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Abstract. The Cauchy problem for harmonic maps from Minkowski space with its stan-
dard flat metric to a certain non-constant curvature Lorentzian 2-metric is studied. The
target manifold is distinguished by the fact that the Euler–Lagrange equation for the ener-
gy functional is Darboux integrable. The time evolution of the Cauchy data is reduced to
an ordinary differential equation of Lie type associated to SL(2) acting on a manifold of
dimension 4. This is further reduced to the simplest Lie system: the Riccati equation. Lie
reduction permits explicit representation formulas for various initial value problems. Addi-
tionally, a concise (hyperbolic) Weierstrass-type representation formula is derived. Finally,
a number of open problems are framed.
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1 Introduction

Let (M, g) and (N,h) be Riemannian or pseudo-Riemannian manifolds and ϕ : M → N a smooth
map. The energy of ϕ over a compact domain D ⊆M is

e(ϕ) =
1

2

∫
D
gij(x)hαβ(ϕ)

∂ϕα

∂xi

∂ϕβ

∂xj
dvolM .

The critical points of e(ϕ) satisfy the partial differential equation (PDE)

4ϕγ + gijΛγαβ
∂ϕα

∂xi

∂ϕβ

∂xj
= 0,

where 4 is the Laplacian on M and Λγαβ the Christoffel symbols on N . A map ϕ is said to be
harmonic if it is critical for e(ϕ). Harmonic maps generalise harmonic functions and geodesics
and have been under intense study since the pioneering work of Eells and Sampson [8]; see [3]
and [12] and references therein for comprehensive introductions to the field. If domain(ϕ) =
M = R then harmonic maps are geodesic flows. If codomain(ϕ) = N = R then harmonic maps
are harmonic functions. If (M, g) is pseudo-Riemannian then harmonic maps are called wave
maps. In this paper our focus is on wave maps, specifically, the case (M, g) = (R1,1, dx dy). Any
further reference to wave maps in this paper means the domain space M is Minkowski space R1,1
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with its standard flat metric. To provide slightly more insight, a “physical” illustration of wave
maps in this class can be given: the motion of a frictionless elastic string constrained to vibrate on
Riemannian surface (N,h), such as a sphere, is exactly described by a wave map into N ; see [17].

There is a well-known geometric literature on wave maps that has developed over the last
two decades, especially their existence as solutions of completely integrable systems; see [11] for
a textbook account with many references. There is a closely related physics literature where
the relevant systems are known as nonlinear sigma models; see [22]. The first person to treat
the Cauchy problem for wave maps into Riemannian targets was Chao-Hao Gu [10]. He estab-
lished the fundamental result that for smooth initial data, wave maps into complete Riemannian
metrics have long-time existence. Gu’s work initiated many further investigations where regu-
larity constraints on the initial data have been significantly relaxed. Furthermore some higher
dimensional problems have been treated; see [16].

In this paper we initiate the study of the Cauchy problem for wave maps in the special case
where the systems they satisfy are Darboux integrable. Our first main result proves that the
solution of the Cauchy problem for such a Darboux integrable nonlinear sigma model can be
quite explicitly expressed as the flow of a special vector field ξk1,k2 (see Theorem 1) which itself
is a curve in a certain Lie algebra of vector fields canonically and intrinsically associated to
the Darboux integrable nonlinear sigma model, namely, its Vessiot algebra. In consequence of
this, standard constructions which facilitate the resolution of systems of Lie type such as Lie
reduction become available to the solution of the Cauchy problem for such wave map systems.
For this reason we have included an appendix to this paper which gives a brief summary of the
main results on systems of Lie type adapted to the applications we envisage. In this paper we
have decided to focus on just one interesting nonlinear sigma model in order to discuss the rela-
tionship between Darboux integrable hyperbolic systems on the one hand and the resolution of
the corresponding Cauchy problem via differential systems of Lie type and to do so as explicitly
as possible. However, it will be seen that the proof of Theorem 1 is easy to generalise to other
Darboux integrable systems. Indeed the very recent work [1] outlines a general, intrinsic proof
of the close relationship between systems of Lie type and the Cauchy problem for a wide class of
Darboux integrable exterior differential systems. The second main result of the paper marshalls
the general theory of Darboux integrable exterior differential systems [2], and generalised Gour-
sat normal form [18, 19] to derive a hyperbolic Weierstrass-type representation (Theorem 3) for
wave maps into the non-constant curvature metric (1).

As the name implies the notion of Darboux integrability originated in the 19th century and
was most significantly developed by Goursat [9]. Classically, it was a method for constructing
the “general solution” of second order PDE in one dependent and two independent variables

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0

that generalised the so called “method of Monge”. It relies on the notion of characteristics and
their first integrals. We refer the reader to [9, 13, 20, 21] for further information on classical
Darboux integrability. There are also extensive studies of Darboux integrable systems relevant
to the equation class under study in the works [14] and [23].

In this paper we use a new geometric formulation of Darboux integrable exterior differential
systems [2]. At the heart of this theory is the fundamental notion of a Vessiot group which,
together with systems of Lie type are our main tools for the study of the Cauchy problem for
wave maps.

The PDE that govern wave maps have the semilinear form

uxy = f(x, y,u,ux,uy), u,f ∈ Rn.

Each solution possesses a double foliation of curves called characteristics. Such PDE often
model wave-like phenomena and projection of these curves into the independent variable space
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describes the space-time history of the wave propagation. The characteristics of uxy = f are
the integral curves of a pair of rank n+ 1 distributions

H1 =
{
Dx +Dyf · ∂uyy , ∂uxx

}
, H2 =

{
Dy +Dxf · ∂uxx , ∂uyy

}
,

where

Dx = ∂x + ux∂u + uxx∂ux + f∂uy , Dy = ∂y + uy∂u + f∂ux + uyy∂uy ,

are the total differential operators along solutions of the PDE. Note that if θ is the standard
Cartan codistribution for uxy = f then H1 ⊕ H2 = annθ. Distributions Hi are well-defined
with canonical structure.

Definition 1. If ∆ is a distribution on manifold M then a function f : M → R is said to be
a first integral of ∆ if Xf = 0 for all X ∈ ∆.

There is a geometric definition of Darboux integrable exterior differential system [2]. For
wave map equations it reduces to

Definition 2. A semilinear system uxy = f with u,f ∈ Rn is Darboux integrable at a given
order if each of its characteristic systems Hi has at least n + 1 independent first integrals at
that order.

2 The Cauchy problem

We consider wave maps

u :
(
R1,1, dxdy

)
→
(
R2,

du21 − du22
1 + e−u1

)
. (1)

R. Ream [15] studied the PDE for wave maps into nonzero curvature surface metrics that are
Darboux integrable on the 2- and 3-jets and proved a theorem that any such metric is (real)
equivalent to one or other of the metrics

ρ± :=
du21 + du22

1± eu1
.

