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1 Introduction

Let us consider some smooth manifold M with coordinates x1, . . . , xm and a dynamical system
defined by the following equations of motion

ẋi = Xi, i = 1, . . . ,m.

We can identify this system of ODE’s with the vector field

X =
∑

Xi
∂

∂xi
,

which is a linear operator on a space of the smooth functions on M that encodes the infinitesimal
evolution of any quantity

Ḟ = X(F ) =
∑

Xi
∂F

∂xi
.

In Hamiltonian mechanics one of the fundamental axiom is what we can call the energy paradigm
that can be stated as follows: “For every mechanical system there is a function defined on its
space of states, called mechanical energy or Hamiltonian H of the system, containing all its
dynamical information”.

According to this paradigm any function H on M generates vector field X describing a dy-
namical system

X = XH = PdH.

Here dH is a differential of H, and P is a bivector on the phase space M . By adding some
other assumptions we can prove that P is a Poisson bivector. In fact, it is enough to add energy
conservation

Ḣ = XH(H) = (PdH, dH) = 0
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and compatibility of dynamical evolutions associated with two functions H1,2

XH1(XH2(F )) = XH2(XH1(F )) +XXH1
(H2)(F ),

see [17, 20] and references therein.
In bi-Hamiltonian mechanics [25] we are looking for another decomposition of the given vector

field X,

X = PdH = f1P
′dH1 + · · ·+ fmP

′dHm,

by commuting Hamiltonian vector fields

Xk = P ′dHk

generated by integrals of motion H1, . . . ,Hm and some Poisson bivector P ′ compatible with P .
These Poisson bivectors P ′ can be divided into two groups of trivial and nontrivial deformations
of canonical Poisson bivector P , see [3, 9, 23, 25, 33] and references therein.

Supposing that P ′ is a trivial deformation of canonical Poisson bivector P completely defined
by Hamiltonian H we can join the geometry of the phase space M and the energy paradigm. In
this case, second Poisson bivector

P ′ = LY P (1.1)

is a Lie derivative of the canonical bivector P along the Liouville vector field

Y = AdH, (1.2)

where A is a 2-tensor field acting on the differential of the Hamiltonian. Remind, that the
Lie derivative P ′ (1.1) is a trivial deformation because it is 2-coboundary and simultaneously 2-
cocycle in the Poisson–Lichnerowicz cohomology defined by canonical Poisson bivector P [9, 23].

The main aim of this note is to show 2-tensor fields A associated with some well-known
integrable systems and to prove that these tensor fields may be useful to construct new integrable
systems. For example, we discuss a new trivial family of integrable noncommutative three
dimensional systems, which includes deformations of the rational Calogero–Moser system with
three particle interaction.

2 Integrable systems on cotangent bundles

Let us consider canonical Poisson bivector on the symplectic manifold M = T ∗Q

P =

n∑
i=1

∂

∂qi
∧ ∂

∂pi
, (2.1)

which is the one mostly used in Hamiltonian mechanics [1, 2]. Here qi are local coordinates
describing a point q on a smooth manifold Q, and pi, the canonical conjugate momenta, are
local coordinates describing covectors on such manifold, i.e. points p in the cotangent bundle
T ∗Q of Q. The corresponding Poisson bracket looks like

{pi, qj} = δij , {qi, qj} = {pi, pj} = 0. (2.2)

In local coordinates x on M the Lie derivative of a bivector P along a vector field Y reads as

(
LY P

)
ij

=

dimM∑
k=1

(
Yk
∂Pij

∂xk
− Pkj

∂Yi
∂xk
− Pik

∂Yj
∂xk

)
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and the Schouten bracket [A,B] of two bivectors A and B is a trivector with the following entries

[A,B]ijk = −
dimM∑
m=1

(
Bmk

∂Aij

∂xm
+Amk

∂Bij

∂xm
+ cycle(i, j, k)

)
. (2.3)

In our case M = T ∗Q, dimM = 2n and x = (q, p).
Let us consider natural Hamilton functions on M = T ∗Q

H = T (q, p) + V (q), (2.4)

which are the sum of the geodesic Hamiltonian T and potential energy V (q). According to [15,
24, 31, 32], for natural Hamiltonians there is other representation for the vector field Y (1.2)

Y =

(
Λ 0
0 Π

)(
dq
dp

)
.

