
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 9 (2013), 029, 43 pages

Solving Local Equivalence Problems

with the Equivariant Moving Frame Method?

Francis VALIQUETTE

Department of Mathematics and Statistics, Dalhousie University,
Halifax, Nova Scotia, B3H 3J5, Canada
E-mail: francisv@mathstat.dal.ca
URL: http://www.mathstat.dal.ca/~francisv

Received July 21, 2012, in final form March 31, 2013; Published online April 05, 2013

http://dx.doi.org/10.3842/SIGMA.2013.029

Abstract. Given a Lie pseudo-group action, an equivariant moving frame exists in the
neighborhood of a submanifold jet provided the action is free and regular. For local equiva-
lence problems the freeness requirement cannot always be satisfied and in this paper we
show that, with the appropriate modifications and assumptions, the equivariant moving
frame constructions extend to submanifold jets where the pseudo-group does not act freely
at any order. Once this is done, we review the solution to the local equivalence problem
of submanifolds within the equivariant moving frame framework. This offers an alternative
approach to Cartan’s equivalence method based on the theory of G-structures.
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1 Introduction

First introduced by the Estonian mathematician Martin Bartels and primarily developed by Élie
Cartan, [1], the method of moving frames is a powerful tool for studying geometric properties of
submanifolds under the action of a (pseudo-)group of transformations. In 1999, Fels and Olver
proposed in [9] a new theoretical foundation to the method of moving frames. For a Lie group G
acting on the nth order jet space Jn(M,p) of p-dimensional submanifolds of M , a moving frame
is a G-equivariant section of the trivial bundle Jn(M,p)×G→ Jn(M,p). This new framework to
moving frames, now known as the equivariant moving frame method, possesses some appealing
features. First, it decouples the moving frame theory from reliance on any form of frame bundle
or connection and can thereby be applied to almost any type of group action. Secondly, every
equivariant moving frame comes with an invariantization map that sends differential functions,
differential forms, and vector fields to their invariant counterparts yielding a complete collec-
tion of (local) differential invariants, invariant differential forms, and invariant vector fields. In
general, the invariantization map and the exterior differential do not commute, and this lack of
commutativity is encapsulated in the universal recurrence formula which is at the heart of many
new results in the field. For example, using this fundamental formula, Kogan and Olver were
able to obtained in [16] a general group-invariant formula for the Euler–Lagrange equations of
an invariant variational problem, while in [39] the same formula was used to show that the co-
homology of the invariant Euler–Lagrange complex is isomorphic to the Lie algebra cohomology
of its symmetry group. But more importantly, the universal recurrence formula is the key that
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unveils the structure of the algebra of differential invariants, [9, 13, 28], essential to the solution
of local equivalence problems.

Recently, the theory of equivariant moving frames was successfully extended to infinite-
dimensional Lie pseudo-group actions in [28, 29, 30]; opening the way to many new applica-
tions. The first application appeared in [6] where the algebra of differential invariants of the
infinite-dimensional symmetry group of the Kadomtsev–Petviashvili equation was completely
characterized. An application to the classification of Laplace invariants and the factorization
of linear partial differential operator can be found in [36], and an adaptation of Vessiot’s group
foliation method using moving frames was proposed in [38] (see [34] for an alternative construc-
tion based on exterior differential systems). As a further application, in this paper we revisit
the solution of the local equivalence problem of submanifolds under an infinite-dimensional
Lie pseudo-group action using the equivariant moving frame formalism. Following Cartan, the
solution is essentially obtained by constructing sufficiently many invariants so that one can
distinguish inequivalent submanifolds. With the equivariant moving frame method, these in-
variants are easily constructed using the invariantization map and their signature manifold is
completely characterized by the universal recurrence formula. Since the algorithms do not rely
on the theory of exterior differential systems and G-structures, [2, 10, 15, 21, 26], the solution
based on the equivariant moving frame method offers an interesting alternative to Cartan’s
equivalence method of coframes.

To construct an equivariant moving frame in the neighborhood of a submanifold jet, the
pseudo-group action must be (locally) free and regular. Unfortunately, given an equivalence
problem, the freeness requirement cannot always be satisfied, and more often than not many
interesting results occur at the submanifold jets where the action cannot be made free by pro-
longation. For example, it is well-known that a second order ordinary differential equation
uxx = Q(x, u, ux) is equivalent to uxx = 0 under a point transformation if and only if it admits
an eight-dimensional symmetry group isomorphic to SL(3), [5, 10, 26, 40]. For such a differential
equation, the pseudo-group of point transformations cannot act freely and the freeness assump-
tion must be relaxed if one wants to obtain a complete solution of the local equivalence problem
using the equivariant moving frame method. As one might expect, the idea is to modify the
standard moving frame algorithms by incorporating the isotropy group into the constructions
to obtain what we call a partial equivariant moving frame. Using (partial) moving frames we
can solve a wide range of local equivalence problems, which includes equivalence problems be-
tween coframes. To illustrate the method we consider the local equivalence problem of second
order ordinary differential equations under point transformations and contact transformations,
and the simultaneous equivalence of a two-form and a vector field on R3. By revisiting these
standard examples, our goal is to highlight some links between the (partial) equivariant moving
frame approach and Cartan’s method.

The solution of a local equivalence problem relies on the fundamental basis theorem (also
known as the Lie–Tresse theorem) which states that, under appropriate regularity assumptions,
the algebra of differential invariants on J∞(M,p) is locally generated by a finite set of differential
invariants and exactly p linearly independent invariant total derivative operators. Under the as-
sumption that a pseudo-group action is regular and locally free on a dense open subbundle
of J∞(M,p), a constructive proof of the fundamental basis theorem based on the equivariant
moving frame method was recently given in [28]. In Section 5, we adapt the algebraic construc-
tions introduced in [28] to cover pseudo-groups acting regularly and freely on invariant regular
subbundles of J∞(M,p) and also consider the case of regular pseudo-groups acting non-freely on
invariant regular subbundles of J∞(M,p). These adaptations are necessary to give a complete
solution to the local equivalence problem of submanifolds.

Remark 1.1. The theory of infinite-dimensional Lie pseudo-groups relies on the Cartan–Kähler
theorem, [2, 26], which requires analyticity. For this reason, all our constructions and results



Solving Local Equivalence Problems with the Equivariant Moving Frame Method 3

hold in the analytic category. Implicitly, all manifolds, maps, differential forms and vector fields
are thus assumed to be analytic. For Lie pseudo-groups of finite type, in other words for local
Lie group actions, analyticity can be replaced by smoothness.

Remark 1.2. Following the global notation convention used in [9, 28, 29, 30], given a map
ϕ : M → N between two manifolds M and N we allow the domain of the map to be a proper
open subset of the manifold M : dom ϕ ⊂ M . Hence, while we use global notation throughout
the exposition, all moving frame constructions and results should be understood to hold micro-
locally, i.e. on open subsets of the submanifold jet bundle J∞(M,p). Similarly, differential forms
and vector fields on J∞(M,p) are assumed to be defined micro-locally.

2 Structure equations

Following [7, 29] we begin by recalling how the structure equations of a Lie pseudo-group are
obtained from its infinitesimal data. As we will see in Section 4, the structure equations of an
equivalence pseudo-group provide the link between the equivariant moving frame method and
Cartan’s moving frame approach.

2.1 Diffeomorphism pseudo-group

Let M be an m-dimensional manifold. We denote by D = D(M) the pseudo-group of all local
diffeomorphisms of M . For each integer 0 ≤ n ≤ ∞, let D(n) denote the bundle formed by
their nth order jets. For k ≥ n, let π̃kn : D(k) → D(n) denote the standard projection. Following
Cartan, [3, 4], and the recent work of Olver and Pohjanpelto, [28, 29, 30], in some local coordinate
system we use lower case letters, z, x, u, . . . for the source coordinates σ̃σσ(ϕ)=z=(z1, . . . , zm) ∈M
of a local diffeomorphism Z = ϕ(z) and corresponding upper case letters Z,X,U, . . . for the
target coordinates τ̃ττ(ϕ) = Z = (Z1, . . . , Zm) ∈M . The local coordinates of the n-jet of a local
diffeomorphism ϕ are then given by jnϕ = (z, Z(n)), where z are the source coordinates and Z(n)

denotes the collection of derivatives ZaB = ∂kϕa/∂zb
1 · · · ∂zbk with 1 ≤ a, b1, . . . , bk ≤ m and

0 ≤ k = #B ≤ n.
The diffeomorphism jet bundle D(∞) has the structure of a groupoid, [23]. The groupoid

multiplication follows from the composition of local diffeomorphisms. For g(∞)|z = j∞ϕ|z
and h(∞)|Z = j∞ψ|Z with Z = τ̃ττ (∞)(j∞ϕ|z) = σ̃σσ(∞)(j∞ψ|Z), we have that (h(∞) · g(∞))|z =
j∞(ψ ◦ϕ)|z. Throughout the paper, the diffeomorphism pseudo-group D acts on D(∞) by right
multiplication:

Rψ(j∞ϕ|z) = j∞
(
ϕ ◦ψ−1

)
|ψ(z), (2.1)

whenever defined.
The cotangent space T ∗D(∞) naturally splits into horizontal and contact (groupoid) compo-

nents. The horizontal subbundle is spanned by the right-invariant one-forms

σa = dMZ
a =

m∑
b=1

Zab dz
b, a = 1, . . . ,m,

while the contact subbundle is spanned by the (right-invariant) Maurer–Cartan forms

µaB, a = 1, . . . ,m, #B ≥ 0. (2.2)

Their coordinate expressions are obtained by repeatedly applying the total derivative operators

DZb =

m∑
a=1

W a
b Dza ,

(
W b
a

)
=
(
Zba
)−1

(2.3)
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to the order zero Maurer–Cartan forms

µa = dGZ
a = dZa −

m∑
b=1

Zab dz
b

so that

µaB = DBZµa = D
Zb1
· · ·D

Zbk
µa, k = #B.

We refer to [29] for more details.
To concisely express the structure equations of the invariant coframe {. . . σa . . . µaB . . .}, the

vector-valued Maurer–Cartan formal power series µJHK = (µ1JHK, . . . , µmJHK)T with compo-
nents

µaJHK =
∑

#B≥0

1

B!
µaBH

B, a = 1, . . . ,m, (2.4)

is introduced. In the above formula, H = (H1, . . . ,Hm) are formal power series parameters
while B! = b̃1 !̃b2! · · · b̃m! with b̃a standing for the number of occurrences of the integer 1 ≤ a ≤ m
in B. The structure equations for the Maurer–Cartan forms are then obtained by comparing
the coefficients of the various powers of H in the power series identity

dµJHK = ∇µJHK ∧ (µJHK− dZ), (2.5a)

where dZ = (dZ1, . . . , dZm)T and ∇µJHK =
(
∂µbJHK/∂Ha

)
denotes the m×m Jacobian matrix

obtained by formally differentiating the power series (2.4) with respect to H = (H1, . . . ,Hm).
On the other hand, the structure equations for the invariant horizontal one-forms σ = (σ1, . . .,
σm)T are

dσ = ∇µJ0K ∧ σ. (2.5b)

2.2 Lie pseudo-groups

Several variants of the technical definition of a Lie pseudo-group exist in the literature, [4, 12,
14, 19, 20, 37]. In the analytic category, Lie pseudo-groups can be defined as follows.

Definition 2.1. A pseudo-group G ⊂ D is called a Lie pseudo-group of order n? ≥ 1 if, for all
finite n ≥ n? :

• G(n) ⊂ D(n) forms a smooth embedded subbundle,

• the projection π̃n+1
n : G(n+1) → G(n) is a fibration,

• every local diffeomorphism φ ∈ D satisfying jn?φ ⊂ G(n?) belongs to G,

• G(n) = pr(n−n?)G(n?) is obtained by prolongation.

For n ≥ n?, Definition 2.1 implies that the pseudo-group jet subbundle G(n) ⊂ D(n) is
characterized by a formally integrable system of nth order differential equations

F (n)
(
z, Z(n)

)
= 0, (2.6)

called the (nth order) determining system of G(n).
At the infinitesimal level, let

v =
m∑
a=1

ζa(z)
∂

∂za
∈ TM (2.7)
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denote a local vector field on M . For 0 ≤ n ≤ ∞, let JnTM denote the bundle of nth order jets
of sections of TM with local coordinates

(z, ζ(n)) =
(
. . . za . . . ζaB . . .

)
,

where ζaB denotes the derivative coordinates of order 0 ≤ #B ≤ n. Let g denote the (local)
Lie algebra of G consisting of all local vector fields on M tangent to the pseudo-group orbits.
A vector field (2.7) is in g if and only if its jets satisfy the nth order (formally integrable)
infinitesimal determining system

L(n)(z, ζ(n)) =
m∑
a=1

∑
#B≤n

hBa;υ(z)ζaB = 0, υ = 1, . . . , k, n ≥ n?, (2.8)

obtained by linearizing the determining system (2.6) at the identity jet 1(n).

Theorem 2.2. For each n ≥ n?, the linear relations among the (restricted) Maurer–Cartan
forms µ(n)|G are obtained by making the formal substitution or “lift” (see (3.6), (3.8) below)

za −→ Za, ζaB −→ µaB

in the infinitesimal determining equations (2.8):

L(n)
(
Z, µ(n)

)
= 0. (2.9)

Corollary 2.3. The structure equations of a Lie pseudo-group G are obtained by restricting the
diffeomorphism structure equations (2.5) to the solution space of (2.9):(

dσ = ∇µJ0K ∧ σ, dµJHK = ∇µJHK ∧ (µJHK− dZ)
)∣∣
L(∞)(Z,µ(∞))=0

. (2.10)

Example 2.4. Let M = J2(R2, 1) be the second order jet bundle of curves in the plane with
local coordinates

x, u, p = ux, q = uxx.

To illustrate the constructions occurring in this paper we will consider the equivalence problem
of second order ordinary differential equations

q = F (x, u, p) (2.11)

under the Lie pseudo-group of contact transformations

X = χ(x, u, p), U = ψ(x, u, p), P = β(x, u, p), Q =
βx + pβu + qβp
χx + pχu + qχp

, (2.12)

where the functions (χ, ψ, β) ∈ D(R3) satisfy the contact conditions

ψp = βχp, β(χx + pχu) = ψx + pψu,

and the Lie pseudo-group of point transformations

X = χ(x, u), U = ψ(x, u), P =
D̂ψ

D̂χ
, Q =

D̂2ψ · D̂χ− D̂ψ · D̂2χ

(D̂χ)3
, (2.13)

with (χ, ψ) ∈ D(R2) and

D̂ =
∂

∂x
+ p

∂

∂u
+ q

∂

∂p
.
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We now compute the low order structure equations for the contact pseudo-group (2.12). Let

v = ξ(x, u, p, q)
∂

∂x
+ η(x, u, p, q)

∂

∂u
+ α(x, u, p, q)

∂

∂p
+ γ(x, u, p, q)

∂

∂q
(2.14)

denote a local vector field on M = J2(R2, 1). The vector field (2.14) is tangent to the orbits of
the pseudo-group action (2.12) if and only if

ξ = ξ(x, u, p), η = η(x, u, p), α = α(x, u, p), γ = D̂α− qD̂ξ,

and

ηp = pξp, α = ηx + p(ηu − ξx) + p2ξu.

