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Abstract. The (real) GraviGUT algebra is an extension of the spin(11,3) algebra by a 64-
dimensional Lie algebra, but there is some ambiguity in the literature about its definition.
Recently, Lisi constructed an embedding of the GraviGUT algebra into the quaternionic real
form of Eg. We clarify the definition, showing that there is only one possibility, and then
prove that the GraviGUT algebra cannot be embedded into any real form of Fg. We then
modify Lisi’s construction to create true Lie algebra embeddings of the extended GraviGUT
algebra into Eg. We classify these embeddings up to inner automorphism.
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1 Introduction

The Standard Model of particle physics, with gauge group U(1) x SU(2) x SU(3), attempts to
describe all particles and all forces, except gravity. Grand Unified Theories (GUT) attempt to
unify the forces and particles of the Standard Model. The three main GUTs are Georgi and
Glashow’s SU(5) theory, Georgi’s Spin(10) theory, and the Pati-Salam model based on the Lie
group SU(2) x SU(2) x SU(4) [2].

In [8], Lisi attempts to construct a unification which includes gravity. In this construction,
Lisi first embeds gravity and the standard model into spin(11,3). He then embeds spin(11,3)
together with the positive chirality 64-dimensional spin(11,3) irrep into the quaternionic real
form of Fg. Lisi refers to the embedded Lie algebra as the GraviGUT algebra. For a description
of Lisi’s theory see [8] or [7]. For a critique of Lisi’s theory involving the GraviGUT algebra
see [3]. We note that the GraviGUT algebra was first introduced by Nesti and Percacci [12].

In Section 4 of [11], it is observed that one of the Lie algebras associated with a point in
Vogel’s plane (cf. [13]) has the same dimension as the GraviGUT algebra, and it is hypothesized
there that these two algebras are in fact isomorphic. It would certainly be interesting to identify
the algebra in question.

Because the exposition of [8] reflects the process of exploring the possible realizations of the
GraviGUT algebra, there is some potential for confusion about its definition. Lisi first describes
the algebraic structure of spin(11,3) and the action of spin(11,3) on its 64-dimensional irrep V'
in equations (3.9) and (3.10) from [8], respectively. He then notes that the structure of the
GraviGUT algebra could be completed by defining a trivial Lie bracket on V.

However, the actual algebraic structure of his explicit realization of V' is not established until
equations (4.3) and (4.4) from [8], when Lisi describes his embedding; it is here that we see
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that V' is not abelian relative to the Lie bracket inherited from FEg. In fact, with this definition
of the Lie bracket, the subspace of Fg spanned by the embedded copies of spin(11,3) and V is
not a Lie algebra at all: it is not closed under the bracket. Lisi acknowledges this in his remark
near the end of § 3 that “The word ‘algebra’ is used here in a generalized sense”.

Theorem 2 of the present paper actually shows that the only way to extend the usual bracket
on s0(14)c and its action on V to make so(14)c € V into a Lie algebra is to require V' to be
abelian. In particular, the only possible definition of the (complexified) GraviGUT algebra as
a Lie algebra is so(14)c € V, where V is a 64-dimensional abelian ideal which is irreducible
under the action of so(14)c.

Once the structure of the complexified GraviGUT algebra is specified, it is not difficult to
show that it cannot be embedded into the complex algebra Eg; cf. Corollary 1. Hence, the (real)
GraviGUT algebra cannot be embedded into the quaternionic real form of Eg, or any other real
form of FEg.

However, the operators in Fg described by Lisi do generate a larger Lie algebra, which contains
an additional 14-dimensional ideal. We call this larger algebra the extended GraviGUT algebra.

We modify Lisi’s construction to create true Lie algebra embeddings of the extended Gravi-
GUT algebra into Eg. The (complex) extended GraviGUT algebra is a nonabelian, nilpotent
extension of s0(14)c by a 78-dimensional so(14)c-representation. This 78-dimensional represen-
tation is composed of a 64-dimensional irrep and the standard 14-dimensional s0(14)c-irrep. Its
precise structure is described in Section 6, but we do note here that the (complexified) Gravi-
GUT algebra is a quotient of the extended GraviGUT algebra. We classify these embeddings
up to inner automorphism.

