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Abstract. We introduce the notion of regular symplectomorphism and graded regular sym-
plectomorphism between singular phase spaces. Our main concern is to exhibit examples of
unitary torus representations whose symplectic quotients cannot be graded regularly sym-
plectomorphic to the quotient of a symplectic representation of a finite group, while the
corresponding GIT quotients are smooth. Additionally, we relate the question of simplicial-
ness of a torus representation to Gaussian elimination.
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1 Introduction

Let G be a compact Lie group acting on a symplectic manifold (M,ω) by symplectomorphisms.
One says that the action is Hamiltonian with moment map J : M → g∗, g∗ being the dual space
of the Lie algebra g of G, if

1. J is a smooth G-equivariant map,

2. For each ξ ∈ g the vector field {Jξ, } coincides with the fundamental vector field of ξ
acting on M , where Jξ := 〈J, ξ〉 ∈ C∞(M) and { , } denotes the Poisson bracket associated
to the symplectic form ω.

The symplectic quotient M0 = Z/G is defined to be the space of G-orbits in the zero fibre
Z := J−1(0) of the moment map.

It is well-known [19, 21] that if 0 ∈ g∗ is a regular value of J , then the quotient M0 = Z/G
of the closed submanifold Z by the action of G is in a canonical way a symplectic orbifold. This
is the case, for instance, when the G-action is locally free. If 0 ∈ g∗ is not a regular value,
a theorem of E. Lerman and R. Sjamaar [29] tells us that M0 = Z/G is a stratified symplectic
space; for more details see Subsections 2.1 and 4.1. Note that 0 ∈ g∗ is a singular value if, for
example, (M,ω) is a symplectic vector space, the G-action is linear, and the moment map is
chosen to be homogeneous quadratic. We refer to this situation as the linear case.

It has been observed that in the linear case, the symplectic quotient can occasionally be
identified, symplectically [6, 14, 18] or merely topologically [17], with a quotient by a symplectic
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representation of a finite group. This is the case, for instance, with the physically interesting
example of angular momentum [14]. For more examples, see Subsection 4.3.

Our paper is an attempt towards a more systematic understanding of when and how this
happens. If one is searching for orbifold criteria, a natural idea is to use intuition from complex
algebraic toric geometry (see e.g. [4, 12]). Namely, if one considers a representation of a com-
plex torus T`C on a complex vector space W , it is well-known that the GIT-quotient W//T`C is
isomorphic as a complex algebraic variety to a complex orbifold if and only if the representation
is simplicial (see Subsection 2.1 and Section 3). By the Kempf–Ness theorem (to be recalled in
Subsection 2.1), the symplectic quotient M0 is homeomorphic to such a GIT-quotient. Hence,
the question arises whether the orbifold criterion in the complex algebraic setting carries over
via the Kempf–Ness homeomorphism to the symplectic setting.

Our results can be stated as follows. If the symplectic quotient of a unitary representation
of a compact torus is homeomorphic to an orbifold, then the representation has to be simplicial
(see Subsection 2.2). We indicate methods of determining whether a representation satisfies this
property directly from the weight matrix in Section 3. This in particular resolves the conjec-
tures stated in [17]. When the symplectic quotient has real dimension two, the representation is
always simplicial; in this case, we further demonstrate an explicit graded regular symplectomor-
phism (to be defined in Subsection 4.2) to a quotient of C by a finite abelian group. On the
other hand, we present in Subsection 5.3 examples of simplicial unitary circle representations
whose symplectic quotients are homeomorphic to C2, for which there cannot exist a graded
regular symplectomorphism to a quotient of R4 by a finite subgroup of the group Sp(R4) of
linear symplectomorphisms of R4 = T ∗R2. So, roughly speaking, the simplicialness of the rep-
resentation turns out to be merely a necessary condition for the existence of a graded regular
symplectomorphism with a quotient by a finite group.

The reader might have noticed that our results should be taken with a grain of salt. Namely,
for our counterexamples we cannot disprove the existence of a symplectomorphism (see Defini-
tion 4) using the methods presented here, as the invariants we compute to distinguish them from
quotients by finite groups are merely invariant under graded regular symplectomorphism. More
precisely, what we actually do is to focus on the case of real dimension 4 and work through the
list of finite subgroups of the unitary group U2. The Hilbert series of the ring of real polynomial
invariants of these finite subgroups are in principle computable by Molien’s formula, and we
argue that the Hilbert series of the ring of regular functions on our symplectic circle quotients
cannot occur in this list. This method is admittedly brute force, but it has the potential to guide
us to a classification of unitary symplectic circle representations whose symplectic quotients are
graded regularly symplectomorphic to quotients of unitary representations of finite groups. We
aim to complete this classification in the near future. In higher dimensions, a more intelligent
approach is necessary.

Regular and graded regular symplectomorphism of singular phase spaces are roughly speaking
those that can be obtained using complete sets of differentiable invariants. In all practical
applications, these are provided by the theorem of Schwarz–Mather [20, 26] (see Theorem 1).
Though this construction principle for symplectomorphisms might look familiar to the specialist,
we propose the terminology in Section 4 to provide a clear way of thinking about maps between
singular phase spaces. We expect that this language will have applications elsewhere.

2 Basic setup

2.1 Background from representation theory

Here we recall some well-known facts about quotients of linear actions of compact groups and
their relationship to certain GIT-quotients. For a more systematic presentation we refer to
G.W. Schwarz’ article [27].
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Let G→ Gl(W ) be a representation of a compact Lie group on a finite-dimensional real vector
space W . By a theorem of Hilbert and Hurwitz, there is a complete system of real homogeneous
polynomial invariants ρ1, . . . , ρk in R[W ]G; one can assume that the system is minimal. This
system, which we will refer to as a Hilbert basis, gives rise to a map ρ = (ρ1, . . . , ρk) : W → Rk, the
corresponding Hilbert map. It is known that ρ is proper and separatesG-orbits. The induced map
ρ : W/G→ Rk will be referred to as the Hilbert embedding. By the Tarski–Seidenberg principle
X := im(ρ) ⊂ Rk is a semialgebraic set. The gradients of the ρi can be used to calculate the
inequalities that determine X (cf. [27, § 6]). The Zariski closure X of X is determined by the
polynomial relations among the ρi’s. By definition, a function f on X is smooth if it is the
restriction f = F|X to X of a smooth function F ∈ C∞(Rk). The algebra C∞(X) of smooth
functions on X is a nuclear Fréchet algebra (see, e.g., [25]).

A key result for the analytic study of such an orbit space W/G is the theorem of Schwarz
and Mather [20, 26] on differentiable invariants.

Theorem 1 (G.W. Schwarz, J. Mather). With the notation above the pullback ρ∗ : C∞(X) →
C∞(W )G, f 7→ f ◦ ρ is split surjective onto the Fréchet algebra C∞(W )G of smooth invariants
on W .

In [20, 26], the authors use Theorem 1 to prove the existence of a complete set of differentiable
invariants for a G-manifold using Mostov’s embedding theorem, i.e. a generating set for the
algebra of smooth G-invariant functions. In the case of a G-representation, a complete set of
differentiable invariants is given by a Hilbert basis. Using the language of Section 4, this theorem
implies that the Hilbert embedding ρ is actually a diffeomorphism from the differential space
(W/G, C∞(W )G) onto the differential space (X, C∞(X)).

Now suppose G→ U(V ) is a unitary representation of the compact Lie group G on a finite-
dimensional complex vector space V with hermitian scalar product 〈 , 〉. By convention, 〈 , 〉
is complex antilinear in the first argument. Note that we can make any symplectic represen-
tation of G unitary by using an invariant compatible complex structure. In order to express
equation (2.2) transparently, it will be convenient to express real polynomials using complex
coordinates. Let V be the complex conjugate vector space of V , and then the identity map on
V induces a complex antilinear map − : V → V , v 7→ v. The complex conjugation − extends to
a real structure on the algebra C[V ×V ], and the ring of real regular functions on V is defined to
be the subring of invariants with respect to −, i.e. R[V ] := C[V ×V ]−. It is of course isomorphic
to the ring of regular functions on the real vector space VR underlying V .

The group G acts on V by v 7→ (g−1)tv. Letting G act on V ×V diagonally, and observing that
this action commutes with −, we obtain an action of G on R[V ] by R-algebra automorphisms.
This action can be seen as coming from the obvious R-linear G-action on VR. Hence R[V ]G is
a Z-graded Noetherian R-algebra, we can find a Hilbert basis ρ1, . . . , ρk ∈ R[V ]G and Theorem 1
applies. Note that v 7→ 〈v, v〉 is always a quadratic invariant.

It is well-known that the unitary action of G on V extends uniquely to a C-linear action of the
complexification GC of G on V . Note also that the complexification of the G-action on V × V
turns out to be the cotangent lifted GC-action on V × V ∗. Moreover, we have the following
isomorphism of invariant rings

R[V ]G ⊗R C ∼= C[V × V ∗]GC (2.1)

as Z-graded C-algebras.
The (infinitesimal) information of the unitary representations G → U(V ) can be encoded

into the moment map J . This is the regular quadratic map

J : V → g∗, Jξ(v) = 〈J(v), ξ〉 :=

√
−1

2
〈v, ξv〉 (2.2)
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for ξ ∈ g. Alternatively, we can think of J as a linear map g→ R[V ]. Often it is convenient to
write Ji := Jei for some fixes basis e1, . . . , e` of g. The moment map is of particular importance
when it comes to discussing the symplectic geometry of our unitary representation. Let us, for
convenience, identify V with Cn by choosing an orthonormal basis and denote the corresponding
coordinates by (z, z) = (z1, . . . , zn, z1, . . . , zn). It follows that R[V ] is identified with R[Cn] =
C[z, z]−. The Poisson bracket corresponding to the symplectic form ω ∈ Ω2(V ), ω(v, w) =
Im〈v, w〉, is given by the relation

{zi, zj} =
2√
−1

δi,j ,

all other brackets between coordinates being zero. This makes C∞(Cn) into a Poisson algebra
with Poisson subalgebra R[Cn]. It turns out that {Jξ, Jη} = J[ξ,η], which is equivalent to the
equivariance of the map J : V → g∗.

In the situation of a unitary representation the zero fibre Z = J−1(0) of the moment map
always has a conical singularity at 0. The symplectic quotient M0 = Z/G is a stratified sym-
plectic space (this will be further explained in Section 4). In general, it is not a real variety but
a semialgebraic set. In contrast, the GIT quotient V//GC is defined to be the complex variety
underlying the C-algebra C[V ]GC . It might happen that V//GC is actually smooth (cf. Sec-
tion 5). Due to the following theorem of Kempf and Ness (see [27, Corollary 4.7]), Z = J−1(0)
is sometimes called the Kempf–Ness set.

Theorem 2 (G. Kempf and L. Ness). The map Z ↪→ V 7→ V//GC is proper and induces
a homeomorphism Z/G→ V//GC.

In view of equation (2.1), the Kempf–Ness theorem actually comes as a surprise, as the
invariant theory of a cotangent lifted representation is more involved than that of the original
representation. The theorem is a useful tool to count dimensions of symplectic quotients. The
aim of the paper is to give examples where V//GC is smooth while Z/G is not an orbifold in an
appropriate sense.

2.2 Background from toric geometry

Next we would like to specialize the discussion to the case when our compact group G is actually
an `-dimensional torus. By this we mean an `-fold copy T` := (S1)` of the unit sphere S1 ⊂ C.
We are interested in unitary representations

G = T` → Un := U(Cn),

where Cn is understood with its standard hermitian scalar product as in the previous section. We
identify the Lie algebra g of G = T` with R` by writing an arbitrary element (t1, . . . , t`) ∈ G = T`
in the form ti = exp(2π

√
−1ξi), for the vector (ξ1, . . . , ξ`) ∈ g = Rn. Since the factors S1 of

our torus action can be simultaneously diagonalized, the unitary representation can actually
be encoded into a weight matrix A = (aij) ∈ Z`×n. More specifically, setting (η1, . . . , ηn) :=
(ξ1, . . . , ξ`) · A ∈ Rn, the G = T`-action corresponding to the weight matrix A is given by the
formula

(t1, . . . , t`).(z1, . . . , zn) =
(

exp
(
2π
√
−1η1

)
z1, . . . , exp

(
2π
√
−1ηn

)
zn
)
.

Elementary row operations with integer scalars for A, i.e. row operations that correspond to
left multiplication by elements of GL`(Z), correspond to the changing of a basis of g, while
permutations of the columns of A correspond to changing coordinates for Cn.
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The components Ji := Jei = 〈J, ei〉 of the moment map J : Cn → R` ∼= g∗ can also be
expressed in terms of the weight matrix

Ji(z, z) =
1

2

n∑
j=1

aijzjzj , i = 1, . . . , `.

Note 1. Sometimes it will be convenient to emphasize the dependency on A in the notation.
In these cases we will write JA for the moment map, ZA = J−1A (0) for the zero fiber, and
MA = ZA/T` for the reduced space. We will also let XA = ZA ∩ S2n−1 denote the intersection
of the zero fiber with the unit sphere in Cn and YA = XA/T` the link. Note that XA is clearly
T`-invariant.

The case of toric moment maps has certain peculiarities; for example, the components of toric
moment maps are actually invariants. We will have to say more about this in Subsection 4.3.

Let us introduce some further notation. We denote by sq: Cn → Rn the map (z1, . . . , zn) 7→
(z1z1, . . . , znzn). It is clear that sq is actually G = T`-invariant and hence induces a map
s̃q : Cn/T` → Rn.

We will primarily be interested in the case where the action of T` on Cn is effective, i.e. if
for some t ∈ T` we have tz = z for all z ∈ Cn, then t = 1. We will see below (Lemma 2) that
this introduces no loss of generality. In order to do so, we first interpret this condition in terms
of the weight matrix A.