Hence, the coefficients of the infinitesimal generator (2.14) satisfy the determining system

ξq = ηq = αq = 0, ηp = pξp, α = ηx + p(ηu − ξx) + p2ξu, γ = D̂α− qD̂ξ. (2.15)

Under the replacement

ξA → µxA, ηA → µuA, αA → µpA, γA → µqA, (x, u, p, q)→ (X,U, P,Q),

the infinitesimal determining equations (2.15) yield the linear dependencies

µxQ = µuQ = µpQ = 0, µuP = PµxP , µp = µuX + P
(
µuU − µxX

)
+ P 2µxU ,

µq = µpX + PµpU +QµpP −Q
(
µxX + PµxU +QµxP

)
, (2.16)

among the Maurer–Cartan forms of order ≤ 1. Differentiating (2.16) with respect to DX , DY ,
DP , DQ as defined in (2.3), we obtain the linear relations among the higher order Maurer–Cartan
forms. It follows that

µXiUjPk = µxXiUjPk , νXiUj = µuXiUj , i, j, k ≥ 0,

is a basis of Maurer–Cartan forms. Restricting the structure equations of the diffeomorphism
pseudo-group D(R4) to (2.16) and its prolongations we obtain the structure equations

dσx = −dµ = µX ∧ σx + µU ∧ σu + µP ∧ σp,
dσu = −dν = νX ∧ σx + νU ∧ σu + PµP ∧ σp,
dσp = [νXX + P (νUX − µXX) + P 2µUX ] ∧ σx + [νUX + P (νUU − µUX) + P 2µUU ] ∧ σu

+ [νU − µX + P (2µU + µXP ) + P (2PµUP − µXP )] ∧ σp,
dσq = µqX ∧ σ

x + µqU ∧ σ
u + µqP ∧ σ

p + µqQ ∧ σ
q, (2.17)

for the horizontal coframe and the order 0 Maurer–Cartan forms µ, ν. We do not write the
structure equations for the higher order Maurer–Cartan forms as these are not needed subse-
quently.

For the pseudo-group of point transformations (2.13), it suffices to add the constraints

ξp = ηp = 0

to (2.15) to obtain the infinitesimal determining equations of its Lie algebra:

ξp = ηp = 0, ξq = ηq = αq = 0,

α = ηx + p(ηu − ξx) + p2ξu, γ = D̂α− q(ξx + pξu). (2.18)
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Taking the lift of (2.18) we obtain the linear relations

µxP = µuP = 0, µxQ = µuQ = µpQ = 0, µp = µuX + P
(
µuU − µxX

)
+ P 2µxU ,

µq = µpX + PµpU +QµpP −Q
(
µxX + PµxU

)
,

among the Maurer–Cartan forms of order ≤ 1. A basis of Maurer–Cartan forms is thus given by

µXiUj = µxXiUj , νXiUj = µuXiUj . (2.19)

By setting µP = µPX = µPU = · · · = 0 in (2.17) we obtain the structure equations for the
horizontal coframe {σx, σu, σp, σq}. On the other hand, the structure equations for the Maurer–
Cartan forms (2.19) are given by the structure equations of the diffeomorphism pseudo-group
D(R2), [29]:

dµ = σx ∧ µX + σu ∧ µU ,
dµX = σx ∧ µXX + σu ∧ µXU + µU ∧ νX ,
dµU = σx ∧ µXU + σu ∧ µUU + µX ∧ µU + µU ∧ νU ,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
dν = σx ∧ νX + σu ∧ νU ,
dνX = σx ∧ νXX + σu ∧ νXU + νX ∧ µX + νU ∧ νX ,
dνU = σx ∧ νXU + σu ∧ νUU + νX ∧ µU ,
dνUU = σx ∧ νXUU + σu ∧ νUUU + 2νXU ∧ νU + νX ∧ µUU + νUU ∧ νU ,
dνXU = σx∧ νXXU + σu∧ νXUU+ νXU ∧ µX + νXX ∧ µU + νX ∧ µXU + νUU ∧ νX ,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (2.20)

3 Equivariant moving frames

As in the previous section, let G be a Lie pseudo-group acting on an m-dimensional manifold M .
We are now interested in the induced action of G on p-dimensional submanifolds S ⊂ M ,
where 1 ≤ p < m. For each integer 0 ≤ n ≤ ∞, let Jn = Jn(M,p) denote the nth order
submanifold jet bundle, defined as the set of equivalence classes under the equivalence relation
of nth order contact, [26]. For k ≥ n, we use πkn : Jk → Jn to denote the canonical projection. We
introduce local coordinates z = (x, u) = (x1, . . . , xp, u1, . . . , uq) on M so that submanifolds that
are transverse to the vertical fibers {x = x0} are (locally) given as graphs of smooth functions
u = f(x). (Submanifolds with vertical tangent spaces are handled by a different choice of local
coordinates.) In this adapted system of coordinates, the standard coordinates on Jn are

z(n) =
(
x, u(n)

)
=
(
. . . xi . . . uαJ . . .

)
,

where uαJ denotes the derivative coordinates of order 0 ≤ #J ≤ n.
Let B(n) → Jn denote the nth order lifted bundle obtained by pulling back G(n) → M via

the projection πn0 : Jn →M . Local coordinates on B(n) are given by
(
z(n), g(n)

)
, where the base

coordinates z(n) =
(
x, u(n)

)
∈ Jn are the submanifold jet coordinates and the fiber coordinates

are the pseudo-group parameters g(n). The bundle B(n) carries the structure of a groupoid with
source map σσσ(n)

(
z(n), g(n)

)
= z(n) and target map τττ (n)

(
z(n), g(n)

)
= Z(n) = g(n) ·z(n) given by the

prolonged action. To compute the prolonged action we introduce on B(∞) the lifted horizontal
coframe

ωi = dHX
i =

p∑
j=1

(
DxjX

i
)
dxj , i = 1, . . . , p,
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where Dx1 , . . . , Dxp are the total derivative operators. The lifted total derivative operators
DX1 , . . . , DXp are then defined by the formula

dHF
(
z(n)

)
=

p∑
i=1

(DxiF )dxi =

p∑
i=1

(DXiF )ωi.

More explicitly,

DXi =

p∑
j=1

Ŵ j
i Dxj , with

(
Ŵ j
i

)
=
(
DxiX

j
)−1

. (3.1)

Differentiating the target dependent variables Uα with respect to the lifted total derivative
operators (3.1) we obtain the explicit expressions for the prolonged action Z(n) = g(n) · z(n):

Xi, UαJ = DJ
XU

α. (3.2)

A local diffeomorphism h ∈ G acts on {
(
z(n), g(n)

)
∈ B(n) |πn0

(
z(n)

)
∈ domh} by right multi-

plication:

Rh
(
z(n), g(n)

)
=
(
h(n) · z(n), g(n) ·

(
h(n)

)−1)
. (3.3)

The (nth order) lifted action action (3.3) is given by the concatenation of the prolonged action
on submanifold jets with the restriction of the right action (2.1) to G(n). The expressions (3.2)
are invariant under the lifted action (3.3) and these functions are called lifted invariants.

3.1 Regular submanifold jets

The existence of a moving frame requires the prolonged pseudo-group action on submanifold
jets to be (locally) free and regular, [30].

Definition 3.1. A pseudo-group acts regularly in the neighborhood of a point z(n) ∈ Jn if
the pseudo-group orbits have the same dimension and there are arbitrarily small neighborhoods
whose intersection with each orbit is a connected subset thereof.

Definition 3.2. The isotropy subgroup of a submanifold jet z(n) ∈ Jn is defined as

G(n)
z(n)

=
{
g(n) ∈ G(n)|z : g(n) · z(n) = z(n)

}
,

where πn0
(
z(n)

)
= z. The pseudo-group is said to act freely at z(n) if G(n)

z(n)
= {1(n)|z}. The

pseudo-group acts locally freely at z(n) if G(n)
z(n)

is discrete.

Definition 3.3. A submanifold jet z(∞) is said to be regular if there exists a finite n ≥ 1 such
that the pseudo-group G acts freely at z(n) = π∞n

(
z(∞)

)
. Let V∞ ⊂ J∞ denote the subset of all

regular submanifold jets.

Following the foundational papers [28, 30] we, for the moment, assume that the pseudo-
group G acts regularly on V∞ and that this set is a dense open subbundle of J∞. In Example 3.13,
we will see that, in general, these assumptions need to be relaxed.

Definition 3.4. Let Vn = π∞n (V∞) denote the truncation of the regular submanifold jets to
order n. A (right) moving frame of order n is a (local) G-equivariant section ρ̂(n) : Vn → B(n).
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In local coordinates we use the notation

ρ̂(n)
(
z(n)

)
=
(
z(n), ρ(n)

(
z(n)

))
to denote a moving frame. Right equivariance means that

Rgρ̂
(n)
(
z(n)

)
= ρ̂(n)

(
g(n) · z(n)

)
, g ∈ G, when defined.

Theorem 3.5. Suppose G acts (locally) freely on Vn ⊂ Jn, with its orbits forming a regular
foliation, then an nth order moving frame exists in a neighborhood of every z(n) ∈ Vn.

Once a pseudo-group action is free, a result known as the persistence of freeness, [28, 31],
guarantees that the action remains free under prolongation.

Theorem 3.6. If a Lie pseudo-group G acts (locally) freely at z(n) then it acts (locally) freely
at any z(k) ∈ Jk, k ≥ n, with πkn(z(k)) = z(n). The minimal n such that the action becomes free
is called the order of freeness and is denoted by n?.

An order n ≥ n? moving frame is constructed through a normalization procedure based
on the choice of a cross-section Kn ⊂ Vn to the pseudo-group orbits. The associated (locally
defined) right moving frame section ρ̂(n) : Vn → B(n) is uniquely characterized by the condition
that τττ (n)

(
ρ̂(n)

(
z(n)

))
= ρ(n)

(
z(n)

)
· z(n) ∈ Kn. For simplicity, we assume that Kn = {zi1 =

c1, . . . , zirn = crn : rn = dimG(n)|z} is a coordinate cross-section. Then, the moving frame ρ̂(n)

is obtained by solving the normalization equations

Zi1
(
x, u(n), g(n)

)
= c1, . . . Zirn

(
x, u(n), g(n)

)
= crn , (3.4)

for the pseudo-group parameters g(n) = ρ(n)
(
x, u(n)

)
. The invariants appearing on the left-hand

side of the normalization equations (3.4) are called phantom invariants. As one increases the
order from n to k > n, a new cross-section must be selected. We require that these cross-
sections be compatible in the sense that πkn(Kk) = Kn for all k > n. This in turn, implies the
compatibility of the moving frames: πkn

(
ρ̂(k)

(
z(k)
))

= ρ̂(n)
(
πkn
(
z(k)
))

. A compatible sequence of

moving frames is simply called a moving frame and is denoted by ρ̂ : V∞ → B(∞). Finally, we
require the compatible cross-sections to be of minimal order, [28]. Intuitively, this is equivalent
to requiring that the pseudo-group parameters be normalized as soon as possible during the
normalization procedure.

Figure 1. Moving frame ρ̂(n)
(
z(n)

)
=
(
z(n), ρ(n)

(
z(n)

))
.

We now introduce the invariantization map associated with a moving frame. First, we note
that the space of differential forms on B(∞) splits into

Ω∗ =
⊕
k,l

Ωk,l =
⊕
i,j,l

Ωi,j,l,
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where l indicates the number of Maurer–Cartan forms (2.2), k = i+ j the number of jet forms,
with i indicating the number of horizontal forms dxi and j the number of basic submanifold jet
contact forms

θαJ = duαJ −
p∑
i=1

uαJ,idx
i, α = 1, . . . , q, #J ≥ 0.

Next, let

Ω∗J =
⊕
k

Ωk,0 =
⊕
i,j

Ωi,j,0

denote the subspace of jet forms consisting of those differential forms containing no Maurer–
Cartan forms. Then, we introduce the projection πJ : Ω∗ → Ω∗J which takes a differential form Ω
on B(∞) to its jet component πJ(Ω) obtained by annihilating the Maurer–Cartan forms in Ω.

Definition 3.7. Let Ω be a differential form defined on J∞. Its lift is the invariant jet form

λλλ(Ω) = πJ
[(
τττ (∞)

)∗
(Ω)
]

(3.5)

defined on the lifted bundle B(∞).

In particular, setting Ω in (3.5) to be each of the submanifold jet coordinates xi, uαJ , the lift
map (3.5) coincides with the prolonged action (3.2):

λλλ
(
xi
)

= Xi, λλλ
(
uαJ
)

= UαJ . (3.6)

Also, we note that the lift of the horizontal forms dx1, . . . , dxp

λλλ
(
dxi
)

=

p∑
i=1

(
DxjX

i
)
dxj +

q∑
α=1

Xi
uαθ

α = ωi +

q∑
α=1

Xi
uαθ

α

are invariant horizontal forms if and only if the pseudo-group action is projectable meaning that
Xi
uα = 0. On the other hand, the lift of a contact form is always a contact form. In the following,

we ignore contact forms and introduce the equivalence relation ≡ to indicate equality modulo
contact forms.

Definition 3.8. Let ρ̂ : V∞ → B(∞) be a moving frame. If Ω is a differential form on V∞, then
its invariantization is the invariant differential form

ι(Ω) = ρ̂ ∗[λλλ(Ω)]. (3.7)

In the following, to lighten the notation, we will usually omit writing moving frame pull-backs:

ωj = ρ̂ ∗(ωj) ≡ ρ̂ ∗
[
λλλ
(
dxj
)]

= ι
(
dxj
)
,(

X,U (∞)
)

= ρ̂ ∗
(
X,U (∞)

)
= ρ̂ ∗

[
λλλ
(
x, u(∞)

)]
= ι
(
x, u(∞)

)
.

Proposition 3.9. The normalized differential invariants

Xi = ι
(
xi
)
, UαJ = ι

(
uαJ
)
,

contain a complete set of functionally independent differential invariants.

One of the most important results in the theory of equivariant moving frames is the universal
recurrence formula for lifted/invariantized differential forms, [30]. To write down the formula
we must extend the lift map (3.5) to vector field jet coordinates.
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Definition 3.10. The lift of a vector jet coordinate ζaB is defined to be the Maurer–Cartan
form µaB:

λλλ
(
ζaB
)

= µaB, for a = 1, . . . ,m, #B ≥ 0. (3.8)

More generally, the lift of any finite linear combination of vector field jet coordinates is

λλλ

 m∑
a=1

∑
#B≥0

PBa
(
x, u(n)

)
ζaB

 =
m∑
a=1

∑
#B≥0

PBa
(
X,U (n)

)
µaB.

Recall that if

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα
∈ g (3.9)

is an infinitesimal generator of the pseudo-group action, then its prolongation is the vector field

v(∞) =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

∑
#J≥0

φJα
∂

∂uαJ
∈ g(∞), (3.10)

where

φJα = DJQ
α +

p∑
i=1

ξiuαJ,i, and Qα = φα −
p∑
i=1

ξiuαi

are the characteristic components of the vector field (3.9). Then, for z(∞) ∈ J∞|z the prolonga-
tion formula (3.10) defines the prolongation map

p = p
(∞)

z(∞) : J∞TM |z → TJ∞|z(∞) , p
(∞)

z(∞)(j∞v|z) = v(∞)|z(∞) . (3.11)

Theorem 3.11. Let Ω be a differential form on J∞. Then

d[λλλ(Ω)] = λλλ
[
dΩ + v(∞)(Ω)

]
, where v(∞) ∈ g(∞) (3.12)

and v(∞)(Ω) denotes the Lie derivative of Ω along v(∞).

