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Abstract. The study of the partition function in M-theory involves the use of index theory
on a twelve-dimensional bounding manifold. In eleven dimensions, viewed as a boundary,
this is given by secondary index invariants such as the Atiyah—Patodi—Singer eta-invariant,
the Chern—Simons invariant, or the Adams e-invariant. If the eleven-dimensional manifold
itself has a boundary, the resulting ten-dimensional manifold can be viewed as a codimension
two corner. The partition function in this context has been studied by the author in relation
to index theory for manifolds with corners, essentially on the product of two intervals. In
this paper, we focus on the case of framed manifolds (which are automatically Spin) and
provide a formulation of the refined partition function using a tertiary index invariant,
namely the f-invariant introduced by Laures within elliptic cohomology. We describe the
context globally, connecting the various spaces and theories around M-theory, and providing
a physical realization and interpretation of some ingredients appearing in the constructions
due to Bunke-Naumann and Bodecker. The formulation leads to a natural interpretation of
anomalies using corners and uncovers some resulting constraints in the heterotic corner. The
analysis for type ITA leads to a physical identification of various components of eta-forms
appearing in the formula for the phase of the partition function.
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genera; partition functions; eta-forms
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1 Introduction

The goal of this paper is to combine the appearance of corners with that of elliptic cohomology
to describe global aspects of the partition function in M-theory, which we hope could help
shed some light on the role of elliptic cohomology in physics. Topological study of M-theory
is often facilitated by taking it as a boundary. Furthermore, the heterotic theory is essentially
a boundary of M-theory. Then, considering topological aspects in this setting requires the study
of a twelve-dimensional theory whose boundary theory itself admits a boundary, i.e. forms
a corner of codimension two. The partition function using index theory for manifolds with
corners is analyzed in [63]. On the other hand, the study of anomalies in M-theory and string
theory suggests connections to elliptic cohomology. In the case of heterotic string theory this
has a long history, in particular in connection to elliptic genera [37, 74, 85]. More recently, by
interpreting various anomaly cancellation conditions as orientations with respect to generalized
cohomology theories, direct connections between elliptic cohomology, on the one hand, and
M-theory and type II string theory, on the other hand, are uncovered [39, 40, 41, 55, 60, 72].
It is natural to ask how the above two descriptions can be consistently merged together. We
advocate that the combination of the two pictures, namely that of codimension two corners and
that of elliptic cohomology, fits nicely into a coherent structure form the mathematical point of
view. We implement a unified view which we use to study some topological aspects of M-theory
in this context for framed manifolds. This is done via the f-invariant, a tertiary invariant
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introduced in [42] and connected to index theory in [19, 83]. Some aspects of M-theory on
framed manifolds in the context of elliptic cohomology are considered in [61]. Here, in addition
to extending the relation further to the heterotic theory, we also consider the effective action
and partition function of type ITA string theory.

Why framed manifolds. We would like to encode corners together with cobordism in the
context of M-theory. By now it is established that cobordism invariants corresponding to various
structures appear in the construction of the partition function in M-theory [21, 22, 56, 61, 68].
Structures described previously include Spin, Spin® and String structures. These are related
to K-theory and elliptic cohomology. In this paper we will consider manifolds with a more
basic structure, namely a framing of the tangent bundle, which include the class of parallelliz-
able manifolds. By the Pontrjagin—Thom construction, this amounts to dealing with the sphere
spectrum, which in turn can be studied by means of elliptic cohomology. We, therefore, provide
another angle on the proposals in [39, 40, 41, 60]. On the other hand, Lie groups provide an
interesting class of framed manifolds, and so taking spacetime to be a Lie group (or some quo-
tient thereof) resembles — and to some extent subsumes — Wess—Zumino-Witten models. Note,
however, that being framed automatically means being Spin, so that our discussion certainly
includes the structures that are expected from a physics point of view, namely Spin structures
(see [68] for an extensive description, with an emphasis on the geometry).

Why framed in the heterotic theory. We would like to concentrate on the case when
the 10-dimensional heterotic corner of M-theory admits a framing. String theory on paralleli-
zable backgrounds is exactly solvable, and hence such backgrounds play a prominent role in the
theory. In [26, 30, 34, 54] a classification of (simply-connected) supersymmetric parallelizable
backgrounds of heterotic string theory is given. For heterotic backgrounds without gauge fields
the dilaton is linear and hence can be described by a Liouville theory, and the geometry is that of
a parallelized Lie group and hence can be described by a WZW model. These include products
of Minkowski spaces with the odd-dimensional spheres S? and S” and the Lie group SU(3). For
example, for the latter, the ten-dimensional manifold is R! x SU(3). In the presence of nonzero
gauge field strength, the geometry may be deformed away from that of a group manifold; it is
still parallelizable but with respect to a metric connection with a skew-symmetric torsion [29].
Flux compactifications on group manifolds in heterotic string theory are considered in [11].
These include the group manifolds with zero Euler characteristic underlying ungauged WZW
models, such as $% x S! [79]. Examples with nonozero Euler characteristic include connected
sums of SU(2) x SU(2) = S3 x 83, which admit a complex structure, but are non-Kéhler, and
have a nowhere-zero holomorphic form.

Index-theoretic invariants in various dimensions. Various index-theoretic invariants
appear in the description of the effective action, and hence of the partition function, in M-theory.
These arise in the form of an index in the twelve-dimensional extension of M-theory, a mod 2
index in type ITA in ten dimensions, and a secondary invariant in eleven-dimensional M-theory.
Our point of view provides and supports a dimensional hierarchy of the form

e Dimension 4 and 12: The effective action is given by indices of twisted Dirac operator
(see [86]). This is a main point where topology enters. Some refinements to elliptic genera
appear in [39, 61].

e Dimension 3 and 11: The effective action involves the eta-invariant, the e-invariant, or the
Chern—-Simons invariant (see [68] for an extensive discussion). In the presence of corners,
the Melrose b-calculus is used to replace the eta-invariant with the b-eta-invariant [63].
Some elliptic refinements, in the sense of [18, 28], are discussed in [61].

e Dimension 2 and 10: The effective action and partition function of type II target string
theory and of the worldsheet theory involve the Arf invariant [22]. Elliptic refinements of
the mod 2 index include the Ochanine invariant as discussed in detail in [57].
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Including the case of framed manifolds, we will advocate the structures in the following table

Dimension | Physical Theory | Index invariant | Cohomology Theory | Underlying Structure

10 ITA d KO-theory Closed Spin manifold
11 M-theory e K-theory Manifold with boundary
10 Heterotic f Elliptic cohomology | Manifold with codim-2 corner

Here d is the Adams d-invariant, which is the degree (Hurewicz map) for KO-theory and is
(a variant of) the mod 2 index of the Dirac operator!, e is the Adams e-invariant, and f is
the invariant of Laures for manifolds with corners of codimension two in the context of elliptic
cohomology. The latter is related to the elliptic genus in a manner similar to how the e-invariant
is related to the Todd genus in K-theory. In the generalization of the e-invariant, which takes
values in Q/Z, to modular forms one notes the following: Since Q/Z is not a ring then it does
not make sense to consider “modular forms with coefficients mod Z”. Hence, one has to consider
modular forms with values in an appropriate ring, which turns out to be the ring of divided
congruences D [42]. More precisely, unlike the 1-line in the Adams—Novikov spectral sequence
(ANSS) the 2-line is not cyclic in each dimension, hence one needs more copies of Q/Z, and
a good way to do so is via D ® Q/Z.

Which elliptic cohomology theory? Topological modular forms (TMF), while can be
viewed as a sort of a ‘universal elliptic cohomology theory’, suffers from a shortcoming, namely
that it is not complex-oriented. The latter is desirable when dealing with physics (see [39, 40]).
Therefore, we will consider versions of TMF which are complex-oriented. A prominent example
is TMF;(N) attached to the universal curve over the ring of integral modular forms for the con-
gruence subgroup I' = I'1 (V) of SL(2,Z). More precisely, TMF; (V) is formed of global sections
of a sheaf of spectra over the moduli space of elliptic curves with level structure; see [42, 46].
Although elliptic cohomology of level 2 allows to extract the information on the e-invariant,
its use is by no means a requirement as, in fact, KO-theory is enough for that purpose. The
important point is that TMF;(NN) provides natural refinements of “well-known” invariants, such
as d and e, as well as entirely new ones, such as f. An appropriate value for N turns out to
be 3. In K-theory at times one works away from powers of 2, and the analogy here is working
in elliptic cohomology away from powers of 3. In fact, if one does not want 2 to be inverted
then the smallest level at which this occurs is 3. Detecting mod 3 phenomena, i.e. considering
the case N = 3, connects to anomalies at the prime 3, studied in [25, 56]. The congruence
subgroup I';(3) appears elsewhere physics, e.g. in the context of topological string theory [1].
Note, however, that one should exercise caution in that working at a fixed prime level is not
equivalent to focusing on phenomena (e.g. anomalies) at that prime.

Elliptic genera for the heterotic string. We recall an explicit instance where elliptic
genera appear in the heterotic theory, which we will later view as a corner. The modular
invariance violating terms can be factored out of the character-valued partition function, which
has the form [44]

A(q, F,R) = exp [~ %4 Ga(r) (Tt F? — Tr R?)] A(q, F\ R),

where Z(q, F, R) is a fully holomorphic and modular invariant of weight —4, and can be expressed
in terms of the Eisenstein functions G4 and Gg (or equivalently, using E; and Eg), as opposed

!Note that Adams defined the degree d for any (generalized) cohomology theory. It is the one based on KO-
theory which can be interpreted as an index mod 2. On the other hand, the one based on integral cohomology HZ
is the ‘correct’ one from the chromatic point of view (i.e. it detects Oth filtration phenomena), but does not carry
‘nontrivial’ information.
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to the function Gy which is not modular. From modular invariance, the anomaly always has
a factorized form and is given by the constant term in the elliptic genus

IlQ(F’ R) = A(q’ F’ R) ‘ 12-form coeff. of ¢ - % ( Tr F2 —Tr RQ) A XS(F’ R)’
where Xg(F, R) is the Green—Schwarz polynomial corresponding to the tangent bundle and gauge
bundle with curvatures R and F', respectively.