Here we consider a semi-Riemannian version of a Ream metric and study the corresponding
Cauchy problem. We show how the solution of the Cauchy problem for wave maps (1) can be
expressed as an ordinary differential equation of Lie type. Indeed we prove that the solution of
the Cauchy problem for wave maps is naturally equivalent to an initial value problem of a Lie
system for a local action of SL(2) on a manifold that is locally diffeomorphic to R4. This is further
reduced to an initial value problem for a single Riccati equation together with a quadrature.

The target metric in (1) does not have constant curvature nevertheless is globally defined and
positively curved everywhere; in fact K = 2−1(1 + eu1)−1. However, the metric is nonetheless
very special because the wave map system turns out to be Darboux integrable, as demonstrated
in [15].

The Lagrangian density for this metric is

L =
u1xu1y − u2xu2y

1 + e−u1
,

whose Euler–Lagrange equation is

u1xy +
u1xu1y + u2xu2y

2(1 + eu1)
= 0, u2xy +

u1xu2y + u2xu1y
2(1 + eu1)

= 0.
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The change of variables (u1, u2) 7→ ((u1 + u2)/2, (u1 − u2)/2) = (u, v) transforms this to

uxy +
uxuy

2
(
1 + eu/2+v/2

) = 0, vxy +
vxvy

2
(
1 + eu/2+v/2

) = 0. (2)

We now prove

Theorem 1. Consider the initial value problem

uxy +
uxuy

2
(
1 + eu/2+v/2

) = 0, vxy +
vxvy

2
(
1 + eu/2+v/2

) = 0, (3)

u|γ = φ1, v|γ = φ2,
∂u

∂n |γ
= ψ1,

∂v

∂n |γ
= ψ2, (4)

where γ is a curve with tangents nowhere parallel to the x- or y-axes, n is a unit normal vector
field along γ and φi, ψi are smooth functions along γ.

1. Problem (3) has a unique smooth local solution. Moreover, the unique local solution is
expressible as the solution of an ordinary differential equation of Lie type associated an
action of SL(2) on R4.

2. Given the unique local solution (u, v) from part 1, the Cauchy problem for harmonic maps

(
R1,1, dxdy

)
→
(
M,

du21 − du22
1 + e−u1

)
.

is given by

u1 = u+ v, u2 = u− v.

where u1, u2 satisfy initial conditions

u1|γ = φ1 + φ2, u2|γ = φ1 − φ2,
∂u1
∂n |γ

= ψ1 + ψ2,
∂u2
∂n |γ

= ψ1 − ψ2.

Proof. By hyperbolicity, the problem is locally well-posed. System (2) has four first integrals
on each characteristic system, H1, H2. Let us label the first integrals

y, β1, β2, β3 for H1, and x, α1, α2, α3 for H2.

For this system α1, β1 are first order differential functions while α2, α3, β2, β3 are of second
order. Finally, while the 8 first integrals are functionally independent, we have

dα1

dx
= α2 and

dβ1
dy

= β2.

Let k1(y), k2(y) be arbitrary functions and consider the overdetermined PDE system defined
by (2) together with the additional PDE

β1 = k1(y), β2 = k̇1(y), β3 = k3(y), (5)

where the dot denotes y-differentiation. It can be shown that this overdetermined system E ′
is involutive and moreover admits a 1-dimensional Cauchy distribution, as we will see. Now
suppose we fix a smooth curve γ embedded in a portion of the xy-plane, N and suppose Cauchy
data is prescribed along γ as in the Theorem statement. Then by an argument similar to [21,
Proposition 3.3], γ can be lifted to a unique curve γ̂ : I ⊆ R → J1(N ,R2) which agrees with
all the Cauchy data. Let ι : Hk1,k2 → J2(N ,R2) denote the submanifold in J2(N ,R2) defined
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by PDE system E ′ and Θ the contact system on J2. Let θk1,k2 = ι∗Θ be the Pfaffian system
whose integral submanifolds are the solutions of E ′. Our aim is to choose the functions k1, k2,
if possible, in order that we can extend γ̂ to a 1-dimensional integral submanifold γ̃ of θk1,k2 .

Now

θk1,k2 = {ω1 = du− uxdx− uydy, ω2 = dv − vxdx− vydy, ω3 = dux − uxxdx− f1dy,
ω4 = duy − f1dx− uyydy, ω5 = dvx − vxxdx− f2dy, ω6 = dvy − f2dx− vyydy}.

Pulling back by γ̂ we observe that ω1, ω2 pullback to zero by construction. Forms ω4 and ω6

define the functions uyy and vyy along γ while ω3, ω5 define functions uxx and vxx along γ.
All these functions are expressed in terms of the Cauchy data, φi, ψi. Substituting these back
into (5) determines the functions k1, k2 in terms of φi, ψi. For completeness we give the first
integrals of H2

x, α1 =
uxvx

1 + exp
(
− u+v

2

) , α2 =
dα1

dx
,

α3 =

(
2vxuxx − 2uxvxx − uxv2x + vxu

2
x + 2

(
vxuxx − uxvxx − uxv2x + u2xvx

)
exp

(
u+v
2

))
uxvx

(
1 + exp

(
u+v
2

)) .

Those of H1 are similar but with y replacing x.
We will now use these first integrals to demonstrate that θk1,k2 has a one-dimensional Cauchy

distribution and that in particular the Cauchy vector can be chosen to be a curve in a certain
Lie algebra – the Vessiot algebra [2] of system (2). It will be seen that the Cauchy vector is
generically transverse to the Cauchy data and extends the one-dimensional integral submanifold
of θk1,k2 to the solution of the Cauchy problem. Because the Cauchy vector is a curve in a Lie
algebra, this extension from a one-dimensional to a two-dimensional integral of θk1,k2 is an
ordinary differential equation L of Lie type. Its coefficients and initial conditions are fixed by
all the data present in the problem, including the Cauchy data. Any solution of L (independently
of its initial conditions) permits a Lie reduction of L and will permit us to solve the IVP for L.

Indeed, setting z1 = eu/2, z2 = ev/2, z3 = uy, z4 = vx, ai = αi, bi = βi, i = 1, 2, 3 we calculate
that the contact system on J2(R2,R2) pulled back to PDE (2) is Ψ = {κ1, . . . , κ6}, where

κ1 = da1 − a2dx, κ2 = db1 − b2dy, κ3 = dz1 −
a1(1 + z1z2)

2z2z4
dx− z1z3

2
dy,

κ4 = dz2 −
z2z4

2
dx− b1(1 + z1z2)

2z1z3
dy, κ5 = dz3 +

a1z3
2z1z2z4

dx+
1

2
(z23 − b3z3 − b1)dy,

κ6 = dz4 +
1

2
(z24 − a3z4 − a1)dx+

b1z4
2z1z2z3

dy.