The article is organized as follows. Section 2 contains relevant background on Lie algebras
and their representations: in particular, it deals with the complex, simple Lie algebras so(14)c
and FEg. Section 3 presents additional notation and terminology. In Section 4 we describe the
classification of embeddings of s0(14)c¢ into Eg, which will be used in the following section. In
Section 5 we determine the only possible definition of the GraviGUT algebra and also establish
that the complexified GraviGUT algebra cannot be embedded into the complex algebra Fjs.
Finally, in Section 6 we classify the embeddings of the extended GraviGUT algebra into Es.

2 The complex Lie algebras so(14)c and Ey,
and their representations

The special orthogonal algebra so(14)c is the complexification of spin(11, 3). It is the Lie algebra
of complex 14 x 14 matrices N satisfying N = —N. The dimension of so(14)c is 91 and its
rank is 7. The Lie group corresponding to s0(14)¢ arises naturally as the symmetry group of
a projective space over R [1].

Es is the complex, exceptional Lie algebra of rank 8. It is 248-dimensional. Like so(14)c,
Eg has a close connection to the Riemannian geometry of projective spaces (for details, we refer
the reader to [1]).

Let g denote so(14)c or Eg. Let k =7 or 8 when g = s0(14)c or Eg, respectively. We may
define g by a set of generators { H;, X;, Y;}1<i<k together with the Chevalley—Serre relations [6]:

[H;, Hj) =0,  [Hi, X;] = M3X;,
[H;, Y] = -M}Y;, (X3, Y;] =05 H;,
(ad X)) Mi(X;) =0, (ad¥)'"Mi(Y;) =0, when i# .

Here 1 <i,j <k, and M? is the Cartan matrix of g. The X;, for 1 <1 < k, correspond to the
simple roots. We write H for the Cartan subalgebra spanned by {H;}.
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For future reference, the Dynkin diagrams of s0(14)c and Eg, indicating the numbering of
simple roots, are given in Fig. 1.

Figure 1. Dynkin diagrams of so(14)¢ and FEs.

We now briefly describe the finite-dimensional, irreducible representations (irreps) of so(14)c

and Eg, with g and k defined as above. For i = 1,...,k, define a;, \; € H* by oy(H;) = Mfi,
and \;(H;) = d;;, where M? is the Cartan matrix of g. The \; are the fundamental weights, and

their indexing corresponds with that of the Dynkin diagram of type so(14)c or Eg in Fig. 1.

For each A = miA; 4+ - + mpAr € H* with nonnegative integers my, ..., my, there exists
an irrep of g with highest weight A, denoted V4(X). The irreps V4(A;) for 1 < i < k are the
fundamental representations. Each irrep of g is equivalent to V4 (), where A = myAi+- - -+mpg
for some nonnegative integers my, ..., mg.

3 Additional definitions and notation

The following definitions and notation will be used in this article:

e For 1 <a; <8, let X,, correspond to the a;th simple root of Eg. We then define

Xayaz,a3,am = - - [ Xars Xag), Xas), -], Xapn -

Yo a0,a3,....am 15 defined analogously.

e Let ¢ : s0(14)c — FEg be an embedding. Further, let W be an element of Eg. Then,
[(Wls(so(14)c) is the s0(14)c representation generated by W with respect to the adjoint
action of ¢(s0(14)c). When the embedding ¢ is clear, as will be the case below, we simply
write [W]50(14)C‘

e Let ¢ and p be Lie algebra embeddings of g’ into g. Then ¢ and g are equivalent if there
is an inner automorphism p : g — g such that ¢ = p o p, and we write

¥~ 0.

e Two embeddings ¢ and p of g’ into g are linearly equivalent if for each representation
7 : g — gl(V) the induced g’ representations 7 o ¢, 7 o ¢ are equivalent, and we write

¥ ~L O

Clearly equivalence of embeddings implies linear equivalence, but the converse is not in
general true.

We define equivalence and linear equivalence of subalgebras much as we did for embeddings:

e Two subalgebras g’ and g” of g are equivalent if there is an inner automorphism p of g
such that p(g') = ¢".

e Two subalgebras g’ and g” of g are linearly equivalent if for every representation 7 : g —
gl(V') the subalgebras 7(g'), 7(g”) of gl(V) are conjugate under GL(V).
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4 Embedding so(14)c into Eg

In [4], the authors presented the following well-known “natural” embedding of s0(14)c into Eg:

v: s0(14)c — Eg,
Hs i — Hitq,
Xg—i = Xiq1,
Ys—i— Yiq, (1)

where 1 < ¢ < 7. This embedding may be visualized as a “natural” subgraph of the Dynkin
diagram of Fg which is isomorphic to the Dynkin diagram of so(14)c (see Fig. 1).