Oultine. What we do in this paper can be summarized in the following:

1. We provide a setting for framed manifolds in M-theory and string theory, starting at the
beginning of Section 2. We specialize to parallelizable manifolds, stably parallelizable manifolds,
and in particular to Lie groups and homogeneous spaces in Sections 2.1, 2.2, and 2.3, respectively.
Since M-theory involves boundaries, we describe how framed manifolds arise as boundaries in
our context in Section 2.4.

2. We describe framed cobordism invariants in connection to M-theory and string theory.
After a general discussion on framed cobordism in Section 2.5, we describe the relation between
10-dimensional string theory and the d-invariant (which is a variant of the Arf invariant) in
Section 2.6.1, and then the relation between the e-invariant and 11-dimensional M-theory in
Section 2.6.2. Along the way we explain the effect on the partition function, and in Section 2.7
we consider that from the point of view of change of framing. We also describe the parity
symmetry of the C-field in this context.

3. Having described both framed structures and invariants, we introduce the corner formu-
lation and show in Section 3.1 how the various interconnected theories, together with their
boundaries and some dualities, fit nicely into the structure of framing and corners. This pro-
vides a transparent view on how K-theory and elliptic cohomology enter into the setting. For
instance, the formulation of the C-field in M-theory in [21] can be cast in this setting in a very
natural way.

4. We consider type ITA string theory on a manifold with boundary in connection to M-theory,
itself with a boundary and as a boundary. Since the phase of the partition function is given by
an index, it is natural to describe the partition function, and especially the phase, in this index-
theoretic context. This allows us to get an expression of the phase and provide an interpretation
of eta-forms appearing in [48], thereby extending similar interpretations in [59, 63]. This also
serves as a warm up via secondary index theory for the application of the tertiary index theory
in later sections.

5. We consider the formulation of the heterotic theory as a corner in Section 3.3. The
factorization of the anomaly can be viewed via the splitting of the tangent bundle in the context
of framing. Furthermore, we show in Section 3.3.1 that the general form of the anomaly as well
as the cancellation of that anomaly point to the presence of corners. This can be generalized
to anomaly cancellation as a general process. Then, in Section 3.3.2, we lift the one-loop term
to twelve dimensions and then consider the reduction to the corner. This results in a constraint
on degree twelve Chern numbers that generalize the constraint on degree ten Chern numbers
in [22], and gives rise to a cup product composite Chern—Simons theory. We illustrate how these
conditions affect the corner by highlighting the example of the ten-dimensional Lie group Sp(2)
in [42] which turns out to be the physically important one (see [25]).

6. We next combine the framing and corners description of the heterotic string with the
elliptic cohomology aspect via the framed cobordism invariant at chromatic level 2, namely the f-
invariant of Laures [42], and its geometric refinement by Bunke-Naumann [19] and Bodecker [83].
This can be viewed as the reduction of the index — i.e. the topological part of the action — from
twelve dimensions to the corner. In Section 3.4 we highlight the connection to topological
modular forms and Tate K-theory and how the terms in the effective action get refined to g-
expansions, as in [61]. As we explain in Section 3.5, the f-invariant captures the nonzero ¢ part
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of the expansion and hence, in the view of treating ¢ as a sort of a ‘coupling constant’ [55], the
quantum aspects of the theory. We highlight this in the example of S§% x S7.

We emphasize exposition to explain the various interconnections between the mathematical
constructions and the physical ingredients and settings.

2 Framed manifolds and framed bundles in M-theory

In this section we describe relevant classes of framed manifolds which appear in our setting.
These include parallelizable manifolds such as Lie groups and certain homogeneous spaces. We
then highlight the relevance of structures on these spaces to the physics in M-theory and string
theory. We will denote by “admissible manifolds” those manifolds that can be taken as spaces
on which string theory or M-theory can be compactified, with or without fluxes.

Framed manifolds. If M is a closed n-dimensional manifold with tangent bundle 7'M, then
its stable tangent bundle? T5'M is the direct sum of T'M with a large? trivial bundle M x R”

TM = TM @ (M x R").

A (stable) framing on M means a trivialization f of T5'M, that is, a set f = (f1,..-, fatr)
of (n + r)-sections of T M, linearly independent everywhere. One can consider this from the
point of view of embeddings. A framing on a manifold M"™ smoothly embedded in Euclidean
space R™* consists of an ordered set of vectors {v1(z), ..., vx(x)} varying smoothly with z € M"
and providing a basis for the normal space of M™ in R™** at z. In terms of classifying spaces
of G-structures (see [81]), a framing on a smooth manifold M is a pair (h, ) such that h : M —
R™** is an embedding with normal bundle classified by a map v : M — BO(k) with a lifting
v: M — EO(k), where EO(k) is the total space of the universal principal O(k) bundle

EO(k)

/ lpr,c

M % BO(K)

with pry : EO(k) — BO(k) being the bundle projection.

Framed vector bundles. A rank r vector bundle F — M is called trivial or trivializable if
there exists a bundle isomorphism E = M x R" with the trivial rank r bundle over M. A bundle
isomorphism £ — M x R" is called a trivialization of F, while an isomorphism ¢ : M x R" —» FE
is called a framing of E. Denote by (eq,...,e,) the canonical basis of the vector space R", and
regard the vectors e; as constant maps M — R", i.e. as sections of M x R”". The isomorphism ¢
determines sections f; = ¢(e;) of E with the property that for every x € M the collection
(fi(z),..., fr(x)) is a frame of the fiber E,. This shows that we can regard any framing of
a bundle E — M of rank r as a collection of r sections {uy,...,u,} which are pointwise linearly
independent. Thus one has that a pair “(trivial bundle, trivialization)” deserves to be called
a trivialized, or framed bundle.

In the following we provide what might be viewed as a toolkit for admissible manifolds,
whereby we provide an extensive class of examples.

2Note that this definition involves (commonly accepted) abuse of notation. Strictly speaking, the stable tangent
bundle of M should be thought of as an equivalence class of such, namely as a class in reduced real K-theory
KO(M). A similar remark holds for the stable framing.

3That is, large r. However, the exact value of r will not be important for us.
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2.1 Parallelizable manifolds

A parallelizable manifold is a manifold whose tangent bundle is trivial. A trivialization provides
a framing in a natural way. It is important to emphasize that, in general, a trivial bundle is not
canonically trivialized, a fact which is the source of anomalies from the geometric point of view.

As every parallelizable manifold is Spin, it is an admissible manifold (in a strong sense) in
M-theory. Such manifolds are often decomposable. The product of two parallelizable mani-
folds is also parallelizable. However, the product of two stably parallelizable manifolds is
not necessarily parallelizable. However, a product M x N is parallelizable if and only if M
and N are stably parallelizable and either factor has a vanishing Euler characteristic, since
X(M x N) = x(M) - x(N). This is automatically satisfied if the total dimension is odd.

Examples. 1. Lie groups. All Lie groups (and their quotients by finite subgroups) are
parallelizable. We discuss this important class of examples in detail in Section 2.3.

2. (Projective) Stiefel manifolds. The real and complex Stiefel manifolds V,, , are pa-
rallelizable if £ > 2. For complex Stiefel manifolds one has the following (see [3]). PV, is
the quotient space of the free circle action on the complex Stiefel manifold V,, j, of orthonormal
k-frames in complex n-space given by z(vi,...,vx) = (2v1,...,2v;). If K < n —1 then PV,
is not stably parallelizable. The manifold PV, ,_1 is parallelizable, except PVa 1 = 52, while
PV, ,, is the projective unitary group, and so is parallelizable.

3. Grassmannian manifolds. The only real Grassmannian manifolds Gry(R™) which are
parallelizable are the obvious cases: Gry(R?) = RP!, Gr(R?*) = Gr3(R*) = RP3 and Gr; (R8) =
Gr7(R®) = RP7. The ten-dimensional manifold X% = RP3 x RP7 plays an important role in
the subtle aspects of K-theoretic description of the fields in type II string theory [15].

4. Homogeneous spaces. Many homogeneous spaces are known to be parallelizable: Lie
groups, Stiefel manifolds, quotients of the form G /T where G is a Lie group and T is a non-
maximal toral subgroup. This provides many examples involving the relevant low-rank Lie
groups. Another relevant class of homogeneous spaces is the following. Let G = SU(n) and H =
SU(k1) x - - x SU(k,), r = rank(G), embedded in G in an arbitrary manner. For an appropriate
choice of {k;}, if G/H is parallelizable then G/H is either a complex Stiefel manifold or is of
the form SU(n)/SU(2)**¥ where the subgroup SU(2)**, 2k < n is embedded in the standard
fashion [75]. Most relevant for us is the nine-dimensional manifold SU(4)/(SU(2) x SU(2)).

5. Products of spheres. The product of a sphere with a sphere of odd dimensions is
always parallelizable (see [35]). For example, let us consider the eleven-dimensional manifold
Y1 = 84 x S7, which is important in the flux compactification of M-theory. The 7-sphere S7
admits a nowhere zero section, so that the tangent bundle is the sum T7'S” = n @ ¢! for some
rank 6 bundle n. Let pr; and pry denote the projections of the product to the first and second
factors, respectively. Then T(S* x S7) = pr}(T'S*) @ pri(n@®el); now the second summand gives
pr3(n) el and so using pri(TS*) @ el = pri(T'S*@e!) = &5, in total we have pry(n®e®) = ell,
which shows that indeed S* x S7 is parallelizable. Similar remarks hold for the decomposable
eleven-dimensional manifolds S® x $2, S x 85, §2? x §9, and S* x S10.

6. Principal bundles over parallelizable manifolds. If the base space of a principal
bundle is parallelizable then so is the total space, since the fiber is isomorphic to a Lie group,
which is parallelizable. In relating M-theory in eleven dimensions to various favors of string
theory in lower dimensions, one performs dimensional reduction, which can usually be viewed
as a reduction of the total space of a principal bundle to its base.

2.2 Stably parallelizable manifolds

A bundle F is said to be stably trivial if its Whitney sum with a trivial bundle is trivial.
A manifold M is said to be stably parallelizable or a w-manifold if the tangent bundle T'M is
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stably trivial. Note that if TM @ ¥ is trivial then TM @ €' is already trivial. If a connected,
stably parallelizable manifold M has non-empty boundary, then it is actually parallelizable [36].

