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Abstract. We study isometric embeddings of non-extremal Reissner–Nordström metric
describing a charged black hole. We obtain three new embeddings in the flat ambient space
with minimal possible dimension. These embeddings are global, i.e. corresponding surfaces
are smooth at all values of radius, including horizons. Each of the given embeddings covers
one instance of the regions outside the horizon, one instance between the horizons and one
instance inside the internal horizon. The lines of time for these embeddings turn out to be
more complicated than circles or hyperbolas.
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1 Introduction

It is known that any d-dimensional Riemannian manifold can be locally isometrically embedded
in an N -dimensional flat ambient space, with N = d(d + 1)/2. Then we can describe this
manifold in terms of the embedding function ya(xµ), so the metric on the manifold becomes
induced (see, for instance, [13]):

∂µy
a(x)∂νy

b(x)ηab = gµν(x), (1)

where ηab is a flat metric of the ambient space, µ, ν = 0, 1, 2, 3 and a, b range over N values.

If a manifold has any symmetries, the number of the ambient space dimensions can be smaller
than d(d + 1)/2. The difference between the dimension of the flat ambient space and the
dimension of the original manifold is called the embedding class, p = N − d. It is easy to see
that p ≤ 6 if d = 4. In particular, we have p = 1 for constant curvature spacetimes, while for
spherically-symmetric spacetimes one obtains p ≤ 2 [34]. Since the embedding class is invariant,
the embedding is useful for classification of exact solutions of the Einstein field equations [34].
Note that the exact form of the embedding is not required for determination of the embedding
class, so for this purpose one prefers the Gauss–Codazzi–Ricci equations [34], for which at p ≤ 2
we have some regular methods of solving. When p > 2 such methods do not exist, and no
systematic classification of manifolds with p > 2 has still been performed.

The embedding can be of use for studying geometric properties of Riemannian manifolds, and
in this case the explicit form of the embedding function is, of course, necessary. A possibility of
the embedding also allows one to formulate the gravity as a theory of a four-dimensional surface
in a flat ambient space [30, 8], similar to the string theory formulation. The developments in
this field include, for instance, the canonical formulation of this theory and the consideration
of its quantization [17], the canonical formulation with the imposing of additional constraints
(proposed in [30]), which provide the elimination of “extra solutions” [23, 24], the reformulation
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in terms of a field theory in the flat ambient space [22] and other works [27, 35, 19, 1, 26]. One
can find a detailed bibliography of the embedding-related questions in [28].

Since the system (1) is a system of nonlinear PDE’s, the construction of an embedding is
a difficult problem. In the general case there is no regular methods of solving (1). But it greatly
simplifies if the manifold has a high enough symmetry. In particular, in case of a Friedmann,
static spherical or plane-wave symmetry this system transforms into the system of ODE’s and
can be exactly solvable. Thus for manifolds with high symmetry a relatively large number of
explicit embeddings was found; see, for instance, [32] and [4].

However, even in this case the classification of the solutions of the system (1) remains nontri-
vial. Fujitani et al. [11] attempted to construct all the possible embeddings of the Schwarzchild
metric, but their approach turned out to be not enough general. In [25] the method based
on the representation theory was proposed, which allows to enumerate all possible ways to
realize certain symmetries of the manifold, and to construct an explicit embedding on this basis.
Using this method, all possible minimal (i.e., in the flat ambient space with minimal dimension)
embeddings of the Schwarzchild metric were found.

In the present work we use the same method in order to construct all global minimal embed-
dings of the Reissner–Nordström (RN) metric describing a charged black hole with a mass m
and a charge q. The corresponding line element has the form

ds2 =

(
1− 2m

r
+
q2

r2

)
dt2 −

(
1− 2m

r
+
q2

r2

)−1
dr2 − r2

(
dθ2 + sin2 θdϕ2

)
(2)

(we use the geometric system of units where m and q has the dimension of length). We restrict
ourselves to consideration of the most nontrivial case of the so-called “non-extremal” charged
black hole, where q < m and two horizons exist:

r± = m±
√
m2 − q2.

The consideration of other cases is similar. It is known that RN metric can be minimally
embedded in a six-dimensional flat ambient space because the embedding class for it is p = 2 [20].