We refer to [30] for a proof of (3.12). In particular, the identity (3.12) applies to the lifted
differential invariants Xi, UαJ :

dXi ≡ ωi + µi, i = 1, . . . , p,

dUαJ ≡
p∑
j=1

UαJ,jω
j + λλλ(φJα), α = 1, . . . , q, #J ≥ 0. (3.13)

Corollary 3.12. Let ρ̂ : V∞ → B(∞) be a moving frame and Ω a differential form on V∞, then

d[ι(Ω)] = ι
[
dΩ + v(∞)(Ω)

]
, where v(∞) ∈ g(∞). (3.14)

Of particular interest to us is when Ω is one of the submanifold jet coordinate functions xi, uαJ .
Equation (3.14) then produces the recurrence relations

DjXi = δij +N i
j , DjUαJ = UαJ,j +Mα

J,j , (3.15)
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where N i
j and Mα

J,j are correction terms and

Dk =

p∑
j=1

ρ̂ ∗
(
W j
k

)
Dxj , k = 1, . . . , p, (3.16)

are invariant total derivative operators obtained by normalizing the lifted total derivative opera-
tors (3.1).

The commutation relations among the invariant total derivative operators D1, . . . ,Dp can be
deduced from the universal recurrence relation (3.14). By setting Ω = dxi in (3.14) we obtain
the equations

dωi ≡ −
∑

1≤j<k≤p
Y i
jkω

j ∧ ωk, i = 1, . . . , p.

Since the operators Di are dual to the contact invariant horizontal forms ωi, it follows that

[Di,Dj ] =

p∑
k=1

Y k
ijDk, 1 ≤ i, j ≤ p, (3.17)

and the invariant functions Y i
jk are called commutator invariants, [28]. An important feature

of the recurrence formula (3.14) (or (3.15)) is that the coordinate expressions for the invariants
(X,U (∞)), the contact invariant horizontal 1-forms ωi, the Maurer–Cartan forms µaB and the
moving frame ρ̂ are not required to compute these equations. One only needs to know the
cross-section K∞ ⊂ V∞ defining ρ̂ and the expression of v(∞) ∈ g(∞). The key observation is
that the pulled-back Maurer–Cartan forms ρ̂ ∗(µaB) can be obtained from the phantom invariant
recurrence relations. We refer the reader to [6, 30, 31] for concrete examples of the moving frame
implementation.

Example 3.13. As mentioned at the beginning of this section, the theory introduced above
assumes the Lie pseudo-group action to be free and regular on a dense open subset V∞ ⊂ J∞.
Using the local equivalence problem of second order ordinary differential equations under the
pseudo-group of point transformations (2.13), we now show that, in general, these assumptions
should be relaxed. Working symbolically, we use the recurrence relations (3.13) to find disjoint
sets of regular submanifold jets each admitting their own moving frame.

The first step consists of determining the “universal normalizations” which hold for any
second order ordinary differential equation. Beginning with the order 0 recurrence relations

dX ≡ ωx + µ,

dU ≡ ωu + ν,

dP ≡ ωp + νX + P (2νY − µX)− P 2µU ,

dQ ≡ QPωp +QUω
u +QXω

x + νXX +Q(νU − 2µX) + P (2νXU − µXX)

− 3PQµU + P 2(νUU − 2µXU )− P 3µUU , (3.18)

the lone appearance of the linearly independent Maurer–Cartan forms µ, ν, νX , νXX in the
group differential component of the recurrence relations (3.18) implies that we can normalize
the lifted invariants

X = U = P = Q = 0 (3.19)

to zero, independently of the differential equations. Substituting (3.19) into (3.18) we obtain
a system of equations that can be solved for the (partially) normalized Maurer–Cartan forms

µ ≡ −ωx, ν ≡ −ωu, νX ≡ −ωp, νXX ≡ −
(
QPω

p +QUω
u +QXω

x
)
.
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Continuing the normalization procedure, order by order, we come to the conclusion that it is
always possible to normalize the lifted invariants

X = U = P = 0,

QUjXk = QPUjXk = QP 2Uj = QP 2UjX = QP 3Uj = QP 3UjX = 0, j, k ≥ 0, (3.20)

to zero (see [24, Appendix B] for more details). The normalizations (3.20) lead to the normali-
zation of all the Maurer–Cartan forms (2.19) except for

µX , µU , νU , νUU , νXU . (3.21)

To proceed further, the value of the remaining (partially normalized) lifted invariants

QPk+4UjXi , QP 3UjXi+2 , QP 2UjXi+2 , i, j, k ≥ 0, (3.22)

must be carefully analyzed. More explicitly, the invariants (3.22) of order ≤ 6 are

n = 4 : QP 4 , QP 2X2 ,

n = 5 : QP 5 , QP 4U , QP 4X , QP 3X2 , QP 2UX2 , QP 2X3 ,

n = 6 : QP 6 , QP 5U , QP 5X , QP 4U2 , QP 4UX , QP 4X2 , QP 3UX2 ,

QP 3X3 , QP 2U2X2 , QP 2UX3 , QP 2X4 . (3.23)

Writing the recurrence relations for the invariants (3.23) of order ≤ 5, taking into account the
normalizations (3.20), we obtain

dQP 4 ≡ QP 5ωp +QP 4Uω
u +QP 4Xω

x +QP 4(2µX − 3νU ),

dQP 2X2 ≡ QP 3X2ωp +QP 2UX2ωu +QP 2X3ωx −QP 2X2(νU + 2µX),

dQP 5 ≡ QP 6ωp +QP 5Uω
u +QP 5Xω

x + 5QP 4µU +QP 5(3µX − 4νU ),

dQP 4X ≡ (QP 5X +QP 4U )ωp +QP 4UXω
u +QP 4X2ωx +QP 4νUX +QP 4X(µX − 3νU ),

dQP 4U ≡ QP 5Uω
p +QP 4U2ωu +QP 4UXω

x − 2QP 4νUU −QP 5νUX −QP 4XµU

+QP 4U (2µX − 4νU ),

dQP 3X2 ≡ QP 4X2ωp +QP 3UX2ωu + (QP 3X3 − 2QP 2UX2)ωx −QP 2X2µU

−QP 3X2(2νU + µX),

dQP 2UX2 ≡ QP 3UX2ωp +QP 2U2X2ωu +QP 2UX3ωx − 2QP 2X2νUU −QP 3X2νUX

−QP 2X3µU − 2QP 2UX2(νU + µX),

dQP 2X3 = (QP 3X3 −QP 2UX2)ωp +QP 2UX3ωu +QP 2X4ωx − 5QP 2X2νUX

−QP 2X3(νU + 3µX). (3.24)

At this juncture, the normalization procedure splits into different branches depending on the
value of the fourth-order lifted invariants

QP 4 =
χ2
x

ψ3
u

qpppp, QP 2X2 =
D̂2(qpp)− 4D̂(qup)− qpD̂(qpp) + 6quu − 3quqpp + 4qpqup

ψuχ2
x

obtained by implementing the moving frame construction. There are 4 branches to consider1

I) QP 4 6≡ 0 and QP 2X2 6≡ 0, III) QP 4 6≡ 0 and QP 2X2 ≡ 0,

II) QP 4 ≡ 0 and QP 2X2 6≡ 0, IV) QP 4 ≡ 0 and QP 2X2 ≡ 0.

1To distinguish between lifted invariants that are set equal to a constant by normalization from those that are
identically constant, we use the notation = and ≡ respectively.
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In Case IV) the pseudo-group action is not free and we differ this branch of the equivalence
problem to the next section. For the other three cases, let

K∞ = {x = u = p = qujxk = qpujxk = qp2uj = qp2ujx = qp3uj = qp3ujx = 0 | j, k ≥ 0}

denote the “intermediate cross-section” corresponding to the universal normalizations (3.20). In
Case I), the action is free on the subbundle of regular submanifold jets

V∞1 =
{
z(∞) ∈ J∞ |QP 4 6≡ 0, QP 2X2 6≡ 0

}
.

From the recurrence relations (3.24), we find that a cross-section is given by

K∞1 = K∞ ∪ {qp4 = qp2x2 = 1, qp5 = qp4u = qp4x = 0} ⊂ V∞1 (3.25)

leading to a moving frame ρ̂1 : V∞1 → B(∞). In Case II), it can be shown, see [24] for more
details, that when QP 2X2 6≡ 0 the (partially normalized) lifted invariants QP 3X3 and QP 2X4

cannot be simultaneously equal to zero. There are then 2 subbundles of regular submanifold
jets

V∞2 =
{
z(∞) ∈ J∞ |QP 2X2 6≡ 0, DJQP 4 ≡ 0, QP 2X4 6≡ 0

}
,

V∞3 =
{
z(∞) ∈ J∞ |QP 2X2 6≡ 0, DJQP 4 ≡ 0, QP 3X3 6≡ 0

}
.

In the above formula, the total derivative operator DJ = Dj1 · · ·Djk in the variables x1 = x,
x2 = u, x3 = p ranges over the multi-indices of length #J ≥ 0. Admissible cross-sections are
given by

K∞2 = K∞ ∪ {qp2x2 = 1, qp3x2 = qp2ux2 = qp2x3 = 0, qp2x4 = 1} ⊂ V∞2 ,
K∞3 = K∞ ∪ {qp2x2 = 1, qp3x2 = qp2ux2 = qp2x3 = 0, qp3x3 = 1} ⊂ V∞3 .

Similarly, in Case III) the non-degeneracy condition QP 4 6≡ 0 implies that QP 6 and QP 5X

cannot both be equal to zero so that on

V∞4 =
{
z(∞) ∈ J∞ |DJQP 2X2 ≡ 0, QP 4 6≡ 0, QP 6 6≡ 0

}
,

V∞5 =
{
z(∞) ∈ J∞ |DJQP 2X2 ≡ 0, QP 4 6≡ 0, QP 5X 6≡ 0

}
,

moving frames can be constructed. On V∞4 and V∞5 possible cross-sections are given by

K∞4 = K∞ ∪ {qp4 = 1, qp5 = qp4u = qp4x = 0, qp6 = 1} ⊂ V∞4 ,
K∞5 = K∞ ∪ {qp4 = 1, qp5 = qp4u = qp4x = 0, qp5x = 1} ⊂ V∞5 ,

respectively.

As illustrated by the above computations, the assumption that V∞ is a dense open subset
of J∞ on which the pseudo-group acts regularly (and freely) is too restrictive. The generic
Case I) corresponding the set of regular submanifold jets V∞1 is the only branch of the equivalence
problem satisfying this assumption. To encompass the other cases, we observe that, apart from
a finite number of non-degeneracy conditions, V∞2 , . . . ,V∞5 are characterized by G-invariant
systems of differential equations which we formalize in the following definition.

Definition 3.14. Let G be a Lie pseudo-group acting on J∞. A G-invariant subbundle S∞ ⊂ J∞

is said to be regular of order n ≥ 1 if, for all finite n ≥ n :

• Sn = π∞n (S∞) ⊂ Jn forms a smooth embedded subbundle,
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• the projection πn+1
n : Sn+1 → Sn is a fibration,

• Sn = pr(n−n)Sn is obtained by prolongation,

• Sn is G-invariant.

In light of the above comments, we allow the set of regular submanifold jets to be the finite
union

V∞ =

k⋃
i=1

V∞i

of dense open subsets of G-invariant regular subbundles of J∞. In other words, the subbun-
dles V∞i are G-invariant Zariski open subsets of J∞. Definition 3.14 implies that for each
subbundle V∞i there exists ni ≥ 1 such that for n ≥ ni the subbundle Vni = π∞n (V∞i ) ⊂ Jn is
characterized by a G-invariant system of formally integrable differential equations

E
(n)
i (x, u(n)) = 0 (3.26)

plus, possibly, a finite number of G-invariant non-degeneracy conditions.

Example 3.15. The determining equations (3.26) and the non-degeneracy conditions naturally
occur as one tries to normalize the parameters of an equivalence pseudo-group in the moving
frame algorithm. In Example 3.13, the determining system for V∞1 is trivial while the non-
degeneracy conditions are given by

QP 4 6≡ 0, QP 2X2 6≡ 0.

For V∞2 , the order of regularity is n2 = 4, and for n ≥ n2 the determining system of Vn2 is

DJ

(
QP 4

)
≡ 0, 0 ≤ #J ≤ n− n2,

to which we add the non-degeneracy conditions QP 2X2 6≡ 0, QP 2X4 6≡ 0.

Remark 3.16. While the pseudo-group action will, in general, not be regular on the whole
set of regular submanifold jets V∞, in order to construct a moving frame on each invariant
subbundle V∞i , we require the restriction of pseudo-group action to V∞i to be regular in the
subset topology.

Assuming the action is free and regular on each invariant regular subbundle V∞i , we can con-

struct a moving frame ρ̂i : V∞i → B
(∞)
i (B(∞)

i = B(∞)|V∞
i

) by choosing a cross-section K∞i ⊂ V∞i .
Each moving frame will have its own order of freeness n?i ≥ ni and on each subbundle V∞i the
recurrence relations (3.15) completely determine the algebra of differential invariants.

3.2 Singular submanifold jets

We now would like to extend the moving frame method to submanifold jets z(∞) where a pseudo-
group does not act freely.

Example 3.17. Any pseudo-group satisfying

rn = dimG(n)|z > dim Jn|z = q

(
p+ n

p

)
for all n ≥ 1 (3.27)

cannot act freely. Indeed, the inequality (3.27) implies that for all n ≥ 1 the isotropy group G(n)
z(n)

is non-trivial since the dimension of the pseudo-group jet G(n)|z is larger than the dimension
of the jet space Jn on which it acts. The contact pseudo-group (2.12) is an example of such
pseudo-group.
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Example 3.18. A second example is given by Case IV) of Example 3.13. When QP 4 ≡
QP 2X2 ≡ 0 it follows from the recurrence relations (3.24) that the fifth and sixth order (partially
normalized) lifted invariants (3.23) are identically equal to zero. This combined with the higher
order recurrence relations then implies that all higher order invariants (3.22) are also equal
to zero. Hence, in Case IV) there are no further lifted invariants available to normalize the
Maurer–Cartan forms (3.21). Said differently, on the subbundle

S∞ =
{
z(∞) ∈ J∞

∣∣DJQP 4 ≡ DJQP 2X2 ≡ 0, #J ≥ 0
}
.

the pseudo-group parameters

χx, χu, ψu, ψuu, ψxu

cannot be normalized and these pseudo-group jets parametrize the 5-dimensional isotropy group

G(∞)

z(∞) of a submanifold jet z(∞) ∈ S∞.

Definition 3.19. A submanifold jet z(∞) ∈ J∞ is said to be singular if its isotropy group is
non-trivial:

G(∞)

z(∞) =
{
g(∞) ∈ G(∞)

∣∣
z

: g(∞) · z(∞) = z(∞)
}
6=
{
1(∞)

∣∣
z

}
.

The set of singular submanifold jets is denoted by S∞.

As with regular submanifold jets, we allow the set of singular submanifold jets to be a finite
union of open dense subsets of G-invariant regular subbundles

S∞ =
⋃̀
i=1

S∞i

so that for n ≥ ni ≥ 1, the subbundle Sni = π∞n (S∞i ) is characterized by a formally integrable sys-
tem of G-invariant differential equations (with possibly finitely many invariant non-degeneracy
conditions).

Remark 3.20. Though the pseudo-group action on S∞i is not free, we still require the restriction
of the action to S∞i to be regular in the subset topology.

Let z(∞) ∈ S∞i be a fixed submanifold jet and z(n) = π∞n
(
z(∞)

)
∈ Sni its nth order truncation.

Then G(∞)

z(∞) is the projective limit

G(∞)

z(∞) = lim←−G
(n)

z(n)
.

