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Abstract. The search for a geometric interpretation of the constrained brackets of Dirac
led to the definition of the Courant bracket. The search for the right notion of a “double”
for Lie bialgebroids led to the definition of Courant algebroids. We recount the emergence
of these concepts.
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I dedicate this little memoir to Peter Olver on the occasion
of his 60th birthday, with friendship and in admiration.

In 1986, in the historical notes to his Applications of Lie Groups to Differential Equations [38],
Peter Olver pointed out that the concept of a “Poisson structure” was already known to Sophus
Lie, under the name “function group,” a century before André Lichnerowicz formally defined
Poisson manifolds in 1977 [25]1. Ten years before Lichnerowicz’s article, and in a completely
unrelated inquiry, Jean Pradines had defined the new concept of Lie algebroid as the infinitesimal
counterpart of Ehresmann’s differentiable groupoids, which are to-day called Lie groupoids [39].
Both the geometry of Lichnerowicz’s Poisson manifolds and the Ehresmann theory of groupoids
developed separately until the existence of a relationship between the two theories was revealed
when several mathematicians and mathematical physicists independently “discovered” the Lie
bracket of differential 1-forms on a Poisson manifold2. In 1987, when Alan Weinstein, with Alain
Coste and Pierre Dazord, proved that the Lie algebroid of a symplectic groupoid is the cotangent
bundle of the base manifold equipped with this bracket of 1-forms [2], it became clear that, for
any Poisson manifold, there is a Lie algebroid structure on the cotangent bundle. In fact, there
is one more important property. The tangent and cotangent bundles together constitute a Lie
bialgebroid. In 1988, Weinstein introduced the concept of a Poisson groupoid [52], and, in a joint
paper published in 1994, Kirill Mackenzie and Ping Xu defined the concept of a Lie bialgebroid
as the infinitesimal counterpart of Poisson groupoids [36]. A year later, Kosmann-Schwarzbach
proved that a pair of Lie algebroids in duality form a Lie bialgebroid if and only if they define
a pair of differential Gerstenhaber algebras3, i.e., the Lie algebroid structure of one defines
a differential which is a derivation of the Gerstenhaber bracket of the exterior algebra of the

?This paper is a contribution to the Special Issue “Symmetries of Differential Equations: Frames, Invariants
and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html

1See also Alan Weinstein’s earlier historical note in Expositiones mathematicae [54]. For the development of
Poisson geometry up to 1998, see Weinstein’s survey [53]. For more information on the history of Poisson brackets
and Poisson geometry, see several chapters in the forthcoming book [21].

2For a modern treatise on Lie groupoid and Lie algebroid theory, see [35]. For elements of the history of the
bracket of 1-forms on Poisson manifolds, see, e.g., footnote 5 in my survey [19].

3Gerstenhaber algebras are also called Schouten algebras. In fact, they are an abstract version of the algebra
of multivector fields on a manifold, equipped with the Schouten–Nijenhuis bracket.
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other Lie algebroid [16]. A Poisson structure on a manifold thus gives rise to the prototypical
example of such a Lie bialgebroid, consisting of the pair of the tangent and cotangent bundles.

Lie bialgebroids were “just” a generalization of the Lie bialgebras that are the infinitesimal
counterpart of the Poisson Lie groups. The question that therefore arose was to define the
double of such an object, just as Vladimir Drinfeld had defined the double of a Lie bialgebra.
His definition, when (g, g∗) is a Lie bialgebra, of the unique Lie algebra structure on g⊕g∗ which
leaves the canonical symmetric bilinear form invariant, and restricts to the given Lie algebra
structures on g and g∗, is contained in his 3-page 1983 paper [8]4. The problem turned out to be
more complicated than it seemed, and it eventually led to the definition of Courant algebroids
by Zhang-Ju Liu, Alan Weinstein and Ping Xu in 1997 [29]. The question that was posed had,
as a special case, the problem – which had been raised long before in Poisson geometry – of
defining a bracket on the sections of the Whitney sum of the tangent and cotangent bundles of
a Poisson manifold, combining the Lie bracket of vector fields and the above-mentioned bracket
of 1-forms5.

There was an even more “elementary” problem in differential geometry, how to define
a bracket with reasonable properties on the direct sum of the vector space of vector fields
and the vector space of differential 1-forms which restricts to the Lie bracket of vector fields
and vanishes on differential forms. It was Theodore (Ted) Courant’s achievement to define such
a bracket in his thesis, published in 1990 [3]. Below I shall describe the motivation for Courant’s
work, coming from Dirac’s theory of constraints, and the work that Irene Ya. Dorfman develo-
ped independently, in the context of the Hamiltonian structures, i.e., the infinite-dimensional
Poisson structures, arising in field theory, in the late 1980’s and until her untimely death6.