It is easy to see that there is a subgroup K ≤ T` of positive dimension that acts trivially
on Cn if and only if rank(A) < `. In particular, choosing a basis for g that contains an element
of the Lie algebra k of K, it is easy to see that the corresponding row of A is the zero row.
Hence, A has full rank if and only if the subgroup of T` that acts trivially on Cn is finite. In this
case, we have the following lemma; we include the proof since we do not know of an appropriate
reference.

Lemma 1. Suppose A ∈ Z`×n has full rank ` ≤ n. Then the action of T` on Cn is effective if
and only if the nonzero ` × `-minors of A are relatively prime. Moreover, if p is a prime that
divides each of the `×`-minors of A, by elimination with integer scalars and permuting columns,
A can be expressed in a form where each entry of its first row is divisible by p.

Proof. Suppose t =
(

exp(2π
√
−1ξ1), . . . , exp(2π

√
−1ξ`)

)
∈ T` is nontrivial and acts trivially

on Cn. As A has full rank, t must be of finite order. Thus there is a j ∈ {1, . . . , `} such that
ξj = k/q for some coprime integers k, q with q ≥ 2. By assumption, (ξ1, . . . , ξ`)A ∈ Zn. Let B
be a nonsingular ` × `-submatrix of A. Since (ξ1, . . . , ξ`)B ∈ Z`, we can use Cramer’s rule to
conclude that q | det(B).

Conversely, let gcd`(A) denote the gcd of the ` × `-minors of A. We prove by induction on
n−` that if p is a prime that divides gcd`(A), then A can be row-reduced with integer scalars and
the coordinates of Cn can be permuted so that (exp(2π

√
−1/p), 0, . . . , 0) acts trivially on Cn,

i.e. (1/p, 0, . . . , 0)A ∈ Zn.

Let A ∈ Z`×n and let p be a prime such that p| gcd`(A). Assume the result holds for all
`× (`+ k)-weight matrices with k < n− `. By row operations and permutations of coordinates,
we can assume that A = [D | C] where D = diag(d1, . . . , d`) ∈ Z`×` and C ∈ Z`×(n−`). Then
p|det(D) so that by further permuting coordinates, we can assume that p|d1. If n − ` = 0 it
follows that (1/p, 0, . . . , 0)A ∈ Zn.

Otherwise, let A′ denote the matrix formed by removing the first column of A. Consider the
case when A′ does not have full rank. This means in particular that each `× `-submatrix of A′

corresponding to the columns 2, 3, . . . , `, `+ j of A for 1 ≤ j ≤ n− ` is singular. It follows that
the first row of A′ is the zero row, which implies (1/p, 0, . . . , 0)A ∈ Zn.
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On the other hand, suppose A′ has full rank. Then by the inductive hypothesis, we can
row-reduce A′ with integer scalars and permute the columns of A′ to yield a matrix R′ such that
that (1/p, 0, . . . , 0)R′ ∈ Zn−1. If we apply the same row-reduction to A, however, and permute
columns 2, 3, . . . , n in the same way, it is easy to see that the resulting matrix R is of the form
[r | R′] where R′ ∈ Z`×(n−1) and r is a column with each entry divisible by p. It follows that
(1/p, 0, . . . , 0)R ∈ Zn, completing the proof. �

Now, suppose the action of T` on Cn is not effective, and let K ≤ T` denote the subgroup
that acts trivially. Then T` fibers over T`/K, which is itself a torus, and we may consider the
Hamiltonian action of T`/K on Cn. If K is infinite and connected, then T`/K is a torus of
dimension smaller than `. The row-reduced weight matrix A has zero rows, and the moment
maps of the T`- and T`/K-actions differ only by extending by zero. If K is finite, then the
moment maps of the two actions coincide up to an isomorphism between the Lie algebra of T`/K
with that of T`. Combining these two arguments for an arbitrary K yields the following.

Lemma 2. Let A′ denote the weight matrix of the T`/K-action on Cn. Then J−1A (0) = J−1A′ (0).

As a consequence, if the action of T` is not effective, then we may replace T` with T`/K
without changing the reduced space. Hence, in the sequel, we assume without loss of generality
that T` acts effectively on Cn, and in particular that ` ≤ n.

Now, let T`C denote the complexification of T`. Then T`C acts on Cn via

(w1, . . . , w`)(z1, . . . , zn) =
(
wa111 wa212 · · ·wa`1` z1, . . . , w

a1n
1 wa2n2 · · ·wa`n` zn

)
,

and this action induces an injective homomorphism T`C → TnC. Then the GIT quotient Cn//T`C
is equipped with an effective action of TnC/T`C ∼= Tn−`C with a single, dense orbit and hence has
the structure of an (n− `)-dimensional toric variety X , see e.g. [4] or [12]. In particular, Cn//T`C
is the affine toric variety given by the spectrum of the semigroup ker(A) ∩ Zn≥0 and hence is
associated to the cone given by the kernel of A intersected with the positive n-ant in Rn.

Definition 1. The cone σA associated to the weight matrix A is the intersection of the kernel
of A with the positive n-ant in Rn.

Recall that the cone σA is simplicial if it is generated by a collection of linearly independent
vectors. It is well-known, see e.g. [12, Section 2.2], that if σA is simplicial, then the affine toric
variety associated to σA is a complex orbifold. In particular, applying the Cox construction,
see [4, Chapter 5], we have that that X = Cn−`/Γ for a finite group Γ as follows.

We have the short exact sequence [4, Theorem 4.1.3]

0 −→M −→ DivTn−`C
(X ) −→ Cl(X ) −→ 0,

where M denotes the character lattice of the algebraic torus Tn−`C , DivTn−`C
(X ) denotes the group

of Tn−`C -invariant Weil divisors of X , and Cl(X ) denotes the class group of X . Choosing bases,
this sequence can be expressed as

0 −→ Zn−` (∗)−→ Zn−` −→ Cl(X ) −→ 0,

where the map (∗) is given by the matrix whose rows are the coordinates of the n − ` linearly
independent minimal generators of the cone σA and hence has maximal rank. In particular,
Cl(X ) is finite. Applying HomZ(·,T1

C) and setting Γ = HomZ(Cl(X ),T1
C) yields the exact

sequence

1 −→ Γ −→ Tn−`C
(∗)T−→ Tn−`C −→ 1,
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defining an action of Γ on Cn−`. Hence, as σA consists of a single cone so that the exceptional
set is empty, the toric variety X is given by the complex orbifold Cn−`/Γ.

In particular, if n − ` = 1, it is easy to see that the cone σA is simply R≥0 with minimal

generator 1. Therefore, the map Z (∗)−→ Z above is simply the identity, and Cl(X ) and Γ are
both trivial. It follows that X = C.

For any complex orbifold Q, each local group action preserves the complex structure. It
follows that Q is a locally orientable orbifold, i.e. each local group action preserves a local
orientation. By [15, 4.2.4], the underlying topological space of a locally orientable orbifold of
(real) dimension m is an m-dimensional rational homology manifold. That is, if XQ denotes the
underlying space of Q, then the local homology groups with rational coefficients Hk(XQ,XQ −
x;Q) at each point x ∈ XQ satisfy

Hk(XQ,XQ − x;Q) =

{
Q, k = m,

0, k 6= m.

If, on the other hand, σA is not simplicial, then the recursion formula given in [1, p. 2] for the
local intersection cohomology Betti numbers in terms of the cone generators indicates that the
second local intersection cohomology is nontrivial. Because the local intersection cohomology of
a rational homology manifold is trivial, it follows that the toric variety X associated to σA is not
a rational homology manifold. With this, applying the Kempf–Ness homeomorphism between
MA = ZA/T` and X , we have the following.

Theorem 3. Using the notation of Note 1 and Definition 1, the reduced space MA = ZA/T`
associated to A ∈ Z`×n is a rational homology manifold if and only if the cone σA is simplicial.

In particular, note that symplectic orbifolds are locally orientable and hence rational homo-
logy manifolds. Therefore, if the cone σA is not simplicial, then the topological space MA does
not admit a homeomorphism to a symplectic orbifold.

In the sequel, it will be convenient to use the following terminology.

Definition 2. We say that the weight matrix A ∈ Z`×n is simplicial if the corresponding
cone σA is simplicial. In this case we also say that the corresponding unitary T`-action and its
complexified T`C-action are simplicial.

2.3 Other topological indications

In many examples of non-simplicial weight matrices A, it is possible to demonstrate that the
reduced space is not homeomorphic to a symplectic orbifold directly without appealing to the
Kempf–Ness homeomorphism. In this subsection, we briefly indicate results in this direction.

In [6, Example 2.4], the reduced space corresponding to the weight matrix [−1,−1, 1, 1] was
described as the cone on S3 ×S1 S3, implying that the local homology in degree 3 at the cone
point is nontrivial. It follows that the reduced space is not a rational homology manifold and
hence not an orbifold.

By [16, Proposition 3.1], the quotient of an n-dimensional sphere by a finite group acting
linearly and preserving orientation is a rational homology n-sphere, i.e. has the homology with
rational coefficients of the n-dimensional sphere Sn. It follows that the link YA = XA/T`, see
Note 1, of a locally orientable n-dimensional orbifold singularity is a rational homology n-sphere.
In [17], this observation was used to show that the reduced space MA = ZA/T` cannot be an
orbifold if the link YA is not a rational homology sphere. In particular, in the case ` = 1, [17,
Proposition 3.1] demonstrates that YA is not a rational homology sphere if the weight matrix
A has at least two positive and two negative entries; this condition is clearly equivalent to the
negation of Theorem 4(2) below in this case.
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Similarly, in cases where XA consist of points of a single orbit type, the quotient map XA →
YA is a torus fibration with fiber given by the quotient of T` by the isotropy group of XA. In
this case, formulas for the homology of XA have been developed in [2], and in some cases, the
exact sequence [30, Theorem 2, p. 482] can be used to demonstrate that XA does not admit
such a torus fibration over a rational homology sphere of the appropriate dimension.

More generally, note that this argument can be applied to the closed orbit-type strata of the
link YA to show that the reduced space does not admit a stratum-preserving homeomorphism
to an orbifold. To see this, suppose G is a finite group acting on a sphere Sn. For each
H ≤ G, we let SnH denote the set of points with isotropy group H and Sn(H) the set of points

with orbit type (H). Then H acts trivially on SnH , NG(H)/H acts freely on SnH , and Sn(H)/G

is diffeomorphic to SnH/NG(H); see [25, Theorem 4.3.10 and Corollary 4.3.11]. If Sn(H) has

minimal dimension among the strata, then SnH = (Sn)H , and hence Sn(H)/G is diffeomorphic to
the quotient of a sphere by the free action of a finite group. Similarly, if SnH is closed, then it is
locally a stratum of minimal dimension, and we can draw the same conclusion. It follows that
the closed orbit-type strata of the link of an orbifold singularity are as well rational homology
spheres, so that this must also be true for a reduced space that admits a stratum-preserving
homeomorphism to an orbifold.

We illustrate these observations with the following.

Example 1. Consider the case of T2 acting on C6 with weight matrix

A =

[
1 −1 1 −1 0 0
0 0 0 0 1 −1

]
.

Then ZA is described by

|z1|2 + |z3|2 = |z2|2 + |z4|2, |z5|2 = |z6|2.

The isotropy types away from the origin are given by (z1, z2, z3, z4, 0, 0) with isotropy 1 × T1,
(0, . . . , 0, z5, z6) with isotropy T1 × 1, and (z1, . . . , z6) with trivial isotropy. If z5 = z6 = 0, then
the intersection with the unit sphere is |z1|2 + |z2|2 = |z3|2 + |z4|2 = 1/2, and the corresponding
orbit-type stratum is homeomorphic to S3 × S3/T1. Using [30, Theorem 2, p. 482], it is an easy
exercise to show that S3 × S3 does not admit a T1-fibration over a rational homology 5-sphere,
and hence that a closed stratum of YA = XA/T2 is not a rational homology 5-sphere. It follows
that MA = ZA/T2 does not admit a stratum-preserving homeomorphism with an orbifold.

3 Gaussian elimination and the simplicial condition

In this section, we will use Theorem 3 to determine necessary and sufficient conditions for
the reduced space MA = ZA/T` to be a rational homology manifold directly in terms of the
matrix A. Given a subset X of Rn we write aff(X) for its affine hull and cch(X) for its closed
convex hull. By X◦ we mean its relative interior, i.e., the interior of X seen as a subspace of
aff(X). We also use the shorthand Xc for the complement Rn\X.

Let A ∈ Z`×n with ` ≤ n. Let ∆n−1 denote the standard simplex in Rn, and let PA := ker(A)∩
∆n−1 ⊂ Rn denote the intersection of the kernel of A in Rn with the standard simplex ∆n−1.
Then the cone σA defined in Definition 1 is spanned by PA. Note that if PA 6= ∅, then PA is
a polytope by [3, Corollary 9.4]. Each element of PA is a convex combination of its vertices by
definition, so that the vertices of PA clearly span the linear space spanned by PA. It follows
that if PA has dimension m, then the vertices are linearly independent if and only if there
are exactly m + 1 vertices. This is the case if and only if PA is combinatorially equivalent to
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a standard simplex, see [3, Chapter 2, § 10], so that the matrix A is simplicial if and only if PA
is combinatorially equivalent to a simplex.

In examples, the most direct method of determining whether A is simplicial is to compute
the vertices of PA using the results of Lemma 3 below. However, in the sequel, we will need to
use a standard row-reduced form of a simplicial weight matrix A, and hence we will reformulate
the simplicial condition (cf. Definition 2) in these terms in Theorem 4. In addition, we give
a geometric formulation to aid in the reader’s intuition.

