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Introduction

In this paper we give combinatorial formulae for vector-valued weight functions for tensor
products of irreducible evaluation modules over the Yangian Y (gly) and the quantum affine
algebra Uq(ﬁm). Those functions are also known as (off-shell) nested Bethe vectors. They play
an important role in the theory of quantum integrable models and representation theory of Lie
algebras and quantum groups.

The nested algebraic Bethe ansatz was developed as a tool to find eigenvectors and eigenvalues
of transfer matrices of lattice integrable models associated with higher rank Lie algebras, see [9].
Similar to the regular Bethe ansatz, which is used in the rank one case, eigenvectors are obtained
as values of a certain rational function (nested Bethe vector) on solutions of some system of
algebraic equations (Bethe ansatz equations). Later, the nested Bethe vectors (also called vector-
valued weight functions) were used to construct Jackson integral representations for solutions
of the quantized (difference) Knizhnik-Zamolodchikov (qKZ) equations [22]. The results of [9]
has been extended to higher transfer matrices in [12].

In the rank one case combinatorial formulae for vector-valued weight function are important
in various areas from computation of correlation functions in integrable models, see [8], to eva-
luation of some multidimensional generalizations of the Vandermonde determinant [19]. In the
gl case considered in this paper, combinatorial formulae, in particular, clarify analytic prop-
erties of the vector-valued weight function, which is important for constructing hypergeometric
solutions of the qKZ equations associated with gly.

Combinatorial formulae for the vector-valued weight functions associated with the differential
Knizhnik—Zamolodchikov equations were developed in [10, 17, 18, 15, 3].

*This paper is a contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa. The full
collection is available at http://www.emis.de/journals/SIGMA /Infinite Analysis2013.html
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The results of this paper were obtained while the authors were visiting the Max-Planck-
Institut fiir Mathematik in Bonn in 1998. The results of the paper were used in [11, 7, 20].

The paper has appeared in the arXiv in 2007, but still looks topical. It is published with no
intention to give any review of the subject or reflect the state of the art. Let us only mention
a few papers making progress in particularly close problems [5, 6, 4, 14, 1, 2] and those exploring
recently the results of the paper [16, 21, 13].

The paper is organized as follows. In Sections 2—-5 we consider in detail the Yangian case.
In the traditional terminology this case is called rational. In Section 6 we formulate the results
for the quantum affine algebra case, also called trigonometric. The proofs in that case are very
similar to the Yangian case.

1 Basic notation

We will be using the standard superscript notation for embeddings of tensor factors into tensor
products. If Ay,..., A, are unital associative algebras, and a € A;, then

=190V 9a019F ) c A1 @ ® Ay
If a € A; and b € A;, then (a ® b)) = apl) ] etc.

Example. Let £k = 2. Let Ay, Ay be two copies of the same algebra A. Then for any a,b € A
we have a) =a® 1,52 =1®b, (a®b)1? =a®band (a® b)) =b®a.

Fix a positive integer N. All over the paper we identify elements of End (CN ) with N x N
matrices using the standard basis of CV.
We will use the rational and trigonometric R-matrices. The rational R-matrix is

N
R(u) =u+ Y Eo® Ep, (1.1)
a,b=1

where F,, € End ((CN ) is a matrix with the only nonzero entry equal to 1 at the intersection of
the a-th row and b-th column. The R-matrix satisfies the inversion relation

R(u)R®Y(—u) =1 —u?
and the Yang—Baxter equation
R (4, — )R () R®¥ (v) = R (v) R (1) R (1, — v). (1.2)
Fix a complex number ¢ not equal to £1. The trigonometric R-matriz

N
Ryu) = (ug—q ") Faa®Eaa+ (u—1) > (Eaa ® Eyy+ Eyy ® Eqq)

a=1 1<a<b<N

+ (q - q_l) Z (UEab ® Ebg + Epa ® Eab) (13)

1<a<b<N
satisfies the inversion relation
Ry(w)RPV (u™) = (ug —¢7 ") (u g —q7")
and the Yang-Baxter equation

R((Iu) (U/U)R((Jl?)) (U)R((123) (U) _ Rc(123) (U)R((Jl?)) (U)R((JIQ) (U/U)
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Let eg, a,b=1,..., N, be the standard generators of the Lie algebra gly:

[eab7 6cd] = 5bcead - 5adecb~

Let h = @ivzl Ceqq be the Cartan subalgebra. For any A € h* we set A = (A, e4,), and
identify h* with CV by taking A to (Al, e ,AN). We use the Gauss decomposition gly =
hony &n_ where ny =P, _, Ceqy and n_ = P, _;, Cepq. A vector v in a gly-module is called
a singular vector if n,v = 0. The space CV is considered as a gly-module with the natural
action, ey, — Eyp. This module is called the vector representation.

2 Rational weight functions

The Yangian Y (gly) is a unital associative algebra with generators ij}, a,b=1,...,N, and
s =1,2,.... Organize them into generating series:

—5b+ZT{} = ab=1,...,N. (2.1)

The defining relations in Y (gly) have the form

(u—v) [Tab(u), Tcd(v)] = Tep(0)Tha(u) — Tep(u)Toq(v), (2.2)
for all a,b,c,d=1,...,N.
N
Combine series (2.1) together into a series T(u) = >, FEg @ Top(u) with coefficients in
a,b=1

End (CV) ® Y (gly). Relations (2.2) amount to the following equality for series with coefficients
in End (CV) ® End (CV) @ Y (gly):

R (4 — )T ()T () = T (v)T13) () RO (4 — v). (2.3)

The Yangian Y (gly) is a Hopf algebra. In terms of generating series (2.1), the coproduct
A:Y(gly) = Y(gly) ® Y(gly) reads as follows:

Zch )@ Toe(u),  a,b=1,...,N. (2.4)

There is a one-parameter family of automorphisms p,. : Y (gly) — Y (gly) defined in terms of
the series T'(u) by the rule p, (T (u)) = T'(u — x); in the right side, (u—z)~! has to be expanded
as a power series in u ™!

The Yangian Y (gly) contains the universal enveloping algebra U(gly ) as a Hopf subalgebra.
The embedding is given by ey, — Tl;{al} forall a,b=1,..., N. We identify U(gly) with its image
in Y (gly) under this embedding. It is clear from relations (2.2) that for any a,b=1,..., N,

[Eap @1+ 1® eqp, T(u)] =0.

The evaluation homomorphism € :Y (gly) — U(gly) is given by the rule € : ijl} — epq for

any a,b =1,...,N, and ¢ : lef} — 0 for any s > 1 and all a, b. Both the automorphisms p,
and the homomorphism e restricted to the subalgebra U(gly) are the identity maps.

For a gly-module V' denote by V(z) the Y (gly)-module induced from V by the homomor-
phism € o p,. The module V() is called an evaluation module over Y (gly).

A vector v in a Y(gly)-module is called singular with respect to the action of Y(gly) if
Tho(u)v =0 for all 1 < a < b < N. A singular vector v that is an eigenvector for the action of
Ti1(u), ..., Tnn(u) is called a weight singular vector; the respective eigenvalues are denoted by

(T (uw)v), ..., (Tnn(u)v).
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Example. Let V be a gly-module and let v € V' be a singular vector of weight (Al, cee AN).
Then v is a weight singular vector with respect to the action of Y (gl ) in the evaluation modu-
le V(x) and (Tya(u)v) =14+ A%u—2)"1 a=1,...,N.

If vy, vo are weight singular vectors with respect to the action of Y'(gly) in Y (gly)-modules
Vi, Va, then the vector v; ® vy is a weight singular vector with respect to the action of Y (gly)
in the tensor product Vi ® Va, and (Tyq(u)v1 ® va) = (Taa(w)v1)(Tha(u)ve) for alla =1,..., N.

We will use two embeddings of the algebra Y (gly_;) into Y (gly), called ¢ and 1):

ST W) =1y (), (T W) =T, W), (2.5)

a,b=1,...,N — 1. Here Téév_n(u) and Télj)w (u) are series (2.1) for the algebras Y (gly_;) and
Y (gly), respectively.

Let & = (&1,...,6V1) be a collection of nonnegative integers. Set £<¢ = & ... 4 ¢o—1,
a=1,...,N, and |[¢| =&+ .-+ N1 = ¢<N_ Consider a series in |£| variables t%,...,tél,

1
. ,tjlv_l, . ,tgv_}l with coefficients in Y (gly):

Be(th,....107%) = (0% @ iq) <T<1,s|+1> (t1) - DO (N )
TT R+ ¢! @e !
X H RETHIETI( —t8) By @ @ Eyy  ©1). (2.6)
(a,d)<(b,5)

Here tr : End (CN ) — C is the standard trace map, the pairs in the product are ordered lexi-
cographically, (a,i) < (b,7) if a < b, or a = b and i < j; the product is taken over all two-
element subsets of the set {(c, E)le=1,...,.N—1, k=1,... ,fc}; in the product, the factor

R(ES"+5E5+0) (t? — 1) is to the left of RESIHLES+R) (td —1§) if (a,4) < (c, k), or (a,i) = (c, k)
and (b, j) < (d,1).