In [10], Minchenko showed that there is a unique subalgebra isomorphic to so(14)¢ in Eg, up
to inner automorphism. Hence, the only way to get new embeddings of so(14)c into Eg other
than the ¢ described in equation (1) is to compose ¢ with an outer automorphism of so(14)c.
However, it was shown by the authors in [4] that outer automorphisms of s0(14)¢ do not produce
new embeddings of s0(14)¢ into Eg. We thus have the following theorem [4].

Theorem 1. The map ¢ : so(14)c — Eg defined in equation (1) is the unique embedding of
s50(14)¢ into Eg, up to inner automorphism.

5 The GraviGUT algebra is not a subalgebra of Eg

Theorem 2. Consider a sum of complex vector spaces $0(14)c @V, where V' is a 64-dimensional
space. Suppose a Lie bracket is defined which gives the usual structure to the so(14)c subspace
and in such a way that the brackets [X,v], for X € so(14)c and v € V, define an action
of so(14)c on V under which V' becomes an irreducible so(14)c-module. Then the only way to
extend this bracket to make so(14)c € V into a Lie algebra is to put the abelian structure on V,
i.e., [v,0'] =0, for allv,v' € V.

In particular, the only possible definition of the (complezified) GraviGUT algebra as a Lie
algebra is so(14)c € V, where V is a 64-dimensional abelian ideal which is irreducible under the
action of so0(14)c.

Proof. Let V be a 64-dimensional s0(14)c-irrep. Then V = V()Xg) or V = V(\;). Consider
the tensor product decompositions:

V()\f;) ® V()\G) = V(Z)\ﬁ) D V(/\5) D V()\g) D V()\l),
VM) @V(A) ZV(2A)aV(Xs) @ V(A3) @ V(A).

Since V(Ag) does not occur in the tensor product decomposition of V(Ag) ® V(Xg), V(A7) does
not occur in the tensor product decomposition of V(A7) ® V (A7), and neither decomposition
contains a 91-dimensional irrep, we cannot have a nontrivial product V@V - Vo V@V —
50(14)c. Hence, we cannot have a nontrivial product V. xV — V or V x V — s0(14)c or
V xV — (s0(14)c € V). The only possible definition of a Lie algebra structure is to make V'
an abelian subalgebra. |

Corollary 1. The GraviGUT algebra cannot be embedded into the quaternionic real form of Eg,
or any other real form of Eg.

Proof. The maximal dimension of an abelian subalgebra of Eg is 36 [9]. This implies that V'
cannot be a subalgebra of Fg, and that the complexified GraviGUT algebra cannot be embedded
into Eg. The result follows. |
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Remarks.

1. We also note that if we have a 64-dimensional representation V' that is not irreducible,
then embedding so(14)c € V into Eg is still not possible. The summands in the direct
sum decomposition of Eg as an ¢(s0(14)¢)-module have dimensions 1, 14, 14, 64, 64, 91,
as we will see below in equation (2). Hence, the only 64-dimensional so(14)c submodules
of Fg are irreducible.

2. The subspace of Eg defined by Lisi in his equations (4.3), (4.4) (see [8]) is not closed under
the Lie bracket it inherits from FEjg.

6 The extended GraviGUT algebra in Eg

In [4], the authors computed the following decomposition of Eg with respect to the adjoint action
of (so(14)c):
Es 2010) . V(A2) ® V(M) @ V(Xe) @ V(A7) @ V(A1) & V(0) (2)
Zso(14)c [‘}(74]50(14)@EB [)(120]50(14)@EB [}/71]50(14)@EB [)(112]50(14)(c69 [YQ7]50(14)CEB [H]50(14)C7

where

X7a = X456,78,2,3,4,56,7

X112 = —X34.2.1,54,3,6,54,7,2,6,5,8,7,6,4,5,3,4,2

X120 = X8,7,6,5,4,3,2,1,4,5,6,7,3,4,5,6,2,4,5,3,4,2,1,3,4,5,6,7,85

Yor = —Y54,2,3,6,4,1,3,54,7,2,6,5,4,3,1,

H =4H, +5Hy + TH3+ 10H4 + 8Hs + 6Hg + 4H7 + 2Hg.