Here we use matrix notation of tensor objects in which, for instance, canonical Poisson bivec-
tor P (2.1) looks like

P =

(
0 E
−E 0

)
. (2.5)

Here E is a unit matrix.
If Π = 0 and Λ is the conformal Killing tensor of gradient type or Yano–Killing tensor on Q,

one gets second Poisson bivector P ′ = LY P associated with Hamilton functions separable in
orthogonal coordinate systems on Q. In this case eigenvalues of the the Nijenhuis operator

N = P ′P−1, (2.6)

which is also called the hereditary or recursion operator, are variables of separation. In order
to get integrals of motion Hk from N we have to extend the initial phase space [18] or to fix
separated relations [31].

The new idea is that we can substitute the arbitrary Hamilton function H (2.4) and the
2-tensor field A into the definition (1.1) and try to find the Poisson bivectors P ′ solving the
equation

[P ′, P ′] = [LAdHP,LAdHP ] = 0, (2.7)

where [·, ·] is the Schouten bracket defined by (2.3). In this case P ′ will be the Poisson bivector
compatible with P and we will say that M = T ∗Q is the bi-Hamiltonian manifold [25]. The
next step is a search of integrals of motion for this Hamilton function H.

If the recursion operator N at every point has n distinct functionally independent eigenvalues,
we can say that M is a regular bi-Hamiltonian manifold. If the recursion operator N does not
have this property then we can say that bi-Hamiltonian manifold M is irregular [24, 31]. So,
there are three different cases:

1) recursion operator produces the necessary number of integrals of motion;

2) recursion operator generates variables of separation instead of integrals of motion;

3) recursion operator produces only part of the integrals of motion or variables of separation.

In the third case we have to complement the recursion operator with some additional information
in order to get integrals of motion. Namely this property allows us to get noncommutative
integrable systems, which will be considered in Section 3.

Now let us show a collection of tensor fields A associated with some well-known integrable
systems.
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2.1 Toda lattice

Let us consider the following tensor field A depending only on q variables

A =

(
B + 2D −B> 0

0 B −B>
)
P,

where B is a strictly upper diagonal matrix

B =


0 1 1 · · · 1
0 0 1 · · · 1
...

. . .
...

0 1
0 . . . 0

 =

n∑
i>j

eij , (2.8)

and D is a diagonal matrix

D = diag(q1, q2, . . . , qn) =

n∑
i=1

qieii.

Matrices eij are n× n with only one non zero (ij) entry, which equals to unit.
Substituting this tensor field A and a natural Hamilton function

H =
n∑

i=1

p2i + V (q)

into the definition of P ′ one gets a system of equations (2.7) on V (q). One of the partial solutions
of this system is the Hamilton function for the open Toda lattice associated with An root system

H =
n∑

i=1

p2i + a
n−1∑
i=1

eqi−qi+1 , a ∈ R.

Traces of powers of the corresponding recursion operator N (2.6)

Hk = trNk, k = 1, . . . , n, (2.9)

are functionally independent constants of motion in bi-involution with respect to both Poisson
brackets

{Hi, Hj} = {Hi, Hj}′ = 0.

This Poisson bivector P ′ was found by Das, Okubo and Fernandes [8, 10].
In generic case we can use a more complicated tensor field

Ã =

(
B̃ + D̃ 0

0 C̃

)
P,

where entries of D̃ are linear on qi and B̃ and C̃ are numerical matrices. Here B̃ is an arbitrary
matrix, whereas Ã and B̃ satisfy to algebraic equations which may be obtained from (2.7) at
V (q) = 0.

