]⊗]
=

[
D] −B]

−C] A]

]
or 

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


]⊗]

=


AT

44 −AT
34 −AT

24 AT
14

−AT
43 AT

33 AT
23 −AT

13

−AT
42 AT

32 AT
22 −AT

12

AT
41 −AT

31 −AT
21 AT

11

 .
Recall the Pfaffian is defined for all skew-symmetric, complex 2n-by-2n matrices by

Pf

O


0 a1
−a1 0 a2

−a2 0 a3

−a3 0
. . .

. . .
. . .

O
T

 = det(O)a1a3 · · · a2n−1

for O real orthogonal. (All skew-symmetric matrices have such a factorization, a modified
Hessenberg decomposition.) The essential properties are that

Pf
(
Y XY T

)
= det(Y )Pf(X)

for arbitrary Y , that the Pfaffian varies continuously, and

(Pf(X))2 = det(X)

so the Pfaffian is zero exactly on the set of skew-symmetric, singular matrices.
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For matrices with the symmetry X]⊗] = −X we can define a modified Pfaffian

P̃f(X) = Pf(Q∗XQ).

We still have(
P̃f(X)

)2
= det(X)

and that this varies continuously. The sign of the Pfaffian can be used to prove a homotopy
result, in the same way we use the determinant to detect that the real orthogonal matrices fall
into two connected parts.

Proposition 4.1. Suppose B is in M4N (C) and B∗ = B and BT = −B and B is invertible.
Then Pf(B) ∈ R \ {0}. If B1 and B2 are elements of

H =
{
B ∈M4N (C)

∣∣B∗ = B = −BT is invertible
}
,

then they can be connected by a path in H if and only if with Pf(B1) and Pf(B2) have the same
sign.

Proof. We can apply Theorem 8.7 in [11] to iB and learn that there is a real orthogonal
matrix O so that det(O) = 1 and

B = O



0 iλ1
−iλ1 0

0 iλ2
−iλ2 0

. . .
. . .

. . .
. . .


OT

and all the real numbers λj are positive except λ1 which as the same sign as Pf(B). It is clear
from this form that two such matrices with Pfaffian of the same sign will be connected. The
spectrum of B is {±λ1, . . . ,±λ2N}. Thus there will be an even number of negative eigenvalues,
so det(B) > 0. Since the square of the Pfaffian is the determinant, we find Pf(B) is real, and
as B is invertible, the Pfaffian cannot be zero. Since the Pfaffian varies continuously, it is not
possible to connect two matrices in H that have Pfaffians of opposite signs. �

Now we explain the Pfaffian–Bott index.

Definition 4.2. Let f , g, h and B(U, V ) be as in Section 3. If ‖[U, V ]‖ ≤ 0.206007 define
κ2(U, V ) as the value in {±1} given by

κ2(U, V ) = Sign
(
P̃f(B(U, V ))

)
.

Lemma 4.3. When U and V are commuting unitary matrices, κ2(U, V ) = 1.

Proof. This is a special case of Theorem 8.8 of [11]. Here is that proof in less technical language
for this special case.

One easily checks that κ2 remains constant along a path so long as ‖[Ut, Vt]‖ ≤ 0.206007. One
can use joint functional calculus (for commuting normal operators), and so keep the self-dual
condition, to deform a commuting pair U0 and V0 that is self-dual over to U1 = I and V1 = I.
One can then compute that

B(I, I) =

(
0 I
I 0

)
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and

P̃f

(
0 I
I 0

)
= Pf

[
iZ 0
0 −iZ

]
= Pf (iZ) Pf (−iZ) = in(−i)n = 1. �

Proposition 4.4. Suppose ‖[U, V ]‖ ≤ 0.206007 and that U , V , U1, V1 are self-dual unitary
matrices. If ‖[U1, V1]‖ ≤ 0.206007 and κ2(U1, V1) 6= κ2(U, V ) then

‖U − U1‖+ ‖V − V1‖ ≥
1

5

√
1− 5 ‖[U, V ]‖2 +

1

5

√
1− 5 ‖[U1, V1]‖2.