We use e1, . . . , en to denote the standard basis vectors of Rn so that ∆n−1 = cch(e1, . . . , en)
is the closed convex hull of the set of standard basis vectors. If I ⊂ {1, . . . , n} is a subset of
indices, we let

VI =
{

(x1, . . . , xn) ∈ Rn | xj = 0 ∀ j ∈ {1, . . . , n} \ I
}

denote the coordinate subspace associated to I. Recall that XA = ZA ∩ S2n−1 denotes the
intersection of the zero fiber ZA with the unit sphere in Cn and YA = XA/T` denotes the link,
see Note 1. Then we have that sq(XA) = s̃q(YA) = PA, where sq and s̃q are the maps defined in
Subsection 2.2. As well, note that the combinatorial type of PA is clearly invariant under row
reduction and permuting the columns of A.

In general, it may happen that PA is contained in a coordinate subspace of Rn and hence
a proper face of ∆n−1. To address this possibility, let

IA =
{
j ∈ {1, . . . , n} | ∃ (x1, . . . , xn) ∈ PA : xj 6= 0

}
denote the set of coordinates xj that are not identically 0 on PA. Equivalently, IA is the set
of indices j such that there is an element of ker(A) with non-negative entries and positive
jth entry. Let A′ denote the ` × |IA| submatrix of A given by the columns corresponding to
elements of IA. Let VIA denote the coordinate subspace of Rn associated to IA, i.e., the subspace
{(x1, . . . , xn) ∈ Rn | xj = 0 ∀ j /∈ IA}. In examples, IA can be determined by computing the
vertices of PA. Let r ≤ ` denote the rank of A. We will establish the following criteria for the
a simplicial weight matrix. Note that 〈·, ·〉 denotes the standard inner product on Rn.

Theorem 4. Let A be an n× ` weight matrix. The following are equivalent.

1. The polytope PA is combinatorially equivalent to a simplex.

2. By permuting the indices in IA and performing elementary row operations with integer
scalar multiples, the matrix A′ can be expressed in the form[

D
0

∣∣∣∣ C 0
0 0

]
,

where D is an r × r diagonal matrix with strictly negative entries on the diagonal and C
is an r × q matrix such that each entry is nonnegative and q ≤ |IA| − r.

3. There are vectors µ1, . . . , µr ∈ VIA and indices j1, . . . , jr ∈ IA such that ker(A′) = VIA ∩(⋂r
i=1 µ

⊥
i

)
, where µ⊥i denotes the orthogonal complement in Rn, and for each i = 1, . . . , r,

〈eji , µi〉 < 0, 〈ejk , µi〉 = 0 for k 6= i, and 〈ej , µi〉 ≥ 0 for j ∈ IA, j 6= ji.

These conditions are trivially satisfied if n ≤ r + 2.

Note that in condition (2) of Theorem 4, by construction of the index set IA, the matrix C
cannot have rows that are identically zero.

Condition (3) of Theorem 4 can be understood as follows. For each i = 1, . . . , r, let Hi =
µ⊥i ∩ VIA denote the orthogonal complement µ⊥i in VIA . Then condition (3) states that the
hyperplane Hi separates one vertex of the standard simplex in VIA from the others, and moreover
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that each hyperplane Hi contains all of the separated basis vectors ejk for k 6= i. This condition
lends some intuition for the geometric meaning of simplicial condition (2).

In order to establish Theorem 4, we will first restrict to the case of weight matrices satisfying
the following hypotheses to simplify the arguments.

(i) The polytope PA has nonempty intersection with the relative interior of the standard
simplex ∆n−1.

(ii) The matrix A has full rank `.

(iii) The matrix A has no columns that are identically zero.

Note that as each point in (∆n−1)◦ has nonzero xi-coordinate for each i, hypothesis (i) is equiv-
alent to IA = {1, . . . , n}. Similarly, (ii) implies that ker(A) has dimension n−`; equivalently, no
positive-dimensional subgroups of T` act trivially on Cn. Hypothesis (iii) implies that there are
no coordinate lines in Cn on which T` acts trivially. Assuming (i), (ii), and (iii), it is easy to
see that the relative interior of PA is an open subset of the affine space given by the intersection
of ker(A) and the affine hull of ∆n−1, and hence PA is a polytope of dimension n− `− 1.

Under these hypotheses, we first establish Lemma 3, demonstrating that the faces of PA
consist of the intersection of ker(A) with coordinate subspaces of Rn. If I ⊂ {1, . . . , n} is
a collection of indices, we again use the notation that VI = {(x1, . . . , xn) ∈ Rn |xj = 0 ∀ j /∈ I}
is the associated coordinate subspace. We then show Proposition 1, which states Theorem 4 for
matrices that satisfy (i), (ii), and (iii), and then proceed to the proof of Theorem 4.

Lemma 3. Let A ∈ Zn×` satisfy hypotheses (i), (ii), and (iii).

(a) If I ⊂ {1, . . . , n} such that PA ∩ VI = {ν}, then ν is a vertex of PA.

(b) Each face F of PA is given by F = PA ∩ VI for some I with |I| = `+ dim(F ) + 1.

As a special case of (b), note that each vertex of PA is given by the intersection PA∩VI where
I ⊂ {1, . . . , n} is a subset of cardinality ` + 1. Note that given a k-face F , the set I given by
condition (b) need not be unique. If ker(A) intersects the simplex ∆n−1 generically, i.e., each
of its vertices is contained in the relative interior of an `-dimensional face of ∆n−1, then the I
corresponding to F is unique. In general, however, a face can be contained in the intersection of
several (`+ k)-dimensional faces. Given hypotheses (i), (ii), and (iii), however, it is easy to see
that a vertex of PA cannot correspond to a vertex of ∆n−1; this would indicate that a standard
basis vector ej is contained in the kernel, and hence that the jth column of A is a zero column.
Similarly, if I is a set of indices of cardinality |I| = `+ 1, it need not be the case that PA ∩ VI
is a singleton.

Proof. (a) Assume PA ∩ VI = {ν} for I ⊂ {1, . . . , n} with ν = (v1, . . . , vn). Suppose ν =
tp+(1− t)q for t ∈]0, 1[ and p = (p1, . . . , pn), q = (q1, . . . , qn) ∈ PA. For each j /∈ I, we have that
tpj + (1 − t)qj = vj = 0. As pj , qj ≥ 0, it follows that pj = qj = 0. Applying this argument to
each j /∈ I, it follows that p, q ∈ VI . Hence p, q ∈ PA ∩VI , which was assumed to be a singleton,
so that p = q = ν and ν is a vertex of PA.

(b) We prove the statement by induction on the codimension c of the face F . The case of
c = 0 is trivial. Let F be a face of codimension c + 1, so k := dim(F ) = n − ` − c − 2. Note
that F is contained in a face F ′ of codimension c. By our inductive hypothesis, we can write
F ′ = PA ∩ VI′ for some I ′ ⊂ {1, . . . , n} of cardinality |I ′| = `+ (k + 1) + 1 = n− c. This means
that

F ′ = PA ∩ VI′ = ker(A) ∩∆n+1 ∩ VI′ = ker(A) ∩∆n−c−1,

where ∆n−c−1 is the standard simplex in VI′ .
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We claim that F is contained in a face of ∆n−c−1. Letting W := aff(∆n−c−1) ∩ ker(A) and
H+
i := {(x1, . . . , xn) ∈ Rn|xi ≥ 0}, we write

F ′ = ker(A) ∩ aff
(
∆n−c−1) ∩ (∩i∈I′H+

i

)
= W ∩

(
∩i∈I′H+

i

)
.

Setting K+
i := W ∩H+

i , we have F ′ = ∩i∈JK+
i for J ⊂ I ′ chosen such that K+

i 6= W if and only
if i ∈ J . It is a well-known fact (see, e.g., [3, Theorem 8.2]) that each facet of F ′ is of the form
Ki ∩W for some i ∈ J , where Ki := W ∩ V{i}c is the supporting hyperplane of K+

i . Since F is
a facet of F ′, we conclude that

F = F ′ ∩Ki = F ′ ∩ V{i}c ∩W. (3.1)

Since F ⊂ F ′ ⊂W , it follows that that F ⊂ F ′ ∩ V{i}c which proves the claim.
Moreover, equation (3.1) shows that F = PA ∩ VI with I := I ′ \ {i}. �

With this, we have the following.

Proposition 1. Let A be an n × ` weight matrix satisfying hypotheses (i), (ii), and (iii) so
that PA is an (n− `− 1)-dimensional polytope. Then conditions (1), (2), and (3) of Theorem 4
are equivalent and are always satisfied if n ≤ `+ 2.

Note that given the hypotheses, condition (1) is equivalent to PA having n − ` vertices.
Similarly, A = A′ has full rank and no zero columns, simplifying (2).

Proof. (1) ⇒ (2): Suppose PA has n − ` vertices ν1, . . . , νn−`. To establish (2), we will show
that each vertex νj lies in an (`+ 1)-dimensional coordinate plane, and the intersection of these
coordinate planes is an `-dimensional coordinate plane. This will indicate the order of the
vertices under which A takes the required form.

For each vertex νj , let Fj denote the (n − ` − 2)-dimensional facet of PA that does not
contain νj , so that Fj = cch{νk | k 6= j}. Then by Lemma 3, each Fj is given by the intersection
of PA with a coordinate n− 1-plane, and hence corresponds to setting a single coordinate equal
to zero. By reordering the variables x1, . . . , xn, we may assume that Fj = PA ∩ V{`+j}c for
j = 1, . . . , n− `. Let vj,i indicate the coordinates of νj , i.e., νj = (vj,1, vj,2, . . . , vj,n). Note that
for each j, as V{`+j}c does not contain the vertex νj , it follows that vj,`+j 6= 0.

For each j, we claim that ∩k 6=jFk = {νj}. To see this, first note that νj ∈ Fk for each k 6= j
so that {νj} ⊂ ∩k 6=jFk. For the reverse inclusion, suppose p = (p1, . . . , pn) ∈ ∩k 6=jFk. Then

as p ∈ PA, we have that p is a convex combination of the ν1, . . . , νn−`, say p =
n−`∑
m=1

tmνm with

0 ≤ tm ≤ 1 and
n−`∑
m=1

tm = 1. For each r 6= j, we have that ∩k 6=jFk ⊂ Fr so that p ∈ Fr and

p`+r = 0. As vr,`+r 6= 0, it then follows that tr = 0. Therefore, the only nonzero tr is tj = 1,
and p = νj . Letting Ij = {1, 2, . . . , `, `+ j}, it follows that

{νj} =
⋂
k 6=j

Fk =
⋂
k 6=j

(
PA ∩ V{`+k}c

)
= PA ∩

⋂
k 6=j

V{`+k}c = PA ∩ VIj .

Let [D | C] denote the weight matrix A row-reduced using integer scalar multiples, where D
is ` × ` and C is ` × (n − `). We let ck,j denote the entries of c as usual, with 1 ≤ k ≤ ` and
1 ≤ j ≤ n− `. As A has full rank, it must be that [D | C] has full rank as well. We claim that D
is diagonal and nonsingular.

Suppose not, and then one of the pivot columns must be contained in C so that the last
row of D is the zero row. For each j, as vj,`+k = 0 for k 6= j, it follows that the nth entry of
[D | C]νj is given by c`,jvj,`+j . Recall that vj,`+j 6= 0 and νj ∈ ker(A) = ker([D | C]), and then
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c`,j = 0. However, as this is true for each j ≤ n − `, it follows that the last row of C is the
zero row, contradicting the fact that [D | C] has full rank. We conclude that D is diagonal and
nonsingular. Clearly, by multiplying rows by −1, we can assume that the diagonal entries of D
are all negative. Let dk < 0 denote the diagonal entries of D for 1 ≤ k ≤ `.

Finally, we claim that each ck,j ≥ 0. For each j, as νj has nonzero coordinates only in
the 1, 2, . . . , `, and ` + j positions, we have that the kth coordinate of [D | C]νj is given by
dkvj,k + ck,jvj,`+j . As [D | C]νj = 0, we have that dkvj,k + ck,jvj,`+j = 0. As dk < 0, as vj,k ≥ 0,
and as vj,`+j > 0. It follows that ck,j ≥ 0, completing the proof that (1)⇒ (2).

(2)⇒ (3): Assuming A is in the form [D | C] as in (2), let µi denote the ith row of A. Then
it is easy to see that 〈µi, ei〉 < 0 and 〈µi, ej〉 ≥ 0 for j 6= i. Moreover, ker(A) =

⋂`
i=1 µ

⊥
i by

definition.
(3) ⇒ (1): Permute the coordinates x1, . . . , xn so that ji = i for i = 1, . . . , `. Let M be the

`×n matrix with ith row µi and then ker(M) = ker(A) by hypothesis so that PA = PM . Clearly,
M must then satisfy hypotheses (i), (ii), and (iii), and moreover M is of the form [D | C] as
described in condition (2). Let dk < 0 denote the entries ofD and ck,j ≥ 0 denote the entries of C.

It is easy to see that each coordinate plane corresponding to {1, . . . , `, ` + k} intersects PM
at a single vertex. In particular, define

νj =
1

1 +
∑̀
k=1

−ck,j/dk

(
−c1,j
d1

,
−c2,j
d2

, . . . ,
−c`,j
d`

, 0, . . . , 0, 1, 0, . . . , 0

)

for j = 1, . . . , n− `, where the 1 occurs in the (`+ j)th position. Simple computations show that
each νj ∈ ker([D | C]) ∩∆n−1 and ker([D | C]) ∩ V{1,...,`,`+j} is a 1-dimensional subspace of Rn.
Therefore, {νj} = ker([D | C]) ∩ ∆n−1 ∩ V{1,...,`,`+j}, so that by Lemma 3, each νj is a vertex
of PM . It remains only to show that there are no other vertices.