Reduction of structure group for stably parallelizable manifolds. Let Y'!! be a con-
nected stably parallelizable closed eleven-dimensional manifold. There is, up to isomorphism,
exactly one stably trivial, but not trivial, 11-dimensional vector bundle 7 over Y. It may be
described as the pullback of the tangent bundle of S'' by a map f : Y'! — S of degree one
(collapsing the complement of an open disk) [20]. It follows from [82] that the structure group
of 7 can be reduced to SO(k) by the standard inclusion SO(k) < SO(11) if and only if 12 =0
mod a(12 — k), where a(r) is the Hurwitz—Radon number of r. The special case in which 7 is
the tangent bundle is considered in [17].

Properties. (Stably) parallelizable manifolds enjoy the following useful properties.

1. The boundary of a parallelizable manifold is a m-manifold. This will be useful when
considering various boundaries and corners.

2. The product of two m-manifolds is a wm-manifold. This will be useful when we consider
decomposable m-manifolds, which will be the main class of admissible manifolds.

3. Every stably parallelizable manifold is Spin. This also follows from the more general fact
that framed manifolds are Spin. Hence such manifolds are physically admissible.

4. Suppose H C K C G is a sequence of closed Lie groups. If G/H is stably parallelizable
then so is K/H.

Examples. 1. All parallelizable manifolds. This includes spheres in dimensions 1, 3,
and 7. On the other hand, the only real Grassmannian manifolds Gy(R™) which are stably
parallelizable are the parallelizable ones, as in Section 2.1 above.

2. Spheres. While spheres are stably parallelizable. They have many interesting properties
including TS™ ® e! = " *1,

3. Homogeneous spaces. An example which is not (strictly) parallelizable is the following.
Let G be a simple 1-connected compact Lie group and H a closed connected subgroup. Then
G/ H is stably parallelizable if and only if the adjoint representation Ady of H is contained in the
image of the restriction map of real representation rings RO(G) — RO(H) [77]. A homogeneous
space which is almost parallelizable not strictly parallelizable is G /Tax, the quotient of a Lie
group G by a maximal torus.

4. Sphere bundles over m-manifolds. Recall that the tangent bundle of a sphere bun-
dle S(F) takes the form T'S(FE) = n*TM"™ @ Tr(S(E)), with the canonical isomorphism 1 @
Tr(S(E)) = n*E, where Tp is the vertical tangent bundle. Assume that M" is a m-manifold.
Then S(F) is a m-manifold if 7*E — S(E) is stably trivial. In particular, S(E) is a m-manifold
if M™ is the n-sphere; see [78].

5. Sphere bundles over spheres. This is a class of examples that will be very useful for us
when considering the partition function in later sections. Let £ — M™ be a smooth oriented m-
plane bundle with associated sphere bundle S™ ! — S(E) — M™ in some Riemannian metric.
We specify to M"™ = S™ and introduce the disk bundle D™ — D(E) — S™ associated to a vector
bundle E over the sphere S™. Recall that T(D(E)) = 7#*TS™ @ n*E, so that if ¢ is a stable
trivialization of E there is induced a stable framing of D(FE) by pulling back ¢ and the usual
stable framing of T'S™ along 7. Note that (D(E); ¢) = (S(E); ¢) where ¢ is the stable framing
of S(E). In general, such bundles are only stably parallelizable.

Extending almost parallelizable to parallelizable manifolds. Here we will contrast
the case of string theory and M-theory, in the sense of even- vs. odd-dimensional manifolds. If
the dimension of M is even, the parallelizability of a stably parallelizable manifold is determined
by the vanishing of the Euler characteristic of M. Thus if the Fuler characteristic is zero then
any stably parallelizable manifold is in fact parallelizable. For us this includes ten-dimensional
manifolds appearing in type IIA and heterotic string theory. On the other hand, if the dimension
of M is odd, M is parallelizable if and only if its Kervaire semi-characteristic x 1 (M), defined
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via mod 2 homology by

[dim(M)/2]

X%(M):% > dimg, Hi(M;Z;)  (mod 2) (2.1)
=0

vanishes. Therefore, similarly, when y1 (M) = 0 then a stably parallelizable manifold becomes
2
parallelizable. This places a condition on the homology of the manifolds; see Section 3.1.

2.3 Lie groups and homogeneous spaces as framed manifolds

Lie groups form an interesting class of examples of compactification manifolds which are able
to carry subtle torsion information about fields in spacetime. See e.g. [47] for a description of
such WZW models in the context of twisted K-theory. The discussion we give below, together
with the construction of twisted Morava K-theory in [73], allows for an extension to detect finer
invariants (see Section 2.5).

Framings on Lie groups. The left invariant vector fields of a compact Lie group G induce
a specific isomorphism £, the left invariant framing, between the tangent bundle of G and the
product bundle G x R¥™&  Indeed, the tangent bundle T(G) of any Lie group G is trivial.
Take a basis {ei,...,e,} of the tangent space at the origin T.(G), where n = dim G. Denote
by R, the right translation by g in the group defined by Ry : « + z - g, for all x € G. This
is a diffeomorphism with inverse R;l = Rg-1 so that the differential DR, defines a linear
isomorphism DR, : T,(G) — T,G. Since the multiplication G x G — G, given by (g,h) — g - h,
is a smooth map then the vectors f;(9) = DRy(e;) € TyG, i = 1,...,n, define smooth vector
fields over G. Then for every g € G the set {fi(g),..., fn(g)} is a basis of Ty(G) so that there
is indeed a vector bundle isomorphism ¢ : G x R™ — T'G taking (g;el, ... e") to (g; > €' fi(g)).
Similarly, the same holds for framing via the left translation £,. Then the right invariant framing
R:T(G) =G x Te(G) of G is given by R(v) = (g, Ry-1(v)) where v € Ty(G).

Framings on homogeneous spaces G/H. Let G be a compact connected Lie group
and H a closed subgroup of G. Let T(G/H) denote the tangent bundle bundle of the coset G/H.
Consider the H-principal bundle H — G 5 G/H. Then the tangent bundle of G decomposes
as T(G) =2 n*T(G/H) ® Ty(G). This isomorphism is compatible with the right H-action,
and so there is an isomorphism of vector bundles over G/H, namely T(G)/H = T(G/H) ®
Tu(G)/H. Let ady denote the adjoint representation of H on T.(H). Similarly, there is an
isomorphism Ty (G)/H = G xg T.(H) of vector bundles over G/H, where H acts on T.(H)
via adgy. Combining the above bundles gives the isomorphism of vector bundles over G/H

G/H x T.(G) = T(G/H) & G xad,, To(H). (2.2)

So if adr is contained in the image of the restriction map RO(G) — RO(H) of real representation
rings then (2.2) gives a framing of G/H (see [45]).

2.4 Framed boundaries

We will consider framed manifolds in twelve, eleven, ten, and nine dimensions, and in the last
three cases we would like to allow the manifolds to be boundaries. We will consider restrictions
for this to occur and illustrate with useful examples.

Lie groups. Let G be a compact Lie group. Two natural questions that arise in our context
are: When is GG the boundary of a compact manifold Z7 In this case, when is Z parallelizable?
We highlight two cases that are important to our discussion:

1. Disk bundles D(Lc) of the canonical complex line bundles L¢ over the quotient G/S!.
The boundary Y of the total space Z of the complex line bundle is the circle bundle S(£)
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given by G — G/S! with 9Z = G. This context (for manifolds that are not necessarily
framed) is discussed extensively in [68].

2. Similarly for disk bundles D(Ly) of the quaternionic line bundles Ly over G/SU(2) =
G'/S3. The boundary Y of the total space Z of the quaternionic line bundle is the sphere
bundle S(Ly) given by G — G/S3 with 0Z = G. The example we have in mind in this
case is the group ten-manifold Sp(2) = Spin(5) or SO(5) and their quotients with finite
groups. See also [25] for an application to D-brane anomalies.

Generalized flag manifolds. Let G be a compact Lie group of rank [ and T' a maximal
torus. Then the flag manifold G/T is a m-manifold [14], and an explicit bounding manifold W
with a corresponding stable framing can be constructed as follows [53]. Let g and t be the
Lie algebras of G and T, respectively. Under the adjoint action of T, g decomposes as an
ad(T)-module as g = t @, g, Where a are certain linear forms o« : t — R and the g, are
two-dimensional T-modules corresponding to e* : T — SO(2). The subspace €, = t @ g, is
in fact a Lie subalgebra of g isomorphic to R'=! @ su(2), where R'=! = ker « is the center and
su(2) is the commutator subalgebra of €,. Denote by C, < G the closed connected subgroup
corresponding to €, < g. Then the 2-sphere bundle

Co/T — G|T — G/C, (2.3)

has a corresponding disk bundle W which is stably parallelizable. The tangent bundle of W is
given by TW = 7m*T(G/C,) @ 7*¢, where ¢ is the 3-plane vector bundle corresponding to the
2-sphere bundle (2.3). For example, when G is the Lie group G the total space of the 2-sphere
bundle is a 12-dimensional manifold.

S1- and S3-action and framing of the disk bundle. Consider the case when H is S*
or $% and Z the corresponding disk bundle over G/H with projection p. Denote by Adg
(resp. Adpy) the adjoint representation of G (resp. H). Then the restriction of Adg to H
decomposes as

Adg‘H = Ad(G’,H) D AdH, (24)

since Adg|g contains Ady as a sub-representation. Let H act via Adg|m on the tangent
space T.(G), decomposing it via (2.4), as T.(G) = V @ T.(H). From T(G)/H = G xy Tc(G)
and Ty(G)/H = G xg T.(H), one gets T(G/H) = G xg V. Suppose that there is a real
representation f of G such that f|g = Ad(g gy ® o @ ¢, where the integer ¢ denotes the (-
dimensional trivial representation, and o is the inclusion H < SO(r+1) for r = 1,3. Applying f
toTZ = p*(T(G/H)®n, where 1 is the vector bundle associated via ¢ to the principal H-bundle
7 : G — G/H, yields an isomorphism ¢ : TZ @ (Z xRY) — Z x R4+ which provides a framing
for Z. So the framed manifold (Z,¢) bounds the framed manifold (G, —f). See [51] for more
details. More examples can be found in [4].

We now present an example which is central to our discussion.