Proposition 4.5. Suppose ‖[U, V ]‖ ≤ 0.206007 and that U , V , U1, V1 are self-dual unitary
matrices. If U1 commutes with V1 and κ2(U, V ) = −1 then

‖U − U1‖+ ‖V − V1‖ ≥
1

5
+

1

5

√
1− 5‖[U, V ]‖2.

Remark 4.6. We can describe the Pfaffian–Bott index more generally if we use the language
of real C∗-algebras. Suppose we are given a real C∗-algebra as a complex C∗-algebra B along
with an anti-multiplicative linear involution τ on B. Then a nice picture of K−2(B, τ) (ignoring
details with higher matrices) is in terms of{

x ∈ GL(B ⊗M2(C))
∣∣x∗ = x, xτ⊗] = −x

}
,

as was proven in [11, § 8]. Then B(z, w) is an element in C(T2)⊗M2(C) that is hermitian, with
spectrum {−1, 1} and, with τ the identity on C(T2), also B(z, w)τ⊗] = −B(z, w). Therefore
B(z, w) determines an element in K−2(C(T2)). Given U and V self-dual unitary matrices in
some unital real C∗-algebra (B, τ), we can define, for now informally, the push-forward by some-
thing that is “almost a morphism” ψ : (C(T2), τ) → (B, τ), to produce the element [B(U, V )]
in K−2(B, τ). We can define a real structure on the soft-torus Aδ by setting uτδ = uδ and vτδ = vδ
(see [22, Chapter 5] for details on why this is well-defined) and consider βδ = [B(uδ, vδ)]. Then,
for small δ, we have a real ∗-homomorphism

γ : (Aδ, τ)→ (B, τ)

and the Pfaffian–Bott element is then γ∗(βδ) in K−2(B, τ). For larger δ we can proceed, but
need an analysis of K−2(Aδ, τ) that is best left for another paper. In the special case of (B, τ)
equal to (M2n(C), ]) we used first the isomorphism

K−2(M2n(C), ]) ∼= K2(M2n+2(C),T)

induced by conjugation by a set unitary, and then the isomorphism

K2(M2n+2(C),T)→ Z/2

induced by the sign of the Pfaffian. So(
C(T2), id

)
← (Aδ, τ)→ (M2n(C), ])

leads to

K−2(C(T2), id)← K−2(Aδ, τ)→ K−2(M2n(C), ])→ K2(M2n+2(C),T)→ Z/2

with the right-most arrow given by the Pfaffian. The remaining issue is showing the left-most
arrow is surjective, which we have done here for small δ by explicitly defining B(uδ, vδ).
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5 Proof that the gap persists

Now we prove Theorem 3.5, finding a lower bound on the size of the gap in B(U, V ) as long as
δ = ‖[U, V ]‖ is not too big. We do so by finding an upper bound on the norm of B(U, V )2 − I.
It is then a routine application of the spectral mapping theorem to get lower bound on the size
of the gap.

We will need some results about commutators and the functional calculus. There is the folk-
lore estimate ‖[f [V ], U ]‖ ≤ ‖f ′‖F‖[U, V ]‖ where ‖f ′‖F is the `1-norm of the sequence of Fourier
coefficients of f . On its own, this estimate is really only helpful for very small commutators.

Definition 5.1. Suppose f is continuous and 2π-periodic. Following [18] we define ηf : [0,∞)→
[0,∞) by

ηf (δ) = sup
{
‖[f [V ], A]‖ |V is unitary, ‖A‖ ≤ 1, ‖[V,A]‖ ≤ δ

}
,

where the supremum is taken over all V and A in every unital C∗-algebra.
Once we have a bound on ηf we can use it to bound more than just commutators. Indeed,

by [18, Lemma 1.2], for any two unitaries V1and V2 we have

‖f [V ]− f [V1]‖ ≤ ηf (‖V − V1‖).