Pulling Ψ back to submanifold (5) yields a Pfaffian system with 1-dimensional Cauchy distri-
bution spanned by

ξk1,k2 = ∂y −
k2(y)

4
(R1 + 4R4) +

k1(y)

2
R2 +

1

2
R3,

where the Ri form a basis for the Vessiot algebra1

R1 = z1∂z1 − z2∂z2 − 2z3∂z3 , R2 =
1 + z1z2
z1z3

∂z2 + ∂z3 −
z4

z1z2z3
∂z4 ,

R3 = z1z3∂z1 − z23∂z3 , R4 = −1

4
(z1∂z1 − z2∂z2)

1A brief geometric construction and interpretation of the Vessiot algebra is given in Section 4 and Appendix A.
See [2] for a complete exposition. However, detailed knowledge of Vessiot algebras is not a prerequisite for this
paper.
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with nonzero structure

[R1, R2] = 2R2, [R1, R3] = −2R3, [R2, R3] = R1.

Since ξk1,k2 is a curve in the Vessiot algebra it determines an ODE of Lie type. Furthermore
ξk1,k2 is generically transverse to the Cauchy data.

Note that ρ1 = R1 + 4R4, ρ2 = R2, ρ3 = R3 generates a local action of SL(2) on R4:

[ρ1, ρ2] = 2ρ2, [ρ1, ρ3] = −2ρ3, [ρ2, ρ3] = ρ1

and the Cauchy vector is

ξk1,k2 = ∂y − k2(y)ρ1 + k1(y)ρ2 +
1

2
ρ3.

In summary, vector field ξk1,k2 flows the 1-dimensional initial data solution curve γ̃ of θk1,k2 to
a 2-dimensional solution. This completes the proof of Theorem 1. �

Example 1. As an illustrative example we consider the initial value problem

uxy +
uxuy

2
(
1 + eu/2+v/2

) = 0, vxy +
vxvy

2
(
1 + eu/2+v/2

) = 0,

u|γ = v|γ = 0,
∂u

∂n |γ
=
∂v

∂n |γ
=
√

2,

where γ = (x, x). Since x and y are light-cone coordinates x = (ξ + τ)/2, y = (ξ − τ)/2, the
curve γ corresponds to time τ = 0. Thus we have constant initial values at time τ = 0. We wish
to determine the system of Lie type whose solutions corresponds to the solution of this Cauchy
problem. We have n = 2−1/2(∂x − ∂y) and we get

ux|γ = vx|γ = 1, uy |γ = vy |γ = −1.

So our initial curve in J1 is γ̂(x) = (x, x, 0, 0, 1,−1, 1,−1) = (x, y, u, v, ux, uy, vx, vy). This
translates to an initial curve in the adapted coordinates

(x, y, z1, z2, z3, z4) = (x, x, 1, 1,−1, 1).

We extend this to a unique 1-dimensional integral of Ψ and get

γ̃(x) = (x, y, z1, z2, z3, z4, a1, a2, a3, b1, b2, b3) =

(
x, x, 1, 1,−1, 1,

1

2
, 0, 0,

1

2
, 0, 0

)
.

Thus we get

k1(y) = 1/2, k2(y) = 0.

The Cauchy vector is therefore

ξ 1
2
,0 = ∂y +

1

4
R2 +

1

2
R3.

We flow this vector field obtaining solutions zi(x, y) subject to the intial conditions

z1(x, x) = 1, z2(x, x) = 1, z3(x, x) = −1, z4(x, x) = 1.

The ODE are

∂z1
∂y

= z1z2,
∂z2
∂y

=
1 + z1z2

4z1z3
,

∂z3
∂y

=
1

4
− z23

2
,

∂z4
∂y

=
z4

4z1z2z3
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to be solved for zi(x, y) subject to the given initial conditions. In fact, we need not solve the
whole system but only the equation for z3 and then substitute this into the equation for z1. This
gives the function u up to a quadrature after which the function v can be obtained algebraically
from the PDE itself

ev/2 = −e−u/2
(

1 +
uxuy
2uxy

)
.

We get the unique solution of the Cauchy problem to be

u(x, y) = v(x, y) = ln

(
cosh

√
2

4
(x− y) +

√
2 sinh

√
2

4
(x− y)

)2

.

Example 2. A slightly more interesting example is obtained from the initial conditions

u|γ = 2 lnλ, v|γ = 2 ln
1

λ
,

∂u

∂n |γ
=
∂v

∂n |γ
= 1,

for any λ > 0. The Cauchy vector is ξ 1
4
,0 and its flow subject to the initial conditions along

y = x being

z1 = λ, z2 =
1

λ
, z3 = − 1√

2
, z4 =

1√
2

gives rise to the unique solution

u = 2 ln

(
λ exp

(
x+ y

4

)
exp

(
−y

2

)
(3 + 2

√
2)− exp

(
−x

2

)
2(1 +

√
2)

)
,

v = 2 ln

(
1

2λ
exp

(
x+ y

4

)
exp (−y)

(
2
√

2 + 3
)
− exp (−x)

(
2
√

2− 3
)
− 2 exp

(
−x+y

2

)
exp

(
−y

2

) (
1 +
√

2
)

+ exp
(
−x

2

) (
1−
√

2
) )

.

Thus, even constant initial data has the potential of producing some interesting explicit solutions.
Indeed, one can ask if this solution is global in time.

The fact that we only had to solve for z3 in Example 1 (and Example 2) holds not only for
these illustrative examples since the system of Lie type in the general case is

∂z1
∂y

=
1

2
z1z3,

∂z2
∂y

= k1(y)
(1 + z1z2)

2z1z3
,

∂z3
∂y

=
1

2

(
k1(y) + k2(y)z3 − z23

)
,

∂z4
∂y

= −k1(y)z4
2z1z2z3

.

This proves

Theorem 2. In the Cauchy problem for wave maps

(
R1,1, dxdy

)
→
(
M,

du21 − du22
1 + e−u1

)
of Theorem 1, let functions k1(y) and k2(y) be defined as described above. Denote by ζ the initial
value of z3 = uy along γ. Let Γ be the unique function satisfying Riccati initial value problem

∂Γ

∂y
=

1

2

(
k1(y) + k2(y)Γ− Γ2

)
, Γ|γ = ζ. (6)
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Define function u to be the unique solution of

∂u

∂y
= Γ, u|γ = φ1

and let v be defined algebraically from the partial differential equation

uxy +
uxuy

2
(
1 + eu/2+v/2

) = 0

upon substituting solution u and solving for v. The functions u, v constitute the unique solution
of the Cauchy problem.