By the term “global embedding” we mean an embedding which corresponds to a 4-dimen-
sional surface which is smooth (analytical) for all r > 0, including both horizons r = r±. It
should be especially emphasized because in some works the term GEMS (global embedding
Minkowski space) is used for the embeddings which are smooth only for some value areas of r.
As far as the authors know, at the present time there is no known global (in the above sense)
embedding of the RN metric, even for greater dimensions of the ambient space. In the work [15]
is discussed the continuation to the region with r < r− of the embedding for the RN metric
proposed in [7], but the form of embedding function given there turns out to be complex in this
region, and if one wants to make it real, it is necessary to change the signature of the ambient
space in order to obtain a correspondence with the RN metric (for details see Section 2).

Note that besides the constructing of a full metric embedding which is considered in this
work one can study an easier problem of construction of the embedding diagrams, when one
looks for certain submanifolds of the Riemannian space. For the RN metric such studies were
performed in [12, 21, 16].

The explicit form of the global minimal RN metric embeddings given in this work (as well as
the global minimal Schwarzschild metric embeddings given in [25]) can be of use for studying the
relation between Hawking radiation and the Unruh radiation detected by observer moving on
the embedding surface in the ambient space. In [5, 6, 7] such a relation was discovered for various
metrics with the horizons and for some embeddings of these metrics. After this discovery the
thermodynamic properties of black holes were investigated in the same way in many works, see
for example [15, 33, 3]. However, preliminary calculations show that there is no mapping between



Global Embedding of the Reissner–Nordström Metric in the Flat Ambient Space 3

Hawking effect and Unruh effect in ambient space for the new global minimal embeddings for
RN metric and Schwarzschild metric. A detailed study of this question is beyond the scope of
this paper. Note also that there is a possibility to study the thermodynamical properties of the
black holes using only the embedding diagrams mentioned above (instead of full embeddings)
which are correspond to an embedding of two-dimensional (t− r)-submanifold into a flat space.
Such an approach was proposed in work [2].

In Section 2 we list the previously known embeddings, classify them by type of realization
of the shift of the parameter t, and we discuss their properties. In Section 3 we present the
results of an application of the method proposed in [25] to the problem of constructing global
RN metric embeddings in a six-dimensional flat ambient space. Three new embeddings with
the RN metric symmetry smooth for all r > 0 are obtained.

2 Known embeddings of the RN metric

Although an exact local embedding of the Schwarzchild metric was found [18] just five years
after founding the metric itself, an embedding for the RN metric found in about the same time
was constructed much later. To all appearance, the historically first embedding was published
by Rosen [32]. It is completely similar to the Kasner embedding for the Schwarzchild metric,
and has the form

y0 =

√
1− 2m

r
+
q2

r2
cos t,

y1 =

√
1− 2m

r
+
q2

r2
sin t,

y2 = r cos θ,

y3 = r sin θ cosϕ,

y4 = r sin θ sinϕ,

y5 =

∫
dr

√
(m/r2 − q2/r3)2 + 1

1− 2m/r + q2/r2
− 1, (3)

if (+ + − − −−) is the signature of the ambient space. In this embedding the shifts of t are
realized as SO(2)-rotations in a two-dimensional subspace of the ambient space; such embeddings
can be called “elliptical”. As is easily seen, this embedding covers only the region outside the
external horizon r > r+ and cannot be continued under it.

In the article [31] Rosen proposed one more embedding, now constructed similarly to the
Fronsdal embedding [10] for the Schwarzchild metric:

y0 =

√
1− 2m

r
+
q2

r2
sinh t,

y1 =

√
1− 2m

r
+
q2

r2
cosh t,

y2 = r cos θ,

y3 = r sin θ cosϕ,

y4 = r sin θ sinϕ,

y5 =

∫
dr

√
1− (m/r2 − q2/r3)2
1− 2m/r + q2/r2

− 1, (4)
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with the signature (+ − − − −−). Here the shifts of t are realized as SO(1, 1)-rotations, and
such embeddings can be called “hyperbolic”. In the form (4) this embedding covers only r > r+
region, but it can be easily modified (following the idea of [10]) to continue it under the exterior
horizon. Unfortunately, it is still impossible to make it smooth for all r > 0.