We need a special case of a lemma in [18].

Lemma 5.2. Suppose f is continuous, real-valued and periodic, and that f1 is the trigonometric
polynomial

f1(x) =

n∑
k=−n

ake
ikx.

Let f2 = f − f1. Then ηf (δ) ≤ mδ + b where

m =
n∑

k=−n
|kak|

and b = max f2(x)−min f2(x).

Before we focus on our choice of the three functions f , g and h to use in the Bott invariant,
we look at the terms we need to control when bounding B(U, V )2 − I.

Lemma 5.3. Suppose f , g and h are continuous, real-valued functions that are 2π-periodic, and
with f2 + g2 + h2 = 1 and gh = 0. Suppose U and V are unitary matrices and define

S =

[
f [V ] g[V ] + 1

2{h[V ], U}
g[V ] + 1

2{h[V ], U∗} −f [V ]

]
.

Then S∗ = S and∥∥S2 − I
∥∥ ≤ 2‖[h[V ], U ]‖+ ‖[f [V ], U ]‖.

Proof. Since f , g and h are real-valued, the matrices f [V ], g[V ] and h[V ] are hermitian. Let
us write f for f [V ], etc. We see easily S∗ = S and[

f g + 1
2{h, U}

g + 1
2 {h, U

∗} −f

]2
−
[
I 0
0 I

]
=

[
A B
B∗ A∗

]
,
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where

A = f2 + g2 − I + 1
4{h, U}{h, U

∗}+ 1
2g{h, U

∗}+ 1
2{h, U}g

= −h2 + 1
4{h, U}{h, U

∗}+ 1
2g{h, U

∗}+ 1
2{h, U}g

and

B = fg + 1
2f{h, U} − gf −

1
2{h, U}f = 1

2f{h, U} −
1
2{h, U}f.

We have∥∥S2 − I
∥∥ ≤ ∥∥∥∥[A 0

0 A∗

]∥∥∥∥+

∥∥∥∥[ 0 B
B∗ 0

]∥∥∥∥ = ‖A‖+ ‖B‖.

Notice f2 + g2 + h2 = 1 forces these functions to take value in [−1, 1] so ‖f [V ]‖ ≤ 1, etc.
Therefore

‖A‖ ≤ 1
4

∥∥hUhU∗ + Uh2U∗ + UhU∗h− 3h2
∥∥+ 1

2‖gU
∗h− ghU∗ + hUg − Uhg‖

≤ 1
2‖h‖‖Uh− hU‖+ 1

4

∥∥Uh2 − h2U∥∥+ ‖g‖‖Uh− hU‖ ≤ 2‖Uh− hU‖

and

‖B‖ = 1
2‖hfU + fUh− hUf − Ufh‖ ≤ 1

2‖h[f, U ]‖+ 1
2‖[f, U ]h‖ ≤ ‖[f, U ]‖,

so ∥∥S2 − I
∥∥ ≤ 2‖[h, U ]‖+ ‖[f, U ]‖. �

Now we let f , g and h be the functions from Definition 3.2. Here we start needing a computer
algebra package. It shows us that

f(x)2 +
407

512
cos6(x)

(
1 +

96

407
cos(2x) +

9

407
cos(4x)

)
= 1,

which means

g(x) =

√
407

512
cos3(x)

√
1 +

96

407
cos(2x) +

9

407
cos(4x)

(
1− χ[−π

2
,π
2
](x)

)
and

h(x) =

√
407

512
cos3(x)

√
1 +

96

407
cos(2x) +

9

407
cos(4x)χ[−π

2
,π
2
](x).

