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1 Introduction

The theory of Lie groups finds its genesis when Sophus Lie sets up the task to develop an
analogue of Galois theory for differential equations. The original prolongation algorithm of
Sophus Lie provides a set of point symmetries of a differential equation (for a modern treatment,
see [11]). It is well-known that these point symmetries generate a local Lie group action on the
space of solutions of the differential equation and this action seldom globalizes. However, most
of the modern results on Lie group theory apply to global Lie groups and global Lie group
representations. As a result, many of the standard techniques of representation theory are
not always applicable to differential equations. Therefore, it is an important problem to find
a globalization of the local action of the symmetry group of a differential equation (see [3, 6,
7, 10, 15] and references therein). This is usually achieved by restricting to a special class of
functions.

In this paper, we study the globalization problem for the n-dimensional porous medium
equation

ut = ∆n(um), (1)

where ∆n is the n-dimensional Laplacian and u is a function of x = (x1, . . . , xn) ∈ Rn and t ∈ R.
When m > 1, this equation models slow diffusion phenomena so this condition is often assumed
(cf. [17]). However, for reasons that will become evident below, we will allow m ∈ R\{0, 1}. It is
worth noting that the globalization problem for the special case m = 1 was solved in [15], where
applications of the global action of the group can be found. We will pay particular attention
to the case m = n−2

n+2 , because for this special value of m the symmetry group is n-dimensions
larger than in the generic case.

The goal of this paper is to describe a class of functions on which the action of the symmetry
group globalizes and to describe the action of the group on these functions. This idea is quite
profitable when applied to linear PDE’s (see [6, 7, 15]). However, it can also be applied to
nonlinear equations as well. For example, the globalization problem was studied for a family of
nonlinear heat equations in [13] and for the nonlinear potential filtration equation in [14]. In
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both cases, the group action is globalized by using parabolic induction on solvable groups. In this
article, the globalization is achieved by parabolic induction on a semisimple group. In [13, 14],
the global actions of the group are not linear. In contrast, the globalization of the action of the
symmetry group of the porous medium equation is linear.

The paper is organized as follows. In Section 2, we list the infinitesimal generators of the
symmetry group of equation (1). The symmetry group for the one-dimensional case is calculated
in [12] (see also [1, 5] and references therein). For the n-dimensional case, it was be found in [4]
(the result is available in the handbook [1]). In either case, the symmetry group is realized
as a subgroup of G := SL(2,R) × SO(n + 1, 1)0, where SO(n + 1, 1)0 stands for the identity
component of the generalized special orthogonal group with signature (n+ 1, 1).

In Section 3, we briefly study the structure of the group G. In Section 4, we use parabolic
induction to construct a family of representations of G and by restriction, of the symmetry group
of (1). We use these representations to define class a of smooth functions on which the action of
the symmetry group globalizes (see equation (6)). In Section 5, we write explicitly the action of
the 1-parameter subgroups generated by the infinitesimal generators of G. Finally, in Section 6,
we realize well-known solutions of equation (1) as elements of the constructed representation
of G and we point references for possible generalizations of this work.

2 Symmetry group

Using Lie’s prolongation algorithm, we calculate the symmetry group of equation (1) and re-
obtain the result of [4]. This yields two cases depending on the value of m. When m 6= n−2

n+2 , the
infinitesimal generators of the symmetry group are

X1 = ∂t, X2 =
n∑
i=1

xi∂i +
2u

m− 1
∂u, X3 = −t∂t +

u

m− 1
∂u, (2)

Yi = ∂i for 1 ≤ i ≤ n, (3)

Zi,j = xi∂j − xj∂i for 1 ≤ i < j ≤ n. (4)

Let s denote the parabolic subalgebra of upper triangular matrices in sl2(R) and let g := s ⊕
so(n+1, 1). Then, the infinitesimal generators (2)–(4) span an algebra isomorphic to a parabolic
subalgebra of g.

In addition to these generators, in the special case m = n−2
n+2 the symmetry group is extended

by the one-parameter groups generated by the operators

Wi =

x2i −∑
j 6=i

x2j

 ∂i +
∑
j 6=i

2xixj∂j +
4xiu

m− 1
∂u (5)

for 1 ≤ i ≤ n. The infinitesimal generators (2)–(5) span an algebra isomorphic to g. The
isomorphism for the so(n+ 1, 1) part is explicitly defined in the following way

X2 7→ −En+1,n+2 − En+2,n+1,

1

2
(Wi + Yi) 7→ En+1,i − Ei,n+1 for 1 ≤ i ≤ n,

1

2
(Wi − Yi) 7→ En+2,i + Ei,n+2 for 1 ≤ i ≤ n,

Zi,j 7→ Ei,j − Ej,i for 1 ≤ i < j ≤ n,

where Ek,l is the (n+2)×(n+2) matrix with single non-zero entry in the kth row and lth column.
The generators X1 and X3 generate the parabolic subalgebra of sl2(R) of upper triangular
matrices.
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3 The group

With an eye toward the construction of a family of induced representations of the group G :=
SL(2,R)× SO(n+ 1, 1)0, we will study its structure in this section. Since most of this material
is standard, most details will be omitted (for a general treatment see [8, Chapter VI]).