Example. Sp(2). The ten-dimensional Lie group Sp(2) can be viewed as a 3-sphere bundle
over the 7-sphere, S < Sp(2) — S”. This example is used in [25] to study D-brane anomalies
at the prime p = 3. Since this is a sphere bundle, it is a boundary of a disk bundle D* — Y =
D(Sp(2)) — S7, which is a Spin manifold. The framing can also be extended to the disk bundle
by the above results, even though [Sp(2),«, L] = 0 in the stable homotopy group m5,S° (see
Section 2.5).

Topological conditions on stably parallelizable manifolds with boundary. We con-
sider M-theory on an eleven-manifold Y'!!. Then the semi-characteristic of Y is defined in (2.1).
Let Z'2 be a compact 12-dimensional manifold with boundary 0Z'?2 = Y!''. Then, from the
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general result in [16], the Euler characteristic of Z'? and the Euler semi-characteristic of Y11
are related as

12y _ 11
X(Z ) —X%(Y ) mod 2.
This places a condition on the cohomology of Y and of its bounding manifold Z'2.

2.5 Framed cobordism

We are considering manifolds which can be boundaries and which at the same time admit
a framing. The natural context to study these is framed cobordism.

Framed cobordism classes and the parity symmetry in M-theory. Let M; and My
be two closed n-dimensional framed manifolds. We say that M; and M» are framed cobordant
(written M; ~ My) if there are (n + 1)-dimensional compact framed manifolds Wy, Wa with
framed diffeomorphism M; [[OW; = My [ OWa, where 0W; and 0W; have the induced fra-
mings. The empty set can be viewed as an n-dimensional smooth framed manifold with a unique
framing. A framed manifold (M, f) is null-cobordant or cobordant to zero if M is the boundary
of a compact manifold X"*! endowed with a framing f that restricts on M to n @ f, where
7 is the unit outward-pointing normal field of M in X. The inverse —(M, f) of a framed
manifold (M, f) is defined by taking M with the “opposite” framing, i.e. with the framing
obtained by reversing one of the sections of f. Note that this implements the discrete parity
symmetry of M-theory on manifolds with vanishing first Spin characteristic class, i.e. on String
manifolds and hence framed manifolds. This symmetry is given by an odd number (in this case
one) of space and time reflections together with a reflection of the C-field C3 — —C53. Two
framed n-manifolds (M, f1), (M2, f2) are framed cobordant if their disjoint union (Mj, f1) N
—(My, f2) is null-cobordant. This is an equivalence relation for framed manifolds, and the set
of equivalence classes of framed n-manifolds forms an abelian group QIF under disjoint union of
manifolds.

Framed cobordism in 9, 10, and 11 dimensions. A closed framed 10-manifold M
represents a class [M'0] € Qff) = 75 (SY) = Zy®Z3 = Zg via the Pontrjagin-Thom construction.
We will also be interested in the 9-dimensional and 11-dimensional cases, for which 7§ = Zo ©
Lo ® Ly and 7§, = Z7 ® Zg ® Zg, respectively. The fact that these groups are nonzero implies
that there are obstructions to having a framed 9-manifold, 10-manifold, or 11-manifold to be
a boundary. However, as in [21] for the Spin case, we will assume that the manifolds that we
have are such that there are no such obstructions, i.e., the boundaries are given to us from
the start; we will take situations where we have a specific given boundary. By their very
construction, non-triviality of the framed bordism groups imply that there are obstructions to
having framed manifolds occur as framed boundaries. Even when they do not bound framed
manifolds, it might be sufficient that they bound at least a physically admissible manifold, e.g.
a Spin manifold.

Lie groups as elements in framed cobordism. If G is a k-dimensional compact oriented
Lie group then every trivialization of the tangent bundle gives rise to a trivialization of the
stable normal bundle and hence to an element of the kth framed cobordism group Qg If two
choices of linear isomorphisms of the Lie algebra g with R¥ differ by an element of GL(k,R)
of positive determinant then the corresponding tangential trivializations are homotopic through
trivializations and hence determine the same element of Q% Therefore, a compact oriented
k-dimensional Lie group gives rise to a well-defined element [G] € Q.

Adams filtration. A compact Lie group G with its left invariant framing £ defines, via the
Pontrjagin-Thom construction, an element [G, £] in the stable homotopy groups of spheres 7.
The filtration is a good measure of the complexity of #f. For a compact Lie group of rank r
the filtration is at least r. A result of [38] states that for G a compact Lie group of rank r, the
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element [G, £] in 7$(S°) defined by G in filtration r. This filtration is the same as the chromatic
level. To detect chromatic phenomena at level 1, that is via K-theory, Lie groups of rank 1 should
be used. However, if we want to detect chromatic phenomena at level 2, corresponding to elliptic
cohomology (or to Morava K-theory K(2)), we should consider Lie groups of rank 2. Therefore,
a priori, the most relevant groups for us will be e.g. G2, Sp(2), SO(5), Spin(5), SU(3), and their
quotients. The element resulting from the Pontrjagin—Thom construction depends only on the
orientation of the basis and is denoted by [G, «, L], where « is the orientation of G. Using right
translation instead leads to the element [G, o, R]. Sometimes we will leave the orientation out
of the notation.

Examples. 1. Spheres. We consider the Lie groups which are spheres, namely S' = SO(2)
and S% = Spin(3). The elements [S, £] and [S3, £] represent the Hopf maps n € 7§ = Zy and
v e 773‘? = Zoay4, respectively.

2. Tori. The three-dimensional torus T3 = S! x S! x S! represents an element 7® € 73,
where ) € 75 is the generator represented by S?.

3. Central extensions. Let C be a finite central subgroup of G so that there is an extension
C — G — G/C. Tt is natural to ask how the classes [G, £] and [G/C, L] might be related. For
example, SO(3) represents 2v so that [SO(3), L] = 2[Spin(3),L]. In general [SO(2n),L] =
2[Spin(2n), £] which is zero for n > 2 [33]. Other examples of higher dimensions but of rank 2
include SO(5), Spin(5) and Sp(2). In this case 2[SO(5), L] = 4[Sp(2), £], as shown in [38]. In
terms of generators [10, 38, 78, 87] one has [Sp(2), £] = £ € 7y = Zg. On the other hand, for
SO(4) the class is [SO(4), L] = 0. For the case of the projective group, since SO(5) = PSp(2)
then 2[PSp(2), £] = 4[Sp(2), L].

4. Stiefel manifolds. For 1 < ¢ <n —1, let V,, ;, denote the Stiefel manifold of orthogonal
g-frames in F”, where F = R, C,H. Then, from [50], the element [V}, ,¢] = 0 for a framing ¢
in the sense of [45].

5. Flag manifolds. Let ¢ be a stable framing of the framed flag manifold G/T and
[G/T,¢] € w2. Then 2[G/T,¢] = 0 € w;. This implies that there is a framing ¢ of the eight-
dimensional flag manifold Sp(2)/T? such that [Sp(2)/T?;¢] = noo € w5, where n # 0 € 75, as
above.

We now highlight a few useful properties of Lie groups elements in framed cobordism.

Properties. 1. Product of groups [10]: For two groups G and H with framings L and Ly,
respectively, the corresponding classes satisfy [G, Lg| X [H, L] = [G x H, Lgxg|. This implies,
for example, that T2, T3, 83 x 83, and S3 x §3 x §% with their left-invariant framings give
nonzero elements in 7g.

2. Effect of change of orientation [9]: Changing the orientation results in a possible reversal
of sign of the corresponding class [G, o, R] = (—1)4™C[G, —a, £] = (-1)3CH G, a, £].

3. Effect of change of representation [51]: For any two real representations p; and py of G, and
for the adjoint representation Adg, the following holds [G, Adg —p1+p2] = (—1)4™C[G, p1 —pa).

The consequences of the above properties can be summarized in that the only effect at
the quantum theory is a possible sign change in the cobordism invariants discussed below.
Therefore, if the effective action is already integral then a change in sign would not affect the
single-valuedness of the function.

Relation between framed cobordism and Spin cobordism. In positive dimensions,
the image of QF — QSP™ is zero unless * = 8k + 1 or 8k + 2, where it is Z, and is detected by
the Atiyah-Milnor-Singer a-invariant. See [68] for an extensive discussion on the applications to
string theory in ten dimensions. Since Q?{’m =0, the map 7§, — Q?{’m is trivial and so a framed
eleven-dimensional manifold Y may be viewed as the boundary of a Spin manifold Z'2? of
dimension 12 with the induced Spin structure on Y!! being compatible with the framing.
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2.6 Framed cobordism invariants at chromatic level 1

We will describe how cobordism invariants of framed manifolds appear in the description of the
partition function in M-theory and type II string theory. To that end we first describe these
invariants within framed cobordism. In particular, we will describe how the d-invariant and
the e-invariants appear, thus implementing some of the entries appearing in the table in the
Introduction.

2.6.1 The d-invariant and Arf invariant in type II string theory

Here we recall two invariants relevant for the partition function in dimension ten (and to some
extent in dimension nine). These two invariants are in fact very closely related.

1. The Arf invariant. Algebraically, Arfinvariants are defined for quadratic forms over field
of characteristic two and, therefore, occur in various guises. Their most prominent occurrence in
topology is that of the Arf-Kervaire invariant of a framed manifold, which is a framed cobordism
invariant defined in dimensions 4k + 2, k > 0,

While this invariant vanishes on closed, framed 10-manifolds, a variant of this invariant is used
in the construction of the partition function [22, 52, 68]. The importance of such a variant for
type IIB string theory, as well as for the M5-brane, is highlighted in [12, 65]. The Arf-Kevaire
invariant is, however, relevant on 6-manifolds. A mathematical discussion on the relation to
the Mb5-brane anomaly (involving manifolds with corners) can be found in [32]. This is further
amplified in [69)].

2. The d-invariant. Using K-theory, Adams defined surjective homomorphisms, the d-
invariants

dgr : Qgr%WQSO%ZQ, Qgrogﬂ’loso — Zo.

These are given by the mod 2 index of the Dirac operator [6, 8]. An extensive discussion in the
context of M-theory can be found in [68].