Using this tensor field Ã we can get the recursion operators which produce either integrals of
motion for the periodic Toda lattice [14] or variables of separation for the Toda lattice [34]. In
similar manner we can consider the Toda lattices associated with other classical root systems [31].
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2.2 Relativistic Toda lattice

If we substitute the Hamilton function H(q, p) and the following tensor field A

A =

(
−B> 0
−E 0

)
P =

(
0 −B>
0 −E

)
,

where E is a unit matrix and B is given by (2.8), into the definition of P ′ (1.1) we will obtain
a system of equations on H. One of the solutions is the Hamiltonian of the open discrete Toda
lattice associated with An root system

H =
n∑

i=1

(
ci + di

)
, (2.10)

where ci and di are the so-called Suris variables

ci = exp(pi − qi + qi+1), di = exp(pi), q0 = −∞, qn+1 = +∞.

Traces of powers of the corresponding recursion operator N (2.9) are integrals of motion in
bi-involution with respect to both Poisson brackets. Namely this Poisson bivector P ′ (1.1) is
discussed in [26, 29].

Remind, that according to [29] there is an equivalence between the relativistic Toda lattice
and the discrete time Toda lattice. Namely, substituting

pj = θj +
1

2
ln

(
1 + exp(qj − qj−1)
1 + exp(qj+1 − qj)

)
in (2.10) one gets standard Hamiltonian for the relativistic Toda lattice

H =

n−1∑
j=1

exp(θj)
[[

1 + exp(qj − qj−1)][1 + exp(qj+1 − qj)
]]1/2

.

Transformation (θj · qj)→ (pj · qj) is a canonical transformation.

As above, two numerical matrices B̃ and C̃ in the tensor field

A =

(
0 B̃

0 C̃

)

allow us to get recursion operators N = P ′P−1 which generate either integrals of motion for the
periodic relativistic Toda lattice or variables of separation [22].

2.3 Henon–Heiles system

At n = 2 we can introduce the following linear in momenta tensor field A

A =

(
B 0
0 C

)
P =

(
0 B
−C 0

)
, (2.11)

where

B =

(
2q1p1 q1p2
q1p2 q2p2

)
, C =

(
f1(q)p1 + f2(q)p2 0

0 f3(q)p1 + f4(q)p2

)
.
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Substituting this tensor field A and a natural Hamilton function

H1 = p21 + p22 + V (q)

into the definition of P ′ one gets a system of equations (2.7) on V (q) and functions fk(q). The
resulting system of PDE’s has two partial polynomial solutions

V (q) = c1q2
(
3q21 + 16q22

)
+ c2

(
2q22 +

q21
8

)
+ c3q2, ck ∈ R,

and

V (q) = c1
(
q41 + 6q21q

2
2 + 8q42

)
+ c2

(
q21 + 4q22

)
+
c3
q22
.

Second integrals of motion H2 = trN2 are fourth order polynomials in momenta.
So, one gets the Henon–Heiles potential and the fourth order potential [12] as particular

polynomial solutions of the equations (2.7) associated with tensor field (2.11).
Using slightly deformed tensor field A we can get the same systems with singular terms [15]

and their three-dimensional counterparts [31].

2.4 Rational Calogero–Moser model

Following [24] let us consider tensor field A, which is proportional to P

A = ρ(q, p)P,

where ρ(q, p) is a function on M . If

A = (p1q1 + · · ·+ pnqn)P, ρ = p1q1 + · · ·+ pnqn, (2.12)

then equations (2.7) have the following partial solution

H =
1

2

n∑
i=1

p 2
i +

g2

2

n∑
i 6=j

1

(qi − qj)2
, (2.13)

where g is a coupling constant. It is the Hamilton function of the n-particle rational Calogero–
Moser model associated with the root system An.

The corresponding recursion operator N (2.6) generates only a Hamilton function

trNk = 2Hk, k = 1, . . . , n,

that allows us to identify our phase space M = R2n with the irregular bi-Hamiltonian manifold.
In this case [24, 31] integrals of motion are polynomial solutions of the equations

PdH = −1

k
P ′d lnHk, k = 1, . . . , n, (2.14)

which have two functionally independent solutions for any k ≥ 2. It is easy to see that the
functions

Ckm =
H
−1/m
m

H
−1/k
k

(2.15)

are Casimir functions of P ′, i.e. P ′dCkm = 0.
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Some solutions of equations (2.14) coincide with the well-known integrals of motion

Jn−m ≡
1

m!