Example. Let N =4 and { = (1,1,1). Then
Be(t],60) = (6% @ i) (709 () T (1) 79 ()

X R(32) (t? — t%)R(Bl) (ti’ — t%)R(Ql) (t% — t%)Egl ® F39 ® Fy3 ® 1)

Remark. The series I@g (t1,... ,té\]fv_,ll) belongs to Y (gly) [t1, . . . ,tgv_,ll] H(t%)fl, cey (tgv_}l)fl]].
Remark. Relations (2.3) imply that
%
7LE+1) (t) - . UELIED) (té\Il\fill) H RESPHiE<+0) (t? — %)
(a,d)<(b.)

%
= I R (e — )OSR (N ) I (), (2.7)
(a.0)<(b.5)

For instance,

709 () T ()T (1) RO (1 — 1) RO (6 — 1} ROV (1 — 1)
= R (6} — ) RO (¢ — el R (& — e T0 (8) T ()T ().
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Remark. Using the Yang—Baxter equation (1.2) one can rearrange the factors in the product
of R-matrices in formulae (2.6), (2.7). For instance,

T (EP+5E=+i) (4 _ 4a T (€SP E50+i) (4b _ 4a
(a,1)<(b.j) (a,1)<(b.7)

where in the right side the factor R(E+5E5+i) (t;’ — t?) is to the right of RESIHLES+R) (tf — ti)
if (a,i) < (¢, k), or (a,i) = (¢, k) and (b,j) < (d,1). In particular, for any a = 1,..., N — 1, and
any i = 1,...,6% — 1, there are rearrangements of factors such that R(€™“+i+1LE="+i) (t, —t9)
is the leftmost or the rightmost factor of the product.

Example. Let N =4 and £ = (2,1,1). Then

RO (£ — 2)RUD (1 — 1)) ROV (1 — ¢1) RO (£ — ) ROV (12 — ¢1) 2D (1} — 1)
= ROV (#7 — t)) RV (13 — t]) RV (¢ — 1) RUD (83 — ¢1) RUD (#3 — }) RU) (¢ — 13).

Further on, we will abbreviate, t = (t%, .. tg\, 11) Set
N—-1 1 g gb
oIl T ey 11 T (2:8)
a=1 1<i<jgger J g 1<a<b< N i=1j=1 J

cf. (2.6). To indicate the dependence on N, if necessary, we will write ]B%ém (t).

Example. Let N =2 and ¢ = (€'). Then B’ (t) = Tip(t}) -+ Tha(t}).

Example. Let N =3 and £ = (1,1). Then

B () = Tia (1) Tos (1) + 51 T13 (1) Toa () = Tas (83) Tha (1) + 51 13 (83) T (11).

1
12—t t2 —tl

Example. Let N =4 and £ = (1,1,1). Then

Bé4> (t) =Tis (t%)ng (t%)T34 (t?)
1 1
+ pra— Tz (1) Too (43) Tha (1) + PR To (1) Toa (£7) Ta3 (1)
114 11
1
iy T ) T )T (4) + i) o) ()
1—t)(t =1
(-t —t]) +1
(17 —t1) (8 — 1) (£ - 13)

Tia (t1) Tos (t7) T2 ().

The direct product of the symmetric groups Sei X --+ X Sev-1 acts on expressions in €]
variables, permuting the variables with the same superscript:

ol x . o x V1. f(t},...,tgv ) r—)f(tllf%,...,t(ljl ot ), (2.9)
51 0'1 o

where 0% € S¢a,a=1,...,N — 1.
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Lemma 2.1 ([22, Theorem 3.3.4]). The expression B¢(t) is invariant under the action of the
group Ser X« X Sen-1.

Proof. Let P =3, , Eu @ Eyp, be the flip map, and R(u) = PR(u). Foranya=1,...,N —1,
we have

R(U)Ea—l-l,a & Ea+1,a = (u + 1)Ea+1,a X Ea—l—l,a = Ea+1,a X Ea+1,aR(u)- (210)
Set
(LD (1) e (N-1y T RE+ie<ri(h _ja
) = TR T ) T RE ),
(a,i)<(b.j)

Let t = (ﬂ, . té\]f\, 11) be obtained from t = (t%, .. tgv 11) by the permutation of ¢{ and ¢7

Set j =i+ > &°. The Yang Baxter equation (1.2) and relations (2.3) yield
b<a

TERIED (87 — tf,1) = RO (88, — 1) T(E).

Hence,
Be(t) = (r®F @ id) (T(t)Eg%ﬁl@- E]%N 1®1)
:(tr®|§|®id)(R(j’j“)(t?H—t?)T(tN)(R(JH’j)(ta—tz+1)) B @@ By ®1)

_tim il PR PO

- B
tg—tg+1+1( 1 —tg ®),

tr®¢l @ id) (T(f)E?fl ® ®Egy | ® 1> c

by formula (2.10) and the cyclic property of the trace. Therefore, B¢ () = Be(t), see (2.8). W

If v is a weight singular vector with respect to the action of Y (gly), we call the expres-
sion B¢(t)v the (rational) vector-valued weight function of weight ({1, €2 gl N gN=2
—SN_I) associated with v.

Weight functions associated with gl weight singular vectors in evaluation Y (gly)-modules
(in particular, highest weight vectors of highest weight gl-modules) can be calculated explicitly
by means of the following Theorems 3.1 and 3.3. The theorems express weight functions for
Y (gly) in terms of weight functions for Y (gly_;). Applying the theorems several times one can
get 2V=2 combinatorial expressions for the same weight function, the expressions being labeled
by subsets of {1,..., N —2}. The expressions corresponding to the empty set and the whole set
are given in Corollaries 3.2 and 3.4.

Let vi,...,v, be weight singular vectors with respect to the action of Y(gly). Corol-
lary 3.6 expresses the weight function B¢(t)(vi ® --- ® v,) as a sum of the tensor products
Be, (t1)v1 ® - - @ Be, (tn)vp with ¢+ -+ 4+ ¢, =&, and t1,. .., ¢, being a partition of the collec-
tion t of |£| variables into collections of |(1, ..., || variables. This yields combinatorial formulae
for weight functions associated with tensor products of highest weight vectors of highest weight
evaluation modules.

Remark. It is shown in [9] that for a weight singular vector v in a tensor product of evaluation
Y (gly)-modules, the values of the weight function Be¢(t)v at solutions of a certain system of
algebraic equations (Bethe ansatz equations) are eigenvectors of the transfer matrix of the cor-
responding lattice integrable model. This result is extended in [12] to the case of higher transfer
matrices.

Remark. The weight functions B¢(t)v are used in [22] to construct Jackson integral represen-
tations for solutions of the qKZ equations.
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Remark. The expression for a vector-valued weight function used here may differ from the
expressions for the corresponding objects used in other papers, see [9, 22]. The discrepancy is
not essential and may occur due to the choice of coproduct for the Yangian Y (gly) as well as
the choice of normalization.

3 Combinatorial formulae for rational weight functions

For a nonnegative integer k introduce a function Wy (t1,. .., tx):
B ti—t;—1
Wi(t1,.. . tg) = H Thoi,
1<i<j<k
For an expression f (t%, e ,tgv_,ll), set
N— N— N—
Sym§f(t},...,t£N}1) = > f(t(lf%,...,tclrll;...;tUN,ll,...,tUN,ll ), (3.1)
ol, . gN-1 € 1 gN-1
where 0 € S¢a, a=1,...,N — 1, and
¢ N-1
Sym; f(t) = Symf (f(t) H Wea (t‘f, .. ,tga)) . (3.2)
a=1
Let n' < --- < nV~! be nonnegative integers. Define a function Xy (t%, . ,tél; e ;tjlv_l, ceey
anl 9
N-2 | n® J=1 ja+1 a
1 G —ti+1
Xn(t) - H H thrl _¢a H t{1+1 _ta : (33>
a=1 |[j=1"] Ji=1 i J
The function X, (t) does not actually depend on the variables tnNN_,IQ IRTREE ,ti}VN_}l.
For nonnegative integers n' > --- > 7"~ define a function Y, (t%, . ,t7171; .. .;t{vfl, cee
N-1 )
77N—1 I
N-1 770' 1 j*]. ta _ ta—l na + 1

V) = I |1 o 11— _j:;'i_llf . (3.4)

a=2 |j=177 Tjtnel-nai=1 i Tjdmatlone
The function Y, (t) does not actually depend on the variables t1,...,t},
n—

For any &,n € Zgo_l, define a function Z&n(t%, e ,tgv__ll; s%, R N—1)7

_9ogat+l pa
N T et e g

Zeg(t; s) = H H H T (3.5)

a=1 i=1 j=1 8§
The function Zg,n(t; s) does not actually depend on the variables t%, . ,t%l and 3]1\[_1, e S;VN__ll.
If¢n ¢ e Zg&l are such that £ —( € Zg&l and (—n € Zg&l, and ¢t = (t},...,t%l,...,t]lvfl,
.. ,tg\,__ll), then we set
t = (E1s - otyns st N,
tine = (t}?lﬂ, ot ;tﬁN—}lH, . ,téVN—_ll). (3.6)