Apart from the order 0 constraint g ·z = z, we observe that the isotropy requirement g(n) ·z(n) =

z(n) gives a system of differential constraints for the pseudo-group parameters g(n) ∈ G(n)
z(n)

, and

the prolongation of this system is given by g(n+1) · z(n+1) = z(n+1). To see this, consider an
analytic submanifold (x, u(x)) with (x, j∞u(x)) = z(∞). Then, given

X = χ(x, u), U = ψ(x, u) ∈ Gz,

the isotropy condition g(n) · z(n) = z(n) is obtained by differentiating

u(χ(x, u(x))) = ψ(x, u(x))

with respect to the independent variables x = (x1, . . . , xp). By Cartan–Kuranishi’s prolongation
theorem, [2, 35], we conclude that, generically, there exists n?i ≥ ni such that the system of
differential equations g(n

?) · z(n?) = z(n
?) is formally integrable (and eventually involutive for

some n ≥ n?i ). In the following, n?i is assumed to be independent of the submanifold jet
z(∞) ∈ S∞i and n?i is called the order of partial freeness. For n ≥ n?i the pseudo-group G is said
to act partially freely on Sni .
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Remark 3.21. If z(∞) ∈ V∞i is a regular submanifold jet, the order of partial freeness defined
above corresponds to the usual order of freeness. In this case the only solution to g(n) ·z(n) = z(n)

is G(n)
z(n)

= {1(n)|z} for n ≥ n?i .

Example 3.22. To illustrate the above discussion we consider the Lie pseudo-group

X = f(x), Y = e(x, y) = f ′(x)y + g(x), U = u+
ex(x, y)

f ′(x)
(3.28)

acting on graphs of functions (x, y, u(x, y)). This is one of the main examples used in [28, 30] to
illustrate the moving frame method. The pseudo-group (3.28) acts locally freely on the set of
regular submanifold jets V∞− = J∞ ∩ {uyy < 0} and V∞+ = J∞ ∩ {uyy > 0}. On the other hand,
when restricted to the jet space of linear functions u(x, y) = a(x)y + b(x) given by

S∞ = J∞ ∩ {uxiyj+2 = 0 : i, j ≥ 0}, (3.29)

the pseudo-group action is not free. To obtain the determining equations of the isotropy pseudo-
group at a submanifold jet z(∞) = (x, y, u(∞)) ∈ S∞ we differentiate the equality

u(f(x), e(x, y)) = u(x, y) +
ex(x, y)

fx(x)
(3.30)

with respect to x and y. Up to order 2, taking into account that uyy = 0 on S∞, we obtain the
constraints

f = x, e = y, uxfx + uyex = ux +
exx
fx
− exfxx

f2x
, uyfx = uy +

fxx
fx
,

uxxfx + uxfxx + uxyfxex + uyexx = uxx +
exxx
fx
− 2

exxfxx
f2x

− exfxxx
f2x

+ 2
exf

2
xx

f3x
,

uxyf
2
x + uyfxx = uxy +

fxxx
fx
− f2xx
f2x

,

on the jets of f(x) and e(x, y). Solving the equations (3.30) (and their prolongations) for the

pseudo-group parameters we conclude that fx parametrizes the isotropy group G(∞)

z(∞) .

3.2.1 Partial moving frames

Though it is not possible to construct a moving frame on S∞i as in Section 3.1, it is nevertheless
possible to introduce the notion of a partial moving frame. For n?i ≤ n ≤ ∞, where n?i is the
order of partial freeness, we introduce the nth order prolonged bundle

P(n)
i =

{(
z(n), g(n)

)
: z(n) ∈ Sni and g(n) ∈ G(n)

z(n)

}
.

A local diffeomorphism h ∈ G acts on the set{(
z(n), g(n)

)
∈ P(n)

i

∣∣πn0 (z(n)) ∈ domh
}

by

h(n) ·
(
z(n), g(n)

)
=
(
h(n) · z(n),Kh(n)

(
g(n)

))
, (3.31)

where Kh(n)
(
g(n)

)
= h(n) · g(n) ·

(
h−1

)(n)
is the conjugation action.
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Definition 3.23. For n ≥ n?i , an nth order (right) partial moving frame on Sni is a G-equivariant
bundle map

ρ̂
(n)
i : P(n)

i → B(n)i , where B(n)i = B(n)
∣∣
Sni
.

In terms of the action (3.31), right G-equivariance means that

Rhρ̂
(n)
i

(
z(n), g(n)

)
= ρ̂

(n)
i

(
h(n) ·

(
z(n), g(n)

))
.

A partial moving frame is constructed by following the algorithm of Section 3.1. Namely,
a partial moving frame of order n ≥ n?i is obtained by choosing a minimal cross-section Kni ⊂ Sni
and solving the normalization equations (3.4). By the implicit function theorem, the normaliza-
tion equations can be solved near the identity jet and the solution will depend on the submanifold

jet z(n) and the isotropy group parameters g(n) ∈ G(n)
z(n)

. See Fig. 2 for a suggestive illustration
of a partial moving frame.

Theorem 3.24. Let n ≥ n?i so that G acts partially freely on Sni ⊂ Jn with its orbits forming
a regular foliation. Then an nth order partial moving frame exists in a neighborhood of z(n) ∈ Sni .

Figure 2. Partial moving frame ρ̂
(n)
i

(
z(n), g(n)

)
=
(
z(n), ρ

(n)
i

(
z(n), g(n)

))
, with g(n) ∈ G(n)

z(n) .

A partial moving frame ρ̂i : P(∞)
i → B(∞)

i is constructed by choosing a series of compati-
ble cross-sections Kni ⊂ Sni just as in the regular case. The definition of the invariantization
map (3.7) and the recurrence formula (3.14) still hold for partial moving frames with the un-

derstanding that these formulas are now defined on the prolonged bundle P(∞)
i . We note that

none of the normalized differential invariants ι
(
z(∞)

)
= ι(x, u(∞)) can depend on the isotropy

group parameters g(∞) ∈ G(∞)

z(∞) . On the other hand, the invariantization of the jet forms dxi, θαJ
may involve the isotropy group parameters.

Remark 3.25. The concept of partial moving frame defined above is similar to the recent
notion of partial moving frame introduced in [32]. Indeed, given a cross-section K∞i ⊂ S∞i
defining a partial moving frame ρ̂i, its inverse image

(
τττ (∞)

)−1
(K∞i ) under the restricted target

map τττ (∞) : B(∞)
i → S∞i happens to be equal to the image of the partial moving frame ρ̂i

(
P(∞)
i

)
=(

τττ (∞)
)−1

(K∞i ).

Example 3.26. Continuing Example 3.22, and referring to [28, 30] for all the formulas, the
prolonged bundle over the singular submanifold jets (3.29) is given by

P(∞) =
{(
x, y, u(∞), fx

)
: uxiyj+2 = 0

}
.

Up to second order, the expressions for the prolonged action are

UX =
ux
fx

+
exx − exuy

f2x
− 2

fxxex
f3x

, UY =
uy
fx

+
fxx
f2x

,
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UXX =
uxx
f2x

exxx − exxuy − 2exuxy − fxxux
f3x

+
3exfxxuy − 4exxfxx − 3exfxxx

f4x
+ 8

exf
2
xx

f5x
,

UXY =
uxy
f2x

+
fxxx − fxxuy

f3x
− 2

f2xx
f4x

, UY Y = 0.

We note that UY Y ≡ 0 when uyy ≡ 0 and more generally UXiY j+2 ≡ 0, i, j ≥ 0. A cross-section
to the pseudo-group orbit is given by

K∞ = {x = y = uxi = uxiy = 0, i ≥ 0} ⊂ S∞.

Solving the normalization equations X = Y = UXi = UXiY = 0, we obtain the partial moving
frame

f = e = 0, ex = −ufx, fxx = −uyfx, exx = (uuy − ux)fx, . . . .

Since the action is transitive on (3.29) there are no differential invariants. The (partially)
invariantized horizontal coframe is

ωx = ι(dx) = fxdx, ωy = fx(dy − udx),

and their structure equations are

dωx ≡ µX ∧ ωx, dωy ≡ µX ∧ ωy, dµX ≡ 0, (3.32)

where

µX = ρ̂ ∗(µX) =
dfx
fx

+ uydx

is the only unnormalized Maurer–Cartan form reflecting the fact that the pseudo-group jet fx
parametrizes the isotropy group of a submanifold jet z(∞) ∈ S∞. The structure equations (3.32)
are isomorphic to the Maurer–Cartan structure equations of a 3-dimensional Lie group indicating
that the surface (x, y, a(x)y+ b(x)) is invariant under a 3-dimensional group of transformations
lying inside the pseudo-group (3.28).

4 Local equivalence

In this section we review the solution to the local equivalence problem of submanifolds using
the equivariant moving frame machinery. We then explain how Cartan’s approach based on the
theory of G-structures is related to the equivariant method.

4.1 Equivalence of submanifolds

Given two p-dimensional submanifolds S and S in M , the local equivalence problem consists of
determining whether there exists or not a local diffeomorphism g ∈ G such that g ·S = S locally.
In accordance with Cartan’s general philosophy, the solution to this problem is determined by
the invariants of G. Let K∞i be a cross-section defining a (partial) moving frame ρ̂i. Since
the normalized invariants (X,U (∞)) = ι(x, u(∞)) give a local coordinate system on K∞i , two
submanifolds S and S are locally equivalent if and only if both submanifolds lie in the domain
of definition of the same (partial) moving frame and their “projections” ι(j∞S), ι(j∞S) onto K∞i
overlap (see Fig. 3).

Definition 4.1. Let D1, . . . ,Dp be the invariant total derivative operators (3.16). A set of
differential invariants {Iκ} is said to be a generating set for the algebra of differential invariants
if any invariant can be locally expressed as a function of the invariants Iκ and their invariant
derivatives DJIκ = Dj1Dj2 · · · DjkIκ.
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Figure 3. Signature of two equivalent submanifolds.

First proved by Lie, [22, p. 760], for finite-dimensional Lie group actions and then extended
to infinite-dimensional Lie pseudo-groups by Tresse, [41], the fundamental basis theorem (also
known as the Lie–Tresse theorem) guarantees that, under appropriate technical hypotheses,
the algebra of differential invariants is generated by a finite number of differential invariants
and p invariant total derivative operators. For Lie group actions, recent proofs based on the
equivariant moving frame method can be found in [9, 13]. For infinite-dimensional Lie pseudo-
groups, a proof also exists, [28], but it is much more technical. It requires the introduction of two
modules associated with the prolonged pseudo-group action, and assumes the action to be free
and regular on a dense open subset of J∞. This more abstruse part of the theory is discussed
in Section 5 where we explain how to modify the algebraic constructions introduced in [28]
to cover Lie pseudo-groups acting regularly and freely on invariant regular subbundles of J∞.
Further modifications will also allow us to deal with Lie pseudo-groups acting regularly and non-
freely on invariant regular subbundles of J∞. Other proofs based on Spencer cohomology, [19],
Weyl algebras, [25], and homological methods, [18], are also available. A global version of the
Theorem for transitive algebraic pseudo-group actions was recently proved by Kruglikov and
Lychagin in [17].

Given a Lie pseudo-group G with regular submanifold jets V∞ = ∪V∞i and singular submani-
fold jets S∞ = ∪S∞i , the fundamental basis theorem applies to each subbundle V∞i and S∞i .
Let {Iκ} be a generating set on V∞i (or S∞i ). Then, the normalized invariants (X,U (∞)) =
ι(x, u(∞)) can be expressed in terms of these invariants and their invariant derivatives

Xi = ι
(
xi
)

= F i(. . . Iκ . . .DKIκ . . .), UαJ = ι
(
uαJ
)

= FαJ (. . . Iκ . . .DKIκ . . .). (4.1)

Hence, if j∞S, j∞S ⊂ V∞i (or S∞i ), it follows that their invariantization ι(j∞S), ι(j∞S) is locally
prescribed by the generating invariants and their invariant derivatives.

Definition 4.2. Let V∞ = ∪V∞i and S∞ = ∪S∞i denote the sets of regular and singular
submanifold jets. A submanifold S ⊂ M is said to be regular (or singular) if j∞S ⊂ V∞i (or
j∞S ⊂ S∞i ) for some i.

Remark 4.3. Globally, it is possible that j∞S does not lie in a unique subbundle V∞i or S∞i .
If so, the submanifold S should be restricted to an open subset where the containment holds.

Definition 4.4. Let S be a regular (or singular) submanifold with j∞S ⊂ V∞i (or j∞S ⊂ S∞i ).
Let ρ̂i be a moving frame (or a partial moving frame) and {I1, . . . , I`} a generating set for the
algebra of differential invariants. The nth order signature space K(n) is the Euclidean space
of dimension `(1 + p + p2 + · · · + pn) coordinatized by w(n) = (. . . , wκ;J , . . .), where (κ; J) =
(κ, j1, . . . , jr) with 1 ≤ κ ≤ ` and (j1, . . . , jr) ranging through all unordered multi-index with
1 ≤ ji ≤ p and 0 ≤ r ≤ n. The nth order signature map associated with ρ̂i is the map

I
(n)
S : S → K(n) whose components are

wκ;J = (DJIκ)|j∞S , κ = 1, . . . , `, #J ≤ n.
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Remark 4.5. In Definition 4.4 the multi-index J is not assumed to be symmetric as the
invariant total derivative operators Dj do not commute in general. In applications we can
reduce the dimension of the nth order signature space K(n) by ordering as many multi-indices J
as possible using the commutation relations (3.17) and expressing the commutator invariants Y k

ij

in terms of the generating invariants and their invariant derivatives:

[Di,Dj ] =

p∑
k=1

Y k
ij(. . . Iκ . . .DKIκ . . .)Dk, i, j = 1, . . . , p.

Definition 4.6. The rank of the signature map I
(n)
S at a point z ∈ S is the dimension of the

space spanned by the differentials

d
[
(DJIκ)

∣∣
j∞S

]∣∣
z
, 1 ≤ κ ≤ `, 0 ≤ #J ≤ n.

The signature map I
(n)
S is regular if its rank is constant on S.

Definition 4.7. Let S be a regular (or singular) submanifold with j∞S ⊂ V∞i (or j∞S ⊂ S∞i ).
The restricted moving frame (or partial moving frame) ρ̂S = ρ̂i|j∞S is said to be fully regular if

for each n ≥ 0 the signature map I
(n)
S : S → K(n) is regular.

Definition 4.8. Let ρ̂S be fully regular. The image of the nth order signature map I
(n)
S

S(n)
(
ρ̂S
)

=
{
I
(n)
S (z) : z ∈ S

}
⊂ K(n)

is called the nth order signature manifold.

Proposition 4.9. Let ρ̂S be fully regular, and let %n denote the rank of the nth order signature

map I
(n)
S . Then

0 ≤ %0 < %1 < · · · < %s = %s+1 = · · · = r ≤ p = dimS.

The stabilizing rank r is called the rank of ρ̂S, and the smallest s for which %s = %s+1 = r is
called the order of ρ̂S.

Depending if the two submanifolds S, S ⊂ M are regular or singular we are now ready to
state the solution to the local equivalence problem.