Lemma 1. The following are 78-dimensional, nonabelian nilpotent subalgebras of Eg:

[Ylso(14)c © [Yorlso(14)c [X112]s0(14)c @ [X120]s50(14)c-

Note that the sums are direct as so(14)c irreps, but not as subalgebras of Es. Further, the
subalgebras [Yor]so(14). and [X120]so(14) 0of Es are abelian.

Proof. The authors showed in [4] that [Yo7]se(14). and [X120]se(14). are abelian subalgebras
of Eg.

The positive roots of Eg, as explicitly described in Appendix A, give us a triangular de-
composition of Eg: FEg i @ Ego @ Eg_. In Appendix A we also explicitly describe bases for
the representations [X120]s0(14)c> [X112]s0(14)cs [Yo7lso(14)c, and [Y1]go(14).- Since w(so(14)c) =
[X74]50(14)c> We also give bases for ¢(so(14)c) and p(s0(14)c—). Each of these bases consists of
all positive root vectors, or all negative root vectors.

The bases given in Appendix A imply

Es + = p(s0(14)c+) ® [Xi12]so(14)c ® [X120]s0(14)c
Es— = ¢(s50(14)c-) @ [Yilso1a)e ® [Yorlso(14)c-
And of course
[[X112]s0(14)c D [X120]s0(14)c> [X112]50(14)c D [X120]50(14)c )5
[[}/1]50(14)5 D [YQ7]50(14)C7 [Y1]50(14)(C D [Y97]50(14)<c]

are subsets of Fg , and Eg _, respectively.
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In Appendix A, we see that the positive root vector X, is in the basis of [X112]s0(14). OT
[X120]s0(14)¢ if al # 0, where o' is the first entry of a. If o' = 0, then X, is in the basis of

ps0(14)c).
Thus, if X, and X, are positive root vectors in the basis of [X112]s0(14)c OF [X120]s0(14)c Such

that [X,, Xo] # 0, then this product is a nonzero scalar multiple of X/, where (a+a’)! # 0,
so that X4 q is an element of [X112]s0(14)c @ [X120]s0(14)c- Therefore,

[[X112]s0(14)c D [X120]s0(14)cs [X112]50(14)c D [X120]50(14)c) € [X112]50(14) D [X120]s0(14)c -

In a similar manner we show

[Y1]so1a)e @ [Yolso(14)cr [Y1lso1a)e @ [Yo7lso(14)c] € [YVilso(14)e © [Yorlso(14)c-

Thus [)/1]50(14% <5 [}/97]50(14)C and [X112]50(14)(c &5 [X120]50(14)(c are subalgebras of Eg. Further, they
are nilpotent since they are contained in Eg _ or Eg , respectively. |

Lemma 2. The following are not subalgebras of Eg:

[Y97]50(14)<c @ [X112]50(14)C7 [X120}50(14)<c @ [Yl]sa(14)c-

Proof. Referring to the bases of [X120]s0(14)c and [Y1]so(14). described in Appendix A, we have
Yie € [Y1]50(14)C, and of course X120 € [X120]s0(14).. However, [Y112, X120] is a nonzero mul-
tiple of X47, which is not in [X120]50(14)<c &) [Y1]50(14)<c‘ Hence [X120]50(14)c S5} [Y1]50(14)C is not
a subalgebra. Similarly [Yor]se(14). © [X112]s0(14). is nOt a subalgebra. [

We may now explicitly define the extended GraviGUT algebra as follows. As a vector space,
it is

s0(1d)c &€ (V(Xg) @V (1)) Zso(ld)c € (V(A7) @ V(A1)).

The Lie algebra structure is inherited from that of Eg. In particular, the following subalgebras
are not direct sums as algebras, though the sums are direct as vector spaces:

V(X6) + V(A1) = [Yso1a)e + [Yorlso(14)c
V(A7) + V(A1) = [Xi12]se14)c + [X120]50(14)c -

We note further that not only are so(14)c &€ (V(X) +V(A1)) and so(14)c € (V (A7) +V (1))
isomorphic subalgebras, but they are equivalent subalgebas of Eg, related by the Chevalley
involution of Egs. Hence, we shall only consider so(14)c € (V(A7) + V(\1)). It is significant
to observe that the (complexified) GraviGUT algebra is a quotient of the extended GraviGUT
algebra. The only distinction that can be made is that these two subalgebras of Eg are not the
same as 50(14)c-modules.