Notice that t[ﬁ] = t(O,n]'
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For any £ = (&',..., ¢V ) set € = (¢1,..., 6V 2) and € = (€2,...,6N 1), If ¢ = (... t,
N A A

£N- ), then we set

i:(t%,...,tél;...;t{V_Q,...,té\f\,—i), i':(t%,...,tgg;...;t{v_l,...,tgvill). (3.7)

Theorem 3.1. Let V be a gly-module and v € V' a singular vector of weight (Al, e AN). Let

el N1 be nonnegative integers and t = (t%, R t%l; . ;tjlv_l, .. ,té\;\,__ll). In the evaluation
Y (gly)-module V(x), one has
é-Nfl N—2
1 1 1
Be(o= [ 7=m—2>_
- | _ | +1 _ |
o et o (€0 =) (et =)
N—-2n—1 ,q a+1
. t%_ . —x+ A
3 ) ga—i
x Symy | Xy (te—ng) Zennte—nite—ng) 11 11 ~—a——
a=1 i=0 £a—i
N-1_,N-2 ,N-2_ . N-3 1 N—1),:
L VL S (PR I B (38)
the sum being taken over all n = (n*,...,nN71) € Zg&l such that nt < --- < V=1 = ¢N-1

and n* < &% for alla =1,...,N — 2. Other notation is as follows: Symf is defined by (3.2),
the functions X, and Z¢_,, are respectively given by formulae (3.3) and (3.5), ¢ is the first of
embeddings (2.5), and

(N-1) ; _ pN-1)
B(g_n)- (t[éfn]) - BC (S)‘Cz(é—n)w s=tie_p)’

BéN_D(s) coming from (2.8).

Remark. For N = 2, the sum in the right side of formula (3.8) contains only one term: n = &.

Moreover, X, = Z¢_,, = 1, and Bé?—n)‘ = 1 by convention.

Corollary 3.2. Let V be a gly-module and v € V' a singular vector of weight (Al, . ,AN). Let

€L, N1 be nonnegative integers and t = (t%, ey tél; e ;t{vfl, . ,té\,fvill). In the evaluation

Y (gly)-module V (x), one has

LY I e
e v
tf — x4 (mab — ma,b—1)1"ab

- ipmer — T HA j itmeb
eswf | TN (G 0 %t
J

a=3b=1i=1 \ "i+mebtl  ipmab 1< jcipmabtl i4+mab

. (3.9)

Here the sum is taken over all collections of nonnegative integers m®, 1 < b < a < N, such
that m < -+ <m»* 1 and m®the ... 4 mNe =€ for alla=1,...,N — 1; by convention,
m® =0 for any a = 2,...,N. Other notation is as follows: in the ordered product the factor
ea®b is to the left of the factor e?d ifa>c, ora=candb >d, Syimf is defined by (3.2), and
m® = mbtl 4 L for all 1 < b < a < N, in particular, m>*~! = 0.
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Theorem 3.3. Let V be a gly-module and v € V' a singular vector of weight (AI, e AN). Let

L N1 be nonnegative integers and t = (t%, ... ,t%l; . ;tjlv_l, . ,té\jf\, 11) In the evaluation
Y (gly)-module V (x), one has
¢! 1
Be(t)o =] — Z N1 H
| l -1 _ |
115 S T
N-1n% a
— t¢ —x+ A
x Symy | Yy (tp) Zne—n(tpps tn.e) H : P
a=2 i=1 i
1_.2 2_.3 N-—1 N—-1
xed el el ¢(Eég n)> (te)))v (3.10)
the sum being taken over all n = (n',...,nN"1) € Zg&l such that €' =n' > ... > N1 and

@L< &Y foralla =2,...,N — 1. Other notation is as follows: Symf is defined by (3.2), the
functions Y, and Z, ¢, are respectively given by formulae (3.4) and (3.5), 1) is the second of
embeddings (2.5), and

(N=1) ¢+ o (N—1
B .4(t(n’§]) = BC

(&—n) S)‘C=(£—77)“7 s=l(p.¢’

B2N71>(S) coming from (2.8).

Remark. For N = 2 the sum in the right side of formula (3.10) contains only one term: n = §.

Moreover, Y;, = Z, c,, = 1, and Bééln),_ = 1 by convention.

Corollary 3.4. Let V be a gly-module and v € V' a singular vector of weight (Al, e ,AN). Let

,. ., &0 be nonnegative integers and t = (ty,...,t;;...; yoo oy teno1). In the evaluation
! N=1p tive int dt=(t},...,t; 0t In the evaluati
Y (gly)-module V (x), one has
N1 & — 1 1,
= m b_me
U H H o — o Z H (mab _ ma+1 b)| ab v
a=1i=1 * m 1<b<a<N
N—1la—1methb_1 a a a—1
_ [58 —x+A [ -t +1
'3 ma+1l,b_; ma+1l.b_j j
<sym; | TTTI 11 ry — 11 " e . (3.11)
a=2 b=1 =0 ma+1,b mab—i mab_jcjgga—1  “matlb_g J

Here the sum is taken over all collections of nonnegative integers m®, 1 <b < a < N, such that
mathe > o> mlNe gnd metbl 4o pmethe = ¢@ foralla = 1,...,N — 1; by convention,
mNThe =0 for anya = 1,...,N. Other notation is as follows: in the ordered product the factor
efb is to the left of the factor e?d ifb<d,orb=danda < c, Symf is defined by (3.2), and
m® =m®™ 4+ ... 4+ m® for all 1 < b < a <N, in particular, meth® = g2,

Theorem 3.5 ([22]). Let Vi, Va be Y (gly)-modules and vy € Vi, ve € Vo weight singular vec-

tors with respect to the action of Y (gly). Let €',..., &N~ be nonnegative integers and t =
(t}{,...,tél;...;t{V—l,...,téVN ). Then
N—-1 N—2natl o ta+1_ta_|_1

Bg(t)(vl & UQ) = Z (é.a a alsymt H H H ta-i—l ta
n 1

a=1 =1 j=n%+1

N—-1 ne
X H H<Taa ’U2> H <Ta+1 a+1 ’U1> t[n U1 ®B§ 77( (,775])’[)2 s (312)
a=1 i=1

J=n%+1
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the sum being taken over alln = (n',...,nN"1) € Zgo_l such that & —n € Zgo_l. In the left side
we assume that Be(t) acts in the Y (gly)-module Vi & Vs.

To make the paper self-contained we will prove Theorem 3.5 in Section 5.

Corollary 3.6. Let Vi,...,V, be Y(gly)-modules and v, € V., r = 1,...,n, weight singular

vectors with respect to the action of Y (gly). Let &',... ¢N~1 be nonnegative integers and t =
(t%,...,tél;...;tivfl,...,tg\,11) Then
Be(t) (01 ® -+ ©vn)
N-1 n N—2n-1 nit! £ Jat+l _ 4a
G =t +1
- > Tty | I T 11 i
Nyeein—1 a=1 r= 1 r—1 a=1 r= 11 na+1+1‘7 /r]a+1 ’L 7
N-1 n /M1
TLTT(TT ) [T (Torannts )
a=1r=1 \i=1 j=ng+1
X By ()01 @ By (b o)) 2 @ -+ © Bf—ﬁn—l(t(nnlél)vnl : (3.13)

Here the sum is taken over all n1,...,nn—1 € Zg&l, Ny = (77}, coo,nN- 1), such that ny41 —ny €

Z]>VO_1 foranyr=1,....,n—1, and no =0, n, =&, by convention. The sets L[, ], t(y. p., aT€

de/ﬁned by (3.6). In the left side we assume that Be(t) acts in the Y (gly)-module Vi ® --- @ V,,.

Remark. In formulae (3.8)—(3.13), the products of factorials in the denominators of the first
factors of summands are equal to the orders of the stationary subgroups of expressions in the
square brackets.

4 Proofs of Theorems 3.1 and 3.3

We prove Theorems 3.1 and 3.3 by induction with respect to N, assuming that Theorem 3.5
holds. For the base of induction, N = 2, the claims of Theorems 3.1 and 3.3 coincide with each
other and reduce to the identity

ST G = kL. (4.1)
oc€SE 1<i<y<k Soi SJJ

The induction step for Theorem 3.1 (resp. 3.3) is based on Proposition 4.2 (resp. 4.1).

Let Eéévfm € End ((CN _1) be a matrix with the only nonzero entry equal to 1 at the intersec-
tion of the a-th row and b-th column, RN—1 (u) the corresponding rational R-matrix, cf. (1.1),
and T;év_n(u) series (2.1) for the algebra Y (gly_;). Denote by L(x) a Y (gly_;)-module defined

on the vector space CVN~1 by the rule
m(x) : Téévfw(u) = Ogp + (u — x)_lEéiV*U.
Denote by L(x) a Y (gly_)-module defined on the space CV~! by the rule
w(z) : Téév_n(u) = gy — (u — x)*lEééV_D.
Using R-matrices, the rules can be written as follows:
m(x): TN D) = (u—2) 'RV (4 —2),
w(z): TV V() (z — u)—1<(R<N—1>($ _ u))(21))t27

the superscript ¢ standing for the matrix transposition in the second tensor factor.
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Let wi,...,wy_1 be the standard basis of the space CN~!. The module L(z) is a highest
weight evaluation module with highest weight (1,0,...,0) and highest weight vector wy. The
module L(z) is a highest weight evaluation module with highest weight (0, ...,0, —1) and highest
weight vector wy_1.