{ n∑
i=1

qi · · ·
{

︸ ︷︷ ︸
m times

n∑
i=1

qi, Jm

}
· · ·
}
, m = 1, . . . , n− 1,

obtained from the conserved quantity

Jn ≡ exp

−g2
2

∑
i 6=j

1

(qi − qj)2
∂2

∂pi∂pj

 n∏
k=1

pk

by taking its successive Poisson brackets with
n∑

i=1
qi [11]. These n solutions, including J2 = H,

are in involution with respect to the Poisson brackets (2.2).
Other n− 1 functionally independent solutions of (2.14),

Km = mg1Jm − gmJ1, gm =
1

2

{
n∑

i=1

q 2
j , Jm

}
, m = 2, . . . , n,

are not in involution with respect to the canonical Poisson bracket defined by (2.1) [11].

2.5 Rational Ruijsenaars–Schneider model

Let us consider tensor field A, which is proportional to canonical bivector P

A = (q1 + · · ·+ qn)P, ρ = q1 + · · ·+ qn.

In this case equations (2.7) have the following partial solutions

Jk =
1

k!
trLk, k = ±1,±2, . . . ,±n, (2.16)

where L is the Lax matrix of the Ruijsenaars–Schneider model

L =

n∑
i,j=1

γ

qi − qj + γ
bjeij , bk = epk

∏
j 6=k

(
1− γ2

(qk − qj)2

)1/2

.

As above recursion operator produces only the Hamilton function. It is easy to prove that traces
of powers of the Lax matrix L (2.16) satisfy to the following relations

PdJ±2 = −1

k
P ′d ln Jk, k = ±1, . . . ,±n, (2.17)

instead of the standard Lenard–Magri relations [25, 30]. Moreover, similar to the Calogero–
Moser system, there are other solutions Km of these equations (2.17), which are described in [4].

Remind, that the so-called principal Ruijsenaars–Schneider Hamiltonian has the form

HRS =
1

2
(J1 + J−1) =

n∑
k=1

(cosh 2pk)
∏
j 6=k

(
1− γ2

(qk − qj)2

)1/2

and that the rational Ruijsenaars–Schneider system is in duality with the corresponding variant
of the trigonometric Sutherland system, see [4] and references therein.

We want to highlight that for all integrable systems listed in [24, 30, 31, 32] the second
Poisson bivector P ′ (1.1) is a Lie derivative of the canonical Poisson bivector P along the vector
field Y = AdH (1.2), where tensor field A usually has a very simple form.

In the next section we show that such simple tensor fields A may be useful to search for new
integrable systems.



8 A.V. Tsiganov

3 Noncommutative integrable systems

The extreme rarity of integrable dynamical systems makes the quest for them all the more
exciting. We want to apply tensor fields A to partial solution of this problem. Below we present
a method to construct a new family of three dimensional noncommutative integrable systems.

Let us consider natural Hamilton function on M = R2n

H =

n∑
i=1

p2i + V (q1, . . . , qn)

and bivector A associated with the rational Calogero–Moser system (2.12)

A = (p1q1 + · · ·+ pnqn)P,

where P is canonical Poisson bivector (2.1), (2.5).
In previous section we have discussed partial solutions of the equations (2.7), here we want

to discuss their complete solution.

Proposition 1. The Lie derivative of P (2.1) along the vector field Y

P ′ = LY P, Y = (p1q1 + · · ·+ pnqn)PdH (3.1)

is a Poisson bivector compatible with P if and only if

H =
n∑

i=1

p2i +
1

q21
F

(
q2
q1
,
q3
q1
, . . . ,

qn
q1

)
. (3.2)

Here F is an arbitrary homogeneous function of zero degree function depending on the homoge-
neous coordinates

x1 =
q2
q1
, x2 =

q3
q1
, . . . , xn−1 =

qn
q1
.