Examples. 1. Lie groups. The d-invariant dr : 7] — Za, for n = 1 or 2 mod 8, vanishes
for any non-abelian compact Lie group G. In fact, on such a group (e.g. U(3) or SO(5)) there
is a bi-invariant metric of positive scalar curvature. Hence, by the Lichnerowicz theorem, there
are no harmonic spinors on G. But from [7], dg is the real (resp. complex) dimension mod 2 of
the space of harmonic spinors on G. Thus, dgr[G] = 0. In fact, if G is a compact Lie group then
dr([G, L]) = 0 except in low dimensions [9].

2. Finite quotients of Lie groups. Let G be a semisimple Lie group of dimension ten
with non-abelian maximal compact subgroup, for example the Lorentz group SO(1,4). Let I’
is a discrete subgroup such that G/I' is compact. Then d[G/T] = 0 [76]. The same holds
for G a simply connected nilpotent Lie group. Now, from Atiyah—Singer index theorem, the
d-invariant is given by the kernel Ker D of the Dirac operator D on G/T'

d[G/T] = h(G/T) = 5 dim(Ker D).

It turns out that h(G/I') is an even integer so that, in the context of [22, 68], the partition
function is anomaly free.

Note that the result does not apply to general parallelizable manifolds. A counterexample,
kindly provided by one of the referees, is the following. By surjectivity of the degree dg, there
is a closed framed 9-manifold M? with nontrivial Dirac index modulo two. The circle, equipped
with its non-bounding framing, has a nontrivial degree as well. Consequently, the same holds
true for the product M? x S' (with the product framing), which is certainly parallelizable.
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2.6.2 The e-invariant and M-theory

Using K-theory, Adams defined surjective homomorphisms, the e-invariant?,
e: 7T4k_1SO — de, 7T8k80 — Za, (2.5)

where dj; denotes the denominator of Bsy/4k, where B; is the Bernoulli number. These numbers
are the orders of the corresponding cobordism groups, which are Qgr = 7oy, Qt;r = Zogy =
Z3 ® Zs @ Z16 (with generator S with twisted framing defined by the generator of m7(0) = Z)
and Qgrl X Zsos = Ly @ Zg D Zg. We are interested in &k = 1,2, 3 in the first case and k = 1
in the second case in (2.5). It is only a low-dimensional ‘accident’ that the real e-invariant can
detect all of wj,HSO for 1 <k < 3. In general, Zg, occur as direct summands, i.e. the cockerel
of the J-homomorphism in dimension 4k — 1 is usually nontrivial.

The e-invariant. A U-structure is a lift (up to homotopy) of the classifying map of the
tangent bundle TX : X — BO to BU. A (U, fr)-manifold is a compact U-manifold X with
smooth boundary and a trivialization of E = TX®' over the boundary, i.e. a bundle map ) :
Elox = 0X x C*. In particular, ¢ provides a framing for 0X. Using relative characteristic
classes of the complex vector bundle E = T X', the complex e-invariant of the framed bordism
class of 0X is defined to be

ec(0X) = (Td(E), [X,0X]) mod Z.

By Atiyah-Patodi-Singer [5] the quantity on the right hand side is (Td(E),[X, 0X])=[, Td(VF),
where V¥ is a unitary connection on E which restricts to the canoncial flat connection specified
by the trivialization. Similarly, the real e-invariant ep : ngfl — Q/Z can be defined for Spin
manifolds. The two are related by er/e = ec mod Z, where e(k) = 1 if k even and 1 otherwise.
See [60, 68] for applications to M-theory. In that context, since TZ'? is trivialized over Yl
we can define the relative Pontrjagin classes p; in H*(Z12,Y!!) and hence evaluate the A\k—
polynomial on the fundamental cycle of Z'2. Then the e-invariant of Y''! can be defined via the
relative A-genus as [J]
e[Y'] =14(2'?) mod Z.

By the index theorem, this is independent of the choice of the bounding manifold Z'2. This
can be viewed as an analog of the similar observation on the effective action in [22] for the Spin
case.

Examples. 1. Spheres. Consider those spheres that are Lie groups. In this case, e[S'] = :i:%
and €[S%] = £ (see [9]). For applications to the M2-brane see [60].

2. Tori. The 3-dimensional torus 73 = S' x S! x S' has e-invariant % This cannot be
directly generalized to higher dimensional tori, due to nil potency, i.e. n* = 0. Therefore, any
torus of dimension greater than three represents zero when equipped with the left-invariant
framing.

3. Quotients or extensions. For C a central subgroup, knowing the e-invariant of the Lie
group G allows us to know that of the quotient G/C' and vice-versa. For example, the relation
[SO(3), £] = 2[Spin(3), £] = 2[S3, L] gives e[SO(3)] = £ 5.

4. SU(3). The group SU(3) as a framed manifold with a left-invariant framing represents
[SUB), L] =7 € n§ = Zoy & Zy - v [80, 87]. Let A : SU(3) — SU(3) denote the identity map
regarded as the fundamental representation of SU(3) on C3. Then the e-invariant of [SU(3), ]
is nonzero [87].

“Note that there is a third variant of the Adams e-invariant, viz. e : ker(dg : T8ka1 S — Z3) — Zs, detecting
the image of the J-homomorphism in these dimensions.
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5. U(3). Let o be the generator of m5(BS") given by the Hopf bundle. Then t(c) = [S3, £]
generates 75(S?), so that t(30) = v. From nw = 13, this gives [U(3), £] = n[SU(3), £] = 3.

Integrality and corners. The Todd genus of a (U, fr)-manifold is integral if and only if the
complex e-invariant ec of its boundary is integral or, equivalently, if and only if its boundary
is the corner 9p01 X of a (U, fr)2.-manifold X. In the context of M-theory, this says that the
index — in the form of the Todd genus — of Z'2? is integral if and only if Y = 9,0, W3 of
a (U, fr)?-manifold W'3. This views Y'!! itself as a corner, in contrast to viewing its boundary
as a corner, as we do for most of this article. The structure of the topological terms in M-theory
indeed do not suggest a lifting to thirteen dimensions.

2.7 Change of framing

Like other geometric structures on manifolds (e.g. Spin structure), a framed manifold might
admit different framings. In this section we will study the possible physical effect of the change
of framing. The analog for Spin and Spin® structures is studied in [68], and that of String
structures in [60].

A framing on a manifold M corresponds to a lift in the diagram

EO(n) <——O(n)

The different choices of framing correspond to maps from M™ to the fiber O(n) of the principal
classifying bundle. Given a framed manifold M"™ and a map F : M"™ — O(n) we may use F
to change the framing. Conversely, given two framings ¢, and ¢ of M, they differ by a map
¢2/P1 + M™ — O(n). The change of framing in the case of two and ten dimensions can be
viewed from the point of view of the Atiyah a-invariant [60, 68] which is the refinement of the
mod 2 index of the Dirac operator from Zs to KO,, = Z, for m = 2, 10.

Twisted framing. We start with the case of a Lie group, which is always oriented as
a manifold. Given a map ¢ : G — SO(n), there is an automorphism of the trivial bundle G x R?
given by (g,w) + (g,9 ' (w)). Then the twisted framing (here for right) R¥ of R by ¢ is
defined as the direct sum of R with this automorphism. The determination of [G,R¥]| depends

— 1
essentially on the element of the reduced group KO (G™) represented by ¢, where Gt is G

— 1
with a point adjoined. Given an element o in KO (G) we may twist a given framing ¢ of G to
obtain a new element [G, ¢?]. Let M" be a framed manifold embedded in R"** and ¢ a framing

of its normal bundle NM. For a € I/(\é_l(M ) the twisted framing ¢“ is constructed as the
composition of ¢ and the automorphism & of the trivial bundle M x R* determined by «.
Example. Change of framing on sphere bundles over spheres. We consider the
example we discussed earlier in Sections 2.1 and 2.2. The framing ¢ of S(FE) is called the
induced framing. All other framings of S(E) may be obtained from ¢ by twisting with elements

of RB_I(S(E)). Suppose that [E] = 0 € KO(S™). Then S(E) is a m-manifold and hence there
are elements [S(E); ¢] € 7, corresponding to the different framings ¢ of S(FE).

Change of framing and the d-invariant. The change of framing will have an effect on the
d-invariant. We consider the case of a Lie group, i.e. a WZW model context. For an element «,
giving rise to a left framing £%, the d-invariant will get modified by J(«) as

dr(|G, L)) = dr(J () o dr([G, £]).

In order to guarantee the absence of mod 2 anomalies in the partition function, we would like
the transformed d-invariant to be even. If dg([G, L]) started out as being already even then
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there are no conditions needed. However, if dr([G, L]) were odd then there are no potential
anomalies if dgr(J(a)) is also even. If this occurs, then the change of framing could be viewed
as a way of curing an anomaly.

Note that, due to the index interpretation, questions about the degree can be rephrased
in terms of Spin geometry (see [68] for extensive discussion in the context of M-theory). In
particular, for WZW models on compact non-abelian groups, the scalar curvature argument
ensures triviality of the degree (independent of the framing/Spin structure). On the abelian
groups S and S! x S', however, it is easy to write down reframings which change the Spin
structures and the degree. Unfortunately, these targets do not give rise to ‘honest’” WZW
models.

Change of framing and the e-invariant. Let s* : H*(BSO;Q) — H*(SO;Q) be the
cohomology suspension and set u, = s*p, € H*"~1(SO; Q) where p, € H**(BSO; Q) is the nth
universal Pontrjagin class. The cohomology suspension kills decomposable elements® so that

*
% B, s'pn B, Un

S = B Dl T T @Y

where B,, is the nth Bernoulli number. Suppose that E — S™ is stably trivial m-plane bundle,

— 1
with ¢ a stable trivialization of E, and « € KO (S(E)). Then putting 4k = n + m, the
e-invariant with new element is [78]

ay By,

(o™ ug, [S(E)]) -

Since Lie groups are admissible manifolds which, furthermore, do not lead to anomalies in the
partition function, we should have that a*us is an even multiple of ug for an 11-dimensional
bundle with a spherical base.