For any X € End (CV™1) set v(X) = Xw; and #(X) = Xwy_1.

Consider the maps ¢(z1,...,z5) : Y(gly_1) — ((CN_l)®k ®Y(gly),

vz, ..., z) = (I/®k ®id) o (7(z1) ® -+ @ w(wk) ®Y) 0 (A<N-1>)(k), (4.2)
and ¢(z1,...,25) : Y(gly_1) = Y(gly) ® (CN_1)®k,
p(z1,...,x1) = (ild@ %) o (p@ w(r1) ® -+ @ w(xy)) o (A<N*1>)(k),

where ¢ and ¢ are embeddings (2.5), and (A<N—1>)(k) :Y(gly_1) — (Y(g[N_l))®(k+1) is the
multiple coproduct.
For any element g € (CN_1)®k ® Y (gly) we define its components g%»% by the rule

A similar rule defines components of elements of the tensor product Y (gly) ® (CV _1)®k.
Proposition 4.1 ([22, Theorem 3.4.2]). Let ¢!,... LENTL be nonnegative integers and t = (t%,

..,tél;...;t{v_l,...,té\fv__ll). Then

N-1
Be(t) = Z Tiay41(t]) - M0 +1 (té) (1/1(&, e ,tél) (BEN_D(??))) et (4.3)

al,...,a€1:1

cf. (3.7).

Proof. To get formula (4.3) we use formulae (2.6) and (2.8), and compute the trace over the
first & tensor factors, taking into account the properties of the R-matrix (1.1) described below.
Let vi,..., vy be the standard basis of the space CV. For any a,b=1,..., N, the R-matrix
R(u) preserves the subspace spanned by the vectors v, ® vy, and v, ® vy,.
Let W be the image of CV~1 @ CN~1 in CN ® CV under the embedding w, ® Wy — Vap1 ®
Vi1, a,b=1,...,N — 1. The R-matrix R(u) preserves W and the restriction of R(u) on W
coincides with the image of RV~ (u) in End(CV~! @ CN~1) induced by the embedding. W

1. 4N-1
Gty T,

Proposition 4.2. Let £',..., N1 be nonnegative integers and t = (t%, e ,t§1, ..

té\,[(,ll ) . Then

ey

N-1
Be(t) = > Tugnrna () - Tapna () (0t 1) (B0 ()
al,...,a§1:1
cf. (3.7).

Proof. To get formula (4.4) we modify formula (2.6) according to relation (2.7), use for-
mula (2.8), and compute the trace over the last {x_1 tensor factors, taking into account the
structure of the R-matrix (1.1). [ |
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Proof of Theorem 3.3. For a collection @ = (ay,...,az) of positive integers let ’(a) =

#{r|a, > b}, and c(a) = (c!(a),...,cN"a)).
To obtain formula (3.10) we apply both sides of formula (4.3) to the singular vector v in the
evaluation module V' (x) over Y (gly). In this case, Th4(u) acts as (u — )" teq; and we have

1
Be(t)o = H tl —x
=1 1
1_,2 ,2_ .3 N-—1 N-1 1 1 (N—l) .. al,...,agl
YT e Y (vl k) BTV @) v, (4.5)
n al,m,llgl:l
c(a)=n

the first sum being taken over all n = (771, . ,anl) € Zgo_l such that é&f =nt > ... > N1,

Let YV (z) be the Y(gly_;)-module obtained by pulling V(x) back through the embed-
ding v. Then v(t,....th) (BY
Wi ® - @wi @ in the Y(gly_;)-module L(t) ®@ - -+ ® L(tél) ® YV (x). We use Theorem 3.5

(i'))v is the weight function associated with the vector

to write @Z)(t%, ces ,t%l) (BéN b (t))v as a sum of tensor products of weight functions in the tensor

factors, that is, as a sum of the following expressions:
N-1 N-1 (N-1
m (1) BV (s0)wi @ - @ m(th) (B (se) w1 @ v(BE ™ (s0))v,

where (o, ..., (e, S0, - ., Sg1 are suitable parameters, and employ Corollary 3.4, valid by the in-

duction assumption, to calculate the weight functions W(t}) (]B%g\[_1> (s;))w1 in the modules L(tjl).

As a result, we get formula (4.7), see Lemma 4.3 below.

Observe that in the module L(z) one has (T11(u)w1) = 14+ (u—2z) ! and (T,q(u)w1) = 1 for all
a=2,...,N. The weight function ﬂ(m)(IBBéN_D(s))wl equals zero unless ¢ = ( ..,1,0,...,0)
(it can be no units or zeros in the sequence). If (! =--- = (" =1 and ("t = = (N-1 =,
then s = (s},...,s]) and

N-1) €r+1,1W1
7r(a:)(IBS< (s))wy = :
¢ (51— 2)(s] —s1) -+~ (s] — 77

Fixn = (771, RN nN_l) € Zg&l such that n' > --- > nV~!. Consider a collection I of integers
lg’,a:1,...,N—2,izl,...,n““,suchthat 1<if<-- <l“a+1 <n*foralla=1,...,N—2.
Introduce a function Fy(s) of the variables si, ... ,37171; .. s{v 1, ol sny_}l:

N—2net! a+1

s; —sj+1
H H a+1 — g H Sa+1 _ 4@ (46)
a=1 i=1 g I$<j<n® ( J

There is a bijection between collections I and sequences of integers @ = (a1,...,a,1) such that
1<a; < N— 1 foralli =1,...,n', and ¢(a) = n. It is established as follows. Define numbers Dy
by the rule: p —l Li=1,...,1n% and pf :p?q_l, a=2,...,N—2,i=1,...,n%"1. Then the
sequence a is uniquely determined by the requirement that a; > b iff ¢ € {pl{, ceey pnb 1 }, for all

i=1,...,n'. We will write a(l) for the result of this mapping.
Summarizing, we get the following statement.
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Lemma 4.3. Let n = (n',...,nV" 1) € Z2 be such that &' = >Nl Letl be a
collection of integers as described above, and a(l) = (aq,... ,aél)
N—1 = A1 yeees@pl
(vt st B V@) (47)
N- N-1 7" b
f tl—a:—l—A <N—1> ..
H ji Svmi Fi(ty) Zne—n(tin:toa) 1T 11 T V(B (e
b=2 b=2 =1

Cf. (3.5) fOT' Zﬁ’ffﬂ(t[n];t(mﬂ)'

Comparing the expressions under Sym in formulae (4.7) and (3.10), and taking into account
that the product

N—-1 nb
b b (N=1)
Zng—n(tim)s tang) H H t —z+A )1/1(133(5,17)4-(15(77,5}))1)
b=2 i=1
is invariant with respect to the action of the groups S x - - X S n-1 and Sg_, cee X
Sen—1_pn-1 permuting respectively the variables t,... ,t?171; . .;t{vfl, e ,tf;[ L and th, .
1%1; ol téVN ! NERTERE (N1 one can see that formula (3.10) follows from formula (4.5) and Lem-
ma 4.4 below Theorem 3.3 is proved. |
Lemma 4.4. Letn = (n',...,nN 1) ¢ Zg&l such thatn' > --- > nN=1. Lets = s%,...,s%l;...;
5]1\]_1, . ,57]7\]1\,__11. Then
4?7
11 H et Sym - Z Symy ( (4.8)
l

cf. (3.4) for Y,(s). The sum is taken over all collections U of integers I¢, a = 1,...,N — 2,
i=1,...,n%" such that 1 <I1§ < --- <lga+1 <n® foralla=1,...,N —2.

Proof. It is convenient to rewrite formula (3.4) in the form similar to (4.6):

N—2nat! a+1 a

H H 1 T
at+tl _ _a atl _ ca

=1 =1 \ % Signo—natl jcjgpatr i 8 jme—nat

For positive integers p, r such that p < r, consider a function

Gpr(Yts - Yps 215 -2, 21)

P
_ Sy H Yi — Zjrr—p+1
(7" — ) Pz paliey — Ritr—p i<j<p Yi = Zj+r—p
It is a manifestly symmetric function of z1,..., 2, and it is a symmetric function of y1,..., ¥,
by Lemma 4.5.

To prove Lemma 4.4 we will show that the expressions in both sides of formula (4.8) are
equal to

a+1 a+1 a
HGa+1 ,...,snaﬂ,sl,...,sna).
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The proof is by induction with respect to N. The base of induction is N = 3. In this case the
claim follows from Lemma 4.5 and identity (4.1). The induction step for the left side of (4.8) is
as follows:

Sym? (¥;(s)) = Syml (Syml) s (¥o(s))

<y 2 .1 1
= Symy G,7 n (81, $Sp23 1 ’Snl)
N—2not? a+l _ ca
I 1T 1 e
satlt _ga gatlt _ ga
a=2 i=1 i i+nt—natl j<jgnetl i jHne—natt
2 .1 1
_G (51,...,8772,81,...,8771)
N—2n*! a+1
n 1 Si 8?4‘770' a+1 "‘ 1
«symi | [T I1 11
S{1+1 — g@ Squl —ga
a=2 i=1 7 i+n@—natl i<j<natl i j4ne—natl

_ a+1 a+1 a

g H Gna+17na(31 g oo Sna+1,31,...78na).
In the last two equalities we use the fact that G2 1 (s%, cees 57272; st 871]1) is symmetric with
respect to s%, R 522, and the induction assumption.