Dmitry Roytenberg advanced the general theory of Courant algebroids further by founding
it on supermanifold theory in his thesis, completed in 1999, but which has remained unpub-
lished [41], and in his subsequent work [40, 43, 44]. He adopted the “cotangent philosophy” of
Kirill Mackenzie according to which, in particular, given a Lie algebroid A, the cotangent bundle
T ∗(A) ≈ T ∗(A∗) is a more fundamental object than the bundle A ⊕ A∗. He also made use of
the supergeometry approach that he had learned from Theodore (Ted) Voronov.

This different, more categorical line of inquiry concerning the concept of a “double” for Lie
bialgebroids was explained by Mackenzie in several publications, starting in 1992 [31, 32, 33] and
expounded in his article, first a preprint on arXiv in 2006, submitted to Crelle’s Journal in 2008,
but finally published only in 2011 [34]. (Double Lie algebroids are the infinitesimal counterparts
of double Lie groupoids, and Mackenzie’s theory includes many constructions besides the doubles
of Lie bialgebroids.) The question of the double of a Lie bialgebroid was also treated by Ted
Voronov in [50], using a “super” approach and the notion of graded manifolds. In [51], he
characterized double Lie algebroids in terms of supergeometry and he proved that “Roytenberg’s
and Mackenzie’s pictures give the same notion of a double of a Lie bialgebroid.”

The rich theory of the “generalized geometry” of TM ⊕ T ∗M was developed, first by Nigel
Hitchin in 2003 [12], then by Marco Gualtieri in his thesis submitted in 2003, available on arXiv in
2004, but published much later as [11], and it has become a domain of research in its own right7.

4Drinfeld does not use the word “double”. The definition of a “Manin triple” is to be found in his landmark
“Quantum groups” article which appeared in 1987 in the proceedings of the International Congress of Mathemati-
cians (Berkeley, 1986). The actual lecture was delivered on very short notice by Pierre Cartier because Drinfeld
was not allowed to travel to the United States for the conference.

5I remember discussing this problem with Franco Magri circa 1990, and not finding a satisfying answer.
6Irene Dorfman (born 1948), one of the leading experts on integrable systems, died in Moscow in 1994. For

her life and works, see the obituary by Oleg I. Mokhov, Sergei P. Novikov and Andrei K. Pogrebkov [37].
7The vector bunlde TM ⊕ T ∗M has been variously called the “big tangent bundle,” by Izu Vaisman, and the

“Pontryagin bundle,” by Hiroaki Yoshimura and Jerrold E. Marsden in [55], “because of its fundamental role in
the [geometric interpretation of] Pontryagin’s maximum principle” in control theory. They point out that the
Whitney sum, TQ⊕T ∗Q, was first investigated in Lagrangian mechanics by Ray Skinner and Raymond Rusk [47],
who themselves refer to earlier work by Mark Gotay and James N. Nester.
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In what follows I shall try to describe how and when a non-skewsymmetric bracket on
a Courant algebroid was determined, and why it was eventually preferred in many circumstances
to the skewsymmetric version, and I shall explain why it is now called the Courant–Dorfman
bracket, or sometimes just the Dorfman bracket.

Alan Weinstein’s first article on Dirac structures, with Ted Courant8, his doctoral student
at the time, “Beyond Poisson structures”, appeared in 1988 in the proceedings of the “Journées
lyonnaises de la Société Mathématique de France (26–30 mai 1986) dédiées à A. Lichnerowicz” [4].
Motivated by the work of Robert Littlejohn9 on the Hamiltonian theory of guiding center mo-
tion [26, 27, 28], their idea was to define Poisson brackets on subalgebras of the algebra of
smooth functions on a smooth manifold, such as the constrained brackets of Dirac, or the brack-
ets of functions constant on the characteristic foliation of a degenerate 2-form. They succeeded
in interpreting geometrically Dirac’s brackets as they appeared in his Lectures on Quantum
Mechanics [5] by setting up a framework unifying Poisson and presymplectic structures. What
generalizes both bivector fields and differential 2-forms on a manifold M , or rather their graphs,
from T ∗M to TM for bivectors, and from TM to T ∗M for forms, are subbundles of TM ⊕T ∗M
that are maximally isotropic (with respect to the canonical symmetric, fiberwise bilinear form),
which they called “Dirac bundles”10.