A handy formula here is

407

320

(
1 +

96

407
cos(2x) +

9

407
cos(4x)

)
=

(
1 +

15

40
cos2(x) +

9

40
cos4(x)

)
and we get alternate expression for g and h, in particular

h(x) =

√
10

4
cos3(x)

√
1 +

15

40
cos2(x) +

9

40
cos4(x)χ[−π

2
,π
2
](x).

We new bound the derivative of g and h, computing

d

dx

(√
10

4
cos3(x)

√
1 +

15

40
cos2(x) +

9

40
cos4(x)

)
=

p(sin(x))

16
√
q(sin(x))

,
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where

p(x) = 30x(x− 1)(x+ 1)
(
3x4 − 10x2 + 15

)
and

q(x) = 9x4 − 33x2 + 64.

On [−1, 1] the max of p(x) is 150 and the min of q(x) is 64 so we find

|h′(x)| ≤ 150

128

and the same for g′.

We need h as a Fourier series so need

cn =
1

2π

∫ π
2

−π
2

cos(nx)

√
407

512
cos3(x)

√
1 +

96

407
cos(2x) +

9

407
cos(4x) dx.

We computed these with numerical integration, and without checking error estimates, in [16]. We
compute these a little more carefully here. Thus Table 1 is a slightly more accurate replacement
for Table 11 in [11]. We find

cn =
1

2π

∫ π
2

−π
2

cos(nx)

√
407

512
cos3(x)

∞∑
k=0

(
1/2

k

)(
96

407
cos(2x) +

9

407
cos(4x)

)k
dx

=

∞∑
k=0

1

2π

√
407

512

(
1/2

k

)∫ π
2

−π
2

cos(nx) cos3(x)

(
96

407
cos(2x) +

9

407
cos(4x)

)k
dx =

∞∑
k=0

In,k,

where the In,k were defined in-line and are easy to compute with a computer algebra package.
The convergence here is rather rapid, as

In,k ≤
1

2π

√
407

512

(
1/2

k

)
(−1)k

∫ π
2

−π
2

∣∣∣∣∣cos(nx) cos3(x)

(
96

407
cos(2x) +

9

407
cos(4x)

)k∣∣∣∣∣ dx
≤ 1

2π

√
407

512

(
1/2

k

)(
−105

407

)k
.

Letting TK denote the Taylor polynomial TK(x) ≈
√

1 + x of degree K expanded at 0, we have

∞∑
k=K+1

|In,k| ≤
1

2π

√
407

512

∞∑
k=K+1

(
1/2

k

)(
−105

407

)k

=
1

2π

√
407

512

( ∞∑
k=0

(
1/2

k

)(
−105

407

)k
−

K∑
k=0

(
1/2

k

)(
−105

407

)k)

=
1

2π

√
407

512

(√
1− 105

407
− TK

(
−105

407

))
.

This means we need K = 7 to get six digits absolute accuracy, with the results shown in Table 1.
The integration was done symbolically in Matlab1.

1Code assisting with tables and figures and calculations is available at http://repository.unm.edu/handle/
1928/23494.

http://repository.unm.edu/handle/1928/23494
http://repository.unm.edu/handle/1928/23494
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Table 1. These are approximations to the first coefficients in the Fourier expansions of the f , g and h

used to define the Bott index. Extend these to negative indices by the rules a−n = an and b−n = bn and

cn = −cn.

n 0 1 2 3 4 5

an 0 −150i
256 0 − 25i

256 0 − 3i
256

bn 0.202047 −0.179940 0.125655 −0.066010 0.023445 −0.003886

cn 0.202047 0.179940 0.125655 0.066010 0.023445 0.003886

Using the values in the table to define

h5(x) =
5∑

n=−5
cne

inx

we find∣∣∣∣ ddx(h− h5)
∣∣∣∣ ≤ 150

128
+ 1.48498 = 2.656855.

and so we can estimate to six decimal places the maximum of |h − h5| by simply plugging in
values between −π and π with an even spacing of a little less than 10−7. Keeping track of the
errors and rounding up, we find

diam(h(x)− h5(x)) ≤ 0.004110

and we note

∥∥h′5∥∥F =
5∑

n=−5
n|cn| = 1.48498.