The idea of the induction step for the right side of (4.8) is similar. First, one should sym-

metrize Fj(s) with respect to the variables S{V -1 ,]]VN 1 and sum up over all possible collec-
tions l{v -2 lNN 2 and then use Lemma 4.5. We leave details to a reader. |

Lemma 4.5.

Y —2j +1
I ==

vdi<j<r

p
Gp,?“(ylv"wyp;zlv"'7Z7“) = Zsymil,..,,yp H —
d =1\ YT A

the sum being taken over all p-tuples d = (dy,...,dy) such that 1 < dy <--- <d, <.
The proof is given at the end of Section 6.

Lemma 4.6. Let p, r be positive integers such that p < r. Then

(T - p) i1 Yi — 1<j<i Yi — Zj
u yi —zi+1
_ Qo P A B
- Z Symy17"-7yp H y — H — 2 ’
d i=1 iy Gicq, YT A

the sum being taken over all p-tuples d = (dy,...,dp) such that 1 < dy < --- <d, <.

Proof. The statement follows from Lemma 4.5 by the change of variables y; — —y,—, z; —
—2zr—j, and a suitable change of summation indices. |

Proof of Theorem 3.1. The proof is similar to the proof of Theorem 3.3, mutatis mutandis.
In particular, Lemma 4.5 is replaced by Lemma 4.6. |
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5 Proof of Theorem 3.5

The theorem is proved by induction with respect to IN. The base of induction, the N = 2 case,
follows from Proposition 5.3. The induction step is provided by Proposition 5.6.

Let PV-1 = 3 ENY @ BN be the flip matrix, and RV (u) = u+ PN -1 be the

a,b=1
R-matrix for the Yangian Y (gly_1).

In this section we regard T'(u) as an N x N matrix over the algebra Y (gly)[u~!] with entries
Towp(u), a,b=1,...,N. Let

Alw) = ),  B(w) = (Tia(w),....Tin(w), D) = (T;w)"_,. (5.1
be the submatrices of T'(u). Set R(u) = u~'RN~1(u). Formulae (2.3) and (1.1) imply the

following commutation relations for A(u), B(u) and D(u):

AWA(t) = A(D)A(w), (5.2)
B (u)B2 () = %Bm ) BY () B (u — 1), (5.3)
A(w)B(t) = Li_tlB(t)A(u) + ﬁB(u)A(t), (5.4)
DO () BE(t) = %BM DO () B (u—t) - ﬁBU] (w)D)(#), (5.5)
R — ) DO (w)D? (1) = D () DD ()R (u — 1). (5.6)

In this section we use superscripts to deal with tensor products of matrices, writing parentheses
for square matrices and brackets for the row matrix B.

Set R(u) = (u+ 1)"'PN"DRIN=1(y). For an expression f(uy,...,u;) with matrix coeffi-
cients and a simple transposition (i,7+ 1), i=1,...,k — 1, set

CHDF (g, ug) = FUty ey Wit Wit Wiy g, - - - up) RO (0 — 1), (5.7)

if the product in the right side makes sense. The matrix R(u) has the properties R(u)R(—u) = 1
and

RO (4 — v) R () R (v) = R (0) RI? () R (u — v),
cf. (1.2). This yields the following lemma.

Lemma 5.1. Formula (5.7) extends to the action of the symmetric group Sy on expressions
flug, ..., ux) with appropriate matriz coefficients: f+— °f, o € Sk.

By formula (5.3) the expression B! (uy)--- B¥(uy,) is invariant under the action (5.7) of the
symmetric group Sk.
For an expression f(uq,...,u;) with suitable matrix coefficients, set

RSqu(}l’,'.'.'.’Z)k flug, ... ug) = Z Tf(ugy ..., ug).

€Sk
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Proposition 5.2.

k
U — U; — 1
@B w) - B ) = [T === B wm) - B Aw) (5.5)
i=1 !
1 1 Mo — i — 1
1 — Uy —
o S (u — =, —, BB w) B <uk>A<u1>> ,

) i=2 !

DO (y )B[ll (u1) - - B (uy)

- H L B ) - B ) DO @R 0 ) B (- )

k
1 R (1,...k) 1 up —u; + 1
- S Ity
(k—1)! Yt U — Uy g up — U;

w B (1) B (us) - - - B¥ (1) DD (u) B™ (uy — ge) - R (g — uz)) (5.9)

In the second formula the tensor factors are counted by 0, ... k.

Proof. The statement follows from relations (5.3)—(5.5) by induction with respect to k. We
apply formula (5.4) or (5.5) to the product of the first factors in the left side and then use the
induction assumption. |

Remark. Formulae (5.8) and (5.9) have the following structure. The first term in the right
side comes from repeated usage of the first term in the right side of the respective relation (5.4)
or (5.5). The second term, involving symmetrization, is effectively determined by the fact that
the whole expression in the right side is regular at u = u; for any ¢ = 1,..., k, and is invariant
with respect to action (5.7) of the symmetric group Si. The symmetrized expression is obtained
by applying once the second term in the right side of the relevant relation (5.4) or (5.5) followed
by repeated usage of the first term of the respective relation.

Let A be coproduct (2.4) for the Yangian Y (gly). For a matrix F' = (Fj;) over Y(gly),
denote by A(F) = (A(Fj;)) the corresponding matrix over Y (gly) ® Y (gly)-

We will use subscripts in braces to describe the embeddings Y (gly) — Y(gly) ® Y(gly)
as one of the tensor factors: X3 =X ®1, X9y =1® X, X € Y(gly). For a matrix F' over
Y (gly), we apply the embeddings entrywise, writing Fy;y, Fyz) for the corresponding matrices
over Y(gly) @ Y(gly)-

Proposition 5.3. We have

A B =3 g Syt ( 1
1<i<j<k
x By (t) - BY () By (ti) - By, (t4)
x DY (tar) - DY) (t1) Agay (00) - A{z}(tl)) (5.10)
Proof. The statement is proved by induction with respect to k. Writing the left side as

A(BM (1)) A (B2 (uy) - - BH (uy),
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we expand the first factor according to (2.4):

A(B[l}(ul)) — BF] (Ul)A{Z}(ul) —|—B[1} (UI)Dgll)}(ul)y

1} {2}
and apply the induction assumption to expand the second one. Then we use Proposition 5.2 to
transform the obtained expression to the right side of (5.10). [

Regard vectors in the space CV =1 as (N —1) x 1 matrices. Formula (4.3) from Proposition 4.1
can be written as follows:

1 N—1) 5
Be(t) = B (1) - BE)(th) o (1, 1) (BE V(D). (5.11)
For nonnegative integers k, [ such that k > [, define an embedding
Gilur, k) s Y(gly) = (CV % @ Y(gly) @ Y(gly), (5.12)

ﬁl(ul, o) =100 (I/®l ®id ® v®FH g id)
o (m(u) ® -+ @ m(up) ® @ w(uppr) ® -+ @ mlug) @) o (AN,

where

oz (© )T ey @ () e v(ey) » (€)@ Vg @ Y(aly)
is given by the rule

N X10y X)) =z y® X; ® X,
for x € ((CN71)®I, TS ((CNfl)@(k*l), X1, X2 € Y(gly), and

(AN=NED Ly (gly_y) = (Vghy_p))*"

is the multiple coproduct.
Let v, vy be weight singular vectors with respect to the action of Y (gly).

Lemma 5.4. For any X € Y(gly_,) we have

A((ur, .. ug) (X)) (01 © va) = P(ur, - - - ) (X)) (01 @ v2).

Proof. Recall that AN=1 denotes the coproduct for the Yangian Y (gly_;). Let Yy (gly) be
the left ideal in Y (gl ) generated by the coefficients of the series To1(u), ..., Ty1(u). It follows
from relations (2.4) and (2.2) that

A(X)) — (@ v)(ANTI(X)) € Y(aly) @ Y (aly)

for any X € Y (gly_). Therefore,

A($(X)) (01 @ v2) = (¢ @) (ANTV(X)) (01 @ v2) (5.13)
because vy is a weight singular vector. The lemma follows from formulae (4.2), (5.12)
and (5.13). [ |

Lemma 5.5. For any X € Y(gly_;) we have

(04~ D g 1) Ay 05 00) 0

! k
:H<T22(ti1)’01> H <T11(tjl‘)02>($l(t1,---atk)(X)I(l)“'I(k)>(vl®v2)~
i=1

j=l+1
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Proof. Recall that D(u) = (id®@v) (T (u)) and R(u—w;) = (id@n(u;)) (T (u)). Then
according to relation (5.6), for any X € Y (gly_;) we have
D(u;) (¢ ® 7(u;)) (AN V(X)) = (m(us) @ 9) (AN V(X)) D(ws).