However, for each p = (p1, . . . , pn) ∈ PM = P[D|C] the fact that [D | C]p = 0 implies that the

p1, . . . , p` are uniquely determined by the p`+1, . . . , pn. Moreover, letting π : Rn → Rn−` denote
the projection π : (x1, . . . , xn) 7→ (x`+1, . . . , xn), it is obvious that {π(ν1), . . . , π(νn−`)} is linearly
independent in Rn−` and hence affinely independent. Hence, given coordinates p`+1, . . . , pn,
there is a unique affine combination of the π(ν1), . . . , π(νn−`) that yields (p`+1, . . . , pn). Then
there are unique values p1, . . . , p` such that (p1, . . . , pn) ∈ ker(M) = ker([D | C]), and this affine
combination of the π(νj) is a convex combination if and only (p1, . . . , pn) ∈ ∆n−1. It follows
that each p ∈ PM = P[D|C] is a convex combination of the νj , and hence that there are no other
vertices. We conclude that the polytope PA = PM = P[D|C] has n− ` vertices and hence, as it is
(n− `−1)-dimensional, that it is combinatorially equivalent to the standard (n− `−1)-simplex.

To complete the proof, we need only note that if n ≤ `+ 2, then PA is a 0- or 1-dimensional
polytope, which is necessarily a simplex. �

With this, we are prepared to prove Theorem 4, completing this subsection.

Proof of Theorem 4. First, we note that the zero-fiber J−1A (0) is contained in the preimage
under sq of the coordinate plane VIA so that we may identify sq(J−1A (0)) with sq(J−1A′ (0)) via
the embedding R|IA| → Rn induced by IA ⊂ {1, . . . , n}. Permute the coordinates xi for i ∈ IA
so that any zero columns of A′ are listed last. Row reducing A′ using integer scalar multiples
yields a matrix with any zero rows listed last of the form

R =

[
A′′ 0
0 0

]
.

Here, A′′ has dimensions k× (k+m) such that k ≤ ` and m ≤ |IA|−k. To see this, note that A′′

has a pivot in each row by construction, and moreover that A′′ has at least one positive and one
negative element in each row to ensure that each xi is nonzero for some element of ker(A′′).
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Clearly, the reduced space of the action of T` on R|IA| with weight matrix R coincides with
the reduced space of the action with weight matrix R′ = [A′′ 0]. Note that by construction,
A′′ has full rank and no zero columns. Moreover, for each i ∈ IA, there is a point in ker(A) with
nonnegative coordinates such that xi ≥ 0. It follows by convexity that ker(A)∩ (∆k+m−1)◦ 6= ∅.
Therefore, A′′ satisfies hypotheses (i), (ii), and (iii).

Now,

PR′ = ker(R′) ∩∆|IA|−1 =
(

ker(A′′)× R|IA|−m
)
∩∆|IA|−1

= cch
((

ker
(
A′′
)
∩∆k+m−1) ∪ {em+1, . . . , e|IA|}

)
,

where e1, . . . , e|IA| denotes the standard basis of R|IA|, ∆k+m−1 is the standard simplex in

Rk+m = Span{e1, . . . , ek+m}, and the elements of ker(A′′) ∩ ∆k+m−1 are identified with ele-
ments of R|IA| via the obvious embedding Rk+m → R|IA|.

With this, it is clear that the vertices of PR′ are given by the em+1, . . . , e|IA| along with the

images of the vertices of ker(A′′) ∩ ∆k+m−1 in R|IA| as above. Hence, PR′ is a polytope given
by the closed convex hull of PA′′ along with |IA| − m points that are linearly independent to
the vertices of PA′′ . It follows that A′ and hence A is simplicial if and only if A′′ is simplicial.
Recalling that A′′ satisfies hypotheses (i), (ii), and (iii), an application of Proposition 1 to A′′

completes the proof. �

Example 2. For the weight matrix given in Example 1, the vertices of PA = ker(A) ∩ ∆5

are given by (1/2, 1/2, 0, 0, 0, 0); (1/2, 0, 0, 1/2, 0, 0); (0, 1/2, 1/2, 0, 0, 0); (0, 0, 1/2, 1/2, 0, 0); and
(0, 0, 0, 0, 1/2, 1/2); so that PA is a 3-dimensional polytope with 5 vertices. Hence Theorem 4(1)
fails, and A is not simplicial.

4 Smooth structures on singular phase spaces

The aim of this section is to study singular phase spaces and smooth maps between them. In
this paper, we use the term singular phase space loosely, i.e., we mean by it a space (preferably
with singularities) on which one can do some sort of Hamiltonian mechanics. In order to give
precise definitions, there are some choices to be made. It will be convenient for our purposes to
focus on the notion of a differential space in the sense of Sikorski [28].

4.1 Poisson differential spaces

To begin, let us recall the definition of a stratified symplectic space and the theorem of Sjamaar
and Lerman, which says that every symplectic quotient is such a space.

Definition 3. A stratified symplectic space is a Whitney stratified space X = ti∈IXi with an
algebra C∞(X) of continuous functions such that

1) each stratum Xi is a symplectic manifold,

2) C∞(X) is a Poisson algebra, and

3) the pullback C∞(X) → C∞(Xi) with respect to the inclusions Xi ↪→ X is compatible with
the Poisson bracket.

The Poisson algebra C∞(X), is called the algebra of smooth functions on X.

If we regard X merely as a topological space, we say that C∞(X) is a smooth structure on X.
In many cases (for example in the case of the theorem below), it is known (see e.g. [29]) that
one can reconstruct the stratification from the Poisson algebra C∞(X). The question of when
one can do so without using the Poisson bracket is, to our knowledge, open. So morally, C∞(X)
contains all the information about X.
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Theorem 5 ([29]). Let G be a compact Lie group acting on a symplectic manifold (M,ω) in
a Hamiltonian way, and let J : M → g∗ be a moment map for this action. Then the symplectic
quotient M0 = Z/G, with Z = J−1(0), is a stratified symplectic space, where the strata

(M0)(H) := (M(H) ∩ Z)/G

are indexed by conjugacy classes (H) of subgroups H ⊂ G that arise as isotropy groups of
elements of Z. Here M(H) is the set of points in M whose isotropy group is an element of the
class (H). The Poisson algebra of smooth functions C∞(M0) is given by

C∞(M0) := C∞(M)G/
(
C∞(M)G ∩ IZ

)
,

where IZ ⊂ C∞(M) denotes the ideal of smooth functions vanishing on Z, and C∞(M)G ⊂
C∞(M) is the Poisson subalgebra of of G-invariant smooth functions.

Note that elements of C∞(M0) can be in fact regarded as functions on M0. Note further that
it is not difficult to check that C∞(M)G ∩ IZ ⊂ C∞(M) is actually a Poisson ideal, so that the
Poisson bracket on C∞(M0) is canonically defined.

Using the smooth structure as the key idea, one can easily talk about symplectomorphisms
between stratified symplectic spaces.

Definition 4 ([18]). A symplectomorphism between the symplectic stratified spaces (X =
ti∈IXi, C∞(X)) and (Y = tj∈JYj , C∞(Y )) is defined to be a homeomorphism ϕ : X → Y whose
pullback C∞(Y )→ C∞(X) with f 7→ f ◦ ϕ is an isomorphism of Poisson algebras.

Before refining the concept of symplectomorphism, we recall the notion of a Poisson diffe-
rential space [23]. This idea will help us strip off the unnecessary details from the notion of
a stratified symplectic space and widen the setup to including, e.g., orbit spaces of Poisson
G-actions.

Definition 5. A differential space (in the sense of Sikorski) is defined as a pair (X, C∞(X)),
where X is a topological space and C∞(X) is an algebra of continuous functions on X such that
the following axioms are fulfilled:

1. The topology of X is generated by C∞(X).

2. If F ∈ C∞(Rn), f1, . . . , fn ∈ C∞(X), then F (f1, . . . , fn) ∈ C∞(X).

3. If f : X → R is a function such that for every x ∈ X, there exists an open neighborhood
U of x and an fU ∈ C∞(X) such that f|U = fU , then f ∈ C∞(X).

A Poisson differential space is a triple (X, C∞(X), { , }), where (X, C∞(X)) is a differentiable
space and { , } : C∞(X)× C∞(X)→ C∞(X) is a Poisson bracket.

Definition 6. A smooth map from the differential space (X, C∞(X)) to the differential space
(Y, C∞(Y )) is a continuous map ϕ : X → Y such that the pullback ϕ∗ : f 7→ f ◦ ϕ sends smooth
functions on Y to smooth functions on X. If in addition ϕ∗ : C∞(Y ) → C∞(X) preserves the
Poisson structures, ϕ is called a Poisson map.

If (X, C∞(X)) is a differential space, then a maximal ideal m ⊂ C∞(X) is called a real
maximal ideal if the residue field C∞(X)/m is isomorphic to R. The set SpecR(C∞(X)) of real
maximal ideals in C∞(X) is called the real spectrum of C∞(X).

To make the definition of a Poisson differential space (X, C∞(X), { , }) workable, we have to
impose some additional assumptions, namely:

(A) The real spectrum consists of points, i.e., every real maximal ideal in C∞(X) is of the form
mξ := {f ∈ C∞(X) | f(ξ) = 0}. Moreover, we require

⋂
ξ∈X mξ = 0.
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(B) All Hamiltonian vector fields D (i.e., those of the form D := {h, } for some h ∈ C∞(X))
fulfill the chain rule. This means that, if we pick some ϕ1, . . . , ϕk ∈ C∞(X) and put
ϕ := (ϕ1, . . . , ϕk) : X → Rk, then for any F ∈ C∞(Rk) we have

D(F ◦ ϕ) =
k∑
i=1

(
∂F

∂xi
◦ ϕ
)
D(ϕi).

Note that condition (A) is always satisfied if X is a closed subset or Rn and C∞(X) is
the quotient algebra C∞(Rn)/I where I is the closed ideal of C∞(Rn) consisting of functions
that vanish on X; see [24, Proposition 2.13]. It is not clear to the authors if condition (A)
remains true, e.g. if X is not paracompact. In addition, it is not known to the authors whether
a symplectic stratified space is automatically a Poisson differential space fulfilling conditions (A)
and (B). However, using results from [7], it is easy to prove the following.

Proposition 2. With the notation of Theorem 5, if M has a finite number of orbit types as
a G-manifold, then the symplectic quotient (M0, C∞(M0), { , }) is a Poisson differential space
satisfying conditions (A) and (B).

Proof. In [7] it is proven that for any action of a compact Lie group G on a manifold M ,
the space of G-orbits M/G is a differential space. The smooth structure here is given by the
the algebra C∞(M)G of G-invariant functions on M . Every subspace of a differential space is
a differential space, and hence the symplectic quotient is a differential space. Using a system of
differentiable invariants (see Theorem 1), M0 can be realized as a closed differential subspace
of Rk so that [24, Proposition 2.13] applies. Property (A) follows. Property (B) is obvious. �

4.2 Global charts and the lifting theorem

In this subsection, we impose a more rigid structure on our Poisson differentiable spaces. The
terminology chosen stems from the observation that complete sets of differentiable invariants
(cf. the Schwarz–Mather Theorem 1) have much in common with linear coordinates on a vector
space. In fact, those coordinates can be seen as a Hilbert basis of a trivial group representation.

Definition 7. A global chart on a Poisson differential space (X, C∞(X), { , }) is an algebra
homomorphism

ϕ : R[x] := R[x1, . . . , xk]→ C∞(X), xi 7→ ϕi, i ∈ {1, . . . , k},

such that

1. The image of ϕ, denoted R[X], is a Poisson subalgebra of C∞(X), called Poisson subalgebra
of regular functions on X.

2. C∞(X) is C∞-integral over R[x], that is, for any f ∈ C∞(X) there is a F ∈ C∞(Rk) such
that f = F ◦ϕ. Abusing language slightly, here ϕ denotes the vector valued map X → Rk,
ξ 7→ (ϕ1(ξ), . . . , ϕk(ξ)).

3. The image of ϕ in C∞(X) separates points.

For a global chart ϕ : R[x] → C∞(X) we use property (1) to transfer the Poisson structure
from C∞(X) to R[x]/ ker(ϕ). In this way we obtain an embedding of Poisson algebras

ϕ : R[x]/ ker(ϕ) ↪→ C∞(X).

Of course, R[X] is isomorphic to R[x]/ ker(ϕ). If for the global chart ϕ : R[x] → C∞(X), the
algebra R[x] carries a Z-grading such that the ideal ker(ϕ) is homogeneous, we call ϕ : R[x] →
C∞(X) a Z-graded global chart.
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Our favorite examples are, of course, the symplectic quotients M0 = Z/G (cf. Theorem 5). In
fact, if we pick a complete system ρ1, . . . , ρk of differentiable invariants for the G-action on M ,
see Theorem 1, then we can make out of it a global chart by defining ϕi to be the class of ρi
in C∞(M0) = C∞(M)G/(C∞(M)G ∩ IZ) for each i ∈ {1, . . . , k} (confer Theorem 5). Similarly,
if we consider an orbit space of a Poisson G-space with finitely many orbit types, we can take
a complete system of invariants itself to form a global chart.

Let us also comment on the linear case, which is our main concern in this paper. If we
examine the symplectic quotient coming from a unitary representation G→ Un, then we should
of course choose a minimal homogeneous system of polynomial invariants ρ1, . . . , ρk. If we assign
to the variables xi in the above definition the degree of ρi, the result is a Z-graded global chart.
Similar comments apply to the orbit space of a symplectic representation G → Sp(R2n). Note
that the choice of a complete system of polynomial invariants, and therefore of a global chart,
is not unique. This choice turns out not to be essential; see Remark 1 below. A more severe
problem is that it might be practically impossible to compute a complete system of invariants.
As well, the determination of ker(ϕ) can be tricky.