We now proceed to the classification of embeddings of the extended GraviGUT algebra
into Eg. A lift of ¢ : s0(14)c — Eg to so(14)c € (V(A7)+V(A1)) is completely determined by its
definition on highest weight vectors of V(A7) and V(A1). Call these vectors u and v, respectively.
Hence, for any «, 5 € C*, the following is a lift of ¢ : s0(14)c — Eg toso(14)c € (V(A7)+V (A1)):

‘;Za,ﬁ : 50(14)@ & (V()\7) + V()\l)) — Fjy,
U — O[X112,
V= ,3X120. (3)

Theorem 3. All embeddings of the extended GraviGUT algebra into Eg are given by ¢o g, for
all o, B € C*. These embeddings are classified according to the rule

S’b/a,ﬂ ~ Q;O/,ﬁ’ = Oé/2,8 — 0525/.
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Proof. First note that by Theorem 1, all embeddings of the extended GraviGUT algebras must
come from lifts of ¢, and hence, considering Lemmas 1 and 2, equation (3) defines all embeddings
of the extended GraviGUT algebra into Fs.

Define inner automorphisms of Eg as follows:

1

p: X1 l—)OéXl, Yl'—) *Yl,
«
Xi — Xi, Y'z = Y%,

1
Pl Xi—d Xy, Yi— =Y,
o

Xi = X, Yi = Y,
for 2 <i <8. Then a3 =pop, s5,and o g =p 0@, » . Hence Pop ~ @, 5, and G g
' a2 1(!#2 Y a2
~ SOLQLI;

If ¥ is an inner automorphism of Eg such that ¥ o ¢, 5 = 951 s, then 19 fixes X; and Y; for
‘o ,W
2 <1 <8, and also X113. We have

[- .. [X112,YQ],}/4],}E’)],YS],}%],YA,YVB],YZ],YB],
Yal, Y|, Yal, Y], Y3], Yal, Y7, Y6, Y5, Yo, Yal, V3] = Xi,

so that ¢ fixes X;. Hence ¥(Xj20) = Xi20, so that % = f—,; The opposite implication is
obvious. Hence we have established

gfb/aﬂ ~ @a,ﬂ = O/Qﬁ = az/Bl. [ |

Remark. Theorem 3 implies, of course, that there are an infinite number of embeddings of the
extended GraviGUT algebra into Eg, up to inner automorphism. However, it is interesting to
note that there is a unique subalgebra of Fg which is isomorphic to the extended GraviGUT
algebra up to inner automorphism.

7 Conclusions

In [8], Lisi identified a copy of spin(11, 3) in the quaternionic real form of Eg and a 64-dimensional
subspace on which spin(11,3) acts irreducibly. His hope was to embed the GraviGUT algebra.
However, the subspace spanned by these spaces is not closed under the Lie bracket.

We proved that the only possible Lie algebra structure on the GraviGUT algebra has a trivial
(abelian) bracket on the 64-dimensional subspace. In particular, the GraviGUT algebra cannot
be embedded into any real form of Fg. We then modified Lisi’s construction to create true Lie
algebra embeddings of the extended GraviGUT algebra into Eg. We classified these embeddings
up to inner automorphism.

A The representations [X74]5o(14)<c7 [X120]50(14)C, [X112]5o(14)(ca
[%7]50(14)@ and [le]so(14)c

In this appendix we describe the representations [X7a]so(14)es [X120]s0(14)c> [X112]60(14)c 5
[Yo7]s0(14)c and [Y1]so(14). from equation (2).

Let ay,as,as,...,as be a set of simple roots for Fg. To any positive root aja; + asag +
asas + - - - + agag we may associate a vector [a, ag,as, ..., ag] € Zio. With this convention, the
positive roots of Eg, as computed with GAP [5], are as follows:

ay = [1,0,0,0,0,0,0,0], az =[0,1,0,0,0,0,0,0],
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=0,0,1,0,0,0,0,0],
=0,0,0,0,1,0,0,0],
a7f[0 0,0,0,0,0,1,0],
ag = [1,0,1,0,0,0,0,0]
a1 = [0,0,1,1,0,0,0,0],
a3 = [0,0,0,0,1,1,0,0],
a5 = [0,0,0,0,0,0,1,1],
arr =[0,1,1,1,0,0,0,0],
a9 =[0,0,1,1,1,0,0,0],
as = [0,0,0,0,1,1,1,0],
ass = [1,1,1,1,0,0,0,0],
ass = [0,1,1,1,1,0,0,0],
asr =[0,0,1,1,1,1,0,0],
aggf[o 0,0,0,1,1,1,1],
=[1,0,1,1,1,1,0,0],
[