The definition of the homogeneous coordinates may be found in [13]. Proof is a straightfor-
ward calculation of the Schouten bracket (2.7).

It is easy to see that some Hamilton functions separable in spherical coordinates and Hamilton
functions for the rational Calogero–Moser systems associated with the An, Bn, Cn and Dn root
systems have the form (3.2).

We got accustomed to believing that the notion of two compatible Poisson structures P
and P ′ allows us to get the appropriate integrable systems [15, 25, 30, 31, 32]. In our case
recursion operator N = P ′P−1 reproduces only the Hamilton function

trNk = 2(2H)k.

It allows us to identify our phase space M = R2n with the irregular bi-Hamiltonian mani-
fold [25, 31], but simultaneously it makes the use of standard constructions of the integrals of
motion impossible.

We do not claim that all the Hamilton functions (3.2) are integrable because we do not have
an explicit construction of the necessary number of integrals of motion. Nevertheless, even in
generic case there is one additional integral of motion.

Proposition 2. The following second order polynomial in momenta

C = (p1q1 + · · ·+ pnqn)2 − (q21 + · · ·+ q2n)H

is a Casimir function of P ′, i.e. P ′dC = 0.
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Consequently we have

{H,C} = 0.

It is enough for integrability at n = 2 when we get Hamilton functions

H = p21 + p22 +
1

q21
F

(
q2
q1

)
separable in polar coordinates on the plane.

At n > 3 we can make some assumptions on the form of the additional integrals of motion.
For instance, let us postulate that our dynamical system is invariant with respect to translations,
i.e. that there is a linear in momenta integral of motion

Hpost = p1 + · · ·+ pn, {H,Hpost} = 0.

It leads to the additional restriction on the form of the proper Hamilton functions (3.2)

H =

n∑
i=1

p2i +
1

(q2 − q1)2
G

(
q3 − q2
q2 − q1

,
q4 − q3
q2 − q1

, . . . ,
qn − qn−1
q1 − q2

)
,

which generate bi-Hamiltonian vector fields

X = PdH = P ′d lnH−1post (3.3)

equipped with the four integrals of motion

H1 = Hpost, H2 = H, H3 = C, H4 = {H1, C} (3.4)

with the linearly independent differentials dHi. According to the Euler–Jacobi theorem [19] it
is enough for integrability by quadratures at n = 3.

Remind that the Euler–Jacobi theorem [19] states that a system of N differential equations

ẋi = Xi(x1, . . . , xN ), i = 1, . . . , N, (3.5)

possessing the last Jacobi multiplier µ (invariant measure) andN−2 independent first integrals is
integrable by quadratures. In our case N = 6, we have four independent integrals of motion (3.4)
and µ = 1.

So, at n = 3 the following Hamilton functions

H2 = p21 + p22 + p33 +
1

(q2 − q1)2
G

(
q3 − q2
q2 − q1

)
(3.6)

labelled by functions G generate integrable by quadratures Hamiltonian equations of mo-
tion (3.3)–(3.5). Because

{H1, H2} = 0, {H1, H3} = H4, {H1, H4} = 2H2
1 − 6H2,

{H2, H3} = 0, {H2, H4} = 0, {H4, H3} = 4H1H3 (3.7)

we have noncommutative integrable systems with respect to the canonical Poisson bracket, see,
for instance, [21] and references therein.

Of course, in the center of momentum frame, the total linear momentum of the system is zero
H1 = 0 and we have three integrals of motion H2, H3 and H4 in the involution that is enough
for integrability at n = 3 and n = 4.
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On the other hand, Hamilton functions (3.6) define superintegrable systems in the Liouville
sense

{Hi, Hj}′ = 0, i, j = 1, . . . , 4,

with respect to the second Poisson bracket {·, ·}′ associated with the Poisson tensor P ′ (3.1). If
we put

G(x) = g2
(

1 +
1

x2
+

1

(1 + x)2

)
,

we can obtain a well-known Hamiltonian for the rational Calogero–Moser system (2.13)

HCM =

3∑
i=1

p2i +
g2

(q2 − q1)2
+

g2

(q3 − q2)2
+

g2

(q3 − q1)2
.