This implies that the solution of any given Cauchy problem for wave maps into the metric

h =
du21 − du22
1 + e−u1

relies on the solution of a Riccati initial value problem together with one quadrature. The
interesting point here is that the Riccati equation is the simplest non-trivial equation of Lie
type. It is a Lie system for the local SL(2)-action on the real line that globalises on RP1.
In general, solutions of Riccati equations develop singularities in finite time, even those with
constant coefficients. However, the theorem above provides a correspondence between Cauchy
data for the wave map and the Riccati initial value problem (6). An interesting problem is to
study this correspondence and link the nature of the Cauchy data with the properties of the
solution of (6) and in turn, link this correspondence with the geometry of the target metric.

For the standard initial value problem where Cauchy data is posed along 0 = 2τ = x− y, the
relationship between the Cauchy data and the coefficients of the Riccati equation is complicated.
However, due to its significance and for latter use, we give it explicitly:

k1 = −1

4

ψ2

(√
2φ1x − 2ψ1

)
exp

(
φ2
2

)
exp

(
−φ1

2

)
+ exp

(
φ2
2

) , a1 =
1

4

(
√

2φ1x + 2ψ1)(
√

2φ2x + ψ2) exp
(
φ1
2

)
exp

(
φ1
2

)
+ exp

(
−φ2

2

) ,

k2 = δ−1

(
2
(
φ1

2
x + 2ψ2

2 − 2
√

2ψ1φ1x − 4k1

)(
ψ2 +

√
2φ2x

)
+ 4
√

2a1

(
φ1x − ψ1

√
2
)

exp

(
−φ1

2
− φ2

2

)
+ 8

(
−ψ1x

√
2 + φ1xx

)(
ψ2 +

√
2φ2x

))
,

where

δ = 4
(√

2φ2x + ψ2

)(
φ1x − ψ1

√
2
)
.

Recall that functions φ1, φ2 are respectively the values of u and v along γ, the ψi are the values
of the normal derivatives along γ as stated in the theorem. For instance for arbitrary constant
initial conditions along the time axis

φ1(x) = u(x, x) = 2 lnλ1, φ2(x) = v(x, x) = 2 lnλ2,

ψ1 = α
√

2, ψ2 = β
√

2; λ1, λ2 > 0,

we have

k1(y) =
αβλ1λ2
1 + λ1λ2

, k2(y) = −(α− β)λ1λ2
1 + λ1λ2

. (7)

The solution of the Cauchy problem in this case is easily calculated as we did in Examples 1
and 2 because it amounts to solving Riccati equation (6) with constant coefficients k1(y), k2(y)
given by (7); indeed Example 1 is the choice λ1 = λ2 = 1, α = β =

√
2. However the general

formula is complicated and of itself not very informative so we refrain from recording it here.
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3 Cauchy problem for wave maps and Lie reduction

We have shown that to solve the Cauchy problem for the wave map equation it is enough to
“evolve” the initial data curve γ̃ by solving a Riccati equation which is notably the simplest
nontrivial system of Lie type. One significant feature of Lie systems is that they admit “reduc-
tion by particular solutions”, otherwise known as Lie reduction. There are only a few sources
scattered in the literature on this topic, among them [4, 5, 7]. In this section we give an illus-
tration of how Lie reduction may be useful in resolving instances of the Cauchy problem for our
wave map system. Appendix A.2 of this paper summarises the known results on systems of Lie
type, oriented toward the applications at hand. In this and subsequent sections we will adopt
the notation and theory set out in Appendix A.2, to which we refer the reader.

Consider the Cauchy problem for wave maps with (non-constant) Cauchy data

φ1 = φ2 = 0, ψ1 = −2
√

2, ψ2 = 2
√

2x

along the curve y = x. We get

k1(y) = −2y, k2(y) = −y − 1,

so that the corresponding Riccati initial value problem of Theorem 2 is

∂Γ

∂y
=

1

2

(
−2y − (y + 1)Γ− Γ2

)
, Γ(x, x) = 2. (8)

We observe that Γ = 1 − y is a solution vanishing at y = 1. Implementing the procedure
described in Appendix A.2 obtains one factor in the fundamental solution

g0(y) =

(
1 1− y
0 1

)
.

A curve in the isotropy group of 0 is denoted by H and has the form

g1(y) =

(
γ1(y) 0
γ2(y) γ1(y)−1

)
.

The curve of Lie algebra elements associated to the Riccati equation

dz

dy
= α0(y) + 2α1(y)z − α2(y)z2

is

A(y) =

(
α1 α0

α2 −α1

)
⊂ sl(2).

For the Riccati initial value problem (8) we have

A(y) =

(
−y+1

4 y
1
2

y+1
4

)
and the reduced fundamental equation is

dg1
dy

= B(y)g1,
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where (see Appendix A.2, especially Theorem 6 & Appendix A.2.1)

B(y) = g0(y)−1A(y)g0(y)− g0(y)−1
dg0
dy

=

(
1
4y −

3
4 0

1
2 −1

4y + 3
4

)
,

valued in the isotropy subalgebra at 0, as expected. The ODE initial value problem for the
fundamental solution factor g1(y) is

dγ1
dy
− β1γ1 = 0,

dγ2
dy
− 1

2
γ1 + β1γ2 = 0, γ1(1) = 1, γ2(1) = 0,

where β1 = (y − 3)/4. This problem can be explicitly solved in terms of elementary functions
giving

γ1(y) = exp

(
(y − 1)(y − 5)

8

)
,

γ2(y) =
√
π exp

(
3

4
y − y2 − 13

8

)(
erfi(1) + erfi

(
1

2
(y − 3)

))
,

where i =
√
−1 and erfi denotes a concomitant of the error function:

erfi(x) =
2√
π

∫ x

0
exp

(
t2
)
dt.

This data enables us to construct the fundamental solution g(y) = g0(y)g1(y) for (8) and leads
to the solution of the ODE in (8)

Γ(y; q) = λg(y)(q),

where λh denotes the linear fractional transformation (12) by h ∈ SL(2).
It is now a simple matter to determine the value of q that satisfies the initial condition

Γ(x, x) = 2 and giving the unique solution Γ(x, y) of the Riccati initial value problem (8). We
find

Γ(x, y) = 1− y −
2 exp

(
3
2y −

1
4y

2
)

∆(x)−
√
π exp

(
−9

4

)
erfi

(
1
2(y − 3)

) ,
where

∆(x) = −
2 exp

(
−3

2x+ 1
4x

2
)

(1 + x)
+
√
π exp

(
−9

4

)
erfi

(
1

2
(x− 3)

)
.