The other estimates of this sort, for h0, . . . , h4, are summarized in Table 2. We also can use
brute force to find

sup
x
|h(x)− h5(x)| ≤ 0.002338.

Lemma 5.4. For any unitary matrix V ,

‖h5[V ]− h[V ]‖ ≤ 0.002338.

We get the same error estimate on using only b−5 through b5 when numerically compu-
ting g[V ].

Lemma 5.5. For h as in Definition 3.2, we have

‖h′‖F ≤ 2.99208.

Proof. We check that

h′(x) =
− 1√

3256

(
45 cos4(x) + 60 cos2(x) + 120

)√
1 + 96

407 cos(2x) + 9
407 cos(4x)

sin(x) cos2(x)χ[−π
2
,π
2
](x)
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Table 2. Bounds on ηh as a slope and an offset.

n m = bound on ‖h′n‖F b = bound on diam(h(x)− hn(x))

0 0 1

1 0.359880 0.732237

2 0.862500 0.350141

3 1.258560 0.106619

4 1.446120 0.017509

5 1.48498 0.004110

∞ 2.99208 0

and attack this as three factors. It is easy to see∥∥∥∥− 1√
3256

(
45 cos4(x) + 60 cos2(x) + 120

)∥∥∥∥
F

=
225√
3256

and the next factor is not so bad, as we see∥∥∥∥∥∥ 1√
1 + 96

407 cos(2x) + 9
407 cos(4x)

∥∥∥∥∥∥
F

≤
∞∑
k=0

∣∣∣∣(−1/2

k

)∣∣∣∣ ∥∥∥∥ 96

407
cos(2x) +

9

407
cos(4x)

∥∥∥∥k
F

=
∞∑
k=0

(
−1/2

k

)
(−1)k

(
105

407

)k
=

1√
1− 105

407

=

√
407

302
.

We estimate∥∥ sin(x) cos2(x)χ[−π
2
,π
2
](x)

∥∥
F

as follows. The Fourier series of −i sin(x) cos2(x)χ[−π
2
,π
2
] is

. . . ,
16

3465π
, 0,
−4

315π
, 0,

8

105π
,

1

16
,
−8

15π
,
−1

16
, 0,

1

16
,

8

15π
,
−1

16
,
−8

105π
, 0,

4

315π
, 0,
−16

3465π
, . . .

with terms beyond n = 3 being given by

− cos
(πn

2

)( 1

(n− 1)3 − 4(n− 1)
+

1

(n+ 1)3 − 4(n+ 1)

)
.

Therefore

∥∥ sin(x) cos2(x)χ[−π
2
,π
2
]

∥∥
F

=
1

4
+

16

15π
+

18

105π
+

4

π

∞∑
n=3

1

(2n+ 1)3 − 4 (2n+ 1)

≤ 1

4
+

16

15π
+

18

105π
+

4

315π
+

16

3465π
+

4

π

∫ ∞
4

1

8x3 + 12x2 − 2x− 3
dx

=
1

4
+

16

15π
+

18

105π
+

4

315π
+

16

3465π
+

1

4π
ln

(
81

77

)
and so

‖h′‖F ≤
225√
3256

√
407

302

(
1

4
+

16

15π
+

18

105π
+

4

315π
+

16

3465π
+

1

4π
ln

(
81

77

))
< 2.992076. �
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Table 3. Bounds on ηf as a slope and an offset.

n m = bound on ‖f ′n‖F b = bound on diam(f(x)− fn(x))

0 0 2

1 1.171875 0.4375

2 1.7578125 0.04687

∞ 1.875 0

Figure 5. The function β(δ) that bounds ‖B(U, V )2 − I‖ in terms of δ = ‖[U, V ]‖.