Lemma 4. With the notation of Definition 7, the map ϕ : X → Rk, ξ 7→ (ϕ1(ξ), . . . , ϕk(ξ)) is
injective.

Proof. By definition, any regular function f ∈ R[X] ⊂ C∞(X) can be written as the composi-
tion f = p◦ϕ = p(ϕ1, . . . , ϕk) of a polynomial p ∈ R[x]. So if ϕ(ξ1) = ϕ(ξ2) for some ξ1, ξ2 ∈ X,
then f(ξ1) = f(ξ2) for all f ∈ R[X]. By Definition 7(3), R[X] separated points, and hence it
follows that ξ1 = ξ2. �

Lemma 5. Assume that the Poisson differential space in Definition 7 has property (A). Then
if ε : C∞(X)→ R is a morphism of R-algebras such that ε|R[X] = 0 it follows that ε = 0.

Proof. Assume that ε is nonzero. Then ker(ε) is a real maximal ideal and hence, by proper-
ty (A), of the form mξ = {f ∈ C∞(X) | f(ξ) = 0}. On the other hand, as R[X] separates points,
there is an f ∈ R[X] such that f(ξ) 6= 0. This contradicts our assumption that f ∈ ker(ε). �

We now define morphisms for Poisson differential spaces with global charts.

Definition 8. An arrow from a Poisson differential space (X, C∞(X), { , }) with global chart
ϕ : R[x] = R[x1, . . . , xk] → C∞(X) to a Poisson differential space (Y, C∞(Y ), { , }) with global
chart ψ : R[y] = R[y1, . . . , ym]→ C∞(Y ) is a morphism of algebras λ : R[y]→ R[x], such that

(i) We have λ(ker(ψ)) ⊂ ker(ϕ), and the induced morphism of algebras

λ : R[y]/ ker(ψ)→ R[x]/ ker(ϕ)

is compatible with the Poisson bracket.

(ii) Setting λi := λ(yi) ∈ R[x], i = 1, . . . ,m, and defining

ϑ : X → Rm, ϑ(ξ) :=
(
(ϕ(λ1))(ξ), . . . , (ϕ(λm))(ξ)

)
,

the image im(ψ) of the map ψ : Y → Rm contains im(ϑ).

If both charts are Z-graded and the algebra morphism λ is compatible with the grading we say
that the arrow is Z-graded.

Clearly, an arrow contains redundant information – what is really important is λ. We say
that two arrows λ and λ′ are equivalent if they induce the same λ.
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Theorem 6 (lifting theorem). With the notation of Definition 8 and choice of an arrow λ, let
us assume that both Poisson differential spaces have property (B) and (X, C∞(X)) has proper-
ty (A). Then there exists unique morphism of Poisson algebras λ̃ : C∞(Y )→ C∞(X), such that
ϕ ◦ λ = λ̃ ◦ ψ.

C∞(Y )
λ̃ // C∞(X)

R[y]

ψ

OO

λ
// R[x]

ϕ

OO

Moreover, the lift λ̃ depends only on the equivalence class of λ and can be understood as the
pullback of the continuous map

χ : X → Y, ξ 7→ ψ−1(ϑ(ξ)).

For two arrows λ1 and λ2 we have λ̃1 ◦ λ2 = λ̃1 ◦ λ̃2.

Note that by construction, the map χ is smooth in the sense of Definition 6.

Proof. Take a function f ∈ C∞(Y ) and write it as a composite with ψ,

f(η) = F
(
ψ1(η), . . . , ψm(η)

)
∀ η ∈ Y,

for some F ∈ C∞(Rm). The function λ̃(f) ∈ C∞(X) is defined to be(
λ̃(f)

)
(ξ) := F

(
(ϕ(λi))(ξ), . . . , (ϕ(λm))(ξ)

)
= F (ϑ(ξ)) ∀ ξ ∈ X,

where λi := λ(yi) ∈ R[x] for i = 1, . . . ,m. Clearly λ̃ does not depend the choice of λ within
its equivalence class and fulfills ϕ ◦ λ = λ̃ ◦ ψ. By assumption (ii) of Definition 8, λ̃ does not
depend on the choice of F .

The uniqueness of λ̃ is a consequence of Lemma 5. In fact, given another algebra morphism
λ̂ : C∞(Y ) → C∞(X) such that ϕ ◦ λ = λ̂ ◦ ψ, then εξ := (λ̃(f))(ξ) − (λ̂(f))(ξ) is an algebra
morphism εξ : C∞(X) → R whose restriction to R[X] vanishes. So Lemma 5 implies εξ = 0 for

all ξ ∈ X. But this means that the function λ̃(f)− λ̂(f) vanishes everywhere on X, and is hence
zero by property (A).

By Definition 8 and the injectivity of ψ : Y → Rk (cf. Lemma 4), the map χ : ξ 7→ ψ−1(ϑ(ξ))
is well-defined. The verification of the claim χ∗ = λ̃ is straightforward,(

χ∗f
)
(ξ) = f(χ(ξ)) = f

(
ψ−1(ϑ(ξ))

)
= (F ◦ ψ)

(
ψ−1(ϑ(ξ))

)
= F (ϑ(ξ)) = λ̃(f).

Finally, let us show that λ̃ is compatible with the bracket. By construction, for all i, j ∈
{1, . . . ,m} there is a polynomial γij = γij(y1, . . . , ym) ∈ R[y] representing the class of {yi, yj}
in R[y]/ ker(ψ). We observe that

{ψi, ψj} = {ψ(yi), ψ(yj)} = ψ(γij(y1, . . . , ym)) = γij(ψ1, . . . , ψm) ∈ C∞(Y ),

because ψ is by definition compatible with the bracket. Since, by assumption, λ is compatible
with the bracket, we see that {λi, λj} = {λ(yi), λ(yj)} ∈ R[x] coincides with λ(γij(y1, . . . , ym)) =
γij(λ1, . . . , λm) ∈ R[x] up to ker(ϕ). It follows that

{ϕ(λi), ϕ(λj)} = ϕ({λi, λj}) = γij(ϕ(λ1), . . . , ϕ(λm)) = γij ◦ ϑ ∈ C∞(X). (4.1)



18 C. Farsi, H.-C. Herbig and C. Seaton

With these preparations, we compute for η ∈ Y , and f = F ◦ ψ and g = G ◦ ψ, making use of
property (B):

{f, g}(η) =
m∑

i,j=1

∂F

∂xi

(
ψ1(η), . . . , ψm(η)

) ∂G
∂xj

(
ψ1(η), . . . , ψm(η)

)
{ψi, ψj}(η)

=
m∑

i,j=1

∂F

∂xi

(
ψ1(η), . . . , ψm(η)

) ∂G
∂xj

(
ψ1(η), . . . , ψm(η)

)
γij
(
ψ1(η), . . . , ψm(η)

)
,

which yields for ξ ∈ X:

λ̃ ({f, g}) (ξ) =
m∑

i,j=1

∂F

∂xi

(
(ϕ(λ1))(ξ), . . . , (ϕ(λm))(ξ)

)
× ∂G

∂xj

(
(ϕ(λ1))(ξ), . . . , (ϕ(λm))(ξ)

)
γij
(
(ϕ(λ1))(ξ), . . . , (ϕ(λm))(ξ)

)
=

m∑
i,j=1

∂F

∂xi
(ϑ(ξ))

∂G

∂xj
(ϑ(ξ)) γij(ϑ(ξ)).

On the other hand we have

{λ̃(f), λ̃(g)}(ξ) =
m∑

i,j=1

∂F

∂xi

(
(ϕ(λ1))(ξ), . . . , (ϕ(λm))(ξ)

)
× ∂G

∂xj

(
(ϕ(λ1))(ξ), . . . , (ϕ(λm))(ξ)

)
{ϕ(λi), ϕ(λj)}(ξ),

which in view of equation (4.1) implies that λ̃ ({f, g}) = {λ̃(f), λ̃(g)}. �

Definition 9. A Poisson map χ between Poisson differential spaces with global charts that is
obtained as a lift of an arrow λ as in Theorem 6 is called a regular Poisson map. If the arrow λ
is such that

1) λ is an isomorphism, and

2) (in the notation of Definition 8) im(ϑ) = im(ψ),

then χ is called a regular Poisson diffeomorphism. If the arrow is in addition Z-graded we say
that the regular Poisson map (resp. regular Poisson diffeomorphism) is Z-graded.

Regular Poisson diffeomorphisms between symplectic stratified spaces are examples of sym-
plectomorphisms; see Definition 4.

Remark 1. Consider a unitary representation G→ Un, let M0 denote the associated symplectic
quotient, and let ρ1, . . . , ρr and σ1, . . . , σs denote two choices of minimal homogeneous systems
of polynomial invariants. Let

ϕ : R[x1, . . . , xr]→ C∞(M0), xi 7→ ρi, i ∈ {1, . . . , r},

and

ψ : R[y1, . . . , ys]→ C∞(M0), yi 7→ σi, i ∈ {1, . . . , s},

denote the corresponding global charts for M0. Expressing each σi in terms of the polynomials
ρ1, . . . , ρr defines an arrow λ : R[y] → R[x], and one checks that this is a Z-graded regular
Poisson diffeomorphism.
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In Section 5, we will argue that certain Poisson differential spaces with global chart are not
(Z-graded) regularly diffeomorphic, because their rings of regular functions are not isomorphic
as (Z-graded) commutative R-algebras. This type of problem is entirely in the realm of the
theory of commutative Noetherian rings.

There are many potential applications of the theory presented above, which we will indicate
elsewhere. Here, we will return to the consideration of toric symplectic quotients.

4.3 Orbifold cases in dimension 2

The purpose of this subsection is twofold. First of all, we will illustrate the machinery in-
troduced in the last subsection by presenting a concrete example of a Z-graded regular sym-
plectomorphism. Secondly, we will show that the simplicial condition is actually sufficient for
a two-dimensional symplectic quotient to be symplectomorphic to an orbifold. Note that by
Theorem 4, any two-dimensional symplectic quotient corresponds to a simplicial representation.

Before doing so, we would like to comment on a subtle point that one faces when determining
the kernel of a global chart. For example, if we are interested in the ideal of smooth functions
on C that vanish on the zero set of the function J = zz, it turns out that is generated not by J
itself, but rather by the linear monomials z and z. In the next proposition, we indicate that we
do not have to worry about this kind of problems in the situation at hand.

Proposition 3. Let A ∈ Z`×n be a weight matrix that can, by elementary row operations and
permutation of the column indices, be brought into the form A = [D | C], where D ∈ Z`×` is
a diagonal matrix with strictly negative entries and C ∈ Z`×(n−`) has non-negative entries and
no rows that are identically zero. Then the G = T`-invariant part IGZ = IZ ∩ C∞(Cn)G of
the vanishing ideal IZ ⊂ C∞(Cn) is generated by the components J1, . . . , J` ∈ C∞(Cn)G of the
moment map. Here we view IGZ as an ideal in C∞(Cn)G.

Proof. Based on the signs of the entries of A, condition (i) of [17, Proposition 2.2] is fulfilled,
and the result follows. �

Given the G = T`-action on Cn encoded by our weight matrix A ∈ Z`×n, we can find a real
Hilbert basis (i.e., complete set of real polynomial invariants) ρ1, . . . , ρk ∈ R[Cn]G such that
ρi = zizi for i = 1, . . . , n. Because our group is abelian, the moment map itself is invariant. We
can express the components of the moment map in terms of the ρ’s using

Ja = Jea =
1

2

n∑
i=1

Aaiρi, a = 1, . . . , `. (4.2)

We will occasionally refer to the relations of the form Ja = 0 as the shell relations. Furthermore,
let us denote by f1, . . . , fr ∈ R[x1, . . . , xk] a complete set of algebraic relations among the
ρ1, . . . ρk. Using this data, we construct a global chart

ϕ : R[x] = R[x1, . . . , xk]→ C∞(M0), xi 7→ ϕi

for the symplectic quotient M0 = J−1(0)/T`, where ϕi is the image of ρi in C∞(M0). Proposi-
tion 3 enables us to determine the kernel of ϕ. Then we have the following, which we expect
remains true for an arbitrary weight matrix A and will pursue this elsewhere.

Corollary 1. Under the assumptions of Proposition 3, the homogeneous ideal ker(ϕ) ⊂ R[x] is

the ideal generated by f1, . . . , fr and the linear forms ga :=
n∑
i=1

Aaixi, a = 1, . . . , `.
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Proof. From Proposition 3 it follows that the map R[Cn]G → C∞(Cn)G gives rise to an injection

R[Cn]G/〈J1, . . . , J`〉 → C∞(Cn)G/IGZ .

Since ϕ factors through this injection

R[x]
ϕ //

'' ''

C∞(Cn)G/IGZ

R[Cn]G/〈J1, . . . , J`〉

55

we have that ker(ϕ) is the kernel of the substitution homomorphism R[x]→ R[Cn]G/〈J1, . . . , J`〉.
The claim now easily follows from the isomorphism theorems. �

We can assume without loss of generality that the weight matrix is of the form A = [D | n]
where D = diag(−a1, . . . ,−a`) is an `× ` diagonal matrix with a1, . . . , a` > 0 and n is a single
column with entries n1, . . . , n` ≥ 0. We assume as well that the G = T`-action is effective, which
implies that gcd(ai, ni) = 1 for each i ∈ {1, 2, . . . , `}. Let us introduce the shorthand notation:

A := lcm(a1, . . . , a`), mi :=
niA
ai

for i = 1, . . . , `, M :=
∑̀
i=1

mi.