Finally, we obtain an integral representation of the solution u satisfying

∂u

∂y
= Γ(x, y), u(x, x) = 0,

namely

u(x, y) =

∫ y

x
Γ(x, s) ds

or in terms of spacetime coordinates (ξ, τ)

ū(ξ, τ) =

∫ 1
2
(ξ−τ)

1
2
(ξ+τ)

Γ

(
1

2
(ξ + τ), s

)
ds.
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The significance of Lie reduction in our ability to solve the Riccati equation should here be em-
phasised. Without this, it would have been impossible to construct the fundamental solution and
there would be no hope of constructing function Γ and constructing the integral representation
of the solution of a Cauchy problem with non-constant initial data.

In the example above we relied on knowledge of a simple solution, namely Γ(x, y) = 1 − y
to perform the reduction. But even with polynomial or rational coefficients a Riccati equation
will not generally have any rational solutions. In this case however we can appeal to the well
known fact that every Riccati equation can be linearised.

Lemma 1. The general Riccati equation

dz

dt
= α0(t) + 2α1(t)z(t)− α2(t)z(t)

2 (9)

can be transformed to the form

d

dτ
y(τ) = β(τ) + y(τ)2,

where z = p(t)y(t)

ln p =

∫ t

2α1(s) ds, τ =

∫ t

α2(s)p(s) ds.

Provided these quadratures can be carried out then the explicit solvability of (9) depends on the
properties of its linearisation

d2ψ

dτ2
+ β(τ)ψ = 0, where y(τ) = − 1

ψ(τ)

d

dτ
ψ(τ).

Any solution of the 2nd order linear ODE can be used in the Lie reduction of the Riccati equation.

As a consequence of Lemma 1 and Theorem 7 of Appendix A.2, we have

Corollary 1. The solution of the Cauchy problem for wave maps of Theorem 1

(
R1,1, dxdy

)
→
(
M,

du21 − du22
1 + e−u1

)
is reducible to quadrature provided a particular solution of the Riccati equation (6) is known.
A particular solution of (6) can be constructed by quadrature and the solution of a linear second
order ODE.

Remark 1. As a consequence of Lemma 1 and Theorem 7 the differential equations solver in
MAPLE – dsolve is very often able to construct an explicit representation in terms of known
special functions to a Riccati initial value problem when the coefficients are polynomial functions
of the independent variable.

4 Hyperbolic Weierstrass representation

In this section we use the Darboux integrability of the wave map equation (2) to compute its
general solution and hence construct a hyperbolic Weierstrass-type representation for wave maps
into the corresponding metric. According to [2], we pull back Ψ to a suitable integral manifold
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M1,M2 of H
(∞)
1 and H

(∞)
2 respectively. It is convenient to define M1 by y = b1 = b2 = b3 = 0

and M2 by x = a1 = a2 = a3 = 0. This gives Pfaffian systems

Ψ1 =

{
dz4 −

1

2

(
a3z4 + a1 − z24

)
dx, dz3 +

1

2z1z2z4
a1z3dx, dz2 −

1

2
z2z4dx,

dz1 −
1

2z2z4
a1(1 + z1z2)dx, da1 − a2dx

}
and

Ψ2 =

{
dz1 −

1

2
z3z1dy, dz2 −

1

2z1z3
b1(1 + z1z2)dy, dz4 +

1

2z1z2z3
b1z4dy,

dz3 −
1

2

(
b3z3 − z23 + b1

)
dy, db1 − b2dy

}
,

each of rank 5 on 8-manifolds: (Mi, Ψi). Locally M1 has coordinates x, z1, z1, z2, z3, z4, a1, a2,
a3 while M2 has local coordinates y, z1, z1, z2, z3, z4, b1, b2, b3. Using these local formulas, we
define a local product structure(

M̂1 × M̂2, Ψ̂1 ⊕ Ψ̂2

)
,

where

Ψ̂1 =

{
dq4 −

1

2

(
a3q4 + a1 − q24

)
dx, dq3 +

1

2q1q2q4
a1q3dx, dq2 −

1

2
q2q4dx,

dq1 −
1

2q2q4
a1(1 + q1q2)dx, da1 − a2dx

}
and

Ψ̂2 =

{
dp1 −

1

2
p1p3dy, dp2 −

1

2p1p3
b1(1 + p1p2)dy, dp4 +

1

2p1p2p3
b1p4dy,

dp3 −
1

2

(
b3p3 − p23 + b1

)
dy, db1 − b2dy

}
.

As described in [2], the relationship between Ψ, Ψ̂1 and Ψ̂2 is that every integral manifold
of Ψ is a superposition of an integral manifold of Ψ̂1 and Ψ̂2. The superposition formula is the
map2

σ : M̂1 × M̂2 →M

defined by

σ(x, p, a; y, q, b) =

(
1− p1p2p4 + 2p1p2p4q3 − p1p2q3 − q3 + p1p2)q1

p4p2
,

p2(2p4q3q2q1 − q1q2q3 − p4q2q1 + q1q2 − p4 + 1)

q3q1
,

(2p4q3 − q3 − p4 + 1)p3p1p2
1− p1p2p4 + 2p1p2p4q3 − p1p2q3 − q3 + p1p2

,

2See Appendix A for further details on the superposition formula; in particular, how it is defined and con-
structed.
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(2p4q3 − q3 − p4 + 1)q1q2q4
2p4q3q2q1 − q1q2q3 − p4q2q1 + q1q2 − p4 + 1

, x, y, a1, a2, a3, b1, b2, b3

)
= (z1, z2, z3, z4, x, y, a1, a2, a3, b1, b2, b3).

The usefulness of this factorisation of the integration problem for Ψ is not only that the inte-
gration of Ψi relies on ODE while that of Ψ relies on PDE but that the Ψi are locally equivalent
to prolongations of the contact system on J1(R,R2). To see this we turn to the characterisation
of partial prolongations of such contact systems provided by [18, 19] which also provide simple
procedures for finding the equivalence. To implement this we compute the annihilators

ann Ψ̂1 := Ĥ1

=

{
∂x+ a2∂a1 +

a1(1 + q1q2)

2q2q4
∂q1 +

q2q4
2
∂q2−

a1q3
2q1q2q4

∂q3 +
1

2

(
a3q4+ a1− q24

)
∂q4 , ∂a2 , ∂a3

}
,

ann Ψ̂2 := Ĥ2

=

{
∂y+ b2∂b1 +

p1p3
2
∂p1 +

b1(1 + p1p2)

2p1p3
∂p2 +

1

2

(
b3p3 − p23 + b1

)
∂p3−

b1p4
2p1p2p3

∂p4 , ∂b2 , ∂b3

}
.

We show that each of the Ĥi is locally equivalent to the partial prolongation C〈0, 1, 1〉 of the
contact distribution on J1(R,R2). That is, the contact distribution on J1(R,R2) partially
prolonged so that one dependent variable has order 2 and the other order 3 with canonical local
normal form

C〈0, 1, 1〉 =
{
∂t + z11∂z1 + z12∂z11 + z21∂z2 + z22∂z21 + z23∂z22 , ∂z12 , ∂z23

}
.