The novelty was in the introduction of the direct sum of the tangent and cotangent bundles.
The difficulty lay in the definition of a 3-tensor on the subbundle whose vanishing was the
desired integrability condition that would reduce to [π, π] = 0, i.e., the vanishing of the Schouten–
Nijenhuis bracket of π, when the subbundle is the graph of a bivector π, and would reduce to
dω = 0, i.e., ω is closed, when the subbundle is the graph of a 2-form ω. They solved this
problem by introducing a trilinear map T on sections of TM ⊕ T ∗M (see [4, p. 44–45]). In the
current literature, “integrable Dirac subbundles” are often simply called “Dirac bundles”, and
they are said to define a “Dirac structure” on the base manifold.

Two years later, an important, additional novelty appeared in Ted Courant’s thesis, “Dirac
manifolds”, which was published in the Transactions of the American Mathematical Society
in 1990 [3]. He succeeded in defining a skewsymmetric bracket on TM ⊕T ∗M , later called “the
Courant bracket”, and he defined a Dirac subbundle to be “integrable” if its space of sections
is closed under this bracket, in which case it is a Lie algebroid. For sections (X, ξ) and (Y, η) of
TM ⊕ T ∗M , the Courant bracket is

[(X, ξ), (Y, η)] = ([X,Y ],LXη − LY ξ − 1
2 d(iXη − iY ξ)).

Courant immediately stated, “In general, this is not a Lie-algebra bracket”, and this fact
prompted some of the later developments described below. The 3-tensor T of the joint pa-
per [4] could be expressed simply in terms of this new skewsymmetric bracket, and Courant
proved that the integrability of a Dirac subbundle is equivalent to the vanishing of T , thus
showing that his definition of “integrability” was equivalent to the one given in [4]. Therefore T
appeared as the defect in the Jacobi identity for the skewsymmetric Courant bracket, but this
was not yet stated explicitly.

There arose the general question of how to define a suitable notion of the double of a Lie
bialgebroid. In 1997, Zhang-Ju Liu, Alan Weinstein and Ping Xu proposed a solution to this
problem in their article, “Manin triples for Lie bialgebroids” [29], by defining a skewsymmetric
bracket on the space of sections of A ⊕ A∗, where (A,A∗) is a Lie bialgebroid, that generalizes
the Courant bracket of TM ⊕ T ∗M . They further introduced a general notion of “Courant
algebroids” (with a non-degenerate, symmetric, fiberwise bilinear form and a skewsymmetric

8Ted Courant is a grandson of the mathematician Richard Courant (1888–1972).
9This motivation was recalled in an e-mail message I received from Alan Weinstein (July 23, 2012).

10See Yoshimura and Marsden [55] for elements of the history of the introduction of Dirac structures on vector
spaces and on manifolds, and of their use in the study of degenerate Lagrangian systems and in control theory.



4 Y. Kosmann-Schwarzbach

bracket), abstracted from the structure of the doubles of Lie bialgebroids. They wrote in their
introduction: “We found that if the bracket on a Courant algebroid is modified by the addition of
a symmetric term, many of the anomalies for the resulting asymmetric [i.e., non-skewsymmetric]
bracket become zero,” and they asked, “What is the geometric meaning of such asymmetric
brackets?” In a remark [29, p. 554], they introduced a non-skewsymmetric bracket that they
called “a twisted bracket”, and listed three of its properties. It is easy to show that its skew-
symmetrization is indeed the Courant bracket. They wrote, “It would be nice to interpret
equation (i) [the Jacobi identity with a non-zero right-hand-side] in terms of this twisted bracket.
The geometric meaning of this twisted bracket remains a mystery to us.” All that was missing
was the interpretation of this bracket as a Loday bracket satisfying the Jacobi identity in Leibniz
form and, in fact, Ševera and Weinstein wrote later, “It was observed [in 1998] by Kosmann-
Schwarzbach, Xu, and Ševera (all unpublished) that the non-skewsymmetric version of the
bracket satisfied the Jacobi identity written in Leibniz form” ([46, p. 146], also see [14, p. 527]).
Jean-Louis Loday11 had introduced the concept of what he called “Leibniz algebras” in 1993 [30],
but they have since been called “Loday algebras”. They are vector spaces equipped with a non-
skewsymmetric version of the Lie brackets of Lie algebras that satisfies the following form of the
Jacobi identity,

[x, [y, z]] = [[x, y], z] + [y, [x, z]],

which states that, for each element x, the adjoint map [x, ·] is a derivation of the bracket,
recalling the Leibniz rule for the derivative of the product of two functions, hence the name
“Leibniz algebra”.