Examples. 1. Let G be a compact connected Lie group of dimension 3 and « € f(voil(G)
be an element with second Stiefel-Whitney class wa () zero. If p; () is the first Pontragin class
of a in H3(G;Z) (i.e. via transgression to the Chern—Simons form) then the e-invariant of the
variation is given by [38]

er([G, LY =[G, L]) = — (B2 - p1(), [G]>H mod 27Z. (2.6)

From the results in [68], we require the cohomological pairing on the right hand side of (2.6) to
be an integer. This places an obvious congruence condition on the Pontrjagin class p;(«). The
groups we have in mind are SU(2) = Spin(3) = Sp(1) and SO(3).
— 1
2. If G is a compact connected Lie group of dimension m =8 or 9, and A € KO (G) satisfies
wa(A) = 0 then [87]

ex ([G, LY =[G, L)) = (p*(Ex) = 1,[G]), € KOmp () = Zo. (2.7)

Here p3 is the cannibalistic characteristic class of Adams and Bott associated with the Thom
isomorphism p3(E) = ¢! 0y®0¢(1). The groups we have in mind here are SU(3) in dimension 8
and U(3) in dimension 9. The Adams operation ¢, which is an automorphism of K-theory, is
given a physical interpretation in the context of M-theory in [68]. As in the previous case, the
results of [68] require that the KO-theoretic pairing on the right hand side of (2.7) to be zero
in ZQ.

The consequence of the above two examples is that the difference of the e-invariant should
be an even integer in order for the partition function to be anomaly-free.

This is a process used in [64].
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3 Topological and modular aspects of M-theory with corners

3.1 Building the general setting in M-theory

We will show in this section how the formulation in terms of corners is the natural setting for
topological considerations of M-theory. This complements the analytical point of view in [63].

Consider M-theory on an 11-dimensional manifold Y'! with boundary M!'? = gY!'!. This is
considered in [21], where a model of the C-field which is valid in that case is proposed, with the
phase given by

®(C,Y'") = exp [im€(Da) + TE(Drs) + 27miliocal »

where £(Dy4) is a section of a U(1) bundle with connection over the space of C-fields on the
boundary M, with D4 an Eg Dirac operator and Dgg the Rarita-Schwinger operator, and &
denotes the reduced eta-invariant £(D) = 3(n(D) + h(D)). The model is also extended to the
case when the 11-manifold is of the form Y1 = X10 x S! with the type IIA 10-manifold X'°
itself having a boundary N = 90X, so that MY = N9 x S’

The authors of [21] also consider the reduction of the phase from Z'2 to M!? in the product
case®. With the ansatz for the field strength Gz = G + dt; A wi + dts A ws, the phase
reduced to M0 takes the form exp [—27rz% me GAw A wg]. We will propose a generalization
of this, in some sense, to manifolds with corners. The authors consider conditions on torsion
cohomology classes; we will in addition be interested in doing global analysis. As the structure
above suggests, we will highlight the case when the corner M0 is the total space of a circle
bundle 7. The pairing H"(N?;Z) x H>(N?;U(1)) — U(1) suggests that the structure of the
base of that circle bundle 7 has a 7-dimensional factor. Indeed, the most interesting case will
be when M1 = §3 x S7, corresponding to a base N? = S7 x §? or N? = CP? x S3.

We generalize the above setting of product structure to more general bundle structure cap-
tured by this schematic diagram

Z12
/ X

D2 Wll — 81212 82212 — Yll Sl

—_———
5 9 M-theory
. (3.1)
M 10
<~
Heterotic
/
0

N? = 9x10

0

XlO Ull
<~

type IIA

The extension of type ITA to U is discussed in [12, 59]. General boundary conditions on
the C-field (and its dual) are studied in [67].

The Rarita—Schwinger field and supersymmetry. We highlight some effect on the
spinor fields and, in particular, as far as stable trivialization is involved. The Rarita—Schwinger
operator over a manifold M is defined as the Dirac operator twisted by the virtual bundle

SThey consider Z'? = M0 x A%, where A? is a 2-simplex {(t1,t2) : 0 < t1 < to < 1} with identification
ti ~t; + 1.
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RS = TM © mQO, for some multiple of the trivial line bundle O. For example, m = 4,3,2 in
twelve, eleven, and ten dimensions, respectively. Had the twisting bundle RS not been a virtual
bundle, it would have been stably trivial if RS @ nO is trivial. This then would imply that 7'M
is trivial, and hence that M is parallelizable (see Section 2.1). However, RS is only a virtual
bundle and, as such, triviality only makes sense in RVO(M ) and, in particular, such a triviality
cannot be used to deduce strict parallelizability of M. Of course, if TM is trivial then RS
would be. In this case, the characteristic classes of the tangent (and Spin) bundle will be trivial.
Triviality of the tangent bundle implies the triviality of the Spin bundle. Parallelizability implies
the maximum number of linearly independent sections. Thus, for the Spin bundle this ensures
the maximum number of spinors. This is desirable for compactification to low dimensions.

3.2 Relation to type ITA: Disk bundles and eta-forms

In this section we will consider the effective action and partition function of type IIA string
theory in the context of corners. We will identify the contribution to the phase. This will allow
us to provide physical interpretation of higher eta-forms, extending the discussion in [48, 59].

Let Z be the total space of a disk bundle over a m-manifold X associated with a vector bund-
le E. For the purpose of relating M-theory to type IIA string theory, E is usually a hermitian
line bundle. The Kervaire semi-characteristic is zero, so that if the circle bundle Y!! is stably
parallelizable then it is also parallelizable.

Z1? as a (2)s-manifold. We consider Z'? as a fiber bundle 7 : Z'? — X0 where both
the disk fiber D? and the type ITA base X'¥ are compact (1)-manifolds, i.e. manifolds with
boundary, and the faces are given by the fiber bundles (see diagram (3.1))

nz?=wt. DW= ox" =N
9z =Y. §'=9oD% >y - X0 (3-2)

Consider metrics g7* and ¢”? and connections V7¥ and VTP on TX'© and TD?, respectively.
Corresponding to the splitting 7212 = TD? @ 7*T X0, we have a connection V¥ = VP @
7*VTX. Consider a Dirac family Dy on Z'? parametrized by points on the base, as in [48, 59,
64, 67, 63], assuming a metric of product type near the boundary. Furthermore, we assume that
the kernel of Dg induced on the fiberwise boundary (3.2) is of constant rank, so that the index
bundle with respect to the Atiyah—Patodi—Singer boundary problem is well-defined, with D%
the corresponding twisted Dirac operator on the boundary. We also consider the line bundle L
with connection V¥ corresponding to the principal circle bundle (see [68]).

Contribution to the phase from the boundary of type ITA. The Bismut—Cheeger [13]
and Melrose—Piazza [49] formulation of the index implies that a representative in cohomology
of the Chern character of the index bundle is given by the following differential form on X!°:

/ {A\(VTD) ch (VL1/2) ch (VV)} o ﬁ(D?/) N %Ch (VkerDe)‘
D2

The Index class can be encoded in a virtual vector bundle & with unitary connections V¢, such
that [¢] = [£1 © &] = [Ind], so that in de Rham cohomology (ch(Ind))sz = ch(V¢) + dw, for
some w € 2°4(X19) We now introduce the Eg bundle V with connection V¥ on Z'2 and its
restriction to the boundary, with the same notation, and assuming a pull-back structure, i.e.
with the bundle E pulled back fro the base. This is a reasonable assumption from the physical
point of view, as in [22, 48, 59]. Furthermore, we assume that the Dirac family on the (fiberwise)
boundary should be invertible”. Then, with a product connection VP, via [83]

" Alternatively, one could absorb additional corrections by redefining the 7-forms.
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= Ind(Degv) + /X IOE(VTX) ch (VV)7 + {g(pggv) + /a Xlowﬁ(v”) ch (VV)}.

The phase of the partition function is Phase = Ind(Dg¢gy). The last term in (3.3) is the
contribution from the boundary in type ITA.
Interpretation of the eta-forms. The basic part of expression (3.3) gives

. A(VTP) = (ch(Ind)) 45 + 7

For the three relevant nontrivial degrees we have

Ay (VTP = (chy(Ind)) g + aBa,
DQ

/ Ag(V"P) = (chy(Ind))4g, + bB3,
D2

. A12(VTP) = (chs(Ind)) g + B3,

where we identify the components of the eta-form as powers of the B-field. The numerical
coefficients a, b, ¢ can be read off for a certain class of situations; for instance, with a suitable
identification of the B and F' fields and using expressions (3.4) below. This generalizes to higher
degrees the interpretation in [48, 59] of the eta-form in degree two as essentially the B-field.

We can approach this from an another angle which makes it a bit more physically explicit.
Consider type IIA string theory on U® x T? with metric ds?x = dsgﬂ + tzds?]. When the Eg
bundle is trivial and with the Ramond—Ramond fields Fy = 0 = F} then the phase in this case,
via [52], is

P, = /X [~ () + 3R - ypr — 3B A
Comparing with the second term in (3.3), we have the following interpretation of the eta-forms

h=—3F, s = —3(F2)°, Mo = — 15 (Fh)°. (3.4)

This is another interpretation of eta-forms in terms of the Ramond—Ramond 2-form rather than
in terms of the B-field. However, there is no conflict as the two fields can be identified for some
topological purposes; see [66, 68].

3.3 The heterotic theory as a corner

In this section we will provide another argument for why the corner setting is natural to consider
for heterotic string theory. This complements the discussion above in Section 3.1 as well as the
analytic arguments in [63]. In particular, the structure of the heterotic anomaly points in
a natural way to a corner formulation. The heterotic theory, like other flavors of string theory,
will mostly arise on manifolds which are decomposable as products or as fiber bundles, as in [67].

The heterotic corner as a framed cobordism class. We will consider the heterotic corner
as a framed corner. The invariant we will associate to this is a framed cobordism invariant, and
hence depends only on the framed cobordism class. Using the results of [19], the data that
refines the corner MY into a representative of a framed cobordism class

U.fr)?
(M) e 5"

and which interestingly matches the physical setting (see diagram (3.1)), is the following
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1. A decomposition TM0 = TON10 @ T M of framed bundles. This implements a factor-
ization, as e.g. dictated by anomaly cancellation (see below).

2. Compact 11-dimensional manifolds W1, Y'!! with boundary OW'! = —9Y!!. The mani-
fold Y where M-theory resides, while W1!! is ‘physically hidden’.

3. Decompositions TW1 = TOW 1 @ T'W ! with complex structure on the first factor and
framing on the second factor; and 7Y = TOY 1 ¢ Tyl with framing on the first factor
and complex structure on the second factor. For instance, in the product Y = X3 x W8,
we take X3 to be framed and W?® to be complex (e.g. a Calabi-Yau manifold).