Theorem 4.10. Let G be a Lie pseudo-group acting regularly and freely on V∞i ⊂ J∞(M,p),

and ρ̂i : V∞i → B
(∞)
i a moving frame. If S, S ⊂ M are two regular p-dimensional submanifolds

with j∞S, j∞S ⊂ V∞i , then there exists a local diffeomorphism g ∈ G mapping S onto S locally
if and only if ρ̂S and ρ̂

S
are fully regular, have the same order s = s, and the (s+1)st order

signature manifolds S(s+1)(ρ̂S), S(s+1)(ρ̂S) overlap. Moreover, if z ∈ S and z ∈ S are mapped
to the same point

I
(s+1)
S (z) = I

(s+1)

S
(z) ∈ S(s+1)

(
ρ̂S
)
∩S(s+1)

(
ρ̂S
)

on the overlap of the two signature manifolds, then there exists a unique local diffeomorphism
g ∈ G mapping z to z = g · z.

Proof. Let J1, . . . , Jr be a set of invariants parametrizing the sth order signature manifold
S(s)(ρ̂S). By assumption, there exist signature functions FK;κ(w1, . . . , wr), such that

DKIκ = FK;κ(J1, . . . , Jr), κ = 1, . . . , `, #K ≤ s.



22 F. Valiquette

Furthermore, the invariants J1, . . ., Jr also parametrize the (s+1)th signature manifold S(s+1)(ρ̂S).

Hence, there exist signature functions F̃i;υ(w1, . . . , wr) such that

DiJυ = F̃i;υ(J1, . . . , Jr), υ = 1, . . . , r, i = 1, . . . , p.

By the chain rule

Di(DKIκ) =
r∑

υ=1

∂FK;κ

∂Jυ
(J1, . . . , Jr) · F̃i;υ(J1, . . . , Jr),

and we conclude that once S(s+1)(ρ̂S) is known, the signature manifold S(s+k)(ρ̂S) for k ≥ 2 is
obtained by invariant differentiation.

Using the assumption that the signature manifolds S(s+1)(ρ̂S) and S(s+1)(ρ̂
S

) overlap, it
follows that the invariants {I1, . . . , I`} generating the algebra of differential invariants and their
invariant derivatives are locally equal when restricted to S and S. By (4.1), the restriction of
the the normalized invariants Xi|S = Xi|S and UαK |S = UαK |S are also equal. Hence, given z ∈ S
and z ∈ S for which I

(s+1)
S (z) = I

(s+1)

S
(z) we conclude that ι(j∞S|z) = ι

(
j∞S|z

)
. Now, let h,

h ∈ G such that

h(∞)|z = ρi
(
j∞S|z

)
and h

(∞)|z = ρi
(
j∞S|z

)
.

Since σ̃σσ(∞)((h(∞)|z
)−1)

= ι
(
j∞S|z

)
= ι
(
j∞S|z

)
= τ̃ττ (∞)(h(∞)|z

)
, the map g = h

−1
◦h ∈ G is

(locally) well defined and by construction g(∞) · j∞S|z = j∞S|z. In the analytic category, this
implies that g · S = S locally, and in particular g · z = z. �

Theorem 4.11. Let G be a Lie pseudo-group acting regularly on S∞i ⊂ J∞(M,p) and ρ̂i : P(∞)
i →

B(∞)
i a partial moving frame. If S, S ⊂ M are two p-dimensional singular submanifolds with

j∞S, j∞S ⊂ S∞i , then there exists a local diffeomorphism g ∈ G sending S onto S locally if and
only if ρ̂S and ρ̂

S
are fully regular, have the same order s = s, and the (s+1)st order signature

manifolds S(s+1)(ρ̂S), S(s+1)(ρ̂
S

) overlap. Moreover, if z ∈ S and z ∈ S are mapped to the
same point

I
(s+1)
S (z) = I

(s+1)

S
(z) ∈ S(s+1)

(
ρ̂S
)
∩S(s+1)

(
ρ̂
S

)
on the overlap of the two signature manifolds, then there is a family of local equivalence maps
sending z to z. Any two equivalence maps g, g are related by

g = h ◦g ◦h, with h
(∞)∣∣

z
∈ G(∞)

j∞S|z
and h(∞)

∣∣
z
∈ G(∞)

j∞S|z .

Proof. The argument is identical to the proof of Theorem 4.10. The only difference is that
the local diffeomorphism g ∈ G mapping S onto S in the neighborhoods of z ∈ S and z ∈ S is
not uniquely defined. The diffeomorphism g ∈ G can be precomposed by any h ∈ G satisfying

h(∞)|z ∈ G(∞)
j∞S|z and composed by h ∈ G with h

(∞)|z ∈ G(∞)

j∞S|z
to obtain a new equivalence map

g = h ◦g ◦h. �

4.2 Equivalence of coframes

In Cartan’s framework, local equivalence problems are solved by recasting them as equivalence
problems of coframes. We briefly explain how this is related to the equivalence problem of
submanifolds. Let H be a Lie pseudo-group acting on a p-dimensional manifold X, and let

ωωω =

ωi =

p∑
j=1

uij(x)dxj , i = 1, . . . , p

 , ωωω =

ωi =

p∑
j=1

uij(x)dxj , i = 1, . . . , p

 (4.2)
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be two coframes on X adapted to a given equivalence problem. We refer the reader to [10, 26]
for a detailed account as to how to formulate equivalence problems using coframes. The local
equivalence problem for the coframes (4.2) consists of determining whether there exists or not
a local diffeomorphism ϕ ∈ H such that

dϕ∗(ωi) =

p∑
j=1

hij(x)ωj , i = 1, . . . , p. (4.3)

The matrix (hij(x)) ∈ GL(p) in (4.3) is contained in a Lie group H called the structure group
of the equivalence problem. As in the equivariant moving frame approach, the primary goal of
Cartan’s equivalence method is to reduce the H-structure to an {e}-structure by normalizing
the group coefficients hij after which it is possible to determine if the two coframes (4.2) are
locally equivalent.

Since coframes on X are local sections of the coframe bundle F(X), the equivalence problem
of coframes can be interpreted as an equivalence problem of p-dimensional sections in F(X). Let
M ⊂ F(X) be the subbundle of all coframes (4.2) adapted to a given equivalence problem. The
action of H on X naturally induces a Lie pseudo-group action G ⊂ H(1) on the subbundle M
via the equivalence criterion (4.3). Two coframes ωωω, ωωω are then locally equivalent if and only if
their corresponding sections S, S ⊂M are equivalent up to a local diffeomorphism g ∈ G.

There are three possible outcomes to the coframe equivalence problem, each having their
counterparts in the equivariant moving frame method. Borrowing the terminology used in [26],
after a series of normalizations and prolongations, the three outcomes to Cartan’s algorithm are:

a) Complete normalization: The H-structure reduces to an {e}-structure. This occurs when
a section in M ⊂ F(X) is regular and lies in the domain of definition of a moving frame.

b) Prolongation: The coframe is prolonged to a larger space on which the equivalence problem
reduces to an {e}-structure. This situation occurs when a section S ⊂ M is singular and

the isotropy group G(∞)
j∞S|z is finite-dimensional.

c) Involution: The structure equations of the (possibly prolonged) coframe are in involution
with nonzero (reduced) Cartan characters. This happens when a section S ⊂M is singular

and the isotropy group G(∞)
j∞S|z is infinite-dimensional.

We now illustrate each outcome with an example. At the same time we indicate some links
between Cartan’s approach and the equivariant moving frame method.

4.2.1 Complete normalization

Let H be a Lie pseudo-group acting on a manifold X with local coordinates x = (x1, . . . , xp) and
G ⊂ H(1) the induced pseudo-group action on the subbundle of coframes M ⊂ F(X) adapted

to an equivalence problem. Given a moving frame ρ̂i : V∞i → B
(∞)
i and a regular section S ⊂M

with j∞S ⊂ V∞i , an invariant coframe on X is obtained by restricting the invariant horizontal
1-forms ωi = ι(dxi) to S:

ωωω = ωωω|S =
{
ωj ≡ ρ̂ ∗i

(
dJX

j
)

= ι
(
dxj
)}∣∣

S
. (4.4)

The coframe derivatives are then given by the invariant derivative operators

Dj = Dj |S =
∂

∂ωj
, j = 1, . . . , p.

Provided the cross-section defining the equivariant moving frame ρ̂i is compatible with the
normalizations leading to an {e}-structure in Cartan’s coframe method, the coframe (4.4) will
be equivalent to the one obtained via Cartan’s procedure.
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In Section 3, we saw that the structure equations for the coframe (4.4) can be deduced from
the universal recurrence relation (3.14). In preparation for the next section, it is more convenient
to recover these equations from the structure equations (2.10) of the equivalence pseudo-group.
Let z = (x, u) be local coordinates on M ' X×U . Then, comparing the identities dZa = σa+µa,
a = 1, . . . ,m, with the order 0 recurrence relations

dXi ≡ ωi + µi, i = 1, . . . , p, dUα ≡
p∑
j=1

Uαj ω
j + µp+α, α = 1, . . . , q,

we see that

σi ≡ ωi while σp+α ≡
p∑
j=1

Uαj ω
j . (4.5)

Hence, pulling-back the structure equations for σ1, . . . , σp in (2.10) by the moving frame ρ̂i we
obtain the structure equations for the coframe (4.4).

Remark 4.12. The pull-back by ρ̂i of the remaining structure equations for σp+1, . . . , σm and
the Maurer–Cartan forms µaB yields syzygies among the normalized invariants. As these syzygies
can be recovered from the recurrence relations (3.15), we can ignore these normalized structure
equations.

Example 4.13. To make some analogies between the equivariant moving frame method and
Cartan’s coframe approach, the pseudo-group jets need to be recursively normalized in the equiv-
ariant formalism, [32]. We illustrate this by considering the generic branch I) of Example 3.13.
Based on the cross-section (3.25) a moving frame is obtained by solving the normalization equa-
tions

X = U = P = QP 4 = QP 5 = QP 4U = QP 4X = 0, QP 2X2 = 1,

QUjXk = QPUjXk = QP 2Uj = QP 2UjX = QP 3Uj = QP 3UjX = 0, j, k ≥ 0. (4.6)

In the recursive moving frame construction, the idea is to normalize the submanifold jets (or
solve the normalization equations) in stages. For example, at order 0 we solve the normalization
equations

X = U = P = Q = 0

to obtain

χ = 0, ψ = 0, ψx = −pψu, ψxx = −
(
qψu + p2ψuu + 2pψxu

)
.

Then the (partially) normalized coframe (4.4) yields the G-structureωxωu
ωp

 =

Dxχ χu 0
0 ψu 0

0 Dxψu
Dxχ

ψu
Dxχ

 dx
du− pdx
dp− qdx

 (4.7)

which is the starting point of Cartan’s method. The next step in Cartan’s algorithm is to
compute the structure equations for the 1-forms (4.7). For the problem at hand, the resulting
structure equations are then prolonged, [26, p. 403]. To obtain the same structure equations,
using the equivariant formalism, we must normalize

QUjXk = QPUjXk = 0, j, k ≥ 0.
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The recurrence relations (3.13) are then used to obtain expressions for the (partially) normalized
Maurer–Cartan forms µ, ν, νX , µUjXk+2 , νUjXk+2 , j, k ≥ 0. For example, the low order norma-
lized Maurer–Cartan forms are

µ ≡ −ωx, ν ≡ −ωu, νX ≡ −ωp,
νXX ≡ νUXX ≡ νXXX ≡ 0, µXX ≡ 2νUX +QPPω

p.

Substituting these expressions into the structure equations (2.20), and recalling equality (4.5),
we obtain

dωx ≡ µX ∧ ωx + µU ∧ ωu,
dωu ≡ νU ∧ ωu + ωx ∧ ωp,
dωp ≡ νUX ∧ ωu + (νU − µX) ∧ ωp,
dµX ≡ −2νUX ∧ ωx − µUX ∧ ωu − µU ∧ ωp +QPPω

x ∧ ωp,
dµU ≡ −µUU ∧ ωu − µUX ∧ ωx + µU ∧ (νU − µX),

dνU ≡ −νUX ∧ ωx + µU ∧ ωp − νUU ∧ ωu,
dνUX ≡ −νUUX ∧ µu + (µUX − νUU ) ∧ ωp + νUX ∧ µX . (4.8)

These equations are equivalent to the ones obtained using Cartan’s method, [26, pp. 403–404].
The correspondence is given by

θ1 ↔ ωu, θ2 ↔ ωp, θ3 ↔ ωx,

π1 ↔ νU , π2 ↔ νUX , π4 ↔ µU , π6 ↔ µX ,

ρ1 ↔ −νUU , ρ2 ↔ −νUUX , ρ3 ↔ −µUX , ρ4 ↔ −µUU , T ↔ −QPP .

The next step in Cartan’s algortithm is to normalize QPP = 0. In the equivariant setting,
we now set QPPUj = 0, j ≥ 0, which leads to the normalization of the Maurer–Cartan forms
µUj+1X . For example, the first normalized Maurer–Cartan form is

µUX =
1

4

(
QPPPω

p +QPPXω
x + 2νUU

)
, (4.9)

which we then substitute in (4.8). The invariants QPPP and QPPX in (4.9) are essential torsion
coefficients of the resulting structure equations and the next iteration of Cartan’s algorithm
is to normalize these invariants to zero. In the equivariant moving frame framework we now
set QP 3Uj = QP 2UjX = QP 3UjX = 0, j ≥ 0, and normalize the Maurer–Cartan forms µUj+2 ,
νUj+2X , νUj+3 , j ≥ 0. At this point we have recovered the universal normalizations (3.20) and
all the Maurer–Cartan forms are normalized except for (3.21). From the recurrence relations,
the low order normalized Maurer–Cartan forms are

µ ≡ −ωx, ν ≡ −ωu, νX ≡ −ωp, νXX ≡ 0,

µXX ≡ 2νUX , µUX ≡
1

2
νUU , µUU ≡

1

6
QP 4ωp, νUXX ≡ 0,

νUXX ≡
1

6
QP 2X2ωx, νUUU ≡

1

3

(
QP 4Xω

p +QP 3X2ωx
)
. (4.10)

Substituting (4.10) into the structure equations (2.20) we obtain the structure equations for the
eight-dimensional invariant coframe {ωx, ωu, ωp, µX , µU , νU , νUX , νUU}:

dωx ≡ µX ∧ ωx + µU ∧ ωu,
dωu ≡ νU ∧ ωu + ωx ∧ ωp,
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dωp ≡ νUX ∧ ωu + (νU − µX) ∧ ωp,

dµX ≡ −
1

2
νUU ∧ ωy − 2νUX ∧ ωx − µU ∧ ωp,

dµU ≡ −
1

2
νUU ∧ ωx +

1

6
QP 4ωu ∧ ωp + (µX − νU ) ∧ µU ,

dνU ≡ −νUU ∧ ωu − νUX ∧ ωx + µU ∧ ωp,

dνUX ≡ −
1

2
νUU ∧ ωp + νUX ∧ µX +

1

6
QP 2X2ωu ∧ ωx,

dνUU ≡ 2νUX ∧ µU + νUU ∧ νU +
1

3
QP 4Xω

u ∧ ωp +
1

3
QP 3X2ωu ∧ ωx. (4.11)

These equations are equivalent to Cartan’s structure equations [26, equation (12.72)]. The
correspondence is given by

ωx ↔ θ3, ωu ↔ θ1, ωp ↔ θ2,

µX ↔ π6, µU ↔ π4, νU ↔ π1, νUX ↔ π2, νUU ↔ −ρ,
QP 4 ↔ 6K1, QP 2X2 ↔ 6K2, QP 4X ↔ 3K3, QP 3X2 ↔ 3K4.

The structure equations (4.11) and identity d ◦d = 0 imply that QP 3X2 = DPQP 2X2 and QP 4X =
DXQP 4 . We note that these differential relations can also be deduced from the recurrence
relations (3.24).