In her e-mail message to Alan Weinstein of September 18, 1998, Kosmann-Schwarzbach
demonstrated that the Courant bracket on TM ⊕T ∗M is a “derived bracket”12. This proof was
published only much later in her “Derived brackets” paper [15], where the non-skewsymmetric
bracket is obtained in a natural way as the derived bracket of the commutator of endomorphims
of the space of differential forms by the de Rham differential, where vectors act by interior
multiplication and 1-forms act by exterior multiplication. Then the Courant bracket appears as
the skew-symmetrization of this derived bracket.

In Kosmann-Schwarzbach’s notes on her conversation with Pavol Ševera at IHÉS on Decem-
ber 21, 1998, it is stated that together they had verified that the Dirac structures of Courant
and Weinstein coincide with those of Dorfman as defined in 1987 in [7]. Later, in her book
[6], Dorfman described Dirac structures and applied them to the theory of integrable equations.
She wrote in the introduction, “Objects called Dirac structures were introduced by Dorfman [7]
as natural algebraic analogues of finite-dimensional structures first introduced by Courant and
Weinstein”, and she referred to their work. Her citation, in both her article and her book, of
the work of Courant and Weinstein as a Berkeley preprint dated 1986 was probably generous,
because her own work on “the algebraic framework” for Dirac structures was, in fact, indepen-
dent of theirs. We remark that, although she had finally visited the West to participate in the
workshop on “The Geometry of Hamiltonian Systems” in Berkeley in June 1989, she had not
seen their article in published form, in the 1988 volume of the “Séminaire Sud-Rhodanien de
Géométrie” [4], before she completed her book.

It was Dmitry Roytenberg, another of Alan Weinstein’s doctoral students, who made fur-
ther progress in the theory of Courant algebroids in his thesis [41]. He introduced the non-
skewsymmetric bracket, gave a new definition of Courant algebroids, containing five axioms,

11Jean-Louis Loday (born 1946) died in an accident at sea off the coast of Brittany in June 2012.
12I defined the concept of derived bracket in 1995, inspired by unpublished notes that Jean-Louis Koszul had

sent me, and I published the definition and properties of derived brackets with applications to Poisson geometry in
the Annales de l’Institut Fourier in 1996 [17]. This concept was also known to Ted Voronov, who later developed
the theory of higher derived brackets and their relation to L∞-algebras.
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in terms of this bracket, and he proved the equivalence of the old and the new definitions.
These axioms can also be found in the first of Ševera’s e-mail letters to Weinstein of 1998 [45].
In 2001, Ševera and Weinstein published this definition of Courant algebroids in [46], and
Roytenberg finally published it in 2002 in his “Graded symplectic supermanifolds and Courant
algebroids” [43]. In his thesis, Roytenberg introduced a new interpretation of the double of a Lie
bialgebroid, as a homological13 Hamiltonian vector field on an even symplectic supermanifold,
thus extending the definition of a Lie algebroid structure as a homological vector field, due to
Arkady Vaintrob [49]. Combining the “cotangent philosophy” of Mackenzie with what he called
“Kosmann-Schwarzbach’s picture of a Lie bialgebra”14, he recovered the non-skewsymmetric
bracket on A ⊕ A∗ as the restriction of a derived bracket of the canonical symplectic structure
on a graded version of the cotangent bundle, T ∗(A) ≈ T ∗(A∗).

In 2002, Kyousuke Uchino showed that three of the axioms and one defining condition implied
the other two axioms [48]. A year later, Janusz Grabowski and Giuseppe Marmo proposed
a definition of the more general Courant–Jacobi algebroids that required only four axioms [9].
Then in 2005, Kosmann-Schwarzbach proved that three of Roytenberg’s axioms for Courant
algebroids imply the other two [20]. One of these three axioms is the Jacobi identity in Leibniz
form for the non-skewsymmetric bracket. The other two are expressed, as in Roytenberg’s
thesis, in a form that clearly shows that Courant algebroids are a vector-bundle version of the
Lie algebras with an invariant symmetric bilinear form (“quadratic Lie algebras”)15.