Let g = k⊕ p be the Cartan decomposition under the standard Cartan involution. Then, k is
isomorphic to so(2) × so(n + 1) with so(2) ⊂ sl2(R) and so(n + 1) embedded in so(n + 1, 1) in
the upper left (n+ 1)× (n+ 1) block.

We consider the minimal parabolic subalgebras q± of g and their respective Langlands de-
compositions m⊕ a⊕ n±. The maximal Abelian subalgebra a ⊂ p is given by

a := span


Hv,y :=


(
v 0
0 −v

)
,


0(n+1)×(n+1)

0
...
0
−y

0 · · · 0 −y 0





∣∣∣∣∣∣∣∣∣∣∣
v, y ∈ R


.

The centralizer of a in k, that is denoted by m, is trivial in the sl2(R) component and it embeds
as so(n) in the upper left n× n block in the so(n+ 1, 1) component.

If ν±i := En+1,i−Ei,n+1±En+2,i±Ei,n+2 ∈ Mat(n+2)×(n+2) for 1 ≤ i ≤ n, then the nilpotent
subalgebras

n+ = span

{
η+i,a,σ :=

[(
0 σ
0 0

)
, aν+i

] ∣∣∣∣∣ a, σ ∈ R, 1 ≤ i ≤ n

}
and

n− = span

{
η−i,a,σ :=

[(
0 0
σ 0

)
, aν−i

] ∣∣∣∣∣ a, σ ∈ R, 1 ≤ i ≤ n

}
.

Consequently, the minimal parabolic subalgebras of g are defined as q = m⊕ a⊕ n and q− =
m⊕ a⊕ n−.

At the level of the group, these subalgebras exponentiate to

A :=

ha,y :=

(a 0
0 a−1

)
,

In 0

0
cosh y sinh y
sinh y cosh y

 ∣∣∣∣∣∣ y ∈ R, a > 0

 ,

M :=

{
mj,B :=

[(
−1 0
0 −1

)j
,

(
B 0

0 I2

)] ∣∣∣∣∣ B ∈ SO(n), j ∈ Z2

}
,

N :=

nt,x :=

(1 t
0 1

)
,

In −x x

xT

xT
1− 1

2‖x‖
2 1

2‖x‖
2

−1
2‖x‖

2 1 + 1
2‖x‖

2



∣∣∣∣∣∣∣ (t, x) ∈ R1,n

 ,

and

N− :=

n−t,x :=

(1 0
t 1

)
,

 In x x

−xT
xT

1− 1
2‖x‖

2 −1
2‖x‖

2

1
2‖x‖

2 1 + 1
2‖x‖

2



∣∣∣∣∣∣∣ (t, x) ∈ R1,n

 .

The minimal parabolic subgroups corresponding to q and q− are Q = MAN and Q− = MAN−

respectively.
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4 Induced representations

In this section, we will construct a family of characters on Q−. We will induce a representation
of G from each of these characters and we will identify each of these induced representations
with a subspace of C∞(R1,n). It is shown in [2] that G acts globally on these special classes of
functions. Since the symmetry group of the porous medium equation can be embedded in G, the
action of G restricts to a global action of the symmetry group of the porous medium equation.

We start by noticing that a general element φb,c ∈ a∗ is a linear functional that acts by
φb,c(Hv,y) = bv + cy for fixed constants b, c ∈ C. By exponentiating φb,c we obtain a character
on A. The resulting character, χr,s : A → C, is determined by two continuous parameters
r, s ∈ C and defined by

χr,s(ha,y) = aresy.