At this stage, the equivalence problem splits into the branches identified in Example 3.13.
For the generic branch, corresponding to Case I), we can normalize the remaining pseudo-
group parameters by making the normalizations (4.6). To obtain the structure equations of the
invariant coframe {ωx, ωu, ωp} we use the recurrence relations to find the expressions for the
low order normalized Maurer–Cartan forms

µ ≡ −ωx, ν ≡ −ωu, νX ≡ −ωp, µU ≡ −
1

5

(
QP 5Xω

x +QP 5Uω
u +QP 6ωp

)
,

2

3
µX ≡ νU ≡

1

4

(
QP 2X3ωx +QP 2UX2ωu +QP 3X2ωp

)
, νXX ≡ 0,

νUX ≡ −
(
QP 4X2ωx +QP 4UXω

u +QP 5Xω
p
)
. (4.12)

Substituting (4.12) in the first three structure equations of (4.11) we obtain

dωx ≡
(

3

8
QP 2UX2 +

1

5
QP 5X

)
ωu ∧ ωx +

3

8
QP 3X2ωp ∧ ωx +

1

5
QP 6ωu ∧ ωp,

dωu ≡ ωx ∧ ωp +
1

4
QP 2X3ωx ∧ ωu +

1

4
QP 3X2ωp ∧ ωu,

dωp ≡
(
QP 5X −

1

8
QP 2UX2

)
ωu ∧ ωp +QP 4X2ωu ∧ ωx +

1

8
QP 2X3ωp ∧ ωx.

Extracting the invariants from the structure coefficients, it follows from Cartan’s moving frame
theory that the normalized invariants

QP 3X2 , QP 2UX2 , QP 2X3 , QP 6 , QP 5X , QP 4X2 (4.13)

form a generating set for the algebra of differential invariants. We note that the generating
set (4.13) does contain all the normalized invariants of order ≤ 6. Based on the normaliza-
tions (4.6), the complete list of normalized invariants of order ≤ 6 is

QP 3X2 , QP 2UX2 , QP 2X3 , QP 6 ,

QP 5U , QP 5X , QP 4U2 , QP 4UX , QP 4X2 .
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Using, as always, the recurrence relations we can check that the extra invariants QP 5U , QP 4U2 ,
QP 4UX can be expressed in terms of (4.13) and their invariant derivatives:

QP 5U =
5

6

[
DUQP 3X2−DPQP 2UX2−

3

10
QP 3X2QP 2UX2 +QP 5XQP 3X2 +

1

5
QP 6QP 2X3

]
,

QP 4UX =
1

6

[
DUQP 2X3−DXQP 2UX2 +

1

8
QP 2UX2QP 2X3 +QP 4X2QP 3X2 +

1

5
QP 5XQP 2X3

]
,

QP 4U2 =
4

5

[
DUQP 5X−DXQP 5U+

1

4
QP 5XQP 2UX2 +

1

5
Q2
P 5X+QP 6QP 4X2−

1

8
QP 5UQP 2X3

]
.

The structure equations for the invariant coframe {ωx, ωu, ωp} and the determination of
a generating set of invariants for the other regular cases of Example 3.13 are obtained in a similar
fashion.

4.2.2 Prolongation

We now assume that a section S ⊂ M ⊂ F(X) is singular with j∞S ⊂ S∞i . Also, we consider

the case when the isotropy group G(∞)
j∞S|z is finite-dimensional and locally parametrized by g =

(g1, . . . , gr).
Let µµµ = {µ1, . . . , µr} be the Maurer–Cartan forms associated with the isotropy group param-

eters g = (g1, . . . , gr). Then the invariant horizontal 1-forms (4.4) together with the Maurer–

Cartan forms µµµ = ρ̂ ∗i (µµµ)|S constitute an invariant coframe on the prolonged bundle P(∞)
i |S . As

in the previous section, the structure equations of the prolonged coframe {ωωω,µµµ} are obtained
by pulling-back the structure equations of the equivalence pseudo-group by the partial moving
frame ρ̂i.

Example 4.14. In Example 3.18 we saw that if the fourth order (relative) invariants QP 4 ≡
QP 2X2 ≡ 0 are identically zero then all higher order invariants (3.22) are also equal to zero.
Hence, in Case IV) the only invariants are constant functions, and two singular second order
ordinary differential equations are equivalent under point transformations, [5, 10, 26, 40].

Setting QP 4 ≡ QP 2X2 ≡ QP 4X ≡ QP 3X2 ≡ 0 in the structure equations (4.11) we obtain
the Maurer–Cartan structure equations for the eighth-dimensional symmetry group of point
transformations (isomorphic to SL(3)) of a singular second order ordinary differential equation:

dωx ≡ µX ∧ ωx + µU ∧ ωu,
dωu ≡ νU ∧ ωu + ωx ∧ ωp,
dωp ≡ νUX ∧ ωu + (νU − µX) ∧ ωp,

dµU ≡ −
1

2
νUU ∧ ωx + (µX − νU ) ∧ µU ,

dνU ≡ µU ∧ ωp − νUX ∧ ωx − νUU ∧ ωu,

dµX ≡ −2νUX ∧ ωx −
1

2
νUU ∧ ωu − µU ∧ ωp,

dνUU ≡ 2νUX ∧ µU + νUU ∧ νU ,

dνUX ≡ νUX ∧ µX −
1

2
νUU ∧ ωp. (4.14)

Restricting (4.14) to a fixed point (x, u, p) we obtain the structure equations

dµX ≡ 0, dµU ≡ (µX − νU ) ∧ µU , dνU ≡ 0,

dνUU ≡ 2νUX ∧ µU + νUU ∧ νU , dνUX ≡ νUX ∧ µX , (4.15)
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for the five-dimensional isotropy group G(∞)

z(∞) . Identifying the jets of a local vector field (2.7)
with the coefficients of its Taylor expansion, [33, 42]:

j∞v|z0 '
b∑

a=1

∑
#B≥0

ζaB(z0)
(z − z0)B

B!

∂

∂za
,

the fiber J∞TM |z0 inherits a Lie algebra structure. The monomial vector fields

vBa =
(z − z0)B

B!

∂

∂za
, #B ≥ 0, a = 1, . . . ,m,

provide a basis of the vector space J∞TM |z0 and they can be identified as dual vectors to the
Maurer–Cartan forms µaB|z0 . Choosing, for simplicity, z0 = (x0, u0, p0, q0) = 0, the isotropy Lie
algebra at the origin is spanned by the infinitesimal generators2

vxx = x
∂

∂x
, vxu = u

∂

∂x
, vuu = u

∂

∂u
,

vuux = x2
∂

∂x
+ xu

∂

∂u
, vuuu =

xu

2

∂

∂x
+
u2

2

∂

∂u
,

and satisfy commutation relations dual to (4.15). That is,

[vxx,v
u
ux] = vuux, [vxu,v

u
ux] = 2vuuu, [vuu,v

u
uu] = vuuu,

[vxu,v
x
x] = vxu, [vuu,v

x
u] = vxu.

The corresponding 5-dimensional isotropy group is generated by the local transformations

(X,U) = (λ1x, u), (X,U) = (x+ ε1u, u), (X,U) = (x, λ2u),

(X,U) =

(
x

1− ε2x
,

u

1− ε2x

)
, (X,U) =

(
x

1− ε3u
,

u

1− ε3u

)
,

which can be prolonged to p = ux, q = uxx.

4.2.3 Involution

We now consider the case when the isotropy group is infinite-dimensional. As in the preceding

section, let g(n) = (g1, . . . , grn) denote the pseudo-group jets parametrizing G(n)jnS|z and let µµµ(n)

denote the corresponding Maurer–Cartan forms. Since the isotropy group is infinite-dimensional,

the collection of 1-forms {ωωω,µµµ(n)} does not form a coframe on the prolonged bundle P(n)
i |S .

Nevertheless, the structure equations for the 1-forms {ωωω,µµµ(n)} are still obtained by pulling-back
the structure equations of the equivalence pseudo-group by the partial moving frame.

Example 4.15. In this example we consider the local equivalence of second order ordinary
differential equations (2.11) under the pseudo-group of contact transformations (2.12). Ta-
king into account the linear relations (2.16) among the Maurer–Cartan forms, the recurrence
relations (3.13) for the lifted invariants are

dX ≡ ωx + µx, dU ≡ ωu + µu, dXp ≡ ωp + µp,

dQJ ≡ QJ,Xωx +QJ,Uω
u +QJ,Pω

p + µpJ,X

+ DJ [PµpU +QµpP −Q(µxX + PµxU +QµxP )

− µxQX − µuQU − µpQP ] + µxQJ,X + µuQJ,U + µPQJ,P . (4.16)

2The infinitesimal generators are prolonged to p = ux and q = uxx using formula (3.10).
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Since the Maurer–Cartan forms µpJ,X are linearly independent, it follows from (4.16) that the

equivalence pseudo-group is transitive on J∞. Also, the inequality dimG(n) > dim Jn for all n
implies that the prolonged action is nowhere free and all submanifold jets are singular so that
S∞ = J∞. Choosing the cross-section

K∞ = {x = u = p = qJ = 0, #J ≥ 0},

the normalized Maurer–Cartan forms are

µx ≡ −ωx, µu ≡ −ωu, µp ≡ −ωp, µpJ,X ≡ 0.

The structure equations for the invariant 1-forms ωωω = {ωx, ωu, ωp} are obtained by substituting
σi ≡ −µi ≡ ωi, 1 ≤ i ≤ 3, into the structure equations (2.17). Taking into account that (2.16)
implies µpU = µuUX when P = 0, we obtain

dωx ≡ µxX ∧ ωx + µxU ∧ ωu + µxP ∧ ωp,
dωu ≡ µuU ∧ ωu + ωx ∧ ωp,
dωp ≡ µuXU ∧ ωu +

(
µuU − µxX

)
∧ ωp. (4.17)

These equations are equivalent to the structure equations [26, equation (11.5)] obtained using
Cartan’s approach. The correspondence is given by

θ1 ↔ ωu, θ2 ↔ ωp, θ3 ↔ ωx, π1 ↔ µuU , π2 ↔ µuXU ,

π3 ↔ µuU − µxX , π4 ↔ µxU , π5 ↔ µxP .

By Cartan’s involutivity test, [2, 15, 26], the structure equations (4.17) are involutive. In
Section 6, following Seiler’s book [35], Cartan’s test based on the algebraic theory of involu-
tion is introduced. This offers an alternative way of verifying, for example, that the structure
equations (4.17) are involutive.

5 Algebra of differential invariants

As seen in Section 4, the fundamental basis theorem is at the heart of the local equivalence
problem solution. Following [28], we now introduce the algebraic constructions used to prove
the fundamental basis theorem for Lie pseudo-groups acting freely and regularly on dense open
subsets of J∞. Once this is done we explain how to modify the algebraic constructions to take
into account Lie pseudo-groups acting freely and regularly on invariant regular subbundles of J∞.
Further modifications will allow us to deal with Lie pseudo-groups acting regularly and non-
freely on invariant regular subbundles of J∞. The main conclusion is that, with the appropriate
modifications and regularity assumptions, the algebraic proof of the fundamental basis theorem
given in [28] extends to Lie pseudo-groups acting regularly and freely (or non-freely) on invariant
regular subbundles of J∞.

5.1 Regular submanifold jets

Let G be a Lie pseudo-group acting on an m-dimensional manifold M . For the moment we
restrict our considerations to a dense open subset V∞ ⊂ J∞ where the action becomes free at
order n?.

Let R[t, T ] denote the algebra of real polynomials in the variables t = (t1, . . . , tm) and T =
(T 1, . . . , Tm), and define

T =

{
η(t, T ) =

m∑
a=1

ηa(t)T
a

}
' R[t]⊗ Rm ⊂ R[t, T ]
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to be the R[t] module consisting of homogeneous linear polynomials in the variable T . Let
T n ⊂ T denote the subspace of homogeneous polynomials of degree n in t. The notations
T ≤n = ⊕nk=0T k and T ≥n = ⊕∞k=nT k are used to denote the space of polynomials of degree ≤ n
and ≥ n in t. Let H : T → T be the highest order term operator defined by the requirement
that for 0 6= η ∈ T ≤n with 0 6= H(η) ∈ T n the equality η = H(η) +λ holds for some λ ∈ T ≤n−1.
Locally, let (J∞TM)∗ ' M × T via the pairing 〈j∞v; tBT

a〉 = ζaB. Then, an nth order linear
differential equation

L(z, ζ(n)) =
m∑
a=1

∑
#B≤n

hBa (z)ζaB = 0 (5.1)

can be identified with the parametrized polynomial

η(z; t, T ) =
m∑
a=1

∑
#B≤n

hBa (z)tBT
a ∈ T ≤n. (5.2)

Definition 5.1. The symbol ΣΣΣ(L) of the nth order (non-zero) linear differential equation (5.1)
consists of the highest order terms in its defining polynomial (5.2):

ΣΣΣ[L(z, ζ(n))] = H[η(z; t, T )] =
m∑
a=1

∑
#B=n

hBa (z)tBT
a ∈ T n.

Let L = (J∞g)⊥ ⊂ (J∞TM)∗ denote the annihilator subbundle of the infinitesimal generator
jet bundle, and define

I = H(L) (5.3)

to be the span of the highest order terms of the annihilating polynomials at each z ∈M . Since
the infinitesimal determining system (2.8) is formally integrable, it follows that the system is
closed under differentiation with respect to the total derivative operators Dza . At the symbol
level, since total differentiation with respect to Dza corresponds to multiplication by ta

ΣΣΣ
(
DzaL

)
= taΣΣΣ(L), a = 1, . . . ,m,

where L is of the form (5.1), it follows that at each point z ∈ M the fiber I|z forms a graded
submodule of T . This submodule is called the symbol module of the Lie pseudo-group at the
point z.

We now introduce a second module called the prolonged symbol submodule of the prolonged
infinitesimal generator (3.10). Introducing the variables s = (s1 . . . , sp) and S = (S1, . . . , Sq),
let

Ŝ =

{
σ̂(s, S) =

q∑
α=1

σ̂α(s)Sα

}
' R[s]⊗ Rq

denote the R[s] module of polynomials that are linear in S. The module Ŝ is extended to

S = Rp ⊕ Ŝ =
∞∑

n=−1
Sn

by introducing S−1 = {c · s̃ = c1s̃1 + · · · + cps̃p} ' Rp, where s̃ = (s̃1, . . . , s̃p) ∈ Rp are extra
variables. The space S is endowed with the structure of an R[s] module by taking the usual
module structure on Ŝ and setting

τ(s)s̃i = τ(0)s̃i for any polynomial τ(s) ∈ R[s].
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The space S is called the submanifold jet module. A highest order term operator H : S → S is
also introduced on S. For σ(s̃, s, S) = c · s̃+ σ̂(s, S) with σ̂(s, S) 6= 0 we require that

H[σ(s̃, s, S)] = H[σ̂(s, S)].

In other words, the elements of S−1 have zero highest order term. We also fix a convenient
degree compatible term ordering on the monomials of S. For example, one could choose the
degree lexicographic ordering, [35].

Given an arbitrary vector field

V =

p∑
i=1

ξi
∂

∂xi
+

q∑
α=1

∑
#J≥0

φJα
∂

∂uαJ
∈ TJ∞,

whose coefficients do not have to be the coefficients of the prolonged vector field (3.10), the
cotangent bundle T ∗J∞ is identified with J∞ × S via the pairing

〈V; s̃i〉 = ξi, 〈V;Sα〉 = Qα = φα −
p∑
i=1

uαi ξ
i, 〈V; sJS

α〉 = φJα, #J ≥ 1. (5.4)

Fixing z(∞) ∈ V∞ ⊂ J∞ with π∞0
(
z(∞)

)
= z, the prolongation map p = p

(∞)

z(∞) : J∞TM |z →
TJ∞|z(∞) given in (3.11) induces the dual prolongation map p∗ : S → T defined by

〈j∞v; p∗(σ)〉 = 〈p(j∞v);σ〉 = 〈v(∞);σ〉 for all j∞v ∈ J∞TM |z and σ ∈ S.