4. The inclusions M0 — W A1'0 < Y identify

(T*W |0 = TEMIO, (T°W) |0 = TOMIO, as framed bundles,
(TW™)| 0 = TOMO, (T*W™)| 0 = T MO, as complex bundles. (3.5)

5. A manifold with corners Z'2 such that 9pZ'? = W'l and 0;Z'2 =2 Y1, This is the lift in
diagram (3.1).

6. A decomposition TZ'? =2 T0712 ¢ T1 Z'2 of complex vector bundles such that

7. The inclusions W1t < 712 and Y < Z'2 identify
TOZ12|W11 o~ TOwll, T1Z12‘W11 o~ lell,
T°Z%)yn 27V T2 2Ty (3.6)

as complex bundles. Again, the identifications (3.5), (3.6) are to be understood as iden-
tifications of stable bundles.

The 11-dimensional manifold W is to satisfy the above conditions so that diagram (3.1) is
properly implemented.

3.3.1 Corners as the natural setting for heterotic anomalies

Consider the Green—Schwarz anomaly in the heterotic (and type I) theory. The general for-
mulation of anomalies requires considering a degree twelve polynomial whose integration over
the 10-dimensional manifold is the curvature of the anomaly line bundle. Consider heterotic
string theory on a Spin manifold (M9, g) with Spin bundle SM and with a vector bundle E of
structure group Fg x Eg or Spin(32)/Zso, which captures the dynamics of the Yang—Mills fields
via a connection A on E. Then the H-field and its dual satisfy [27]

s=d (Hzu™ + Hyu™) = [chy(A) — pi(g)] u™>
+ [cha(A) = ggp1(g)cha(A) + gip1(9)* — gp2(9)] w™, (3.7)

where v is the Bott generator. The anomaly polynomial is given by

I = X4 N Xg (38)
Zl?
with Hs and Hy providing the trivializations of the forms X, and Xg, respectively, as given
in (3.7). The usual connection to ten dimensions is that one has to introduce a local term in
the action functional of the form [ w10 B2 A Xg. Our interpretation of this is that it is implicit
that we schematically have the following relations

X4 = dH3, Hj3 = dBy,
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which hints at a direct relation between X4 and B2 had one been able to make sense of a boundary
of a boundary. With the lack of this, the formulation in terms of corners seems to be an
alternative. Note that one still cannot directly take a boundary of a boundary, neither in the
homological or the cohomological setting. A proper interpretation at each step is given towards
the end of Section 2.5. A similar argument holds for the dual field H; with the polynomial Xg.
Therefore, the structure of the anomaly and the process of anomaly cancellation have a natural
home in the setting of manifolds with corners. Such a formulation also holds in other situations
where topological anomaly cancellation occurs. While we do not explicitly spell them out, it is
obvious how our discussion could be adapted.
Note that the anomaly polynomial can be given in terms of the elliptic genus as [44]

Ny = ¢ell|12—form coeff. of ¢0°

Then a natural question is what this corresponds to in ten dimensions. Our formulation in
terms of corners can also be viewed as providing an answer to this question. Note that the two
terms in the integrand in (3.8) are interpreted in terms of twisted string structure and twisted
Fivebrane structures, respectively [71, 72].

3.3.2 The one-loop term in the presence of a corner

The topological study of M-theory relies on the existence of the one-loop polynomial Ig [24],
which is a degree eight polynomial in the Pontrjagin classes of eleven-dimensional spacetime Y11
The term in the action is of the form fyn C3 A Ig. 1t is natural to ask how this term behaves
under dimensional reduction to ten or lower dimensions, or upon dimensional lifting to twelve
and higher dimensions. An example of the former is in type ITA string theory, where the term
takes the form f 10 B2 A Ig. An example of the latter situation is the lift to the 12-dimensional
bounding theory on Z'2, where the term takes the form f 12 G4 A Ig. Extensions beyond twelve
dimensions are considered in [57]. What we would like to analyze is how this term behaves upon
reduction from Z'? to its 10-dimensional corner M.
The one-loop term lifted to twelve dimensions takes the form

Gy NIg = (%)\ — (1) AN (Ilg (pg — )\2)) R A= %pl. (39)

We will concentrate at the prime p = 3, i.e. work 3-adically, so that the obstruction to the
Fivebrane structure #ps, in the sense of [71], as well as the term fxpy in expression (3.9) both
can be effectively viewed as the fractional class %pg. We will concentrate on the A A pa-term
in (3.9). Passing to the complex case, taking into account the fact that we are taking Z'2 to be
a complex manifold, this part of the action can be written in terms of the Chern classes of Z12.
Indeed, if F is a general complex vector bundle then for the underlying real bundle Fr one has

p1(ERr) = —2c2(E) mod ¢ (E) and (p2 — A*)(ER) = 2c4(E) mod ¢;(E).

So if we impose the condition that E is an SU-bundle so that ¢;(£) = 0 (this is satisfied in the
physically favorable setting of the tangent bundle of Calabi—Yau manifolds), then we get for the
action

/Z12 co - 5y (3.10)

This Chern number can be viewed as an analog of the term | 10 %02 - c3 that appears in the
calculation of the partition function in type IIA via K-theory and Eg gauge theory [22]. The
expression (3.10) is a 12-dimensional analog with the prime 3 taking the place of the prime 2.



M-Theory with Framed Corners and Tertiary Index Invariants 21

Now we reduce expression (3.10) to the corner M. The general form of the term at the
level of differential forms is

/ . %053 ANCS7,
M

a product of a Chern—Simons 3-form and a Chern—Simons 7-form, both of gravitational type.
We would like to see how this fits into the description of the corner via the f-invariant (see
Section 3.5). The construction of the f-invariant requires a presentation of the framed ten-
manifold M'° as a corner of codimension two of an almost complex twelve-manifold Z'? with
suitable splitting of the stable tangent bundle. We illustrate this with the main physical example,
which turns out to also be the main example in the mathematical construction of the f-invariant
in [42]. The group Sp(2) admits different framings. Equipped with its left-invariant one, Sp(2)
represents a generator of 71‘1"’05?3), i.e. the element 8 at the prime 3 [38, 42]. Note that there is
also a bounding one, as stated previously. This example, which is a 3-sphere bundle over the
7-sphere, is relevant in string theory in relation to nonrepresentable cycles [25].

Example: M1 = Sp(2). This example is described from the point of view of K-theory
at the prime 3 in [25]. We will derive conditions on the (lifted) one-loop term arising from
a condition for Sp(2) to be the corner of the 12-manifold Z'2. Let [Z'2,0Z'2] be the relative
fundamental class. Pairing cohomology classes with this homology class amounts to detecting
those classes which are nontrivial on Z'2 but become trivial on the boundary Y. Such a situ-
ation is described in detail in [64]. Now let us consider the condition for the corner to be Sp(2).
To that end, we will take Z'2 as a (U,fr)2-manifold with a splitting of the stable tangent bundle
T'Z'2 @ T'Z'2, and consider the corresponding Chern classes {c1,...,cg} and {é1,...,é} of
the two subbundles T°Z'2 and T'Z12, respectively. The condition derived in [42] is given by
the f-invariant and depends on all possible Chern numbers of total degree 6; however, if we take
c1 = 0 = ¢ (that is complex instead of almost complex as we had before, leading to (3.10))%
then the condition becomes the statement that

<52 . %64 —y- %54’ [21278212” € Q/Z) = Lz~ has order 3.

This can be viewed as our condition on the one-loop term of the topological action reduced to
the corner, as in (3.10).

3.4 Topological modular forms and Tate K-theory

There are two (related) spectra called Tate K-theory Krate; one is k[[g]] and another is K A
tmf, with a map between them which may be interpreted as a faithfully flat extension in an
appropriate category. Laures identifies the K-theory of elliptic cohomology with Katz’s universal
ring of divided congruences. Tate K-theory is already proposed in [39, 40, 55, 60] to essentially
describe the elliptic refinement of the partition function. The point we make here is that the ring
of divided congruences is already present in that theory, and hence is of physical significance in
the current context.
The ring of divided congruence. The Eisenstein series F, and Eg with Fop = 1 —
o
g—; ) (Zd%_1>q" generate the graded ring of modular forms over the complex numbers.
n= d|n
One can c;pture congruences between modular forms by considering the ring D where all con-
gruences between modular forms take place. For example, £y = 1 mod 240, corresponds to
the class ﬁ(EAL — 1) € D. However, over the 3-adic integers, one has to consider the ring D of

8This conditions natural from the point of view of string theory. Many known compactifications have vanishing
first Chern class. Furthermore, the bundles associated to the setting in which the one-loop polynomial arises all
satisfy this condition.
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divided congruences: the elements of D are those 3-adically convergent series in 3 | f; of (inhomo-
geneous) modular forms over Q3 such that the g-expansion ) fi(q) = A(D_ fi) has coefficients A
in Zg.

Tate K-theory. Tate K-theory [2, 43] is defined via the Tate curve, given by 3% + zy =
23 + a4z + ag, where the coefficients are given by

a1 = 51— E)eZlq], as= 51— Es)+ g7(Es — 1) € Z[[q]].

The Tate curve is already defined over the subring D C Zl[[g]] of divided congruences. Tate
K-theory is simply K[[q]] so that the coefficient ring is moKrate = Z[[q]]. At the level of the
moduli space of curves, this theory is obtained by working formally in the neighborhood of the
j-invariant taking the value j = co. Note that if ¢ = 0 then a4y = 0 = ag. So we see that
elements in D correspond to higher order terms beyond the classical term. We interpret this,
in the spirit of [55], as considering low values of the coupling constant ¢, so that we view Tate
K-theory as a sort of a ‘perturbative elliptic cohomology’. The sigma-orientation lifts to a map
MU(6) — K[[g]] and the invariant m,.MSpin — Z[[g]] asscoiated to the o-prientation on Krate
is the Witten genus [2] pw (M) € Z[[¢]]. More on the String condition in string theory can be
found in [61, 72].

Modular forms with respect to the congruence subgroup I' = I';(3). Consider the
subgroup SL(2,Zs3) = SL(2,Z)/T'(3) of SL(2,Z), with the kernel I'(3) a proper subgroup of the
congruence subgroup

T1(3) = {(é 1‘) mod 3} C SL(2,2).