Q33 = 071717171717070a
Q35 = [0 07171717171701
g7 = [17 17 1727 1707070 5

ase = [1,0,1,1,1,1,1,0],

Qg1 = [Oa]-a]-a]-alalalaoa
ay3 =10,0,1,1,1,1,1,1],
Q45 = 1717172717170705

o9 =10,1,1,2,1,1,1,0),
as =[1,1,2,2,1,1,0,0],
as3 =[1,1,1,2,1,1,1,0],
ass =[0,1,1,2,2,1,1,0],
asy =[1,1,2,2,2,1,0,0],

Q59 = [171717272717170a

Qe1 = [0a1717272727170a
g3 = []-a 15273727 17070 )
Qg5 = 1515272317171715

[
=[1,1,1,2,2,1,1,1],
a69—[1 2,2,3,2,1,0,0],
[1,1,2,2,2,2,1,0],

a3 =[1,1,1,2,2,2,1,1],

=11,2,2,3,2,1,1,0],
a7 =[1,1,2,3,2,1,1,1],
arg =[1,1,1,2,2,2,2,1],
as1 =[1,2,2,3,2,1,1,1],
ags =1[1,1,2,3,2,2,1,1],

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
[ ]
=1[1,0,1,1,1,1,1,1],
[ ]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

a4 =[0,0,0,1,0,0,0,0],
ag = [0,0,0,0,0,1,0,0],

=10,0,0,0,0,0,0,1],
a10 = [0,1,0,1,0,0,0,0],
a1z = [0,0,0,1,1,0,0,0],
a14 = [0,0,0,0,0,1,1,0],
a16 = [1,0,1,1,0,0,0,0],
ars = [0,1,0,1,1,0,0,0],
as = [0,0,0,1,1,1,0,0],
ag = [0,0,0,0,0,1,1, 1],
ass = [1,0,1,1,1,0,0,0],
ass = [0,1,0,1,1,1,0,0],
aos = [0,0,0,1,1,1,1,0],
aso = [1,1,1,1,1,0,0,0],
ass =1[0,1,1,2,1,0,0,0],
ass =[0,1,0,1,1,1,1,0],
0,0,0,1,1,1,1,1],
1,1,1,1,1,1,0,0],

]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
ase = | ]
asg = | ]
a0 =[0,1,1,2,1,1,0,0],
ap =[0,1,0,1,1,1,1,1],
ouq = [1,1,2,2,1,0,0,0],
o = [1,1,1,1,1,1,1,0],
aus = [0,1,1,2,2,1,0,0],
aso = [0,1,1,1,1,1,1,1],
=[1,1,1,2,2,1,0,0],
=[1,1,1,1,1,1,1,1]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
1, ]

Y Y Y Y ) ) ) )

ase = (0,1,1,2,1,1,1, 1],
asg = [1,1,2,2,1,1,1,0],
ago = [1,1,1,2,1,1,1, 1],
ag2 = (0,1,1,2,2,1,1, 1],
ags = [1,1,2,2,2,1,1,0],
1,1,1,2,2,2,1,0],
agg = 10,1,1,2,2,2,1, 1|,
arp =1(1,1,2,3,2,1,1,0],
ar =11,1,2,2,2,1,1,1|,
arg =10,1,1,2,2,2,2, 1],

g6 =

are =11,1,2,3,2,2,1,0],
arg=1,1,2,2,2,2,1, 1],
ago = |[1,2,2,3,2,2,1,0],
agy = [1,1,2,3,3,2,1,0],
age = (1,1,2,2,2,2,2, 1],
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Qags = 1 2727373727170]7
agr = 171727373727171]7
age = [1,2,2,4,3,2,1,0]

1,
[
1,
=01,2,2,3,2,2,2,1
= [1,
1,
2,
1,

I,
1,2,3,4,3,2,1,0]
1,2,2,3,3,2,2,1
agr = [2,2,3,4,3,2,1,0
age = [1,2,2,4,3,2,2,1]
=1[2,2,3,4,3,2,1,1],