Next, let

βi(t) = ti +

q∑
α=1

uαi tp+α, i = 1, . . . , p, (5.5)

Bα(T ) = T p+α −
p∑
i=1

uαi T
i, α = 1, . . . , q, (5.6)

where uαi = ∂uα/∂xi are the first order jet coordinates of the fixed submanifold jet z(∞). Geo-
metrically, the polynomial Bα(T ) is the symbol of the characteristic component Qα appearing
in (5.4) while βi(t) represents the symbol of the ith total derivative operator Dxi :

ΣΣΣ
(
DxiL

)
= βi(t)ΣΣΣ(L),

where L is any linear differential equation in the vector field jet coordinates. For fixed first
order jet coordinates uαi , the polynomials (5.5) define a linear map

βββ : R2m → Rm given by si = βi(t), Sα = Bα(T ), (5.7)

and for σ̂(s, S) ∈ Ŝ ⊂ S the equality

H[p∗(σ̂)] = βββ∗[H(σ̂)] (5.8)

holds.

Definition 5.2. The prolonged annihilator subbundle of the prolonged Lie algebra g(∞) at
z(∞) ∈ V∞ is

Z =
(
g(∞)|z(∞)

)⊥
= (p∗)−1L|z ⊂ S. (5.9)

Furthermore, let

U = H(Z) ⊂ S

be the span of the highest order terms of the prolonged annihilator subbundle (in general, U is
not a submodule).
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Definition 5.3. The prolonged symbol submodule is defined as the inverse image of the symbol
module (5.3) under the polynomial pull-back morphism (5.7):

J =
(
βββ∗
)−1

(I|z) =
{
σ̂(s, S) ∈ Ŝ : βββ∗(σ̂(s, S)) = σ̂(β(t), B(T )) ∈ I|z

}
⊂ Ŝ. (5.10)

From (5.8) and (5.9), the containment U ⊂ J always holds. When the action is locally free
the containment becomes an equality, [28].

Lemma 5.4. Let n? be the order of freeness. Then for all n > n?

Un|z(n) = J n|z(n) , z(n) ∈ Vn.

Given a moving frame ρ̂ : V∞ → B(∞), the invariantization map is used to invariantize the
preceding algebraic constructions. For example, the invariantization of a section

η(x, u; t, T ) =

m∑
a=1

∑
#B≤n

hBb (x, u)tBT
a

of the annihilator bundle L is the polynomial

η(X,U ; t, T ) = ι[η(x, u; t, T )] =
m∑
a=1

∑
#B≤n

hBa (X,U)tBT
a

obtained by replacing the coordinates (x, u) on M by their invariantizations (X,U) = ι(x, u).
Similarly, the invariantization of a prolonged symbol polynomial

σ̂
(
x, u(k); s, S

)
=

q∑
α=1

∑
#J≤n

hJα(x, u(k))sJS
α ∈ Ŝ≤n

is the polynomial

σ
(
X,U (k), s, S

)
= ι
[
σ̂(x, u(k); s, S)

]
=

q∑
α=1

∑
#J≤n

hJα
(
X,U (k)

)
sJS

α. (5.11)

Let Un
∣∣
z(n)

= ι(Un)
∣∣
z(n)

and J n
∣∣
z(n)

= ι(J n)
∣∣
z(n)

. The equality Un
∣∣
z(n)

= J n
∣∣
z(n)

for all

n > n? is the key to proving the fundamental basis theorem. Since J >n
?∣∣
z(n)

is a polynomial
ideal it has a Gröbner basis, [8], which brings algebraic structure into the problem. After
identifying the polynomial (5.11) with the differential invariant

Iσ =

q∑
α=1

∑
#J≥0

hJα
(
X,U (k)

)
UαJ

the following result was proved in [28].

Theorem 5.5. Let G be a Lie pseudo-group acting freely and regularly on Vn? ⊂ Jn
?
, where n?

is the order of freeness. Then a finite generating set for the algebra of differential invariants
consists of

• the differential invariants Iν = Iσν , where σ1, . . . , σl form a Gröbner basis for the inva-

riantized prolonged symbol submodule J >n
?

, and, possibly,

• a finite number of additional differential invariants of order ≤ n?.
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Remark 5.6. While Theorem 5.5 yields a generating set for the algebra of differential inva-
riants, it certainly does not imply that this set is minimal. Unfortunately, there is, to this day,
no algorithm for determining whether a generating set containing more than one differential
invariant is minimal.

The algebraic considerations introduced above and the proof of Theorem 5.5 assumes the
pseudo-group acts freely and regularly on a dense open subset V∞ ⊂ J∞. In Example 3.13, this
would correspond to the set of regular jets V∞1 . For the other regular subbundles V∞2 , . . . ,V∞5 of
Example 3.13, we must incorporate into the algebraic constructions the dependencies among the
submanifold jet coordinates introduced by the determining equations (3.26). To achieve this,
a second identification of the one-forms on J∞ with polynomials in S is introduced, [28]. This
identification is given by

dxi ←→ s̃i, duαJ ←→ sJS
α. (5.12)

Under the correspondence (5.12), the exterior differential of an nth order differential equation
E
(
x, u(n)

)
= 0

dE
(
x, u(n)

)
=

p∑
i=1

∂E

∂xi
(
x, u(n)

)
dxi +

q∑
α=1

∑
#J≤n

∂E

∂uαJ

(
x, u(n)

)
duαJ = 0

at a submanifold jet z(n) =
(
x, u(n)

)
can be identified with the parametrized polynomial

α(z(n); s̃, s, S) =

p∑
i=1

∂E

∂xi
(
x, u(n)

)
s̃i +

q∑
α=1

∑
#J≤n

∂E

∂uαJ

(
x, u(n)

)
sJS

α ∈ S≤n. (5.13)

Definition 5.7. The symbol ΣΣΣ
(
E
(
z(n)

))
of an nth order (non-zero) differential equation E

(
z(n)

)
= E

(
x, u(n)

)
= 0 at a submanifold jet z(n) =

(
x, u(n)

)
consists of the highest order terms in the

parametrized polynomial (5.13):

ΣΣΣ
[
E
(
z(n)

)]
= H

[
α(z(n); s̃, s, S)

]
=

q∑
α=1

∑
#J=n

∂E

∂uαJ

(
z(n)

)
sJS

α ∈ Sn.

Now, let V∞i ⊂ J∞ be an invariant regular subbundle with determining system

E
(∞)
i

(
x, u(∞)

)
= 0. (5.14)

Since the system of differential equations (5.14) is formally integrable, its symbol at a fixed
submanifold jet z(∞) = (x, u(∞))

Ei|z(∞) = ΣΣΣ
[
E

(∞)
i

(
z(∞)

)]
= H

[(
Tz(∞)V∞i

)⊥]
is a submodule of the submanifold jet module S. LetMi|z(∞) ⊂ S denote the monomial module
generated by the leading monomials (with respect to a chosen term ordering on S) of the
symbol module Ei|z(∞) . We can assume, possibly by restricting to an open subset and employing
δ-regular coordinates (see Definition 6.4 below) that genericallyMi|z(∞) =Mi does not depend
upon z(∞) ∈ V∞i . Let

Si = S−1 ⊕ span {sJSα /∈Mi} ⊂ S
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denote the ith restricted submanifold jet module spanned by all monomials not in the monomial
module Mi to which we add S−1. Applying standard Gaussian elimination we can construct
a linear basis for the space Ei|z(∞) of the form

sIS
β +

∑
sJSα∈Sni

hJα
(
z(n)

)
sJS

α for all sIS
β ∈Mn

i , n ≥ 0. (5.15)

A similar statement holds for the subspace (Tz(∞)V∞i )⊥, where the sum in (5.15) now runs over
all the monomials in S≤ni . Therefore, Si is a fixed complement to the symbol module Ei|z(∞)

and the annihilating subspace (Tz(∞)V∞i )⊥:

S = Si ⊕Mi = Si ⊕ Ei|z(∞) = Si ⊕
(
Tz(∞)V∞i

)⊥
.

We can thus identify the submodule

Si ' S/(Ei|z(∞)) ' S/
(
Tz(∞)V∞i

)⊥ ' T ∗
z(∞)V∞i

with the dual space of V∞i at the point z(∞) ∈ V∞i . Under the identification (5.12), the mono-
mials sJS

α ∈ Si indicate the parametric jet variables uαJ on V∞i .
On each invariant regular subbundle V∞i , the algebraic constructions introduced before Re-

mark 5.6 still hold provided the submanifold jet module S is replaced by the restricted submani-
fold jet module Si. Also, since V∞i is G-invariant, the determining system (5.14) is invariant and
the invariantization of the algebraic constructions is well defined. In particular, the fundamen-

tal basis Theorem 5.5 still holds (with n? replaced by n?i and J >n
?

replaced by J >n
?
i

i , where

Ji = (βββ∗)−1(I|z) ⊂ Ŝi).

Example 5.8. Continuing Examples 3.13 and 4.13, since in the generic case V∞1 is a dense
open subset of J∞ the restricted submanifold jet module is the whole submanifold jet module:
S1 = S. On the other hand, on V∞2 the differential constraint QP 4 ≡ 0 implies that

QXiUjPk+4 ≡ 0 or equivalently qxiujpk+4 ≡ 0, i, j, k ≥ 0. (5.16)

The symbol associated to the determining system (5.16) is

E2 =M2 = span
{
sixs

j
us
k+4
p S : i, j, k ≥ 0

}
,

and the corresponding restricted submanifold jet module is

S2 = span{s̃x, s̃u, s̃p} ⊕ span
{
sixs

j
us
k
pS : 0 ≤ k ≤ 3 and i, j ≥ 0

}
.

Similar restricted submanifold jet modules S3, . . . ,S5 for the subbundles V∞3 , . . . ,V∞5 can be
obtained.

5.2 Singular submanifold jets

We now assume that z(∞) ∈ S∞i ⊂ J∞ is a singular submanifold jet where the pseudo-group G
acts regularly but not freely. As in the previous section, let Si denote the restricted submanifold
jet module associated with the regular invariant subbundle S∞i . Let

j∞gz(∞) = ker p|z(∞) ∩ J∞g|z, z = π∞0
(
z(∞)

)
be the vector field jets of the isotropy Lie algebra at z(∞). Identifying (J∞TM )∗|z with the
symbol module T , we introduce the isotropy annihilator vector space

(j∞gz(∞))⊥ = Ti ⊂ T .

To streamline the notation we have suppressed the dependence of Ti on the submanifold jet
z(∞) ∈ S∞i .
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Proposition 5.9. Let n?i be the order of partial freeness of G on S∞i . Then for n ≥ n?i and
z(n) ∈ Sni ,

p∗
(
S≤ni

)
+ L≤n|z = T ≤ni . (5.17)

Proof. For z(n) ∈ Sni and n ≥ n?i we have

jngz(n) = ker p(n)|z(n) ∩ Jng|z =
(
rng
(
p(n)

)∗)⊥ ∩ (L≤n|z)⊥ =
(
p∗
(
S≤ni

)
+ L≤n|z

)⊥
,

from which (5.17) follows. �

Lemma 5.4, essential to the proof of the fundamental basis Theorem 5.5, also holds at a sin-
gular submanifold jet.

Proposition 5.10. For n > n?i and z(n) ∈ Sni ,

Uni |z(n) = J ni |z(n) . (5.18)

Proof. By induction, it suffices to prove (5.18) when n = n?i+1. Let Q ∈ J n
?
i+1

i |
z(n

?
i
+1) and

P = p∗(Q). By (5.8) and (5.10)

H(P ) = H[p∗(Q)] = βββ∗[H(Q)] = βββ∗(Q) ∈ In?i+1|z,

and we conclude that there exists Y ∈ T ≤n?i such that P + Y ∈ Ln?i+1|z. Actually, we have

that Y ∈ T ≤n
?
i

i . To see this, we first observe that the formal integrability of the determining

equations of the isotropy group G(n
?
i )

z(n
?
i
) implies that the projection T ≤n

?
i+1

i → T ≤n
?
i

i is surjective.

Hence, by Proposition 5.9, since P + Y and P are in T ≤n
?
i+1

i we have that

Y = (P + Y )− P ∈ T ≤n
?
i

i .

Now, let U ∈ S≤n
?
i

i and V ∈ L≤n?i
∣∣
z

such that Y = p∗(U) + V , then

p∗(Q+ U) = (P + Y )− V ∈ L≤n?i+1
∣∣
z
.

Finally, equation (5.9) implies that Q+ U ∈ Z≤n
?
i+1

i

∣∣
z(n

?
i
+1) . �

Remark 5.11. The proof of Proposition 5.10 is essentially the same as [28, Lemma 5.5]. It is
included to show that formal integrability of the determining equations of the isotropy group

G(n
?
i )

z(n
?
i
) is essential for the proof to remain valid at a submanifold jet where the pseudo-group does

not act freely. Due to Proposition 5.10, the constructive proof of the fundamental basis theorem
given in [28] still holds at a singular submanifold jet z(∞) ∈ S∞i (with the necessary algebraic
modifications as in the regular case).

6 Involutivity

In Section 4.2 we showed via examples that in the appropriate geometrical setting, the pull-
back of the structure equations of an equivalence pseudo-group by a (partial) moving frame
reproduces Cartan’s moving frame results. In particular, in Example 4.15 we recovered the
involutive structure equations (4.17). The aim of this final section is to complete Section 4.2
by recasting Cartan’s involutivity test within the algebraic framework of Section 5. Involutivity
plays an essential role in the solution of equivalence problems, [26]. It guarantees that the
equivalence map constructed by specifying its jets (or Taylor series coefficients) converges, and
the Cartan characters give the “dimensional freedom” of the equivalence map in Theorem 4.11.
The following exposition follows Seiler’s book, [35].
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Definition 6.1. Let

ηυ
(
z(n); t, T

)
=

m∑
a=1

∑
#B=n

hBa;υ
(
z(n)

)
tBT

a, υ = 1, . . . , `, n ≥ 1,

be a basis for the degree n homogeneous component of H(T ≤ni ). The symbol matrix

Tn
i =

(
hBa;υ

(
z(n)

))
is the ` × m

(
m+n−1

n

)
matrix where the entries of the υth row are given by the coefficients

hBa;υ
(
z(n)

)
of the polynomial ηυ(z(n); t, T ).

To define the class of a symmetric multi-index B = (b1, . . . , bn) of order #B = n we rewrite
the multi-index as B̃ = (̃b1, . . . , b̃m), where b̃a is the number of occurrences of the integer
1 ≤ a ≤ m in B = (b1, . . . , bn).

Definition 6.2. The class of a multi-index B̃ = (̃b1, . . . , b̃m) is cl B̃ = min
{
a : b̃a 6= 0

}
.

Next, the columns of the symbol matrix Tn
i are ordered in such a way that the column

(hB̃a;1, . . . , h
B̃
a;`)

T is always to the left of the column (hÃb;1, . . ., h
Ã
b;`)

T if cl B̃ > cl Ã. For two
multi-indices with same class, the order of the columns does not matter. Once the columns of
the symbol matrix are ordered, the matrix is put in row echelon form without performing any
column permutations.