In this case there are other polynomial integrals of motion (2.14) and other Casimir functions
of P ′ (2.15). This system was separated by Calogero [7] in cylindrical coordinates in R3. Being
a superintegrable system it is actually separable in four other types of coordinate systems [5].
These variables of separation may be easily found using either the generalised Bertrand–Darboux
theorem [35] or methods of the bi-Hamiltonian geometry [16]. Remind, that variables of sepa-
ration are eigenvalues of the Killing tensor K satisfying equation

KdV = 0, (3.8)

where V is potential part of the Hamiltonian H.

Any additive deformation of this function G(x) leads to the integrable additive deformation
of the rational Calogero–Moser system, for instance, if

G̃(x) = G(x) +
a

x
,

then one gets an integrable system with the three-particle interaction

H̃CM = HCM +
a

(q1 − q2)(q2 − q3)
.

For this Hamilton function we couldn’t find any polynomial in momenta integrals of motion ex-
cept H1, H3 and H4 (3.4)). Moreover, we couldn’t get variables of separation using the standard
(regular) methods such as generalised Bertrand–Darboux theorem [35] and bi-Hamiltonian al-
gorithm discussed in [16]. Namely, in contrast with the case a = 0 at a 6= 0 the Killing tensor K
satisfying (3.8) has only functionally dependent eigenvalues.

At n = 3 in order to get rational Calogero–Moser systems associated with other classical
root systems and their deformations we can postulate an existence of the fourth order integral
of motion

Hpost =

n∑
i 6=j

p2i p
2
j +

∑
k

fk(q)p2k + g(q),

with some unknown functions fk(q) and g(q). However we do not have an exhaustive clas-
sification as of yet.

In generic case at n ≥ 3 we can use other hypotheses about additional integrals of motion
commuting with H (3.2).
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Of course, construction of such integrable systems is trivial and closely related with con-
struction of the group invariant solutions of partial differential equations through imposing side
conditions [27, 28]. Remind, we can look for solution W (q) of the Hamilton–Jacobi equation

H(p, q) =

n∑
i=1

(
∂W

∂qi

)2

+W (q1, . . . , qn) = E , pj =
∂W

∂qj
,

up to the side condition

S(q, p) = 0.

If {H,S} = f(q, p)S then this side condition is consistent with H and the corresponding integrals
of motion are defined modulo S = 0, i.e.

{H,Hk} = gk(q, p)S.

Here f and gk are some functions on phase space and W (q) is the so-called characteristic
Hamilton function.

In our case the side condition is related with the transition to the center of momentum frame

S = Hpost ≡ p1 + p2 + p3 = 0,

which is always consistent with the Hamilton function (3.6) and we have three integrals of
motion H2, H3 and H4 (3.4) in involution by modulo S = 0 (3.7). Construction of the variables
of separation for the Hamilton–Jacobi equation with a side conditions is discussed in [6].

In quantum case we can consider the Schrödinger equation

HΨ = EΨ, H = ∆ + V (q1, . . . , qn),

where ∆ is the Laplace–Beltrami operator on M = R2n, and study solution of this equation that
also satisfies a side condition

SΨ = 0.

The consistency condition for the existence of nontrivial solutions Ψ is a standard

[H,S] = fS.

In this case linear differential operator K will be a symmetry operator for H modulo SΨ = 0 if

[H,K] = gS.

Here f and g are some linear partial differential operators, see examples and discussion in [6].
We assume that the quantum counterpart of H (3.6) could be embedded in this generic

scheme.

4 Conclusion

We have demonstrated that the trivial deformations of the canonical Poisson bracket associated
with the well-known integrable systems have a very simple form defined by some 2-tensor field
A acting on the differential of the Hamilton function. We have shown a collection of examples
and also proven that such tensor fields may be useful for searching new integrable by quadratures
dynamical systems. For example, we have proven the noncommutative integrability of a new
generalisation of the rational Calogero–Moser system with three particle interaction.