1,2,2,4,3,3,2,1],

1,2,3,4,3,3,2,1],

9

J
]

9

@101
103 =

Q105 =
Q107 = 2 273747373)271 )

113 = 2 3737574737271 )
115 = 2 3747574737271 )
Q117 = 2 374> 6>5737271 ’

1,2,2,3,2,2,1,1],
1,1,2,3,2,2,2, 1],
a0 = [1,2,2,3,3,2,1,1],

age = [ ]
[ ]
[ ]
age = [1,1,2,3,3,2,2,1],
[ ]
[ ]
[ ]

agg =

aos = [1,2,2,4,3,2,1,1],
1,1,2,3,3,3,2,1],
1,2,3,4,3,2,1,1

Qo6 =
Qg8 =
a100 = [1,2,2,3,3,3,2,1],
a2 =1(1,2,3,4,3,2,2, 1],
o104 = (2,2,3,4,3,2,2, 1],
o106 = [1,2,2,4,4,3,2, 1],
a8 = (1,2,3,4,4,3,2, 1],

Q114 = 272747574737271 9
116 = 2737476a473a271 )
a118 = 27374761574a271 )

]
]
]
]
]
aio = [1,2,3,5,4,3,2,1],
]
]
]
]
]

] [
] [
] [
] [
a9 = [2,2,3,4,4,3,2,1], [
I, o112 =1[1,3,3,5,4,3,2,1],
] [
] [
] [
] [

[
[
[
[
a = [2,2,3,5,4,3,2,1],
[
[
[
[

119 = 2374>6>57473717 120 = 2737476a5a47372'

Let X,, = X;, and Y, =Y, be a choice of positive (resp. negative) root vector corresponding
to the root «;.

A basis of V(A1) = [X120]s0(14) 18 given by the 14 positive root vectors:

X977
X114,

X101,
X115,

X104,
X116,

X107,
X117,

X109,
X118,

X111,
X119,

X113,

X120
A basis of V(A1) = [Yo7]s0(14) IS given by the 14 negative root vectors:

Yio01,
}/1157

Yio07,
}/1177

Y109,
Yi1s,

Yii1,
Y1197

Yi13,
Yi90.

Y104,
Y116,

A basis of V(A7) = [X112]s0(14) 18 given by the 64 positive root vectors:

X1, Xg, Xis, Xoz, Xog, X3z, X31, Xz7, Xss,
X39, Xaa, Xu5, Xug, X7, Xs1, Xs2, X3, Xsg,
Xs7, Xs8, Xs9, Xeo, Xe3, Xea, Xes, Xes, Xer,
Xe9, X70, X171, X712, X73, Xvs, Xvg, X77,  Xos,
X79, Xso, Xs1, Xs2, Xs3, Xsa, Xg5, Xgs, Xsr,
Xss, Xsg, Xoo, Xo1, Xog2, Xo3, Xoa, Xo5, Xos,
Xog, Xogg, X100, X102, X103, Xios, X106, Xios, X110,
X112

A basis of V/(A¢) = [Y1]s0(14). 18 given by the 64 negative root vectors:

Ylv }67
Y39, Y,

Y].67
}/457

Yo3,
Y467

}/247
}/477

Y30,
Y517

YE’)I:
Y527

Y37,
Y53,

Y387
Y54,
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Note that ¢(s0(14)c) = [X74lse(14).- We describe bases of ¢(so(14)cy) and ¢(so(14)c-),
respectively:

Xo, X3, Xa, X5, X6, X7, Xs, X0, Xun,
Xi2, Xiz, Xua, Xus, Xar, Xas, Xy, Xoo, Xon,
Xog, Xos, Xog, Xor, Xog, Xog, X32, X33, X,
X35, Xse, Xao, Xa1, Xaz, Xuz, Xys, Xy, Xso,
Xs55, Xse, Xe1, Xe2, Xes, X743

Yo, Y3, Yy, Y5, Y, Y7, Ys, Yy, Yoo,
Yio, Yi3, Yu, Y5, Yir, Yis, Yig, Yoo, Yo,
Yoo, Yo, Yos, Yor, Yos, Yoo, Yo, Vi3, Yy,
Y35, Yss, Yao, Yar, Yao, VYiz, VYis, Yig, Yio,
Y55,  Yse, Ye1, Ye2, Yes, Y7
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