A character χp : M → C can be defined by

χp(mj,B) = (−1)jp,

for p ∈ Z2. We will consider the characters parametrized by two continuous parameters r, s ∈ C
and a discrete parameter p ∈ Z2, χp,r,s : Q− → C defined by

χp,r,s(q
−) = χp(m)χr,s(a),

where q− = man− and by requiring it to be trivial on n−.
We consider the infinite dimensional induced representation

IndGQ−(χp,r,s) :=
{
ϕ ∈ C∞(G)

∣∣∣ ϕ(gq−) = χp,r,s(q
−)−1ϕ(g) for g ∈ G and q− ∈ Q−

}
,

with the G-action defined by left translation. This space is known as the induced picture.
The unipotent group N is isomorphic to R1,n via (t, x) 7→ nt,x. Since NQ− embeds in G

as an open dense set, it is easy to see from the definition of IndGQ−(χp,r,s) that an element

ϕ ∈ IndGQ−(χp,r,s) is completely determined by its value on N . Therefore, the restriction map

between IndGQ−(χp,r,s) and the space

I ′(p, r, s) :=
{
f ∈ C∞(R1,n)

∣∣∣ f(t, x) = ϕ(nt,x) for some ϕ ∈ IndGQ−(χp,r,s)
}

(6)

is injective. By the definition of I ′(p, r, s), the restriction map ϕ → f is surjective, thus an
isomorphism of vector spaces. A G-module structure can be given to I ′(p, r, s) so that the map
ϕ → f is intertwining. Therefore, IndGQ−(χp,r,s) is isomorphic to I ′(p, r, s) as G-module. This
space is known as the non-compact picture.

5 Actions on I ′(p, r, s)

In this section, we will describe the actions of G and of g on I ′(p, r, s). As a result, we will find
special values of r and s that will determine the class of functions on which the action of the
symmetry group of equation (1), globalizes.

5.1 Actions of sl(2,R) and SL(2,R)

In this section, when we consider the action of an element g ∈ SL(2,R), it should be understood
as the action of its image under the natural inclusion map SL(2,R) ↪→ G. The analogue will be
true for elements in the Lie algebra. If possible, we will avoid writing this image explicitly to
avoid cumbersome notation.
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Proposition 1. An element
(
a b
0 a−1

)
∈ SL(2,R) acts on I ′(p, r, s) by

(
a b
0 a−1

)
.f(t, x) = sgn(a)p|a|rf

(
t− ab
a2

, x

)
.

Let {H,E, F} be the standard basis for sl(2,R). Then, H acts by the differential operator
−2t∂t + ru∂u and E acts by ∂t on I ′(p, r, s).

Proof. First, we write(
a b
0 a−1

)
=

(
1 ba
0 1

)(
a 0
0 a−1

)
and we calculate each action of each element individually. Let f ∈ I ′(p, r, s). Then, using the
definition of I ′(p, r, s) and the G action on it, we have(

a 0
0 a−1

)
.f(t, x) =

(
a 0
0 a−1

)
.ϕ(nt,x) = ϕ

([(
a−1 0
0 a

)
, In+2

]
nt,x

)
.

Now we notice that[(
a−1 0
0 a

)
, In+2

]
nt,x = na−2t,x ·

[(
a−1 0
0 a

)
, In+2

]
.

Using the character χp,r,s and the definition of IndGQ−(χp,r,s), we obtain

(
a 0
0 a−1

)
.f(t, x) = χp,r,s

([
(sgn(a)

(
|a|−1 0

0 |a|

)
, In+2

])−1
ϕ(na−2t,x)

= sgn(a)p|a|rf(a−2t, x).

The calculation for the other element is similar, thus omitted. The result on the Lie algebra
action follows by differentiation. �

Remark 1. Setting r = 2
m−1 we recover the actions of the elements X1 and X3 in the symmetry

group. We did not calculate the action of F because the space of solutions to the porous medium
equation is not invariant under the subalgebra generated by this element. So, for the goals of
this paper, the action of this element is not relevant.

Remark 2. Notice that exponentiation of the infinitesimal generators in sl(2,R) gives the action
of
(
a b
0 a−1

)
when a > 0. With the appropriate value of r this agrees with the action calculated

in the previous proposition. However, the previous proposition gives us a way to extend the
action when a < 0. This reflects the global nature of the action of G on I ′(p, r, s).

5.2 Actions of so(n + 1, 1) and SO(n + 1, 1)0

As in the previous section, in this section when we consider the action of an element g ∈
SO(n + 1, 1)0, it should be understood as the action of its image under the natural inclusion
map SO(n+ 1, 1)0 ↪→ G. The same convention will be used for the actions of the Lie algebra.
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5.2.1 Actions of m and M

Lemma 1. Let gi,j,θ = expSO(n+1,1)(θ(Ei,j − Ej,i)) for 1 ≤ i < j ≤ n. Then

[I2, gi,j,−θ] · nt,x = nt,gi,j,−θx · [I2, gi,j,−θ].

Proof. This is a straightforward matrix calculation. �

Proposition 2. An element gi,j,θ for 1 ≤ i < j ≤ n acts on a function f ∈ I ′(p, r, s) by

gi,j,θ.f(t, x) = f(t, gi,j,−θx).

The element Ei,j − Ej,i ∈ so(n + 1, 1) for 1 ≤ i < j ≤ n acts on I ′(p, r, s) by the differential
operator xi∂j − xj∂i.