It is not difficult to show that

ρ1 = Re

(
zA`+1

∏̀
i=1

zmii

)
, ρ2 = Im

(
zA`+1

∏̀
i=1

zmii

)
, ρ3 = z`+1z`+1,

ρ4 = z1z1, . . . , ρ`+3 = z`z`.

constitutes a minimal real Hilbert basis of our T`-action on Cn. The degree of ρ1 and ρ2 is
A+M, while the degree of ρ3, . . . , ρ`+3 is two. Using the language of the previous section, this
leads to a Z-graded global chart

ψ : R[y] = R[y1, . . . , y`+3]→ C∞(M0), yi 7→ ψi

for our symplectic quotient M0 = J−1(0)/T`, where ψi is ρi regarded as an element of C∞(M0).
The kernel ker(ψ) of the algebra morphism ψ is generated by the polynomials

y21 + y22 −

∏̀
i=1

mmi
i

AM
yA+M3 and y3+i −

mi

A
y3 for i = 1, . . . , `,

the latter coming from the shell relations (see equation (4.2)). The image of the vector valued
map

ψ : M0 → R`+3, m 7→ (ψ1(m), . . . , ψ`+3(m))

is determined by the semialgebraic condition

y21 + y22 −

∏̀
i=1

mmi
i

AM
yA+M3 = 0,

y3+i −
mi

A
y3 = 0 for i = 1, . . . , `, y3 ≥ 0.
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Figure 1. The symplectic orbifold C/ZN for N = 2 (left) and N = 5 (right).

On the other hand, let us consider the canonical action of the cyclic group ZN , for N ≥ 2,
on C. In other words, we let g ∈ ZN ⊂ S1 ⊂ C act on z ∈ C by multiplication. Recall that
the action on the complex conjugate variable z is given by g−1z. As the ZN -action preserves
the Kähler structure of C, the quotient space

(
XN := C/ZN , C∞(XN ) = C∞(C)ZN

)
is a Poisson

differential space of (real) dimension two. It is easy to determine the real Hilbert basis consisting
of ϕ1 = Re(zN ), ϕ2 = Im(zN ), and ϕ3 = zz. Assigning to the variables x1 and x2 the degree N
and to x3 the degree 2, we obtain a Z-graded global chart

ϕ : R[x] = R[x1, x2, x3]→ C∞(XN ), xi 7→ ϕi.

The kernel ker(ϕ) of the algebra morphism ϕ is generated by the polynomial x21 +x22−xN3 . The
image of the map ϕ : XN → R3, z 7→ (ϕ1(z), ϕ2(z), ϕ3(z)), is given by the semialgebraic set of
solutions of the system

x21 + x22 = xN3 , x3 ≥ 0,

see Fig. 1. With these preparations we are ready for the main result of this subsection.

Theorem 7. With the above notation, if N = A + M, then the algebra homomorphism
λ : R[y1, . . . , y`+3] −→ R[x1, x2, x3] given by

yi 7−→

√√√√√AA ∏̀j=1
m
mj
j

NN
xi, for i = 1, 2,

y3 7−→
A
N
x3, y3+i 7−→

mi

N
x3, for i = 1, . . . , `

is a Z-graded arrow lifting to a Z-graded symplectomorphism XN →M0.

Proof. Using the relation {zi, zj} = −2
√
−1δij , a straightforward calculation yields

{ρ1, ρ2} = (z`+1z`+1)
A

(∏
i

(zizi)
mi

)(
A2

z`+1z`+1
+
∑
i

m2
i

zizi

)
.

Writing yi for the class of yi in R[y]/ ker(ψ) and using yi+3 = mi
A y3 this leads to the relation

{y1, y2} =
(A+M)

∏
im

mi
i

AM−1
yA+M−13 =: ByA+M−13 .
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Moreover, one can check that {ρ1, ρ3} = 2Aρ2 and {ρ2, ρ3} = −2Aρ1. We record our commuta-
tion relations {yi, yj} in the table:

y1 y2 y3

y1 0 ByA+M−13 2Ay2
y2 0 −2Ay1
y3 0

where we have omitted all y3+i, i = 1, . . . , ` for the sake of brevity.

Similarly, we write xi for the class of xi in R[x]/ ker(ϕ). We leave it to the reader to verify
the multiplication table for the commutation relations {xi, xj}:

x1 x2 x3

x1 0 N2xN−13 2Nx2

x2 0 −2Nx1
x3 0

(4.3)

In order to construct the arrow λ we make the definitions

y1 7→ αx1, y2 7→ αx2, y3 7→ βx3,

where α, β are determined from the multiplication tables, i.e.,

2αβN = 2Aα ⇒ β = A/N,

α2N2 = βN−1B ⇒ α =

√
(A/N)N−1B

N2
=

√√√√√AA ∏̀j=1
m
mj
j

NN
.

Due to the identity α2 = βNB
NA , the generator

y21 + y22 −

∏̀
i=1

mmi
i

AM
yA+M3 = y21 + y22 −

B
NA

yN3

of ker(ψ) is sent to the generator x21 + x22 − xN3 of ker(ϕ), which proves that λ is an arrow (the
semialgebraic condition being clearly fulfilled). By the lifting theorem, λ lifts to a Poisson map
XN → M0. The inverse Poisson map can be constructed by lifting the arrow x1 7→ α−1y1,
x2 7→ α−1y2 and x3 7→ β−1y3. �

Let us finish this section by mentioning a simple application of Theorem 7. It is easy to see
that if the weight matrix is of block form

A =

(
A1 0
0 A2

)
,

then there is a Z-graded regular symplectomorphism from the symplectic quotient MA to
MA1 ×MA2 . So if we consider for example (cf. [17, p. 108]) the weight matrix A ∈ Z`×2`
whose columns are given by ±ei, where the ei are the standard basis vectors in R`, it follows
that the reduced space MA is Z-graded regular symplectomorphic to the `-fold cartesian product
of C/Z2.
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5 Counterexamples in dimension 4

In this section, we prove that for certain unitary simplicial circle representations, there can-
not exist a Z-graded regular symplectomorphism from the symplectic quotient to a quotient
of a linear symplectic action of a finite group. Before explaining our strategy, we note that
a natural idea is to examine ring theoretic features to distinguish symplectic quotients from
finite quotients. For example, it is known that invariant rings of unimodular representations
of finite groups are Gorenstein. Unfortunately, cotangent lifted torus representations lead also
to Gorenstein rings, because the representation matrices are unimodular. Since, provided the
weight matrix A has full rank, the shell relations cut out a complete intersection in R[Cn]G, the
rings of regular functions R[MA] on the symplectic quotient space MA are Gorenstein as well.

The only invariant we found useful in telling our symplectic quotients apart from finite quo-
tients as Poisson differential spaces is the Hilbert series (also called the Poincaré series) of the
Z-graded ring of regular functions. This is an invariant under Z-graded regular symplectomor-
phism; whether it is an invariant under symplectomorphism is not yet clear. Let V = ⊕i≥0Vi be
a positively graded, locally finite-dimensional vector space over the field K. Then the Hilbert
series of V is defined as the formal power series

HilbV |K(t) =
∑
i≥0

dimK(Vi)t
i ∈ Z[[t]].

The Hilbert series of an invariant ring of a compact groups can be calculated using Molien’s
formula (see e.g. [31]). It behaves well under cutting out complete intersections, which can be
seen easily using the minimal free resolution. Because our algebras of invariants are finitely
generated, their Hilbert series can be written as Q(t)/P (t), where Q(t) ∈ Z[t] and P (t) is of

the form
r∏
i=1

(1 − tni)ki with ki the number of generators in degree ni. The Gorensteinness is

reflected by the fact that Q(t) is palindromic.
Computations were performed using Singular1 and Mathematica2.

5.1 Weight matrices of type [−1, 1,m]

Our first task here is to determine a real Hilbert basis (i.e., complete systems of real homogeneous
polynomial invariants) for linear G = S1-actions on C3 corresponding to weight matrices of the
form [−1, 1,m] for m = 1, 2, . . . . To this end we use the algorithm of Sturmfels [31] together with
the Groebner basis facilities of the computer algebra system Singular. There is one pitfall here,
namely that we regard C3 as a 6-dimensional real vector space. This means that G-operates
also on the z’s, so that we actually work with the weight matrix [−1, 1,m, 1,−1,−m], where the
coordinates are ordered as (z1, z2, z3, z1, z2, z3).

The computer calculations indicate that the real Hilbert basis consists of the obvious real
polynomials z1z1, z2z2, and z3z3, as well as the real and imaginary parts of

z1z2 and zm−i1 zi2z3 for i = 0, 1, . . . ,m,

giving altogether 7 + 2m polynomials. This pattern has been verified for m = 1, . . . , 10 using
Singular. The next task is to determine the algebraic relations among these generators. We
restrict to the cases m = 1 and 2; the rest of this subsection is devoted to a more detailed
presentation of these two cases.

1Decker W., Greuel G.M., Pfister G., Schönemann H., Singular 3-1-3 – A computer algebra system for
polynomial computations, 2011, http://www.singular.uni-kl.de.

2Wolfram Research Inc., Mathematica Edition: Version 7.0, Champaign, Illinois, 2008, http://www.wolfram.
com/mathematica/

http://www.singular.uni-kl.de
http://www.wolfram.com/mathematica/
http://www.wolfram.com/mathematica/
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Table 1. The Betti table for the symplectic quotient associated to [−1, 1, 1].

0 1 2 3 4 5
0 1 – – – – –
1 – 1 – – – –
2 – – – – – –
3 – 9 – – – –
4 – – 25 – – –
5 – – – 25 – –
6 – – – – 9 –
7 – – – – – –
8 – – – – 1 –
9 – – – – – 1

total 1 10 25 25 10 1

m = 1. Here, the Hilbert basis consists of 9 polynomials of degree 2:

ρ1 = z1z1, ρ2 = z2z2, ρ3 = z3z3, ρ4 = Re(z1z2), ρ5 = Im(z1z2),

ρ6 = Re(z1z3), ρ7 = Im(z1z3), ρ8 = Re(z2z3), ρ9 = Im(z2z3).

Among them we have 9 quadratic relations (seen, of course, as being of degree 4):

ρ24 + ρ25 − ρ1ρ2 = 0, ρ3ρ4 + ρ7ρ9 − ρ6ρ8 = 0, ρ6ρ9 + ρ7ρ8 − ρ3ρ5 = 0,

ρ26 + ρ27 − ρ1ρ3 = 0, ρ4ρ8 + ρ5ρ9 − ρ2ρ6 = 0, ρ2ρ7 + ρ4ρ9 − ρ5ρ8 = 0,

ρ28 + ρ29 − ρ2ρ3 = 0, ρ4ρ6 + ρ5ρ7 − ρ1ρ8 = 0, ρ4ρ7 + ρ5ρ6 − ρ1ρ9 = 0.

That the numbers of generators and relations coincide here seems to be an accident. Using the
language of Subsection 6, we construct a Z-graded global chart ϕ : R[x] = R[x1, x2, . . . , x9] →
C∞(M0), of the form xi 7→ ϕi, where ϕi is simply ρi seen as an element of C∞(M0), and we assign
to all xi the degree 2. In order to determine ker(ϕ), we use the fact that the representation is
simplicial and therefore, by Proposition 1, the only additional relation comes from the shell rela-
tion J = (ρ2+ρ3−ρ1)/2 = 0. Summing up, we conclude that the Z-graded ring R[M0] of regular
functions on the symplectic quotient M0 = Z/G is isomorphic to the ring R[x1, x2, . . . , x9]/I,
where I = ker(ϕ) is the homogeneous ideal

I = 〈x24 + x25 − x1x2, x26 + x27 − x1x3, x28 + x29 − x2x3, x3x4 + x7x9 − x6x8,
x4x8 + x5x9 − x2x6, x2x7 + x4x9 − x5x8, x6x9 + x7x8 − x3x5,
x4x6 + x5x7 − x1x8, x4x7 + x5x6 − x1x9, x2 + x3 − x1〉.

It is convenient to record some of the information contained in the minimal free resolution of
the Z-graded R[x1, x2, . . . , x9]-module R[x1, x2, . . . , x9]/I in the so-called Betti table (for more
details see, e.g., [10]). For the example at hand, we have computed the Betti table using Singular;
see Table 1.

It is easy to read off from the Betti table the Hilbert series of R[M0]:

HilbR[M0]|R(t) =
1− t2 − 9t4 + 25t6 − 25t8 + 9t10 + t12 − t14

(1− t2)9
=

1 + 4t2 + t4

(1− t2)4

= 1 + 8t2 + 27t4 + 64t6 + 125t8 + · · · ∗=
∞∑
n=0

(n+ 1)3t2n. (5.1)

The step (∗) follows easily from the identity
∑

i(−1)i
(
4
i

)
(k + i)3 = 0, k ≥ 0, which in turn can

be proved by induction. 4
m = 2. Here the real Hilbert basis consists of eleven elements:

degree2:

{
ρ1 = z1z1, ρ2 = z2z2, ρ3 = z3z3,
ρ4 = Re(z1z2), ρ5 = Im(z1z2),
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degree3:

{
ρ6 = Re

(
z21z3

)
, ρ8 = Re(z1z2z3), ρ10 = Re(z22z3),

ρ7 = Im
(
z21z3

)
, ρ9 = Im(z1z2z3), ρ11 = Im(z22z3).