In [29] an embedding in (2+6)-dimensional space was proposed with the same realization of
shifts of t as in [10]. It is a continuation of an embedding with the same components of the
embedding function y0−4 as in (4), but with three functions of r instead of y5. Formally such
an embedding covers all values of r > 0, but at both horizons one of the embedding functions
components becomes infinite, so the manifold splits into three parts which are not connected
between each other. The embedding [29], in contrast to the embeddings (3), (4) can be expressed
in terms of elementary functions.

The first embedding that continues under an exterior horizon was proposed in [9]. It is an
embedding in a (3+6)-dimensional space. The form of this embedding is quite similar with that
one proposed in [29]. It is smooth on the exterior horizon r = r+, but on the interior horizon
r = r− one component of the embedding function becomes infinite. This embedding, as the
previous one, can be expressed in terms of elementary functions.

A simpler RN metric embedding which continues under the exterior horizon was obtained in
Deser and Levin work [7]:

r ≥ r+ : r− < r ≤ r+ :

y0 = β−1
√

1− 2m

r
+
q2

r2
sinh(βt), y0 = ±β−1

√
2m

r
− 1− q2

r2
cosh(βt),

y1 = ±β−1
√

1− 2m

r
+
q2

r2
cosh(βt), y1 = β−1

√
2m

r
− 1− q2

r2
sinh(βt),

y2 = r cos θ,
y3 = r sin θ cosϕ,
y4 = r sin θ sinϕ,

y5 =

∫
dr

√
r2(r+ + r−) + r2+(r + r+)

r2(r − r−)
,

y6 =
2
√
r5+r−

(r+ − r−)r
,

(5)

where β = (r+ − r−)/(2r2+).
It is an embedding in a 7-dimensional space with the signature (+ − − − − − +). It covers

the region with r > r−; in this region, similarly to the Fronsdal embedding of the Schwarzschild
metric, it describes a maximal analytical extension of a Riemannian space: two copies of r > r+
region and two copies of r− < r < r+ region, corresponding to black and white holes (re-
gions I, IV, II, III on the figure given in Section 3). At r = r+ this embedding is smooth,
though it cannot be smoothly continued in r < r− region.

In [15] the author attempted to use for r < r− the same form of an embedding function which
is used for r > r+ in (5), but it is easy to see that in this case y5 becomes imaginary. If one
changes the sign under the radical in order to make y5 real, the signature of the ambient space
needs to be changed on (+ − − − − + +) in order to obtain the correspondence with the RN
metric. Thus it is impossible to construct a unified embedding for all r > 0 using this form of
the embedding function; however, the fact that it smoothly describes the regions on both sides
of the horizon r = r+ allows to use it for studying of thermodynamic properties of black holes,
see [7]. A remarkable feature of this embedding is the allowance of q → 0 limit, in which y6

vanishes and the embedding (5) becomes the Fronsdal embedding for the Schwarzschild metric.
Generalization of the embedding (5) to the case of a charged black hole in an arbitrary dimension
in the presence of a nonzero cosmological constant was constructed in [33].
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3 New global minimal embeddings of the RN metric

As mentioned in the Introduction, the RNmetric has the embedding class p = 2, so an embedding
in 6-dimensional space is minimal for it. From (2) we can see that the RN metric (as the
Schwarzchild metric) has a symmetry SO(3)× T 1 where T 1 corresponds to the shifts of t. Thus
in order to found the RN metric embeddings with the same symmetry one can use all types
of the embedding functions constructed for the Schwarzchild metric in [25] by the analysis of
symmetry group representation.

If one is interested only in local embeddings which cover some regions of r, one can use all
the six embedding types given in [25]. However, not all of them are suitable for constructing
the global embeddings which smoothly cover all values of r > 0. The embeddings analogous to
Kasner (i.e. elliptic, (3) is of this type) and to Fujitani–Ikeda–Matsumoto (this embedding is
called sometimes “parabolic”) must be dropped, since they cover only regions with a definite
sign of metric component g00, and in the most interesting case of the RN metric with q < m
this component changes its sign.

It is also impossible to construct an embedding analogous to the Fronsdal one (i.e. hyper-
bolic, (4) is of this type) since such an embedding contains only one arbitrary parameter (the
dimensional factor in the argument of hyperbolic functions which can be inserted in (4)) by
which one can ensure the smoothness at one of the horizons, but not at both simultaneously.