Definition 6.3. Let β
(a)
n , a = 1, . . . ,m, be the number of pivots with class 1 ≤ a ≤ m of the

row echelon form symbol matrix Tn
i . The numbers β

(a)
n are called the indices of Tn

i .

Definition 6.3 depends on the chosen coordinate system and one must work with δ-regular
coordinate systems.

Definition 6.4. A coordinate system is said to be δ-regular if the sum
m∑
a=1

aβ
(a)
n is maximal.

Any coordinate system can be transformed into a δ-regular one with a linear transformation
defined by a matrix coming from a Zariski open subset of Rm×m, [35].

Definition 6.5. The degree n homogeneous component of H
(
T ≤ni

)
is said to be involutive if

the symbol matrix Tn+1
i of the degree n+ 1 homogeneous component of H

(
T ≤n+1
i

)
satisfies the

algebraic equality

rank Tn+1
i =

m∑
a=1

aβ(a)n . (6.1)

Definition 6.6. Let n ≥ 1, the isotropy annihilator subbundle T ≤ni is in said to be involutive if

the degree n homogeneous component of H
(
T ≤ni

)
is involutive and the projection T ≤n+1

i → T ≤ni

is surjective.

A standard result from the theory of involutivity guarantees that when T ≤ni becomes invo-

lutive then for all k > n the isotropy annihilator subbundle T ≤ki remains involutive.

Definition 6.7. Assume T ≤ni is involutive with indices β
(a)
n . The Cartan characters α

(a)
n of T ≤ni

are defined by

α(a)
n = m

(
n+m− a− 1

n− 1

)
− β(a)n , 1 ≤ a ≤ m.
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Theorem 6.8. Let T ≤ni be involutive with Cartan characters α
(a)
n . Then the isotropy group of

the submanifold jet z(∞) depends on fa arbitrary functions of a variables where the numbers fa
are determined by the recursion relation

fm = α(m)
n ,

fa = α(a)
n +

m∑
b=a+1

(a− 1)!

(m− 1)!

(
s
(b−1)
b−a (0)α(b)

n − s
(b−1)
b−a (n)fb

)
, 1 ≤ a ≤ m− 1,

provided all fa are non-negative integers. The numbers s
(a)
b (c) are the modified Stirling numbers

defined by the identity

(c+ y + 1)(c+ y + 2) · · · (c+ y + a) =
a∑
b=0

s
(a)
a−b(c)y

b

for all non-negative integers a, b, c and a ≥ b. Here y is an arbitrary variable.

Example 6.9. Continuing Example 4.15 we verify that the involutivity test (6.1) holds and
compute the size of the isotropy group at a submanifold jet. First, we recall that for the con-
tact pseudo-group (2.12) the normalized Maurer–Cartan forms, up to order 1, satisfy the linear
relations

µx ≡ −ωx, µu ≡ −ωu, µp ≡ −ωp, µuP ≡ µ
p
X ≡ µ

x
Q ≡ µuQ ≡ µ

p
Q ≡ 0,

µq − µpX ≡ 0, µuX − µp ≡ 0, µpP + µxX − µuU ≡ 0, µqQ − µ
p
P + µxX ≡ 0. (6.2)

To show that the degree 1 homogeneous component of H(T ≤11 ) is involutive, we first note that
via the lift map (3.8) the vector field jet ζaB can be identified with the Maurer–Cartan form µaB
so that we have the identification

µaB ←→ ζaB ←→ tBT
a. (6.3)

Secondly, since the invariantization of the algebraic constructions introduced in Section 5 co-
incide with their progenitor when restricted to a cross-section, we can use the linear rela-
tions among the normalized Maurer–Cartan forms (6.2) to verify the involutivity test (6.1)
at a submanifold jet on the cross-section defining a partial moving frame. Using the correspon-
dence (6.3), the isotropy annihilator polynomials associated to (6.2) are

T x, T u, T p, tpT
u, txT

p, tqT
x, tqT

u, tqT
p,

T q − txT p, txT
u − T p, tpT

p + txT
x − tuT u, tqT

q − tpT p + txT
x.

Writing the order 1 symbol matrix T1 we obtain



tqT
q tqT

p tqT
u tqT

x txT
p txT

u txT
x tpT

p tpT
u tpT

x tuT
p tuT

u tuT
x

1 0 0 0 0 0 −1 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 −1 0

0 0 0 0 0 0 0 0 1 0 0 0 0
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and find that the indices of the matrix are β
(4)
1 = 4, β

(3)
1 = 3, β

(2)
1 = 1 and β

(1)
1 = 0. At order 2,

the rank of the symbol matrix T2 is 27 = 4β
(4)
1 + 3β

(3)
1 + 2β

(2)
1 + β

(1)
1 which satisfies the invo-

lutivity test. The corresponding Cartan characters are α
(4)
1 = α

(3)
1 = 0, α

(2)
1 = 2, α

(1)
1 = 3, and

we conclude that the isotropy group involves two arbitrary analytic functions, each depending
on two variables. In other words, the general contact transformation between two second order
ordinary differential equations depends on two arbitrary functions of two variables. This is in ac-
cordance with Cartan’s involutivity test based on the theory of exterior differential systems, [26,
Example 11.10].

Example 6.10. In this final example we consider the simultaneous equivalence of a two-form
and a vector field on R3, [11]. This example is interesting as the solution admits a branch with
an infinite-dimensional isotropy group and an essential invariant. Let

Ω = a(x, y, z)dx ∧ dy + b(x, y, z)dx ∧ dz + c(x, y, z)dy ∧ dz, a(x, y, z) 6= 0, (6.4)

be a non-vanishing two-form, and

v = e(x, y, z)
∂

∂x
+ f(x, y, z)

∂

∂y
+ g(x, y, z)

∂

∂z
, g(x, y, z) 6= 0, (6.5)

a non-zero vector field on R3. If

Ω = A(X,Y, Z)dX ∧ dY +B(X,Y, Z)dX ∧ dZ + C(X,Y, Z)dY ∧ dZ, A(X,Y, Z) 6= 0,

v = E(X,Y, Z)
∂

∂X
+ F (X,Y, Z)

∂

∂Y
+G(X,Y, Z)

∂

∂Z
, G(X,Y, Z) 6= 0,

is another set of non-vanishing two-form and vector field on R3, the map

Φ: X = φ(x, y, z), Y = β(x, y, z), Z = α(x, y, z) ∈ D
(
R3
)
,

is a local equivalence if it satisfies

Φ∗(Ω) = Ω and dΦ−1(v) = v. (6.6)

The equivalence problem splits in two cases; either v Ω = 0 or v Ω 6= 0. In the following
we consider the case v Ω = 0. This imposes the restrictions

e(x, y, z) =
g(x, y, z)c(x, y, z)

a(x, y, z)
and f(x, y, z) = −g(x, y, z)b(x, y, z)

a(x, y, z)

on the coefficients of vector field (6.5) (and similar constraints on the coefficients of v). In local
coordinates, the equivalence criterions (6.6) yield the transformation rules

A(φxβy − βxφy) +B(φxαy − αxφy) + C(βxαy − αxβy) = a,

A(φxβz − βxφz) +B(φxαz − αxφz) + C(βxαz − αxβz) = b,

A(φyβz − βyφz) +B(φyαz − αyφz) + C(βyαz − αyβz) = c,

G =
g

a
(cαx − bαy + aαz), (6.7)

for the components of the two-form (6.4) and the vector field (6.5). The infinitesimal generator
corresponding to the Lie pseudo-group action (6.7) is

w = ξ(x, y, z)
∂

∂x
+ η(x, y, z)

∂

∂y
+ τ(x, y, z)

∂

∂z
+ [cτx − a(ξx + ηy)− bτy]

∂

∂a
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− [aηz + b(ξx + τz) + cηx]
∂

∂b
+ [aξz − bξy − c(ηy + τz)]

∂

∂c
+
g

a
[cτx − bτy + aτz]

∂

∂g
,

where ξ(x, y, z), η(x, y, z) and τ(x, y, z) are arbitrary analytic functions. The rank of the Lie
matrix, [27], of the first prolongation w(1) reveals that the orbits of the first order prolonged
action are of codimension one in J1. Hence the equivalence pseudo-group admits a first order
differential invariant:

I =
g

a
(az − by + cx). (6.8)

Implementing the moving frame algorithm, the analysis of the recurrence relations reveals
that it is possible to make the “universal” normalizations

X = Y = Z = 0, A = G = 1, BXiY jZk = CXiY jZk = 0, i+ j + k ≥ 0,

GXiY jZk = 0, i+ j + k ≥ 1, AXiY j = 0, i+ j ≥ 1, (6.9)

leading to the normalization of the Maurer–Cartan forms

µ = λλλ(ξ), ν = λλλ(η) α = λλλ(τ), νXiY j+1 = λλλ(ηxiyj+1),

νXiY jZk+1 = λλλ(ηxiyjzk+1), µXiY jZk+1 = λλλ(ξxiyjzk+1), αXiY jZk+1 = λλλ(τxiyjzk+1),

i, j, k ≥ 0. With the normalizations (6.9), the invariant (6.8) corresponds to

I = AZ = ι(az), (6.10)

and the invariant coframe ωωω = {ωx, ωy, ωz} = ι{dx, dy, dz} is such that Ω = ωx ∧ ωy, and
v ωz = 1. Geometrically, the invariant (6.8) measures the obstruction of Ω to being closed:

dΩ = Iωx ∧ ωy ∧ ωz.

After making the normalizations (6.9), the only remaining partially normalized invariants are

AXiY jZk+1 , i, j, k ≥ 0. (6.11)

Up to order 2, the recurrence relations for these invariants are

dAZ ≡ AXZωx +AY Zω
y + (AZZ −A2

Z)ωz,

dAXZ ≡ AXXZωx +AXY Zω
y + (AXZZ − 2AZAXZ)ωz

−AY ZνX −AXZµX −
(
AZZ −A2

Z

)
αX ,

dAY Z ≡ AXY Zωx +AY Y Zω
y + (AY ZZ − 3AZAY Z)ωz

+AY ZµX −AXZµY −
(
AZZ −A2

Z

)
αY ,

dAZZ ≡ AXZZωx +AY ZZω
y + (AZZZ −AZAZZ)ωz. (6.12)

At this stage, the equivalence problem splits in two branches:

Case 1: AZ is constant.

Case 2: AZ is not constant.

In Case 1, when AZ ≡ c is constant, the recurrence relations (6.12), and the higher order
ones, imply that the remaining partially normalized invariants (6.11) are constant. For example,
from (6.12) we have that

AZ ≡ c, AXZ ≡ AY Z ≡ 0, AZZ ≡ c2,
AXXZ ≡ AXY Z ≡ ZXZZ ≡ AY Y Z ≡ AY ZZ ≡ 0, AZZZ ≡ c3.
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Hence, in this case, there are no further normalizations possible. Up to order 2, the normalized
Maurer–Cartan forms are

µ ≡ −ωx, ν ≡ −ωy, α = −ωz, νY ≡ −µX +AZω
z, νZ ≡ µZ ≡ αZ ≡ 0,

νXY ≡ −µXX −AZαX −AXZωz, νY Y ≡ −µXY −AZαY +AY Zω
z,

νZX ≡ νZY ≡ νZZ ≡ µXZ ≡ µY Z ≡ µZZ ≡ αXZ ≡ αY Z ≡ αZZ ≡ 0. (6.13)

The order 1 isotropy annihilator polynomials associated to (6.13) are

tyT
y + txT

x, tzT
y, tzT

x, tzT
z, (6.14)

and the indices of the reduced3 symbol matrix T1 are β
(3)
1 = 3, β

(2)
1 = 1, β

(1)
1 = 0. At order 2,

the rank of the reduced symbol matrix T2 is 11 = 3β
(3)
1 + 2β

(2)
1 +β

(1)
1 , and Cartan’s involutivity

test is satisfied. The corresponding Cartan characters are α
(3)
1 = 0, α

(2)
1 = 2, and α

(1)
1 = 3.

The structure equations for the horizontal coframe ωωω = {ωx, ωy, ωz} are

dωx ≡ µX ∧ ωx + µY ∧ ωy,
dωy ≡ νX ∧ ωx − µX ∧ ωy − cωy ∧ ωz,
dωz ≡ αX ∧ ωx + αY ∧ ωy.

These equations are equivalent to those obtained with Cartan’s method, [26, equation (11.29)].
The correspondence is given by

θ1 ↔ ωx, θ2 ↔ ωy, θ3 ↔ ωz, α1 ↔ µX , α2 ↔ µY , α3 ↔ νX ,

β1 ↔ αX , β2 ↔ αY , T ↔ AZ . (6.15)

Moving to Case 2, where AZ is not constant, two sub-branches must be considered:

Case 2.1: AZZ ≡ A2
Z .

Case 2.2: AZZ 6≡ A2
Z .

In Case 2.1, since dAZ 6≡ 0, the recurrence relation for AZ in (6.12) implies, that (AXZ , AY Z)
6≡ (0, 0). Assuming AXZ > 0, we set

AXZ = 1, AY Z = 0, AXiY jZ = 0, i+ j ≥ 2,

and normalize the Maurer–Cartan forms µXiY j , i+j ≥ 1. The first recurrence relation in (6.12)
then reduces to

dAZ ≡ ωx.

Substituting the equality AZZ = A2
Z into the last equation of (6.12) we obtain

2AZω
x = AXZZω

x +AY ZZω
y +

(
AZZZ −A3

Z

)
ωz,

which means that

AXZZ ≡ 2AZ , AY ZZ ≡ 0, AZZZ ≡ A3
Z .

3Notice that in (6.14) we have omitted the polynomials in T a, T b, T c and T g associated to the dependent
variables of the problem as in this example these do not play an essential role in the involutivity test. The
corresponding Cartan characters are all zero.
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Similarly, all higher order invariants AXiY jZk+2 = Fijk(AZ) are function of the invariant (6.10).
Hence, no further normalizations are possible. Up to order 2, the normalized Maurer–Cartan
forms are

µ ≡ −ωx, ν ≡ −ωy, α = −ωz, νY ≡ AZωz,
νZ ≡ µZ ≡ αZ ≡ µX ≡ µY ≡ 0, νXY ≡ −AZαX − ωz, νY Y ≡ −AZαY ,
νZX≡νZY ≡νZZ≡µXZ≡µY Z≡µZZ≡αXZ≡αY Z≡αZZ≡µXX≡µXY ≡µY Y ≡0. (6.16)

The order 1 isotropy annihilator polynomials associated with (6.16) are

tyT
y, tzT

y, tzT
x, tzT

z, txT
x, tyT

x

and the indices of the reduced symbol matrix T1 are β
(3)
1 = 3, β

(2)
1 = 2, β

(1)
1 = 1. At order 2,

the rank of the reduced symbol matrix T2 is 14 = 3β
(3)
1 + 2β

(2)
1 + β

(1)
1 , which satisfies Cartan’s

involutivity test. The corresponding Cartan characters are α
(3)
1 = 0, α

(2)
1 = 1, and α

(1)
1 = 2.

Finally, the structure equations for the horizontal coframe ωωω = {ωx, ωy, ωz} are

dωx ≡ 0, dωy ≡ νX ∧ ωx −AZωy ∧ ωz, dωz ≡ αX ∧ ωx + αY ∧ ωy.

Once again, using the correspondence (6.15) we recover the structure equations obtained via
Cartan’s method, [26, p. 370]. Case 2.2 is treated in a similar fashion. The complete analysis,
based on Cartan’s equivalence method, can be found in [11].
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