According to Singular, we have altogether 24 relations:

degree4:
{
ρ24 + ρ25 − ρ1ρ2 = 0,

degree5:


ρ4ρ10 + ρ5ρ11 − ρ2ρ8 = 0, ρ2ρ9 + ρ4ρ11 − ρ5ρ10 = 0,
ρ5ρ9 + ρ2ρ6 − ρ4ρ8 = 0, ρ4ρ9 + ρ5ρ8 − ρ2ρ7 = 0,
ρ4ρ8 + ρ5ρ9 − ρ1ρ10 = 0, ρ4ρ9 + ρ1ρ11 − ρ5ρ8 = 0,
ρ4ρ6 + ρ5ρ7 − ρ1ρ8 = 0, ρ1ρ9 + ρ5ρ6 − ρ4ρ7 = 0,

degree6:



ρ9ρ11 − ρ8ρ10 + ρ2ρ3ρ4 = 0, ρ8ρ11 + ρ9ρ10 − ρ2ρ3ρ5 = 0,
ρ6ρ8 + ρ7ρ9 − ρ1ρ3ρ4 = 0, ρ6ρ9 − ρ7ρ8 + ρ1ρ3ρ5 = 0,
ρ26 + ρ27 − ρ21ρ3 = 0, ρ3(ρ

2
4 − ρ25) + ρ7ρ11 − ρ6ρ10 = 0,

ρ28 + ρ29 − ρ1ρ2ρ3 = 0, ρ29 − ρ28 + ρ6ρ10 + ρ7ρ11 = 0,
2ρ8ρ9 + ρ6ρ11 − ρ7ρ10 = 0, ρ6ρ11 + ρ7ρ10 − 2ρ3ρ4ρ5 = 0,
ρ210 + ρ211 − ρ22ρ3 = 0,

degree8:


ρ1
(
ρ210 + ρ211

)
− ρ2

(
ρ28 + ρ29

)
= 0,

ρ1
(
ρ28 + ρ29

)
− ρ2

(
ρ26 + ρ27

)
= 0,

ρ1(ρ8ρ10 − ρ9ρ11)− ρ2(ρ6ρ8 + ρ7ρ9) = 0,
ρ1(ρ8ρ11 + ρ9ρ10) + ρ2(ρ6ρ9 − ρ7ρ8) = 0.

We would like to point out that it is, in principle, often more convenient to work with the com-
plexification of our base ring R[Cn]. Doing so, we can find a Hilbert basis consisting of mono-
mials, e.g., z1z2 = ρ4 +

√
−1ρ5, z1z2 = ρ4 −

√
−1ρ5 etc. As a consequence of complexification,

the relations can be written as binomials.

Analogous to the case m = 1, we obtain a Z-graded global chart for the symplectic quotient
M0 = Z/G,

ϕ : R[x] = R[x1, x2, . . . , x11]→ C∞(M0), xi 7→ ϕi,

where ϕi is ρi seen as an element in C∞(M0), and we assign to x1, . . . , x5 the degree 2 and to
x6, . . . , x11 the degree 3. Taking into account the shell relation J = (ρ2 +2ρ3−ρ1)/2 = 0, we see
that the homogeneous ideal I = ker(ϕ) ⊂ R[x] is generated by 25 polynomials. For the sake of
brevity we leave it to the reader to write them down. Once again, Singular is able to compute
the minimal free resolution of the R[x]-module R[x]/I. The Betti table given in Table 2. From
this it is easy to derive a formula for the Hilbert series HilbR[M0]|R(t) = Q(t)/P (t):

Q(t) = 1− t2 − t4 − 8t5 − 10t6 + 16t7 + 43t8 + 16t9 − 53t10 − 72t11 + 72t13

+ 53t14 − 16t15 − 43t16 − 16t17 + 10t18 + 8t19 + t20 + t22 − t24,

P (t) =
(
1− t2

)5(
1− t3

)6
.

This can be reduced to

1 + 2t2 + 4t3 + 2t4 + t6

(1− t2)2(1− t3)2
= 1 + 4t2 + 6t3 + 9t4 + 16t5 + 26t6 + 30t7 + · · · . 4

Let us close this subsection with the simple observation that the GIT-quotient C3//T1
C cor-

responding to weight matrix A = [−1, 1,m] is the affine space C2. In fact, t ∈ T1
C acts on

(q1, q2, q3) ∈ C3 by t.q1 = t−1q1, t.q2 = tq2 and t.q3 = tmq3. A complex Hilbert basis is provided
by the algebraically independent polynomials q1q2, q

m
1 q3 ∈ C[q1, q2, q3]

T1
C = C[C3]T

1
C .
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Table 2. The Betti table for the symplectic quotient associated to [−1, 1, 2].

0 1 2 3 4 5 6 7
0 1 – – – – – – –
1 – 1 – – – – – –
2 – – – – – – – –
3 – 1 – – – – – –
4 – 8 1 – – – – –
5 – 11 16 – – – – –
6 – – 43 8 – – – –
7 – – 24 53 – – – –
8 – – – 72 21 – – –
9 – – – 21 72 – – –
10 – – – – 53 24 – –
11 – – – – 8 43 – –
12 – – – – – 16 11 –
13 – – – – – 1 8 –
14 – – – – – – 1 –
15 – – – – – – – –
16 – – – – – – 1 –
17 – – – – – – – 1

total 1 21 84 154 154 84 21 1

5.2 Finite subgroups of U2

In this subsection, we consider the finite subgroups G of U2. The classification of such subgroups
is due to P. du Val [5, 8], and the details of the classification are recalled in Appendix A. Of
particular importance is the ADE-classification of finite subgroups of SU2. Here, the quotients
C2/G lead to the famous Kleinian singularities, while quotients (C2 × C2)/G appear not to be
as well-understood.

Rather than an exhaustive computation of the Hilbert series for the nine families of finite
subgroups U2, it will be sufficient for our purposes to determine the Hilbert series for certain
subgroups G < SU2. By the ADE-classification, any such group is cyclic or conjugate to a binary
dihedral, tetrahedral, octahedral, or icosahedral group.

Recall the formula of Molien [22], see e.g. [31, Theorem 2.2.1], which expresses the Hilbert
series for the G-invariant polynomials on C2 as

HilbR[C2]G|R(t) =
1

|G|
∑
g∈G

1

det(id−tg)
. (5.2)

In order to evaluate these summations, we will make use of a Dedekind sum formula of I. Ges-
sel [13].

5.2.1 Cyclic groups

Suppose G ∼= ZN is a cyclic group of order N with generator diag(ωN , ω
−1
N ) in complex coor-

dinates, where ωN is a primitive Nth root of unity. The action of this generator on C2 × C2

is given by the matrix αN = diag(ωN , ω
−1
N , ω−1N , ωN ). We will give explicit computations of the

Hilbert series for two cases of particular interest separately followed by the general case.

N = 2. In this case, as ω2 = ω−12 , all quadratic polynomials are invariant, and a Hilbert
basis is given by

ρ1 = z1z1, ρ2 = z2z2, ρ3 = Re(z1z2), ρ4 = Im(z1z2), ρ5 = Re(z1z2),

ρ6 = Im(z1z2), ρ7 = Re
(
z21
)
, ρ8 = Im

(
z21
)
, ρ9 = Re

(
z22
)
, ρ10 = Im

(
z22
)
.
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The Hilbert series is computed to be

HilbR[C2]Z2 |R(t) =
1 + 6t2 + t4

(1− t2)4
=

∞∑
n=0

(
3 + 2n

3

)
t2n

= 1 + 10t2 + 35t4 + 84t6 + 165t8 + 286t10 + · · · . 4

N = 3. In this case, the Hilbert series is computed to be

HilbR[C2]Z3 |R(t) =
1− 2t+ 5t2 − 2t3 + t4

(1− t)2(1− t3)2

= 1 + 4t2 + 8t3 + 9t4 + 20t5 + 30t6 + 36t7 + 57t8 + · · · .

It is moreover easy to see that the 4 quadratic invariants are given by z1z1, z2z2, and the real
and imaginary parts of z1z2. 4

General N . In general, equation (5.2) yields the Hilbert series

HilbR[C2]ZN |R(t) =
1

N

∑
g∈ZN

1

det(id−gt)
=

1

N

∑
ζN=1

1

(1− ζt)2(1− ζ−1t)2
.

Applying Gessel’s formula [13, Theorem 4.2], it follows that HilbR[C2]ZN |R(t) is given by the

x2y2-coefficient in the formal power series expansion of

1

(1− x)(1− y)− t2

(
x
(
1− x− t2

)
(1− x)N−1

(1− x)N − tN
+
y(1− y − t2)(1− y)N−1

(1− y)N − tN
− xy

)
.

The x2y2-coefficient is

HilbR[C2]ZN |R(t) =
1 + t2 + 2NtN − t2N − 2NtN+2 − t2N+2

(1− t2)3(1− tN )2
.

From this expression, it is easy to compute that if N > 2, then the t2-coefficient of the Hilbert
series is 4. Similarly, the t3-coefficient vanishes for N > 3.

5.2.2 Binary dihedral groups

Suppose now that G is a binary dihedral group DN of order 4N for N ≥ 1, which in complex
coordinates is generated by the two elements, diag(ω2N , ω

−1
2N ) and

b =

[
0 1
−1 0

]
, (5.3)

where ω2N is a primitive 2Nth root of unity. The action of these generators on C2×C2 is given
by the matrices α2N = diag

(
ω2N , ω

−1
2N , ω

−1
2N , ω2N

)
and β = diag(b, b), the latter in 2× 2 blocks.

To apply equation (5.2), note that the 4N elements of DN are given by the 2N powers of α2N

as well as elements of the form αkβ with 0 ≤ k ≤ 2N − 1. A simple computation demonstrates
that det(id−αkβt) = (1 + t2)2 does not depend on k so that the sum in equation (5.2) can be
split into a sum over the cyclic group 〈α〉 and its complement in DN . That is,

HilbR[C2]DN |R(t) =
1

4N

∑
g∈DN

1

det(id−gt)
=

1

4N

(
2N∑
k=1

1

det(id−αkt)
+

2N∑
k=1

1

det(id−αkβt)

)
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=
1

4N

 ∑
ζ2N=1

1

(1− ζt)2(1− ζ−1t)2

+
1

2(1 + t2)2
,

where the final sum corresponds to the case of a cyclic group treated above. It follows again by
an application of Gessel’s formula that the Hilbert series is given by HilbR[C2]DN |R(t) = Q(t)/P (t)
where

Q(t) = 1 + 3t4 + (2N − 1)t2N + (2N + 3)t2N+2 − (2N + 3)t2N+4

− (2N − 1)t2N+6 − 3t4N+2 − t4N+6,

P (t) =
(
1− t2

)(
1− t4

)2(
1− t2N

)2
.

In particular, as Q(t)/P (t) are even functions, the Hilbert series coefficients vanish in odd orders.
Moreover, one computes that the t2-coefficient is 4 if N = 1 and 1 if N > 1.

5.2.3 Binary tetrahedral, octahedral, and icosahedral groups

The three remaining subgroups of SU2 are the binary tetrahedral group T24, the binary octahe-
dral group O48, and the binary icosahedral group I120. For our purposes, it will be sufficient to
note that T24 and O48 both contain a subgroup isomorphic to Z4 which in complex coordinates
is generated by diag(

√
−1,−

√
−1), and hence coincides with Z4 above. Similarly, I120 contains

a subgroup isomorphic to Z10 which in complex coordinates is generated by diag(−ω3
5,−ω2

5),
and hence is conjugate to the action of Z10 given above.

5.3 [−1, 1, 1] and [−1, 1, 2] are not orbifolds

Our final aim is to show that HilbR[MA]|R(t) for A = [−1, 1, 1] or [−1, 1, 2] cannot coincide with
HilbR[C2]G|R(t) for any finite subgroup G < U2. The argument will be based on the following
observation. Suppose H ≤ G and consider

HilbR[C2]H |R(t) =
∞∑
k=0

akt
k, HilbR[C2]G|R(t) =

∞∑
k=0

bkt
k.

Then any polynomial invariant under G is also invariant under H, implying that bk ≤ ak for
each k. Moreover, note that any finite subgroup of U1 acting on C2 as scalar multiplication is
cyclic, and in (z1, z2, z1, z2)-coordinates is generated by diag(ωN , ωN , ω

−1
N , ω−1N ) for some N . Per-

muting coordinates, this action is conjugate to the action generated by diag(ωN , ω
−1
N , ωN , ω

−1
N )

so that the algebra of real invariant polynomials is isomorphic to the algebra of invariants of
a cyclic subgroup of SU2, see Subsection 5.2.1.

We use the notation (L/LK ;R/RK) to indicate a finite subgroup of U2, where LK � L
are finite subgroups of U1, RK � R are finite subgroups of SU2, and (L/LK ;R/RK) contains
both LK and RK as subgroups. Note that � indicates a normal subgroup.

5.3.1 [−1, 1, 1] is not an orbifold

Let M0 denote the reduced space associated to the weight matrix [−1, 1, 1]. Recall (see equa-
tion (5.1)) that in this case, HilbR[M0]|R(t) = 1 + 8t2 + 27t4 + · · · . Based on the t2-coefficient, it
follows that if HilbR[M0]|R(t) = HilbR[C2]G|R(t) for some finite G < U2, then G contains no cyclic
subgroups of order greater than 2 and no binary dihedral subgroups. This eliminates all of the
nine families of finite subgroups of U2 other than Type 1 and Type 3, see Appendix A.

Suppose G is a Type 1 group of the form (Z2m/Zf ;Z2n/Zg)d, and then as G contains Zf < U2

and Zg < SU2, we have that f ≤ 2 and g ≤ 2. As f ≡ g mod 2, there are only two cases.
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Type 1, f = g = 2. In this case, G is of the form (Z2r/Z2;Z2r/Z2)d where r is a positive
integer and d ≤ r is relatively prime to r. If r = 1, then d = 1 and G = Z2 < SU2, whose
Molien series was computed in Subsection 5.2 and does not coincide with HilbR[M0]|R(t). So

assume r ≥ 2. Then G contains a subgroup generated by ω2r diag(ωd2r, ω
−d
2r ) = diag(ωd+1

2r , ω1−d
2r )

for a primitive 2rth root of unity ω2r, which in (z1, z2, z1, z2)-coordinates is given by the 4 × 4
matrix diag(ωd+1

2r , ω1−d
2r , ω−d−12r , ωd−12r ).