The ring of modular forms over I' = I';(3) is generated by the two series

Er=1+6> Y (9),4" Es=1-9Y ) (4),dq",

n=1 d‘n n=1 d|n

where (%) ;, denotes the Legendre symbol. Thus in dealing with the f-invariant, in addition to
the modular forms F4 and Eg, one might encounter the forms £y and FEj.

3.5 Chromatic level 2: Heterotic corners and the f-invariant

We have used the f-invariant at the level of cohomology classes. We now show that the refined
version, the geometric f-invariant [19, 83], also captures part of the dynamics and anomalies of
the heterotic corner.

Elliptic genera and (2)-manifolds. The elliptic genera provide interesting invariants
for (2)-manifolds. Instead of Q/Z for the e-invariant, one wants to consider some values that
‘combine’ Q/Z with modular forms. For a 12-manifold, this is done by Katz’s ring of divided
congruences [42]. A framed 10-manifold is the corner of a (U, fr)3-manifold if and only if the
f-invariant gives an integral inhomogeneous modular form for two levels > 2 which are relatively
prime to each other.

Let X be a closed U-manifold. Then the elliptic genus of X has an integral g-expansion [31].
Let M'? be a codimension-two corner of a (U, fr)-manifold Z'2. The classical constant term and
the quantum nonzero ¢ term are given, respectively, by

Elly = Ell|_, Ell = Ell — Ell,.

We consider the splitting of the tangent bundle into two bundles V; and V5. Using the relative
Chern classes of the split tangent bundle, the f-invariant of the framed bordism class of MY is
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defined to be [83]
FOMY0) = (EI(W) — 1)(Elly(Va) — 1), [2'2,02"]))  mod Dy, (3.11)

where ﬁg is described as follows. Denote by Mg the graded ring of modular forms with respect to
I' = I'1(3) which expand integrally, i.e. which lie in Z'[[g]]. The ring of divided congruences Df

consists of those rational combinations of modular forms which expand integrally. Then Eg =

D§ +M§ ®Q+ M @Q. Hence f takes values in Eg ®Q/7Z, and thus is a natural generalization
of the e-invariant, which takes values in Q/Z [42].

Note that in (3.11) one factor in the integrand is refined while the other factor is classical.
This can be viewed as a heterotic analog of the elliptic refinement of the one-loop term in
type ITA string theory in [61]. There, only the one-loop polynomial was refined from Ig to I3(q),
while the C-field and its field strength (G4 remained classical. The end result is that the whole
term G4 A Ig is refined to ¢g-expansions.

The geometric f-invariant. We now consider a connection on the tangent bundle of the
(U, fr)2-manifold Z'2 and hence induced connections V; and Vs on the two bundles V; and V5.
Consider compatible connections, that is ones which preserve trivializations on the faces, i.e.
require that they restrict to pure gauge ones on the faces. Let M'° be a closed ten-manifold
which is a codimension two corner of a (U, fr)%.-manifold Z'? of dimension twelve. Then M0
inherits the splitting of its framing. Then, using compatible connections, the geometric f-
invariant is [83]

6
F(M™, V1| ar, Valur) = U El(V1)Elly(V2) mod Dg} e P Mmi oR,
Z12 k=0

where the Lh.s. is defined by considering its residue modulo Eg. This expression is congruent to

zero mod ﬁg when Z!'2 has an empty corner [83]. We view this as the topological contribution
to the effective action at the corner. If M is the codimension-three corner of a (U, fr)3-mani-
fold W13 then the f-invariant of M is trivial. Therefore, as indicated earlier, in order to detect
nontrivial elliptic cohomology information on M, the manifold Z'2 itself cannot be a boundary.

Products. We now consider heterotic string theory on product manifolds MY = X7 x
leo_”, viewed as a corner of the 12-dimensional manifold Z'? and physically interpret the
product formulae of [84]. As explained in the introduction, for framing as well as from the
structure of the physical fields, it is natural to consider the factors to be odd-dimensional, with
the main example being S3 x S7, as a corner of the twelve-manifold D* x D2, In this case of the
general product the f-invariant is determined by the complex e-invariant of the factors

FIXT > X577 = m(XT)ec(X,°7") = —m(X,°ec(XT), (3.12)

where m(X;) is any modular form of weight (dimX; +1)/2 with respect to the group? T' = T';(3)
such that m(X;) = ec(X;) mod Z'[[q]]. We can have modular forms of weight 2 and 4 by
taking the factors to be 3- and 7-dimensional, respectively. This is the correct structure detected
in [61] in the following sense. The 11-dimensional one-loop term gets refined only as far as the
8-dimensional one-loop polynomial Ig is concerned with the C-field part still being classical. As
pointed out in [61], one can consider the complimentary point of view where the C-field itself
is refined while Ig remains classical. In the decomposition of the ten-dimensional manifold into
a product, we see that we have a physical manifestation of the two formulations in formula (3.12).
Note that if one of the factors has a trivial e-invariant then the geometric f-invariant of the
product is congruent to zero.

9Note that the congruences of (3.11) carry over to arbitrary levels.
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Examples. 1. The product M = 83 x §7. Consider the 3-sphere S? as the sphere
bundle of the Hopf line bundle over S?. Framing the base and the vertical tangent gives a framing

for the total space. The complex e-invariant is ec(S®) = —1—12, while the real e-invariant eg(S%)

is either —; or 1%, so that S3 represents v. Then m(v) = 15E%, so that m(v) := m(v) —ec(v) =
f—Q(E% —1). The 7-sphere S”, considered as the sphere of the quaternionic line bundle over S,
represents . Then ec(0) = 515. One can take m(o) = 535 Fy so that m(o) := m(o) — ec(0) =
715 (E4 — 1). The geometric f-invariant for the product is then [84]

F(S?x S7) = b (Ba— 1).

2. The product M1 = (8)3 x §7. For n € n} = Zy, ec(n) = 5. However, note here
that ec(n?) = 0. Consequently,

FU(SY)Y’ x8T) =0 2s(Es—1) =0.

Other products involving combinations of S' = U(1) factors with S = SU(2) or S7 can be
treated similarly.

The physical interpretation we provide for these examples of [84] illustrate the reduction to
the corner of the topological term of the M-theory effective action is captured by a topological
index in twelve dimensions. Since Ey = 1 + O(q) then the geometric f-invariant detects O(q)
information. We hope that this paper helps provide some insight into the role of elliptic coho-
mology in M-theory, which certainly deserves a better understanding and further investigation.
In particular, we hope that the physical setting we provided will help in understanding the
f-invariant.

Hierarchy of topological theories. The proposals and connections put forth here for
M-theory can be applied to the M-branes, i.e. to the branes inside M-theory. Indeed, M-branes
with faring and/or corners are studied recently in [69], where tantalizing connections to various
topological invariants, including the f-invariant, are uncovered. Furthermore, one can study
aspects of both M-branes as well as M-theory itself in the context of extended topological
quantum field theories (TQFTs). Such theories require corners of increasing codimension all
the way up to the maximal, when the theory is fully extended. Our study here concerns, together
with [62, 63], point to viewing a sector in M-theory as a 2-extended TQFT. The work [69] also
points to a similar description for the M-branes themselves. In all cases one has manifolds of
dimension 4k with boundary of dimension 4k — 1 and codimenison-2 corner of dimension 4k — 2,
with k£ = 1,2,3 for the M2-brane, the M5-brane, and M-theory (spacetime) respectively. The
picture that we advocate for the above theories can be captured by the following table

Dimension Type of theory Boundary/corner structure ‘ Invariants
4k Topological gauge theory manifold with corners of codim-2 | primary classes
4k —1 Chern—Simons theory boundary manifold with boundary | secondary classes
4k — 2 | Wess—Zumino—Witten theory corner of codim-2 tertiary classes

The three cases give a ladder of structures of the form 2-3-4, 6-7-8, and 10-11-12. The TQFT
aspect of this is studied extensively in [70] within the cobordism hypothesis, with interpretation
as ladders of theories of the form {Topological gauge theory} — { Chern—Simons theory} — { Wess—
Zumino—Witten theory}. One main point to highlight here is that in order for this to work, one
changes the interpretation of the forms at the middle stage, i.e. at the boundary Chern—Simons
theory, where the form which is an n-connection is now interpreted (appropriately) as an n-
curvature, where the value of the positive integer n depends on the specific theory.
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The top-dimensional case is M-theory itself, with a boundary and a corner, sitting in the
following schematic diagrams

712 ’ 12d bounding theory‘

0] St
/ \ / st
vyl Yll’
K

circle extension
st M-th
\ / of heterotic theory theory

-

’ heterotic string theory ‘

A representative of such a a situation for the case for the M-branes was studied extensively
in [69]. The analog in the current setting for the case of M-theory is captured by main example
of the product of two closed disks, leading to a two-step reduction of the form

D* x D8
S3 x D8 D4 x S7
S3 % S7 53 x S7

We now can describe this from the point of view of cobordism. We start with the corner S3 x S7
and consider it as a boundary in two different ways, namely for D* x S7 and for S x D®. These
two are related by a surgery which is implemented by the corresponding space D* x D®. The
situation is depicted in this diagram

D*x 87
S3 % §7 A Dixps 3 x S7

S3xD8

which describes a 2-category of cobordisms, as appropriate in the existence of codimension-2
corners. This deserves more discussion and will be fully developed elsewhere.

The (generalized) WZW theory. The ten-dimensional string theory can be viewed in two
ways: First, as a codimension-2 corner and, second, as a (generalized) Wess—Zumino—Witten
(WZW) theory. The first is emphasized in this paper and the second is highlighted in previous
works [58, 59, 61, 67]. Elliptic cohomology on the one hand is used to defined the f-invariant,
which comes up as the elliptic genus of codimension-2 manifolds [42]. Elliptic cohomology is also
used to describe the partition function in the heterotic theory; see [61] for a description in this
context. This can also be described via the notion of fibered WZW theory, string-theoretically
realizing elliptic genera [23]. In addition to this general conceptual reasoning, we have provided
above an explicit relation to the main topological term in the theory, namely the one-loop term,
also complementing a similar discussion in [61].
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