Let D be a smooth distribution on manifold M and assume that D is totally regular in the sense
that D, all its derived bundles and all their corresponding Cauchy bundles have constant rank

on M . Denote mi = dimD(i), χi = dim Char D(i) and χii−1 = dim Char D(i)
i−1, where

Char D(i)
i−1 = D(i−1) ∩ Char D(i).

Below, k denotes the derived length of D.
According to Theorem 4.1 of [18], a totally regular distribution D on smooth manifold M is

locally equivalent to a partial prolongation of the contact distribution on J1(R,Rq) for some q
if and only if

1. The integers mi, χ
j , χjj−1 satisfy the numerical constraints

χj = 2mj −mj+1 − 1, 0 ≤ j ≤ k − 1, χii−1 = mi − 1, 1 ≤ i ≤ k − 1.

2. If mk − mk−1 > 1 then a certain canonically associated bundle called the resolvent is
integrable3.

A pair (M,D) that satisfies these conditions is said to be a Goursat manifold or Goursat
bundle. Moreover, if D is a Goursat bundle on M then it is locally equivalent to a partial
prolongation with χj − χjj−1 dependent variables at order j < k and mk − mk−1 dependent
variables at highest order, k. This uniquely identifies the partial prolongation associated to
a given Goursat manifold. Before discussing the question of constructing equivalences, let us

3In the original formulation of Theorem 4.1 in [18], the integrability of Char D(i)
i−1 is an additional hypothesis

to be checked. This is a simple task but unnecessary since it is easy to see that this bundle is always integrable
and the hypothesis can be omitted.
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solve the recognition problem for the distributions Ĥi. We take Ĥ1 which we denote temporarily
by K̂. We find

Char K̂ = {0}, Char K̂(1) = {∂a2 , ∂a3}, Char K̂
(2)
1 = {∂a2 , ∂a3 , ∂a1 , ∂q3},

Char K̂(2) = {∂a1 , ∂a2 , ∂a3 , ∂q3 , ∂x}.

Calculation shows that the dimensions of the derived bundles are

dim K̂ = 3, dim K̂(1) = 5, dim K̂(2) = 7, dim K̂(s) = 8, s ≥ 3.

Hence the derived length is k = 3. Below we check the first condition of a Goursat bundle.

Table. Checking the numerical constraints satisfied by (M,D).

j mj mj−1 − 1 2mj −mj+1 − 1 χjj−1 χj

0 3 − 6− 5− 1 = 0 − 0
1 5 2 10− 7− 1 = 2 2 2
2 7 4 14− 8− 1 = 5 4 5

Hence, K̂ is a Goursat bundle with k = 3, mk −mk−1 = 1 and the only nonzero difference
χj − χjj−1 being at order j = 2: χ2 − χ2

1 = 5− 4 = 1. Hence there is one variable of order 2 and

one variable of order 3. This solves the recognition problem and we can assert that K̂ := Ĥ1 is
locally equivalent to C〈0, 1, 1〉. Next, we show how to construct an equivalence. Given a Goursat
bundle, an efficient method for constructing an equivalence map was worked out in [19] and relies

on the filtration induced on the cotangent bundle. Denote by Ξ(j) and Ξ
(j)
j−1 the annihilators

of Char K̂(j) and Char K̂
(j)
j−1, respectively. Then we obtain the filtration

Ξ(2) ⊂ Ξ
(2)
1 ⊂ Ξ(1)

spanned as

{dq1, dq2, dq3} ⊂ {dq1, dq2, dq3, dx} ⊂ {dq1, dq2, dq3, dx, dq4, da1}.

The construction proceeds by building appropriate differential operators and functions. Because
mk −mk−1 = 1, condition 2 of the definition of Goursat manifold is vacuous. Instead we fix
any first integral of Char D(k−1), denoted, t and any section Z of D such that Zt = 1. Then,
define a distribution Πk inductively as follows:

Π`+1 = [Z,Π`], Π1 = Char D1
0, 1 ≤ ` ≤ k − 1.

There is a function ϕk which is a first integral of Πk such that dϕk ∧ dt 6= 0. The function ϕk

is said to be a fundamental function of order k. The space of fundamental functions of lower
order can be constructed from the filtration above by taking quotients. Specifically, as noted
above, in this case the only fundamental functions of less than maximal order 3 are of order 2.
They are described by the quotient bundle

Ξ
(2)
1 /Ξ(2) = {dx} mod dq1, dq2, dq3.

Without loss of generality we can take ϕ2 = x to be a fundamental function of order 2. The
construction of the equivalence map is now as follows. Function t is the “independent variable”
and successive differentiation gives the higher order variables

z1 = ϕ2, z11 = Zϕ2, z12 = Z2ϕ2,

z2 = ϕk, z21 = Zϕk, z22 = Z2ϕk, z23 = Z3ϕk.
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We now implement this. The first integrals of Char K̂(2) are spanned by q1, q2, q3 and any
function of these can be chosen to be t. If we choose (say) t = q2, then for Z we choose

Z =
2

q2q4
X,

where X is the first vector field in the basis for K̂ above; for then Zt = 1, as required. We then
construct the integrable distribution Π3 as described above and discover that its first integrals
are spanned by

q2 and
q1q3

1 + q1q2
.

Hence the fundamental function of highest order is

z2 = ϕk =
q1q3

1 + q1q2
.

The data

t = q2, z1 = x, z2 =
q1q3

1 + q1q2

and differentiation by Z now constructs the local equivalence ψ identifying K̂ = Ĥ1 and
C〈0, 1, 1〉. The local inverse ψ−11 : R→ M̂1 determines the integral submanifolds of Ĥ1.

An exactly analogous calculation holds for Ĥ2 and one arrives thereby at an explicit map
ψ−12 : R → M̂2 representing the integral manifolds of Ĥ2. The explicit integral manifolds of Ψ

are a superposition of those of Ĥ1 and Ĥ2:

R× R→ σ
(
ψ−11 (R), ψ−12 (R)

)
.

In this way we obtain remarkably compact representations for wave maps into this metric:

Theorem 3 (hyperbolic Weierstrass representation). For each collection of twice continuously
differentiable real valued functions f1(s), f2(s), g1(t), g2(t) of parameters s, t, the functions

x = f1(s), y = g1(t),

eu/2 =
(tg2(t)− 1)ḟ2(s) + (2tg2(t)− 1)f2(s)

2

g2(t)(f2(s) + sḟ2(s))
,

ev/2 =
(sf2(s)− 1)ġ2(t) + (2sf2(s)− 1)g2(t)

2

f2(s)(g2(t) + tġ2(t))

define harmonic maps

(
R1,1, dxdy

)
→
(
N,

du21 − du22
1 + e−u1

)
by u1 = u+ v, u2 = u− v.