We approximate f the same way, but this is just arithmetic since f is already a trigonometric
polynomial.

Lemma 5.6. Let f and g and h be as in Definition 3.2. Then ηf (δ) ≤ mδ + b for each of the
values in Table 3, and ηg(δ) ≤ mδ + b and ηh(δ) ≤ mδ + b for each of the values in Table 2.

Let β(δ) = 2ηh(δ) + ηf (δ) which is shown in Fig. 5.

Theorem 5.7. Suppose U and V are unitary matrices. Then∥∥B(U, V )2 − I
∥∥ ≤ β(‖[U, V ]‖)

and for ‖[U, V ]‖ ≤ 0.206007 the gap at 0 in the spectrum of B(U, V ) has radius at least√
1− β(‖[U, V ]‖).

The other key thing we must show is how B(U, V ) varies as U and V vary. After this, all our
main theorems will follow.

Theorem 5.8. If Uj and Vj are unitary matrices then

‖B(U0, V0)−B(U1, V1)‖ ≤ β(‖V0 − V1‖) + ‖U0 − U1‖

and so

‖B(U0, V0)−B(U1, V1)‖ ≤ β(‖V0 − V1‖+ ‖U0 − U1‖).

Proof. This follows easily from Lemma 5.6 and [18, Lemma 1.2]. �
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Figure 6. First part of the path, showing ft then ht then gt.

6 The log method

An alternate way to compute the Bott index was considered in [6]. One replaces B(U, V ) with

BL(U, V ) =

 1
πK

1
2

{√
I − 1

π2K2, U
}

1
2

{√
I − 1

π2K2, U∗
}

− 1
πK


where iK is the logarithm of V , meaning −π ≤ K < π and eiK = V . Numerical evidence in [16]
suggests that, for small commutators, the Pfaffian–Bott index can be computed using BL(U, V ).
We validate this here.

Since the logarithm is not continuous, numerical errors will mean we might accidentally
compute the wrong branch of logarithm on V , or indeed any logarithm of V whatsoever.

We note that when q is periodic, q(K) = q[V ].

Lemma 6.1. Suppose f , g and h are real-valued Borel functions on [−π, π] satisfying f2 + g2 +
h2 = 1 and gh = 0. Let q(x) = f(x)h(x) and assume further that q and h are continuous and
2π-periodic. Suppose U and V are unitary matrices and −iK is a logarithm of V and define

S =

[
f(K) g(K) + 1

2 {h(K), U}
g(K) + 1

2 {h(K), U∗} −f(K)

]
.

Then S∗ = S and∥∥S2 − I
∥∥ ≤ (‖g‖+ 1)‖[h[V ], U ]‖+

1

4
‖[h[V ], U ]‖2 +

1

2

∥∥[h2[V ], U
]∥∥+ ‖[q[V ], U ]‖.
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Figure 7. Second part of the path, showing only ft then ht. Here gt is zero.

Proof. We write f for f(K), etc., and estimate a bit more carefully than before. We find

1

4

∥∥hUhU∗ + Uh2U∗ + UhU∗h− 3h2
∥∥

=
1

4

∥∥hUhU∗ − h2 + UhU∗h− Uh2U∗ + 2Uh2U∗ − 2h2
∥∥

=
1

4

∥∥− [h, U ][h, U ]∗ + 2
(
Uh2U∗ − h2

)∥∥ ≤ 1

4
‖[h, U ]‖2 +

1

2

∥∥[h2, U]∥∥
and

1

2
‖g{h, U∗}+ {h, U}g‖ =

1

2
‖gU∗h+ hUg‖ =

1

2
‖g[U∗, h] + [h, U ]g‖ ≤ ‖g‖‖[h, U ]‖

and

1
2‖f{h, U} − {h, U}f‖ = 1

2‖2fhU − 2Ufh+ fUh− fhU − hUf + Uhf‖
≤ ‖fhU − Uhf‖+ 1

2‖fUh− fhU‖+ 1
2‖hUf − Uhf‖

≤ ‖fhU − Uhf‖+ 1
2‖Uh− hU‖+ 1

2‖hU − Uh‖
= ‖[fh, U ]‖+ ‖[h, U ]‖ = ‖[q, U ]‖+ ‖[h, U ]‖. �

Lemma 6.2. Suppose U and V are unitary matrices. If ‖[U, V ]‖ ≤ 1
8 then for any choice of K