In addition, remind that D(u)(w; ® v1) = w1 ® Tha(u)v; <T22( v >(W1 ® v1), because vy is
a weight singular vector. Therefore,

?f} M(ugga) - D?ﬂ(uk)%(ul, o u) (X)) (01 ® va)
= di(ur,...u )(XDEll—gl)(ul+1) . Dg;)}(uk))(vl ® vs)
k
= H <T22(uj)vl>{p\l(u17 s auk)(X)(’Ul &® ’UQ).
j=l+1

Recall that we regard Jl(ul, ..., ug)(X) as a matrix over Y(gly) ® Y(gly). All entries of
this matrix belong to ¢ (Y (gly_1))) @ ¥ (Y (gly_1))). It follows from relations (2.2) that for any
X' € Y(gly_1) the coefficients of the commutator 711 (u)y(X") —1(X')T11(u) belong to the left
ideal in Y (gl ) generated by the coefficients of the series Th1(u),. .., Tn1(u). Therefore,

A(u) (X" vz = 9 (X')T11 (ui)ve = (Tha (ui)v2 )9 (X )v2
because A(u;) = Th1(u;), cf. (5.1), and ve is a weight singular vector. Hence,
(

Apay(ur) -+ Aoy (u)dhy(un, ..., up) (X) (01 @ v2)

l
H T11 ’U,Z V2 wl(ul,...,uk)(X)(vl ®1)2),

which proves the lemma. |

Proposition 5.6. In the notation of Theorem 3.5, we have

Be(t)(01 @ v2) (5.14)
1 (1) -t 17 -
EARAS) 1 1
=S el (I e 1T e
=0 C \igicjcer J =1 j=1+1

(1] (1] [1+1] [€'] " N—1) 5
x By (t) - By () By (ti) - By (ta) (- vtél)(Eé' >(t))) (v1 ® v2).
Here the space Vi ® Va is considered as the Y (gly)-module in the left side of the formula, and
as the Y (gly) ® Y (gly)-module in the right side.

Proof. Expand B¢(t) according to formula (5.11). Since Y (gly) acts in V; ® Va via the copro-
duct A, we have

&wwwmmzAQ#anBWwwwmw-QJ@?lmwym®m>
:A(B[%l)-.-B[élJ(tg))A(w(tl,...,t1 (B >(f))>(vl®v2).

Recall that A applies to matrices entrywise. In the last expression, we develop the factor
A(B[l](t1)-~B[51](t£1)) according to Proposition 5.3, and replace the factor A(w(t%,...,
tél)(IB%W*U(f))) by 1251 (t%, e ,1%1) (IB%<N 1>(t)) according to Lemma 5.4. After that, we uti-
lize Lemma 5.5 to transform the result to the right side of formula (5.14). |
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6 Trigonometric weight functions

Notation in this section may not coincide with the notation in Sections 2-5.

The quantum loop algebra U,(gly) (the quantum affine algebra without central extension)
is the unital associative algebra with generators L;{jfs}, a,b=1,...,N, and s = 0,1,2,....
Organize them into generating series

oo
LA ) = LG+ S Lt an=1,.0N, (6.1)
s=1
N
and combine the series into matrices L*(u) = 3. Eu ® Laib(u). The defining relations in
a,b=1

Uq(ﬁfz;) are

L =% —0,  1<a<bg<N,

L0y pir0y — piobpi-0} g a=1,...,N,
RY (o) (1 (w) Y (L7 (0)) ) = (L2(0) @ (L) Y RED (),

(n,v) = (+,4+), (+,—), (=, —), where Ry(u) is the trigonometric R-matrix (1.3).
The quantum loop algebra Uy (gly) is a Hopf algebra. In terms of generating series (6.1), the
coproduct A : Uy(gly) = Uy(gly) ® Uy(gly) reads as follows:

A LE(u l—)ZL ) ® LE (u).

The subalgebras UZ (E;E) C Uq(é?];) generated by the coefficients of the respective series LY, (u),
a,b=1,..., N, are Hopf subalgebras. - -

There is a one-parameter family of automorphisms p, : Uy(gly) — Uq(gly), defined by the
rule

Px L(fb(u) — Lfb(u/x)

The quantum loop algebra Uq(g[;) contains the algebra U,(gly) as a Hopf subalgebra. The
subalgebra is generated by the elements L({lzro}, L;{Lb_o}, 1 <a<b< N. Set l%a = LC{L;O},
a=1,...,N, and

L{+0}]A€ 1%71[/{—0}
éab:_bai,f7 éba:aiaila 1<(Z<b<N (62)
q—4q q—dq
The elements I;:l, el l%N, €12,...,6N—-1,N, €21,...,6nN—1 are the Chevalley generators

of Uy(gly). We list some of relations for the introduced elements below, subscripts running
over all possible values unless the range is specified explicitly:

kabye = g’ % eycka,

€a,a+1€at+1,b — Q€at1,p€aa+1 = €ap—1€b—1b — q€h—1 p€ap—1 = €ab,
R R 1. A R ) i R R a+1<b,
€b,a+1€a+1,0a — 4 €a+1,a€ba+1 = €bp—1€b—1,a — 4 ~€b—1,a€b,b—1 = Eba;

€ca€ba = 4€baCca; €cb€ca = GC€calch, a<b<ec
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The coproduct formulae are A(]%a) = ko ® kg,

A(éa,a—H) =1® éa,a+1 + éa,a—i—l & I%al%a__&la A(éa—l-l,(z) = éa—l—l,a ®1+ ]%a—l—l]%a_l & éa—l—l,a-

By minor abuse of notation we say that a vector v in a Uy(gly)-module has weight (Al, cee

AN) if kev=¢Mvforalla=1,...,N. A vector v is called a singular vector if ép,v = 0 for all
1<a<b< N. -
The evaluation homomorphism € : Uy(gly) = Uy(gly) is given by the rule

L (u) — kgt — ukq, L (u) = kg —u™ Ykt a=1,...,N,
Lz_b(u) = _u(q - qil)kaébaa L;b(u) = (q - qil)kaébaa

R R 1<a<b< N,
Lif () = —(q— g ") éaky ", Ly (w) = u " (qg—q ")éawky .

Both the automorphisms p, and the homomorphism e restricted to the subalgebra U,(gly) are
the identity maps. -
For a U,(gly)-module V' denote by V(x) the U,(gly)-module induced from V' by the homo-

morphism € o p,. The module V(z) is called an evaluation module over Uy(gly).

Remark. In a k-fold tensor product of evaluation modules the series L™ (u) and L~ (u) act
as polynomials in u and u~!, respectively, and the action of L*(u) is proportional to that of
uF L= (u).

Let V' bea U, (g[;)—module. A vector v € V is called a weight singular vector with respect to

the action of U~ (QE) if L, (u)v=0foralll<a<b< N,andw isan eigenvector for the action
of Lij(u), ..., Lyy(u); the respective eigenvalues are denoted by (Li;(u)v),. .., (Lyy(uw)v).

Example. Let V be a U, (gl )-module and let v € V' be a singular vector of weight (Al, cee AN).

Then v is a weight singular vector with respect to the action of U, (5[\];) in the evaluation modu-
le V(z) and (L, (u)v) = ¢ —¢ 2 zut,a=1,...,N.

We will use two embeddings of the algebra Uq(g/[;_/l) into Uq(af];), called ¢ and :

o((L5w) ™) = (L5@)™, (5@ ) = EE @)™ 63)
Here (L;tb(u))wf1> and (Lfb(u))w> are series (6.1) for the algebras U,(gly_;) and UQ@Q),
respectively.

The constructions and statements in the rest of the section are similar to those of Section 2.
We will mention only essential points and omit details.

Let k& be a nonnegative integer. Let &€ = (¢1,...,6NV~1) be a collection of nonnegative integers.
Remind that £€<¢ = ¢ 4. 4 ¢ a=1,...,N,and [¢| = &' + .- + V7T = ¢<N,
Consider a series in |¢] variables #1, ... ,t%l, N ,tgvill with coefficients in U, (gly):

Be(t, ..., tovh) = (0¥ @ id) <(L (1)) D (L (e ) eHer Y

—+ -
v H Rg£<b+a,g<a+z) (tg/tg)Egsl R ® Ef\’}g;vvfl ® 1) , (6.4)
(a,1)<(b.)

the convention being the same as in (2.6).

Remark. The series I@g (t%, e tgvill) belongs to Uq(gf[;) [t%, ey t?,f\,ill] [[(t%)_l, e (tg\,ill)_l]].
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Set
g gt

N-1
A ta ta
Be(t) = Be(t) H m H H H ﬁv (6.5)
a=11 J

<i<jgen I 1<a<b<Ni=1j=1"7 "

(N

To indicate the dependence on N, if necessary, we will write IBB)5 >(t).
Example. Let N =2 and € = (¢). Then BY (t) = Ly (t]) -+ Ly, (th).