5 Concluding remarks

We’ve seen that for a large family of non-constant initial data, it is possible to construct explicit
integral representations for solutions of the Cauchy problem for wave maps into a certain non-
constant curvature metric due to the fact that the corresponding Euler–Lagrange equation is
Darboux integrable and because the Cauchy data can be extended as a flow by a system of
Lie type. We have also constructed a hyperbolic Weierstrass representation for such wave maps
making use of the general theory in [2, 18, 19]. The fundamental ingredients throughout include
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the theory of systems of Lie type and the notion of a Vessiot group associated to any Darboux
integrable exterior differential system [2]. We expressed the evolution of the Cauchy data as
a system of Lie type for the action of a subgroup of the Vessiot group.

We may perhaps regret the occurence of integral representations in our solution of the Cauchy
problem preferring the elimination of all quadrature. Alas, this is surely a forlorn hope in
a difficult nonlinear problem, especially when it is recalled that even in the general Cauchy
problem for the (1+1)-linear wave equation quadrature cannot be eliminated, according to the
d’Alembert formula. However, one can ask if there are Darboux integrable nonlinear sigma
models with solvable Vessiot groups for harmonic maps into nonzero curvature metrics. This
would make the application of the theory of systems of Lie type very useful indeed. In fact there
is at least one such sigma model [6].

Interesting open problems include: what intrinsic properties of a metric render the corre-
sponding wave map system Darboux integrable? Moreover, what do we learn about the geometry
and topology of target manifolds from so vast a reduction in the Cauchy problem? This is espe-
cially intriging when it is recalled that the solution to the Cauchy problem has been expressed
as a curve or “evolution” in a finite Lie group, arising by Lie’s theory from a corresponding
curve in its Lie algebra.

A Appendix

A.1 The superposition formula

For completeness, in this appendix we make a remark on the construction of the superposi-
tion formula σ : M̂1 × M̂2 → M . A general construction valid for any decomposable exterior
differential system was worked out in [2]. Below we present results for the wave map system
studied in this paper. The hyperbolic structure of the wave map system in adapted coordinates
is given by

H = H1 ⊕H2,

where

H1 =

{
∂x + a2∂a1 +

a1(1 + z1z2)

2z2z4
∂z1 +

z2z4
2
∂z2 −

a1z3
2z1z2z4

∂z3 +
1

2
(a3z4 + a1 − z24)∂z4 ,

∂a2 , ∂a3

}
,

H2 =

{
∂y + b2∂b1 +

z1z3
2
∂z1 +

b1(1 + z1z2)

2z1z3
∂z2 +

1

2
(b3z3 − z23 + b1)∂z3 −

b1z4
2z1z2z3

∂z4 ,

∂b2 , ∂b3

}
.

Calculation shows that the infinitesimal symmetries of H1 which are tangent to the level sets of
all the first integrals x, y, a, b, the tangential characteristic symmetries of H1, are spanned by

E1 =

{
1

2
(z1z3∂z1 − z23∂z3),

1 + z1z2
z1z3

∂z2 + ∂z3 −
z4

z1z2z4
∂z4 , −

1

2
(z1∂z1 + z2∂z2) + z3∂z3 ,

−1

4
(z1∂z1 + z2∂z2)

}
.
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Similarly, the tangential characteristic symmetries of H2 are spanned by

E2 =

{
1 + z1z2

2z2z4
∂z1 −

z3
z1z2z4

∂z3 +
1

2
∂z4 ,

z2z4∂z2 − z24∂z4 ,
1

2
(z1∂z1 − z2∂z2) + z4∂z4 , −

1

2
(z1∂z1 − z2∂z2)

}
.

The structure of these Lie algebras are in reciprocal relation, namely, for E1 the nonzero Lie
brackets are

[e1, e2] = e3, [e1, e3] = e1, [e2, e3] = −e2,

while for E2 we have

[f1, f2] = −f3, [f1, f3] = −f1, [f2, f3] = f2 and [ei, fj ] = 0, ∀ i, j.

Hence, E1, E2 define the isomorphism class of the Vessiot algebra for this Darboux integrable
system, in the terminology of [2]. Each Ei is isomorphic to sl(2)⊕R and each frames a neighbour-
hood of a point of R4. By the converse of Lie’s second fundamental theorem there is a local Lie
group (G,m), where m : G×G→ G denotes group composition such that Ei coincide with the
infinitesimal left and right translations on G. From the expressions for either E1 or E2, by com-
puting flows or otherwise, we can compute function m. The components of m coincide precisely
with the first 4 components of the superposition map σ, where we interpret

(
{pi}4i=1, {qi}4i=1

)
as local coordinates around (e, e) ∈ G×G; e being the identity in G.

Remark 2. The tangential characteristic symmetries [20, 21] described above do not in general
lead directly to the Vessiot algebra, which is needed for the construction of the superposition
formula. In general a sequence of coframe adaptations described in [2] is required. In terms of
these the distribution H1 ⊕H2 above can be constructed from components of the fifth adapted
coframe of a so-called Darboux pair. However, it turns out that for relatively low dimensional
examples like the one in this paper, the full machinery of [2] can sometimes be avoided and
instead it is convenient to carry out a direct computation of the tangential characteristic sym-
metries of H1 and H2 as we did above. A simple example where this procedure is already not
sufficient is provided by a Fermi–Pasta–Ulam equation (see [20]), utt = u−4x uxx.

A.2 Systems of Lie type

Let µ : G ×M → M be a left-action of a Lie group G on manifold M and G ⊂ X(M) its Lie
algebra of infinitesimal generators; X(M) is the Lie algebra of all smooth vector fields on M .
Let Xi be a basis for G. Then, a vector field of Lie type or Lie field is a curve in G

X =
∑
i

αi(t)Xi,

where αi are smooth functions of parameter t. An ODE of Lie type is the differential equation
determined by a Lie field

dx

dt
= X|x(t) . (10)

We pause to recall the map µ̂ : g→ X(M), defined by

µ̂(u)|x =
d

dε
µ(ϕε(u), x)|ε=0

, ∀u ∈ g,



18 P.J. Vassiliou

where ϕε(u) is the flow (in G) of u ∈ g and g is the matrix Lie algebra associated to G, viewed as
a matrix group. The map µ̂ is the standard anti-homomorphism, induced by the left-action µ,
from the matrix Lie algebra g to the Lie algebra of smooth vector fields X(M) on M . Remark
that for each x ∈M , ker µ̂|x is equal to the subalgebra Ix ⊆ G of infinitesimal generators which
vanish at x; that is, ker µ̂|x is the isotropy subalgebra at x. An action µ is effective on M if
the global isotopy group I(M) is trivial. Recall that I(M) is the set of all g ∈ G such that
µ(g, x) = x for all x ∈ M . It follows that if the action is effective then ker µ̂ is trivial and
the map µ̂ is injective. Henceforth we assume that the G-action is effective or at least almost
effective; an action is almost effective, if I(M) is discrete. In this case, µ̂ is injective for those
elements of g whose flows are close to the the identity element in G.