The three remaining embedding types which were used in [25] for the Schwarzchild metric can
be applied to the construction of global embeddings of the RN metric. In all these embeddings
the shifts of t are realized under the form of certain rotations accompanied by shifts.

3.1 Spiral embedding

Consider the form of the embedding function which was used in the construction of an asympto-
tically flat embedding of the Schwarzchild metric (see [25], in this case the shifts of t are realized
as SO(2)-rotations with shifts, such an embedding may be classified as “translation-elliptical”).
If one substitutes it in the equation (1) with the RN metric in the right hand side, the resulting
equation is satisfied by the embedding function

y0 = f(r) sin

(
αt′ + u1

(
2mr

q2

))
,

y1 = f(r) cos

(
αt′ + u1

(
2mr

q2

))
,

y2 =

√
b2 +m2 − q2

q
t′,

y3 = r cos θ,

y4 = r sin θ cosϕ,

y5 = r sin θ sinϕ (6)

with the signature (+ +−−−−). Here b > 0,

α =
4m3

q3
√
m2 + b2

, f(r) =

√
(mr − q2)2 + b2r2

αqr
, t′ = t+ h1

(
2mr

q2

)
, (7)

and the functions u1(z), h1(z) are given by the integrals:

u1(z) = −
4m3√

m2 − q2 + b2

∫
dz

√
P1(z)

z2(m2(z − 2)2 + b2z2)
, (8)
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h1(z) =
4m3

α
√
m2 − q2 + b2

∫
dz

√
P1(z)

z2(q2z2 − 4m2(z − 1))
, (9)

where

P1(z) =
q2z2(z − 2)2

4m2
+
(z − 1)2(m2(z − 2)2(1 + z + z2 + z3) + b2(4 + z2 + z3 + z4 + z5))

m2 + b2
.

It is easy to see that the function P1(z) under the radical in (8), (9) is strictly positive.
This fact, coupling with a strict positiveness of the bracketed term in the denominator of the
integral in (8), means the smoothness of u1(z) for all z > 0. As a consequence, the embedding
function (6) describes the surface which is smooth for all r > 0 since f(r) turns to be smooth
in this region. The surface points which correspond to r → 0 tend to infinity since in this limit
f(r)→∞ and the radius of a spiral corresponding to fixed values of r, θ, ϕ is given by f(r).

Thus the embedding (6) is global (i.e. smooth for all r > 0). We call it a “spiral embedding”.
Note that when we describe the appearing smooth surface in terms of the coordinate t (just in
this case the metric takes the form (2)), the coordinate singularity occurs, see Section 3.4 for
details. The situation is similar for the embeddings listed in the next two sections.

3.2 Exponential embedding

Now let us use the form of the embedding function which used for construction of a Davidson–
Paz embedding of the Schwarzchild metric (see [25], in this case the shifts of t are realized
as SO(1, 1) rotations with translations, this type is “translation-hyperbolical”). Substituting it
in the equation (1) we obtain the solution

y0 = γt′,

y1 =
1

2β

(
e−βt

′−u2(2mr/q2) −
(
1− 2m

r
+
q2

r2
− γ2

)
eβt

′+u2(2mr/q2)
)
,

y2 =
1

2β

(
e−βt

′−u2(2mr/q2) +

(
1− 2m

r
+
q2

r2
− γ2

)
eβt

′+u2(2mr/q2)
)
,

y3 = r cos θ,

y4 = r sin θ cosϕ,

y5 = r sin θ sinϕ (10)

with the signature (+ +−−−−). Here γ > 1,

β =
4m3

q4
√
γ2 − 1

, t′ = t+ h2

(
2mr

q2

)
, (11)

and the functions u2(z), h2(z) are given by the integrals:

u2(z) =
m

γq

∫
dz

2mqγz(z − 2) +
√
P2(z)

z2((γ2 − 1)q2z2 + 4m2(z − 1))
, (12)

h2(z) =
m

βγq

∫
dz

√
P2(z)

z2(q2z2 − 4m2(z − 1))
, (13)

where

P2(z) = 4m2q2z2(z − 2)2 + 4q6α2z4(z − 1)2 + (2m)4(z − 1)2
(
4 + z2 + z3 + z4 + z5

)
. (14)
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The function P2(z) under the radical in (12), (13) is strictly positive. The bracketed term in
the denominator of the integral (12) vanishes in only one point, but we can prove that in this
point the corresponding numerator also vanishes, so u2(z) is smooth for all z > 0. From this we
conclude that the embedding function (10) describes the surface which is smooth for all r > 0.
As in the spiral embedding, the surface points which corresponds to r → 0 tend to infinity.