with −π ≤ K ≤ π and eiK = V , there is a path Bt of invertible self-adjoint matrices between
B(U, V ) and 1

πK
1
2

{√
I − 1

π2K2, U
}

1
2

{√
I − 1

π2K2, U∗
}

− 1
πK


and, if U and V are self-dual, then the path may be chosen with the symmetry B]⊗]

t = Bt.

Proof. We can select paths, illustrated in Figs. 6 and 7, ft, gt and ht, from the standard triple
(f0, g0, h0) = (f, g, h), in Definition 3.2, to (f1, g1, h1) where

f1(x) =
1

π
x, g1(x) = 0, h1(x) =

√
1− 1

π2
x2. (6.1)
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Figure 8. Bounds on
∥∥Bt(U, V )2 − I

∥∥.
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Figure 9. Bounds on ‖BL(U, V )2 − I‖.

The conditions f2 +g2 +h2 = 1 and gh = 0 hold along the path. This gives us paths of matrices

Bt(U, V ) =

[
ft(K) gt(K) + 1

2{ht(K), U}
gt(K) + 1

2{ht(K), U∗} −ft(K)

]

with the needed symmetries. It remains to show these are invertible. One needs to compute

(‖gt‖+ 1)ηht(δ) +
1

4
(ηht(δ))

2 +
1

2
ηh2t (δ) + ηqt(δ) (6.2)

and check that this takes value less than 1 at δ = 1
8 . This is too much to do by hand, so use

a computer2 to repeatedly calculate the constants needed in Lemma 6.1. We find that (6.2)
takes value less than 0.95 at δ = 1

8 for all t in a mesh t1, . . . , tw selected so that

‖ftj − ftj+1‖∞ + ‖gtj − gtj+1‖∞ + ‖htj − htj+1‖∞ ≤
√

1− 0.95 ≈ 0.2236.

We can keep ft fixed at

ft(x) =


−1, −π ≤ x ≤ −π

2 ,
1

128(150 sin(x) + 25 sin(3x) + 3 sin(5x)), −π
2 ≤ x ≤

π
2 ,

1, π
2 ≤ x ≤ π,

2See code at http://repository.unm.edu/handle/1928/23494.

http://repository.unm.edu/handle/1928/23494
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while altering gt from the standard g to 0. The more interesting part of the path interpolates ft
from the above to 1

πx while keeping gt = 0 and

ht(x) =
√

1− ft(x).

The graphs of the computed bounds are shown in Fig. 8. These bounds have been rounded
up to accommodate the various errors in computing offset terms when applying Lemma 5.2.
The errors in computing Fourier coefficients lead to sub-optimal results, but do not need to be
accounted for as it is the computed coefficients that are used when applying Lemma 5.2. The
analysis of the error bounds is dull and omitted. �

It is apparent that the limitation on the constant in this result comes from the functions used
in the log method (6.1). The computed bounds are shown in Fig. 9.

Theorem 6.3. Suppose U and V are self-dual unitary matrices. If ‖[U, V ]‖ ≤ 1
8 then, for any K

with −π ≤ K ≤ π and eiK = V ,

κ2(U, V ) = Sign

P̃f

 1
πK

1
2

{√
I − 1

π2K2, U
}

1
2

{√
I − 1

π2K2, U∗
}

− 1
πK

 .
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