In fact, we propose a new form for the old content and believe that this unification is a next
step in creating the invariant and rigorous geometric theory of integrable systems on regular
and irregular bi-Hamiltonian manifolds.
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(1977), 253–300.

http://dx.doi.org/10.1088/1751-8113/44/22/225205
http://dx.doi.org/10.1088/1751-8113/44/22/225205
http://arxiv.org/abs/1101.0167
http://dx.doi.org/10.7546/jgsp-27-2012-27-44
http://arxiv.org/abs/1209.1314
http://dx.doi.org/10.1063/1.533369
http://dx.doi.org/10.3842/SIGMA.2012.089
http://arxiv.org/abs/1209.2019
http://dx.doi.org/10.1063/1.1664820
http://dx.doi.org/10.1016/0003-4916(89)90014-6
http://dx.doi.org/10.1007/s00220-004-1190-8
http://dx.doi.org/10.1007/s00220-004-1190-8
http://arxiv.org/abs/nlin.SI/0103052
http://dx.doi.org/10.1088/0305-4470/26/15/028
http://dx.doi.org/10.1088/0305-4470/26/15/028
http://dx.doi.org/10.1016/S0375-9601(01)00365-6
http://arxiv.org/abs/nlin.SI/0105056
http://dx.doi.org/10.1063/1.526103
http://dx.doi.org/10.3842/SIGMA.2006.097
http://arxiv.org/abs/nlin.SI/0701004
http://dx.doi.org/10.1088/1751-8113/44/25/255202
http://arxiv.org/abs/1012.0468
http://dx.doi.org/10.1070/RD2005v010n04ABEH000323
http://arxiv.org/abs/nlin.SI/0505047
http://dx.doi.org/10.1016/S0393-0440(99)00051-0
http://dx.doi.org/10.1103/RevModPhys.36.572
http://dx.doi.org/10.1134/S1560354710040076
http://arxiv.org/abs/0910.0375
http://arxiv.org/abs/hep-th/9402111


On a Trivial Family of Noncommutative Integrable Systems 13

[24] Maciejewski A.J., Przybylska M., Tsiganov A.V., On algebraic construction of certain integrable and super-
integrable systems, Phys. D 240 (2011), 1426–1448, arXiv:1011.3249.

[25] Magri F., Casati P., Falqui G., Pedroni M., Eight lectures on integrable systems, in Integrability of Nonlinear
Systems (Pondicherry, 1996), Lecture Notes in Phys., Vol. 495, Springer, Berlin, 1997, 256–296.

[26] Oevel W., Fuchssteiner B., Zhang H., Ragnisco O., Mastersymmetries, angle variables, and recursion oper-
ator of the relativistic Toda lattice, J. Math. Phys. 30 (1989), 2664–2670.

[27] Olver P.J., Rosenau P., Group-invariant solutions of differential equations, SIAM J. Appl. Math. 47 (1987),
263–278.

[28] Ovsiannikov L.V., Group analysis of differential equations, Academic Press Inc., New York, 1982.

[29] Suris Y.B., On the bi-Hamiltonian structure of Toda and relativistic Toda lattices, Phys. Lett. A 180 (1993),
419–429.

[30] Tempesta P., Tondo G., Generalized Lenard chains, separation of variables, and superintegrability, Phys.
Rev. E 85 (2012), 046602, 11 pages, arXiv:1205.6937.

[31] Tsiganov A.V., On bi-integrable natural Hamiltonian systems on Riemannian manifolds, J. Nonlinear Math.
Phys. 18 (2011), 245–268, arXiv:1006.3914.

[32] Tsiganov A.V., On natural Poisson bivectors on the sphere, J. Phys. A: Math. Theor. 44 (2011), 105203,
21 pages, arXiv:1010.3492.

[33] Tsiganov A.V., On the Poisson structures for the nonholonomic Chaplygin and Veselova problems, Regul.
Chaotic Dyn. 17 (2012), 439–450.

[34] Tsiganov A.V., On two different bi-Hamiltonian structures for the Toda lattice, J. Phys. A: Math. Theor.
40 (2007), 6395–6406, nlin.SI/0701062.
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