Thus the embedding (10) is also global (i.e. smooth for all r > 0). We call it the “exponential
embedding”. It should be noted that one can construct a global embedding like (10) with γ = 1,
in this case the formulas (11)–(14) take another form, but in this case it is more difficult to
determine the values of the parameters which ensure positiveness of the appearing expressions
in the radicals.

3.3 Cubic embedding

Now let us use the form of the embedding function which is used for construction of a “cubic in
respect to time” embedding of the Schwarzchild metric (see [25], in this case the shifts of t are
realized as null rotations with translations, this type is “translation-parabolic”). Substituting it
in the equation (1) we obtain the solution

y0 = − q4

8m3

(
1− 2m

r
+
q2

r2

)
+

2m3

q4
t′2,

y1 = u3

(
2mr

q2

)
− 1

4

(
1− 2m

r
+
q2

r2

)
t′ +

4m6

3q8
t′3 − t′,

y2 = u3

(
2mr

q2

)
− 1

4

(
1− 2m

r
+
q2

r2

)
t′ +

4m6

3q8
t′3 + t′,

y3 = r cos θ,

y4 = r sin θ cosϕ,

y5 = r sin θ sinϕ (15)

with the signature (+ +−−−−). Here

t′ = t+ h3

(
2mr

q2

)
, (16)

and the functions u3(z), h3(z) are given by the integrals:

u3(z) =
q

4m

∫
dz

√
P3(z)

z4
, (17)

h3(z) =
q3

2m

∫
dz

√
P3(z)

z2(q2z2 − 4m2(z − 1))
, (18)

where

P3(z) = q2z2(z − 2)2 + 4m2(z − 1)2
(
4 + z2 + z3 + z4 + z5

)
.

It is easy to see that the function P3(z) under the radical in (17), (18) is strictly positive,
so u3(z) is smooth for all z > 0. As a consequence, the embedding function (15) describes the
surface which is smooth for all r > 0. As for two embeddings given above, the surface points
which corresponds to r → 0 tend to infinity.

Thus the embedding (15) is also global (i.e. smooth for all r > 0). We call it a “cubic
embedding”.
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II

I

III

IV

r
=
r+

r
=
r
+

r
=
r−

r
=
r−

r
=∞

r
=
∞r

=∞

r
=
∞

Vr = 0 VI r = 0

Figure 1. Penrose diagram for a maximal analytical extension of the RN metric. I, IV – two regions

with r > r+; II – region with r− < r < r+ corresponding to a black hole; III – region with r− < r < r+
corresponding to a white hole; V, VI – two regions with r < r−. A part covered by the embeddings (6),

(10), (15) is bordered by the thick line.

3.4 Area covered by embeddings

For all the three embeddings given above the smoothness of the corresponding surfaces is evident
when the parameter t′ is chosen as a coordinate on the surface. When one turns to the coordina-
te t (in this case the metric corresponds to the interval (2)) a coordinate singularity appears, since
the functions h1,2,3(z) which connect t′ and t (see (7), (11), (16)) have logarithmic singularities
on the horizons r = r± (since the denominators of the integrals (9), (13), (18) are equal to g00
up to a factor). It leads to the fact that at r → r+ + 0 and t → +∞ the coordinate t′ has
a finite limit, so on the surface there exists a trajectory that describes the transition of the
particle through the exterior horizon of a black hole. If r → r++0 and t→ −∞, then t′ → −∞.
It means that if one considers the motion in the past along the trajectory corresponding to
the emission of a particle from a white hole, for the given embedding the surface point which
corresponds to the external horizon tend to infinity. Note that the same situation takes place
for three of six Schwarzschild metric embeddings given in [25].

One can show that in all the three types of embeddings the coordinate t′ differs from the
retarded Eddington–Finkelstein time only by a smooth function of r, so these embeddings cover
not all regions which correspond to a maximal analytical extension of the RN metric, but only
those which are described by the Eddington–Finkelstein coordinates, see, for example, [14]. The
covered region is shown on the corresponding Penrose diagram on the figure.
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