For the case of a Courant algebroid which is the double of a Lie bialgebroid or, more generally,
of a quasi-Lie bialgebroid, or of a proto-bialgebroid, (A,A∗), the formula for the Courant–
Dorfman bracket is a straightforward generalization of the case of the generalized tangent bun-
dles, using the “big bracket”16 on the algebra of functions on T ∗[2]A[1] as defined by Roytenberg,
first in [41], then in his publication [44] in 2002, and the derived bracket formula. In particular,
for the non-skewsymmetric bracket on TM ⊕ T ∗M , the expression of the derived bracket,

[X + ξ, Y + η] = {{X + ξ, µ}, Y + η } = [X,Y ] + LXη − iY dξ,

for X,Y ∈ Γ(TM), ξ, η ∈ Γ(T ∗M), where µ is the Lie bracket of vector fields seen as a function
on the supermanifold T ∗[2]TM [1], coincides with the expression considered by Dorfman, in the
context of complexes over Lie algebras, in [7, p. 242], and in her Theorem 2.1 in [6],

[X + ξ, Y + η] = [X,Y ] + iXdη − iY dξ + d〈X, η〉,

in order to characterize Dirac structures. Whence, by extension, the name “Dorfman bracket”
that is now given to the non-skewsymmetric bracket on any Courant algebroid.

In the more general case of an arbitrary Courant algebroid, it was Roytenberg who proved
in 2002 that the non-skewsymmetric Courant bracket is a derived bracket [43]. To this end, he
extended his own work on Lie bialgebroids in his thesis and in [44], defining a graded Poisson
bracket on the “minimal symplectic realization” of the bundle, based on a construction that had

13A vector field X on a supermanifold is homological if [X,X] = 0. It endows the manifold with the structure
of a “Q-manifold”.

14See footnote 16 below.
15The proof that the Leibniz rule and the morphism property of the anchor are a consequence of these three

axioms followed the same lines as that of a property of Lie algebroids in our paper with Franco Magri [22]. We
remark that the redundancy of some of the axioms of Courant algebroids is proved using the assumption that the
symmetric bilinear form is non-degenerate. In the more general case considered in [1] and [42], where no such
assumption is made, additional axioms are needed.

16The “big bracket” for vector spaces can be found in the paper by Bertram Kostant and Shlomo Sternberg [23].
It was first applied to the theory of Lie bialgebras by Pierre Lecomte and Claude Roger in 1990, and I later made
extensive use of it, in [18], and in subsequent publications.
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been suggested by Alan Weinstein in the Spring of 1999 and later simplified by Pavol Ševera in
an unpublished letter to Weinstein [45, no. 7]17.

Not only do Dirac structures have many applications in mechanics, as developed in the work
of Jerrold Marsden (1942–2010) and many others, in the AKSZ sigma-models as was first shown
by Noriaki Ikeda [13] (see [40]), and even in supergravity as in the articles of Daniel Waldram and
his co-authors (see, e.g., [10]), many purely theoretical developments have taken place since 2002.
Twisted Courant algebroids, also called Courant algebroids with background, were introduced.
Ševera defined a cohomology class, now called “the Ševera class”. In 2007, Paul Bressler defined
a Pontryagin class in the generalized setting of transitive Lie algebroids, and he showed that it
is an obstruction to the existence of a “Courant extension”; in addition, he related the theory of
Courant algebroids to conformal field theory [1]. Then, in 2009, there appeared the article by
Roytenberg where he defined and studied an algebraic analogue of Courant algebroids which he
called “Courant–Dorfman algebras” [42]. Their relationship to Courant algebroids is analogous
to that of Lie–Rinehart algebras to Lie algebroids18. The 2012 thesis by David Li-Bland [24]
not only constitutes a new contribution to the theory of Courant algebroids, but also contains
a useful list of references.

Symmetries are a fundamental feature of mathematical and physical theories. Lie’s conti-
nuous groups, which are now called Lie groups, and their infinitesimal counterparts, which are
now called Lie algebras, have become too restrictive a framework for geometry, algebra and
mathematical physics. Lie groupoids and Lie algebroids offer a more general one, and Courant
algebroids have become a new, necessary concept in this wider framework, where Drinfeld’s dou-
ble of a Lie bialgebra did not have an obvious analogue. Lie algebroids and Courant algebroids
are, in a sense, infinitesimal objects. Lie algebroids correspond to Lie groupoids. Lie bialgebras
correspond to Poisson–Lie groups. To what do Courant algebroids correspond? All I know is
that Jean-Louis Loday had proposed to call these unknown objects “coquecigrues” and that,
although some advances have been made recently, the search for coquecigrues19 is still on.
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