Example. Let N =3 and £ = (1,1). Then

_ _ oy B _
B§3> () = Lip (1) Lys (1) + (4 — a 1)@%3 (t1) Ly (11)-
Example. Let N =4 and £ = (1,1,1). Then
Be (1) = Ly () Log (13) Ly (£)

_ 2 _ _ U _ _
+(@—q) <t%—1t}L13 (1) Lo (1) Lay (1) + ﬁLm (t1) Loy (1) L3 (’@)

_ t3t3 _ _ _ _ _ _
+(g—q 1)2 7 11 13 2 (L14(t%)L22(t%)L33 (t?) + L13(t%)L24(t%)L32(t?))
(1 — 1) (8 — 7)

- 2 (1B —2) + (g —q 24243 - - -
+ (q —q 1)t?( : (t%l)_(tl%)(t;fl)_ t%() (t‘;’ _ t%)) : 11‘1111(1%)1;23 (t%)L?ﬁ (ti’)

Recall that the direct product of the symmetric groups Sgi1 X - -+ X Sen—1 acts on expressions
in |¢| variables, permuting the variables with the same superscript, cf. (2.9).

Lemma 6.1 ([22, Theorem 3.3.4]). The expression B¢(t) is invariant under the action of the
group Ser X« X Sen-1.

If v is a weight singular vector with respect to the action of U, (EI\J;), we call the expression
Be(t)v a (trigonometric) vector-valued weight function of weight (51, €2 gl N gN=2

—£N_1) associated with v.

Weight functions associated with U, (gly) weight singular vectors in evaluation U, (a[;)—mod—
ules (in particular, highest weight vectors of highest weight U,(gly)-modules) can be calculated
explicitly by means of the following Theorems 6.2 and 6.4, which are analogues of Theorems 3.1
and 3.3, respectively. Corollaries 6.3 and 6.5 are the respective counterparts of Corollaries 3.2
and 3.4.

Theorem 6.6 and Corollary 6.7 are analogous to Theorem 3.5 and Corollary 3.6 in the Yangian
case and yield combinatorial formulae for weight functions associated with tensor products of
highest weight vectors of highest weight evaluation modules over the quantum loop algebra.

Remark. The expression for a vector-valued weight function used here may differ from the
expressions for the corresponding objects used in other papers, see [9, 22]. The discrepancy can

occur due to the choice of coproduct for the quantum loop algebra U,(gly) as well as the choice
of normalization.

For a nonnegative integer k introduce a function Wy (t1,. .., tx):

-1
q ti—qt;
Wit ... te) = [ ———

1<i<j<k v
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For an expression f(ti,... ,tg\, 1), set
¢ N-1
Sym; f(t) = Symf (f(t) H Wea (t‘f, .. ,tga)) , (6.6)
a=1
where Symf is defined by (3.1).
Let n' <--- <n™~! be nonnegative integers. Define a function Xn(t%,...,tél; . ;t]lvfl,
e 7tNN_—11)7
n
- N_2 ne 1 7—1 qt?+1 _ q—lt? 6 7
- H H ta+1 ta H t§l+1 _ tq : ( : )
a=1 |j=1") J i=1 v J
The function X, (t) does not actually depend on the variables tNN L TRy ,ti}VNill
For nonnegative integers n' > --- > 7N~ define a functlon Y, (t1: . ,t}?l; . ;tJlV_l, ceey

)

N—1

o= |1

The function Y, (t) does not actually depend on the variables 1, ... st

j—1 4a _ —1lia—1
qt q t]+na 1_770,
. (6.8)
a_ta 1 ta 1
b =t 21 B geige

2.

-7
For any &,7 € Zgo_l, define a function Z¢ (t%, .. tg\, Logl S7s.ees anN_}l),
N-2¢&%Ft po 75a+1 g st
R S
Zep(t;s) = HHH TS (6.9)
a=1 i=1 j=1 % J
The function Z¢ ,(t;s) does not depend on the variables t,.oo., 51 and sN Lo ,57]7\[1\;11.
n —n L
We are using the following g-numbers: [n], = %, and g¢-factorials: [n]! H [r]q- Recall
that for a collection ¢ of || variables we introduced the subcollections t[,, t( b ( 7)and £, t

by (3.6). )

For any 1 < a <b < N set &, = kayp, cf. (6.2).
Theorem 6.2. Let V' be a Uy(gly)-module and v € V' a singular vector of weight (Al, .. ,AN).
Let &', ..., ¢N~1 be nonnegative integers and t = (t%,...,tél;...;tiv_l,...,tg\, 11). In the eva-

luation Uq(;[];)—module V(x), one has

el =3 (0 A T e
thv= q—q
‘ p [7)g! o5y 8% = n%lg I — n]y!
76 . N_217a_1 Aa+1 a _Aa+1
X Symy | Xy (te-n.e)) Ze-nntig—n)s tc—ne)) H H (a teei =4 z)
a=1 =0
N 1 N-—-2 N—-2__,N-3

XEyn1 ENN—2 €N1¢( )>(t[£ a))v (6.10)

the sum being taken over all n = (7]1, ... ,nN_l) € Zg&l such that 171 < - K nN_l = fN_l

and n* < &% for alla =1,...,N — 2. Other notation is as follows: Symf is defined by (6.6),
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the functions X, and Z¢_,, , are respectively given by formulae (6.7) and (6.9), ¢ is the first of
embeddings (6.3), and

(N-1) _ p{N-1) )

(5*77)(15[5—17]) B ]BC (S) ‘<:(5*U)7 S:t[f—n]’
BéN71>(s) coming from (6.5).
Remark. For N = 2, the sum in the right side of formula (6.10) contains only one term: 7 = &.
Moreover, X, = Z¢_,, = 1, and Bé?—:n)‘ = 1 by convention.
Corollary 6.3. Let V be a Uy(gly)-module and v € V' a singular vector of weight (Al, ces ,AN).
Let €', 6N~ be nonnegative integers and t = (t1,. .. ,tél; celd t{vfl, . ,tg\;ll). In the eva-

luation Uq(gf;[\,;)—module V(z), one has

ma,bfl(ma,bfl_mab)

é‘ —
Be(to=(q-q S| ] ¢ gmt =t (6.11)

[mab _ ma,bfl] |
m | 1<b<a<N 4

N a—2m® [ AbT1.p —AbF1 b+1 —14b
T O b me — 4 x A
<Sym; | [TTT11 s b 11 TSR
a=3b=1 i=1 i4+ma:b+1 i+met 1 j<itmabtl J i+mab
Here the sum is taken over all collections of nonnegative integers m®, 1 < b < a < N, such
that m® < --- < m»* L apnd mote ... 4 mNe =€ foralla=1,...,N — 1; by convention,
m® =0 for any a = 2,...,N. Other notation is as follows: in the ordered product the fac-

tor €%, is to the left of the factor €2, if a > ¢, or a =c and b > d, Symf is defined by (6.6), and
m = mbtl 4o P for all 1 < b < a < N, in particular, m>*~! = 0.

Theorem 6.4. Let V be a Uy(gly)-module and v € V' a singular vector of weight (Al, . ,AN).
Let &', ..., ¢N~1 be nonnegative integers and t = (t%, .. ,tél; .. .;t{v_l, e ,té\lf\,_,ll). In the eva-
luation Uq(al\];)—module V(zx), one has

e =Y (0- )i 1T e
tyv = q9—q - -
¢ - V1]t L Teo = el o1 = el
: N—-1 n¢
- a —_A@
X Symy | Yy (o)) Zng—n ()i ting) H H(qA ti —q¢ )
a=2 i1=1
o2 2,3 pN-1 N_1) -
x éq, " egl n -“61]7\[1 ¢(Eé§fn)->~(t(m§}))v , (6.12)
the sum being taken over all n = (771, . ,nNﬁl) € Zgo_l such that &' =n' > .- > nN=1 and

n® < & for all a = 2,...,N — 1. Other notation is as follows: Symf is defined by (6.6), the
functions Y, and Z, ¢, are respectively given by formulae (6.8) and (6.9), 1 is the second of
embeddings (6.3), and

(N—1) /5 _ m({N=1)
IB3(5_77)~ (t(nﬁ]) - BC (s) ’C=(5*n)”v s=t(ne)’

B2N71>(S) coming from (6.5).

Remark. For N = 2, the sum in the right side of formula (6.12) contains only one term: 7 = &.
Moreover, Y, = Z, ¢, = 1, and B§?—n)“ = 1 by convention.
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Corollary 6.5. Let V be a Uy(gly)-module and v € V' a singular vector of weight (Al, .. ,AN).
Let &', ..., ¢N~1 be nonnegative integers and t = (t%, . ,tél; .. .;tiv_l, . ,tg\, 11). In the eva-

luation Uq(;[;)—module V(x), one has

ma+1,b(mab_ma+1,b)

NE o« —
Be(t)v = (q —q ) Z H [ — et o], | ab v (6.13)

m | 1<b<a<N

N— mathb_1 [ A —A° —1pa—1
% S H H H t%,ba—o—l b_; — 4 X H qt?ﬁtﬂ—l,b_i —q t,
i, ta — t“ ! ta — ot
a=2 b=1 =0 moat1,b_ mab_g mab—i<j<£a71 moaetl,b_;

Here the sum is taken over all collections of nonnegative integers m®, 1 < b < a < N, such that
methe > .o > mNe gnd mathl 4o pomathe = ¢a for glla = 1,...,N — 1; by convention,
mN+tLe = 0 for any a = 1,...,N. Other notation is as follows: in the ordered product the
factor éfb is to the left of the factor éffd ifb<d, orb=d anda <c, Symf is defined by (6.6),
and m® = m® + ...+ m® for all1 <b < a < N, in particular, moThe = ¢o.