We will also assume that the action is transitive so that for each x, y ∈M the corresponding
isotropy subalgebras are isomorphic, Ix ' Iy. We therefore speak of the isotropy subalgebra or
subgroup. We now recall some useful notation from [7].

Let f : M → G be a smooth map and let ω = δ(f) = df · f−1. We know that ω is a right-
invariant Maurer–Cartan form and that it is valued in the Lie algebra g of G.

Definition 3. Let M be a smooth manifold and G a Lie group.

1. A differential form ω ∈ Ω(M, g) is said to be a Maurer–Cartan form if it satisfies

dω + ω ∧ ω = 0.

2. A map f : M → G is said to be an integral of a Maurer–Cartan form ω if and only if
δ(f) = ω.

Theorem 4. On a simply connected manifold every Maurer–Cartan form has an integral.

We denote the set of all g-valued Maurer–Cartan forms on M by Ω(M, g). Specialising to
the case M = R we have the following fundamental result.

Theorem 5. Let µ : G ×M → M be an effective and transitive left-action of Lie group G on
manifold M . Suppose ω = A(t) dt ∈ Ω(R, g) is smooth at t = 0. The unique solution of the
initial value problem of Lie type

dx

dt
= µ̂(A(t))|x(t) , x(0) = q ∈M

is the function xq : R→M defined by

xq(t) = µ(g(t), q),

where g : R→ G, is the fundamental solution. That is, δ(g) = ω and g(0) = e.

Remark 3. This theorem reduces the construction of the solution of a system of Lie type to
constructing the fundamental solution g : R→ G satisfying

dg

dt
= A(t)g(t), g(0) = e.

This problem can still be very challenging. Lie’s approach is to simplify the problem by making
use of any known solutions (Lie reduction). See [7] for a proof of Theorem 5.

To explain this, continuing with transitive and effective left-action µ : G×M →M , suppose
that x1(t), . . . , xk(t) are k particular solutions of the Lie equation (10), satisfying

xj(t0) = qj , 1 ≤ j ≤ k,
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for some collection of points qj ∈M . Denote by Gq the isotropy subgroup of q ∈M ,

Gq = {g ∈ G | g · q = q}.

Let

H = Gq1 ∩Gq2 ∩ · · · ∩Gqk ,

and let h be the Lie algebra of H. Furthermore, let a curve g0 : I ⊆ R→ G be defined by

µ(g0(t), qj) := g0(t) · qj = xj(t). (11)

Such a curve of group elements is defined up to a multiplication on the right by a curve in the
the joint isotropy subgroup of the initial conditions. Constructing g0(t) involves the solution of
algebraic equations with a potentially large solution space with no canonical choice of solution.
In general one aims to find a solution g0(t) which passes through the identity at parameter
value t0 where initial conditions are to be posed.

Let C∞(M,G) denote the set of smooth maps from M to G. As in [7] define gauge transfor-
mations ρ(h) : Ω(M, g)→ Ω(M, g) by

ρ(h)ω = Ad(h)ω + δ(h), ∀h ∈ C∞(M,G).

Theorem 6 (Lie reduction; see [4, 7]). For any ω = A(t) dt ∈ Ω(R, g),

1. ω1 = ρ
(
g0(t)

−1)ω ∈ Ω(R, h).

2. If g1 : I ⊆ R→ H is an integral of ω1 then g0(t)g1(t) is an integral of ω.

A.2.1 Application of Lie reduction to the Riccati equation

The Cauchy problem for the integrable wave map system has been reduced to an initial value
problem for Riccati equation (6) together with one quadrature. In this subsection we briefly
illustrate the use of Lie reduction in the resolution of the general Riccati initial value problem.
It is used in Section 3 of the paper. The standard action of the special linear group G = SL(2,R)
on the real projective line induces a left-action on the real line

λg(ξ) :=

[
a b
c d

]
· ξ =

aξ + b

cξ + d
, ξ ∈ R (12)

the linear fractional or Möbius transformations.
With basis

u−1 =

[
0 1
0 0

]
, u0 =

[
1 0
0 −1

]
, u1 =

[
0 0
1 0

]
for sl(2,R) it is easy to see that the anti-homomorphism λ̂ : sl(2,R)→ X(R) can be expressed

λ̂(α0u−1 + α1u0 + α2u1) =
(
α0 + 2α1x− α2x

2
)
∂x.

Hence

A(t) = α0(t)u−1 + α1(t)u0 + α2(t)u1 =

[
α1(t) α0(t)
α2(t) −α1(t)

]
satisfies

λ̂ (A(t)) =
(
α0(t) + 2α1(t)x− α2(t)x

2
)
∂x.
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That is, A(t) ⊂ sl(2,R) is associated with the Lie equation

dx

dt
= α0(t) + 2α1(t)x− α2(t)x

2. (13)

Now suppose that a solution x0(t) of equation (13) is known and suppose that x0(0) = 0. Solving
equation (11) we obtain

g0(t) =

[
1 x0(t)
0 1

]
.

The isotropy subgroup of 0 ∈ R is

H = G0 =

[
a 0
c a−1

]
,

from which the initial value problem for the fundamental solution g1(t) of the reduced equation
of Lie type can be deduced to be

dg1
dt

= B(t)g1(t), g1(0) = I2, (14)

where

B(t)dt = δ(g1(t)) = ρg0(t)−1 (ω) =

[
α1 − x0α2 0
−α2 −(α1 − x0α2)

]
dt.

Since g1(t) is a curve in H, we have

g1(t) =

[
γ1(t) 0
γ2(t) γ1(t)

−1

]
.

With β(t) = α1 − x0α2, (14) has solution, expressed in terms of quadrature

γ1(t) = exp

∫ t

0
β(τ) dτ, γ2(t) = −γ1(t)−1

∫ t

0
α2(τ)γ1(τ)2 dτ.

Finally, the unique solution of the initial value problem x(0) = q ∈ R for the Riccati equation
can now be expressed in terms of quadrature:

x(t) = g0(t)g1(t) · q =

[
γ1(t) + x0(t)γ2(t) x0(t)/γ1(t)

γ2(t) γ1(t)
−1

]
· q.

That is,

x(t) =
γ1(t)q

γ2(t)q + γ1(t)−1
+ x0(t).

Theorem 7. Let x0(t) be a known solution of a Riccati equation (13). Then by Lie reduction
the construction of the fundamental solution is reducible to quadrature.
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