To show that the dimension of quadratic invariants fixed by 〈α〉 has dimension strictly less
than 8, and hence that no group containing 〈α〉 can have the same Hilbert series as HilbR[M0]|R(t),
consider the action of α on the quadratic polynomials in z1, z2, z2, z2. With respect to the basis{

z1z1, z2z2, z1z2, z1z2, z1z2, z1z2, z
2
1 , z

2
1, z

2
2 , z

2
2

}
for the quadratic polynomials, α has 10× 10 matrix

Qα = diag
(
1, 1, ω2

2r, ω
−2
2r , ω

2d
2r , ω

−2d
2r , ω2d+2

2r , ω−2d−22r , ω−2d+2
2r , ω2d−2

2r

)
.

Using the trace formula [31, Lemma 2.2.2] used to prove Molien’s formula, the dimension of the
quadratic polynomials invariant under the action of 〈α〉 is

1

|Qα|

|Qα|∑
k=1

traceQkα,

where |Qα| denotes the the order of Qα. Note that |Qα| clearly divides r and moreover that the
above formula holds if |Qα| is replaced by any positive multiple of |Qα|. Clearly, ω2

2r and ω−22r are
primitive rth roots of unity; similarly, as d is relatively prime to r, ω2d

2r and ω−2d2r are primitive
rth roots of unit as well. With this, as the sum of all rth roots of unity is zero, we have that
the dimension of quadratic 〈α〉-invariants is

1

r

r∑
k=1

2 + ω
(2d+2)k
2r + ω

−(2d+2)k
2r + ω

(−2d+2)k
2r + ω

−(2d+2)k
2r ≤ 1

r
(6r) = 6.

Therefore, G cannot contain α. 4
Type 1, f = g = 1. If G = (Zr/1;Zr/1)d for r even and d < r relatively prime to r, then G

contains α = ω diag(ωdr , ω
−d
r ) = diag(ωd+1

r , ω−d+1
r ). If r = 2, then G is trivial, so assume r ≥ 4.

The action on quadratic polynomials is given by

Qα = diag
(
1, 1, ω2

r , ω
−2
r , ω2d

r , ω
−2d
r , ω2d+2

r , ω−2d−2r , ω−2d+2
r , ω2d−2

r

)
.

As ω2
r , ω

−2
r , ω2d

r , and ω−2dr are primitive r/2nd roots of unity, the dimension of quadratic 〈α〉-
invariants is

1

r

r∑
k=1

2 + ω(2d+2)k
r + ω−(2d+2)k

r + ω(−2d+2)k
r + ω−(2d+2)k

r ≤ 1

r
(6r) = 6.

Again, G cannot contain α. It follows that G cannot be a Type 1 group. 4
Type 3. Suppose G is a Type 3 group of the form either (Z4m/Z2m;Dl/Z2l) or (Z4m/Zm;

Dl/Zl) with m and l odd. As G cannot contain cyclic subgroups of U2 or SU2 of orders larger
than 2, we need only consider the case of m = l = 1. Both (Z4/Z2;D1/Z2) and (Z4/1;D1/1)
contain the element

√
−1b where b the 2 × 2 matrix defined in equation (5.3) above. One

computes with Singular that the Hilbert series of invariants for the group generated by this
element is

1 + t2

(1− t2)2(1− t)2
= 1 + 2t+ 6t2 + 10t3 + 19t4 + · · · . (5.4)

Hence, this cannot occur as an element of G. 4
With this, it follows that no such G exists, and [−1, 1, 1] does not admit a Z-graded regular

symplectomorphism with an orbifold.



30 C. Farsi, H.-C. Herbig and C. Seaton

5.3.2 [−1, 1, 2] is not an orbifold

Let M0 denote the reduced space associated to the weight matrix [−1, 1, 2]. Recall (equa-
tion (5.1)) that in this case, HilbR[M0]|R(t) = 1 + 4t2 + 6t3 + 9t4 + 16t5 + · · · . Based on the
t3-coefficient, it follows that if HilbR[M0]|R(t) = HilbC[z1,z1,z2,z2]G(t) for some finite G < U2, then
G contains no cyclic subgroups of order other than 3 and no binary dihedral subgroups. This
eliminates all of the nine families of finite subgroups of U2 other than Type 1 and Type 3.

Suppose G is a Type 1 subgroup of the form (Z2m/Zf ;Z2n/Zg)d, and then as G contains
Zf < U2 and Zg < SU2, we have that f = 1 or 3 and g = 1 or 3.

Type 1, f = g = 3. In this case, G is of the form (Z3r/Z3;Z3r/Z3)d where r is a positive
even integer and d < r is relatively prime to r. Then G contains Z3 < SU2 as well as the
subgroup of U1 generated by scalar multiplication by a primitive 3rd root of unity ω3. As the
quadratic invariants of Z3 < SU2 are z1z1, z2z2, z1z2, and z1z2, we need only note that z1z2 is
not invariant under scalar multiplication by ω3, so that the space of quadratic G-invariants has
dimension strictly less than 4. It follows that the Hilbert series of G-invariants cannot coincide
with HilbR[M0]|R(t), and G cannot be of this type. 4

Type 1, f = 3, g = 1. In this case, G = (Z3r/Z3;Zr/1)d where r is a positive even integer
and d < r is relatively prime to r. Note that Z3 < U1 is a proper subgroup of G. Then G 3
ω3r diag(ω3d

3r , ω
−3d
3r ) = diag(ω3d+1

3r , ω−3d+1
3r ) for a primitive 3rth root of unity ω3r, which is given

in (z1, z2, z1, z2)-coordinates by diag(ω3d+1
3r , ω−3d+1

3r , ω−3d−13r , ω3d−1
3r ). The quadratic invariants of

the action of Z3 < U1 are z1z1, z2z2, z1z2, and z1z2. It is easy to see that z1z2 is not invariant
under the action of α for r > 2, implying that the space of quadratic G-invariants has dimension
strictly less than 4. So assume r = 2, and then the Hilbert series of G = (Z6/Z3;Z2/1)1 is
computed on Singular to be

1− 2t+ 5t2 − 2t3 + t4

(1− t3)2(1− t)2
= 1 + 2t2 + 4t3 + 3t4 + 8t5 + 12 + · · · ,

which does not coincide HilbR[M0]|R(t). Hence G cannot be of this type. 4
Type 1, f = 1, g = 3. In this case, G is of the form (Zr/1;Z3r/Z3)d where r is a positive

even integer and d < r is relatively prime to r. Then G contains a subgroup generated by
ω3
3r diag(ωd3r, ω

−d
3r ) = diag(ωd+3

3r , ω−d+3
3r ) for a primitive 3rth root of unity ω3r. Note that G

contains Z3 < SU2, whose quadratic invariants are again spanned by z1z1, z2z2, z1z2, and z1z2.
If r > 2, then z1z2 is not invariant under the above, implying that the quadratic invariants have
dimension strictly less than 4. If r = 2, then G = (Z2/1;Z6/Z3)1 is in fact a subgroup of SU2

isomorphic to Z3. We again conclude that G cannot be of this type. 4
Type 1, f = g = 1. If G = (Zr/1;Zr/1)d for even r and d < r relatively prime to r,

then G is generated by α = ωr diag(ωdr , ω
−d
r ) = diag(ωd+1

r , ω−d+1
r ) If r = 2, then G is trivial, so

assume r ≥ 4. If d = 1, then α = diag(ω2
r , 1), and if d = r − 1, then α = diag(1, ω2

r ). In either
case, G has nontrivial linear invariants, so that as HilbR[M0]|R(t) has zero t-coefficient, we may
exclude these cases. So assume 1 < d < r − 1, and then as d must be relatively prime to r, it
must be that r ≥ 8.

Now, with respect to the following basis for the cubic monomials,{
z31 , z

3
1, z

3
2 , z

3
2, z

2
1z2, z

2
1z2, z1z

2
2 , z1z

2
2, z

2
1z2, z

2
1z2, z1z

2
2,

z1z
2
2 , z

2
1z1, z1z

2
1, z

2
2z2, z2z

2
2, z1z1z2, z1z1z2, z1z2z2, z1z2z2

}
the action of α is given by

Qα = diag
(
ω3d+3
r , ω−3d−3r , ω−3d+3

r , ω3d−3
r , ωd+3

r , ω−d−3r , ω−d+3
r , ωd−3r , ω3d+1

r , ω−3d−1r ,

ω3d−1
r , ω−3d+1

r , ωd+1
r , ω−d−1r , ω−d+1

r , ωd−1r , ω−d+1
r , ωd−1r , ωd+1

r , ω−d−1r

)
.
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Applying the trace formula [31, Lemma 2.2.2], we have that the dimension of the cubic polyno-
mials invariant under the action of 〈α〉 is given by

1

r

r∑
k=1

ω(3d+3)k
r + ω(−3d−3)k

r + ω(−3d+3)k
r + ω(3d−3)k

r + ω(d+3)k
r + ω(−d−3)k

r + ω(−d+3)k
r

+ ω(d−3)k
r + ω(3d+1)k

r + ω(−3d−1)k
r + ω(3d−1)k

r + ω(−3d+1)k
r + ω(d+1)k

r + ω(−d−1)k
r

+ ω(−d+1)k
r + ω(d−1)k

r + ω(−d+1)k
r + ω(d−1)k

r + ω(d+1)k
r + ω(−d−1)k

r . (5.5)

For k = 1, each term in the above sum is a primitive sth root of unity for some s that divides r
so that unless a term is equal to 1, the sum over k of that term vanishes. Recalling that

1 < d < r − 1 and r ≥ 8, it is clear that ω±d±1r 6= 1, so that the sum of each ω
(±d±1)k
r vanishes.

Similarly, as d is relatively prime to r and hence invertible mod r, it is easy to see that at most
two of the following congruences can be true mod r:

3d+ 3 ≡ 0, 3d− 3 ≡ 0, d+ 3 ≡ 0,

d− 3 ≡ 0, 3d+ 1 ≡ 0, 3d− 1 ≡ 0.

Therefore, when k = 1, at most four of the terms in equation (5.5) can be equal to 1, and the
dimension of cubic invariants is bounded by 1

r (4r) = 4. As the dimension of cubic invariants on
M0 is six, we have excluded all groups in this case. 4

Type 3, (Z12/Z3;D3/Z3). As in the case of a Type 1 group with f = g = 3, this group con-
tains Z3 < SU2 as well as the subgroup of U1 generated by scalar multiplication by a primitive 3rd
root of unity ω3; hence the Hilbert series of G-invariants cannot coincide with HilbR[M0]|R(t). 4

Type 3, (Z4/1;D3/Z3). This group has six elements and is generated by α = diag(ω3, ω
2
3)

and β =
√
−1b, where b is defined in equation (5.3). The Hilbert series is given by

HilbR[C2]G|R(t) =
1 + t2 + 2t3 + t4 + t6

(1− t2)2(1− t3)2
= 1 + 3t2 + 4t3 + 6t4 + · · · ,

which does not coincide with HilbR[M0]|R(t). 4
Type 3, (Z12/Z3;D1/1). This group has six elements and is generated by ω12b. The Hilbert

series is given by

HilbR[C2]G|R(t) =
1− t+ t2 + 2t3 + 2t5 + t6 − t7 + t8

(1− t6)(1− t3)(1− t2)(1− t)
= 1 + 2t2 + 4t3 + · · · ,

which does not coincide with HilbR[M0]|R(t). 4
Type 3, (Z4/1;D1/1). The only nontrivial element of this group is

√
−1b. The Hilbert

series was computed in equation (5.4) above and does not coincide with HilbR[M0]|R(t). 4

A Finite subgroups of U2

For the convenience of the reader, we recall the classification of finite subgroups of U2 given
by [5, 8]. We follow [11]; see also [9].

For l ∈ U1 and r ∈ SU2, we let (l, r) denote the element of U2 given by the scalar multiple lr
of r. Note that every element of U2 arises in this way and that the expression is unique up to
(l, r) = (−l,−r). Let LK�L < U1 and RK�R < SU2 be finite subgroups of U1 and SU2, respec-
tively, such that L/LK is isomorphic to R/RK , and let φ : L/LK → R/RK be an isomorphism.
Then the group (L/LK ;R/RK)φ is defined as

(L/LK ;R/RK)φ =
{

(l, r) ∈ L×R : φ(lLK) = rRK
}
.

Note that φ is omitted if it is obvious, and (L/LK ;R/RK)φ has order |R||LK |/2.
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Let Zk denote a cyclic subgroup of order k. Note that Zk < U1 is generated by a primitive
kth root of unity ωk, while Zk < SU2 is generated by diag(ωk, ω

−1
k ). The distinction will be

clear from the context. Let Dp denote the binary dihedral group of order 4p, and let T24, O48,
and I120 denote the binary tetrahedral, octahedral, and icosahedral groups, respectively.

The finite subgroups of U2 are given by the following list.

Type 1. (Z2m/Zf ;Z2n/Zg)d where f ≡ g mod 2, and d is relatively prime to 2m/f = 2n/g and
indicates the isomorphism Z2m/Zf → Z2n/Zg sending the class of 1 to the class of d,

Type 2. (Z2m/Z2m;Dl/Dl),
Type 3. (Z4m/Z2m;Dl/Z2l) and (Z4m/Zm;Dl/Zl) for m and l odd,

Type 4. (Z4m/Z2m;D2l/Dl),
Type 5. (Z2m/Z2m;T24/T24),

Type 6. (Z6m/Z2m;T24/D2),

Type 7. (Z2m/Z2m;O48/O48),

Type 8. (Z4m/Z2m;O48/T24), and

Type 9. (Z2m/Z2m; I120/I120).
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