Theorem 6.6 ([22]). Let Vi, V5 be U/ (g[N) modules and vy € V1, vy € Vo weight singular

vectors with respect to the action of U, (g[N) Let &Y, ..., 6N be nonnegative integers and
t= (t%,...,tél;...;t{V_l,...,té\]’V ). Then
N-1 1 N—2n*tl  ¢o qta+1 q 1t“
Be(t) (0 @ 02) = 3 1 oo™ 11 11 Il T
n a=l1 a=1 i=1 j=n2+1 ]
N-—1 ne
X H H atl, a+1 U1> H <Laa 7, U?> (tp)v1 @ Beyy (t (e v2 | 5 (6.14)
= i=1 Jj=n%+1

the sum being taken over all n = (771, . ,nN_l) € Zg&l such that & —n € ZN L. In the left
side we assume that Be(t) acts in the Uy (gly)-module Vi @ Va.

Corollary 6.7. Let Vi,...,V,, be Uy (af;)—modules and vy € V., 7 =1,...,n, weight singular
vectors with respect to the action of U, (gly). Let €L, €N be nonnegative integers and

t=(th,... tél;...;tiv_l té\’N ). Then

Be(t)(v1 ® -~ ® vn)
N-1

n N—2n—1 ng_H qta—l—l q lta
= > O S| I I H—tm :
Mye-Mn—1 a= 17“1 r—1 a=1 r= 12 na+1+1‘7 =na+1 j
N—-1 n Mr_1
X H H H <L(;a 7 UT> H <La+1 a+1 ta)vr>
a=1r=1 \ i=1 J=ng+1
x IB"]I (t[m])vl ® Bm—m (t(m,nz])v? Q- ® Béfnnq (t(nn—h&])vn . (6'15>
Here the sum is taken over all ny,...,Mp—1 € Zg&l, Ny = (77}, coo,nN= 1), such that ny4+1 — 0y €
Zgo_l foranyr=1,....,n—1, and no = 0, nn, = &, by convention. The sets L, t,. .41 aT€

defined by (3.6). In the left side we assume that Be(t) acts in the U (gf[;)-module Vi®--QV,.
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Remark. Denominators in the right sides of formulae (6.10)—(6.15) contain g-factorials, which
can vanish when ¢ is a root of unity. Nevertheless, the right sides remain well-defined at roots
of unity. This happens due to the fact that the symmetrized expressions in square brackets
have nontrivial stationary subgroups, cf. Remark at the end of Section 2, so the result of the
symmetrization Syimf divided by the product of g-factorials can be replaced by the sum over
the cosets.

Proofs of Theorems 6.4, 6.2 and 6.6 are similar to those of Theorems 3.3, 3.1 and 3.5, respec-
tively. Here we mention only the required modifications of technical facts: identity (4.1) and
Lemmas 4.5, 4.6. The analogue of the identity (4.1) is

S
> H R A (6.16)
€Sk 1<i<j<k So; = So;
and Lemmas 4.5 and 4.6 are to be generalized as follows.

Lemma 6.8. Let p, r be positive integers such that p < r. Then

P 1 ,
1 —q 2y 2 — qz;
Sym,, .. H — H 1Yi — 4 e H M
i1 \ YT Free i, YT St I<icjr AT 7
2 qyi —q" 'z q 'y — quj
1 K3
—platd_Svmy, o (11 = I = =) 1l ——=—| ©1
d 1=1 Yi = Zd; d;<j<r J 1<i<j<p
p - e I 1., _
H q Y —qz; H q "z —4q%j
Zl, 2 P . —
=1\ T g YT A I<icj<r AT
p g 0y — gz ¢y — 0y — qy;
_P]q!ZSymyl,...,yp H . T o , (6.18)
d o1 \ Vi T A 1<j<d; Yi = 1<icj<p TP

the sums being taken over all p-tuples d = (dy,...,dp) such that 1 < dy < --- <d, <r

Proof. It suffices to prove formula (6.17) since formulae (6.17) and (6.18) transform to each
other by the change of variables y; — yp—i, zj — 2r—j, ¢ = ¢ ', and a suitable change of
summation indices.

Consider the left side of formula (6.17) as a function of z1,..., 2, and denote it f(z1,...,z.).
It has the following properties.

i) f(z1,...,2 ) is symmetric in z1,..., 2.
ii) f(z1,...,2r) is a rational function of z; with only simple poles located at z; = y;, i =
1,...,p, and regular as z; — oo.

iii) Res f(z1,¢%yi,23,...,2) =0foranyi=1,...,p.
21=Yi
iv) f(uzi,...,uz) =uP"" (14 0(1)) as u — oco.

Denote by Cr—p(y1,--.,Yp; 21, -, 2zr) the collection of properties i)-iv), the subscript r — p
referring to the exponent of u in property iv).
Consider the partial fraction decomposition of f(z1,...,z,) as a function of z;:

Fotyee ) = folzse e n Z Jil 22"_‘; filea, o) (6.19)
=1

1
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Then the function fo(z2,...,2-) has the properties Cr—p—1(y1, .- -, Yp; 22, - - -, zr), while the func-
tion fi(z2,...,2r), @ > 0, has the properties C,_p(y1,...,Yp; 22, ..., 2,) and

fi(QQ?/ia 23y 727“) = Oa

cf. iii). The last claim is equivalent to the fact that the function

fi(z2,. .., 2p) :ﬁ(22,---7zr)HM (6.20)

P T e

has the properties Cy—p(Y1,- - Yis- - Yp; 22, -+, 2r).
We expand the functions fo, ..., f, similarly to (6.19), (6.20):

- fij(23,. ..y 2r) o a i — gz
fi(22>~'-727“) :fio(Z;),,...,Zr)—F E )
— Yj — 22 o3 Yi T Zs

j=

J#
and observe that the function foo has the properties Cp—p—2(y1, ..., Yp; 23, ..., %), the functions
fois fio, @ >0 have the properties Cr_p_1(y1,.--,Ti,---,Yp;23,...,2r), and the function f;;,
i,7 > 0 has the properties Cr—p(Y1,.- -, Yis---»Yjs---»Yp; 23, - -, 2r). Eventually, we obtain the
following expansion of the function f(zy,...,z):

T

— g1,
FGrez) =3 fa [ | etz [T E—2 5, (6.21)

i=1 icjer Jai TFj
a; >0
where the sum is taken over all surjective maps a : {1,...,7} — {0,...,p} such that the
preimage of 0 has r — p elements, po(u) = 1 and ¢s(u) = (ys —u)~! for i = 1,...,p. The
coefficients f, do not depend on z1, ...,z and can be found from the equality
-1
_ QYo; — 4 Yoy
Vala, - Valay 1 (21, 2) = (1P f [ ot Yo (6.22)
1§i<j<p yOéi yozj
a;o; >0

where Valp; = lim , Vals; = Res for s > 0, and
2;—>00 Zi=Ys

ca = #{(i,§) i < j, @i >0, aj = 0}.

Since the operations Val; in the left side of (6.22) can be applied to the function f(z1,...,2,)

in any order without changing the answer, Val,, ,--- Valy, 1 f(21,..., 2) equals
Valg 7, -~ Valg, Vali -, - -~ Valy -, f(21,...,2) (6.23)
for a suitable permutation 7. Since f(z1,...,2,) is symmetric in z1,..., 2., expression (6.23)

does not depend on 7T and equals

lim --- lim Res -+ Res f(z1,...,2). (6.24)

21—00 Zpr—p—00 Zr—p4+1=Y1 Zr=Yp
Due to the explicit formula for f(21,...,2;), the termsin Sym, . which contribute nontrivially
to expression (6.24) correspond to permutations that do not move the numbers r —p+1,...,r.

Using identity (6.16), we obtain that expression (6.24) equals

(¢ 'y —qy;) (ayi — a'y))
(yi — y;)?

(0P Pl —plt ][]

1<i<y<p
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Hence, equality (6.22) yields

4 Yoy — QWa,

— gCaP(r=P)[p _ p] |
fa 1 [ p]q H yai - yozj

1<i<j<p
a;o;>0

(6.25)

There exists a bijection between pairs (d, o), where d is a p-tuple from Lemma 6.8 and o is

a permutation of {1,...,p}, and the maps a. It is given by the rule ag, =04, i =1,...,p, and
a; = 0, otherwise. Under this bijection, the right side of formula (6.21) with the coefficients fq
given by formula (6.25) turns into the right side of formula (6.17). [
Proof of Lemma 4.5. Make the change of variables y; — 1+ 2hy;, z; = 1+ 2hz;, g > 1+ h
in formula (6.17) and take the limit A — 0. This yields the claim. [
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