Proof. By the definition of I ′(p, r, s) and by the action of G on IndGQ−(χp,r,s) we have

gi,j,θ.f(t, x) = gi,j,θ.ϕ(nt,x) = ϕ([I2, gi,j,−θ].nt,x).

The result now follows from the lemma and the definition of χp,r,s. The result for the Lie algebra
follows by taking d

dθ |θ=0. �

5.2.2 Actions of n and N

A straightforward matrix calculation shows that

nt′,xieint,x = nt−t′,x−xiei ,

where ei is the standard basis element of Rn. We use this fact to prove the following proposition.

Proposition 3. The action of nt′,x′ on f ∈ I ′(p, r, s) is given by

nt′,x′ .f(t, x) = f(t− t′, x− x′)

and ν+i acts on I ′(p, r, s) by the differential operator ∂i, for 1 ≤ i ≤ n.

5.2.3 Actions of a and A

Using the fact that h−11,εnt,x = nt,eεxh
−1
1,ε , we prove the following proposition.

Proposition 4. The action of h1,ε on f ∈ I ′(p, r, s) is given by h1,ε.f(t, x) = esεf (t, eεx)

and H0,1 acts on I ′(p, r, s) by the differential operator
n∑
i=1

xi∂i + su∂u.

Remark 3. When s = 2
m−1 , this action corresponds to the action of the infinitesimal genera-

tor X2 of the symmetry group of the porous medium equation (1).

5.2.4 Actions of n− and N−

To describe this action, we need to introduce the maps δi : Rn → R defined by

δi(x) = 1− 2xi + ‖x‖2.

We will also need the maps γi : R1,n → Rn defined by

γi(ε, x) = δi(εx)−1
(
x− ε‖x‖2ei

)
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and the maps κi : R1,n → Rn given by

κi(ε, x) = δi(εx)−1ε(εx− ei).

Then

exp
(
εν−i

)
.f(t, x) = n−0,εei .ϕ

(
nt,x
)

= ϕ
(
n−0,−εei .nt,x

)
.

Now, in order to write the action back in terms of f we need to decompose n−0,−εei .nt,x as
a product of its N ×MAN− components.

Lemma 2. For some m ∈M

n−0,−εei .nt,x = nt,γi(ε,x)mh1,− log(δi(εx))n
−
0,κi(ε,x)

.

Proof. Since SO(n + 1, 1) has real rank 1, the Weyl group generated by the restricted roots
W (G,A) has two elements. The non-trivial element ω ∈W (G,A) acts on N by ω−1Nω = N−.
Then, by the uniqueness of the Bruhat decomposition, it suffices to show that(

nt,γi(ε,x)
)−1

n−0,−εeint,x
(
n−0,κi(ε,x)

)−1
h−11,− log(δi(εx))

differs from the (n + 2) × (n + 2) identity matrix only in the upper left n × n block (i.e. it is
in M). This is a straightforward but long matrix calculation. �

Proposition 5. Let f ∈ I ′(p, r, s). Then,

n−0,−εeif(t, x) = δi(εx)−sf(t, γi(ε, x))

and ν−i acts on I ′(p, r, s) as the differential operatorx2i −∑
j 6=i

x2j

 ∂i +
∑
j 6=i

2xixj∂j + 2xisu∂u.

Proof. The first equation follows from the previous lemma and the second equation follows
form differentiating the first. �

We summarize the previous propositions in the following theorem.

Theorem 1. The action of the group G on I ′
(
p, 2

m−1 ,
2

m−1

)
, for p ∈ Z2, gives a globalization

of the action of the local symmetry group of equation (1).

Proof. Follows from Propositions 1 to 5. �

6 Applications

The problem of explicitly describing the solution space of the porous medium equation inside

I ′
(
p, 2

m−1 ,
2

m−1

)
is a complicated problem. A possible strategy is to look at the compact picture

of I ′
(
p, 2

m−1 ,
2

m−1

)
and analyze what conditions need to be satisfied by the functions in this

space to correspond to a solution of the differential equation. For references in this direction

see [6] and [7]. However, some solutions can be realized in I ′
(
p, 2

m−1 ,
2

m−1

)
and for illustration

purposes we will examine a few in this section.
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6.1 Stationary solutions

Since we work in a smooth class, the simplest example to consider is provided by stationary
solutions. In this case, the solutions are given as harmonic polynomials raised to the 1/mth
power.

Let k : Rn → R be a harmonic polynomial and define f ∈ C∞(R1,n) by f(t, x) = k(x)1/m. It
is well-known that f satisfies equation (1).

Since sections in I
(
p, 2

m−1 ,
2

m−1

)
are completely determined by their values on N and we

know the values that ϕ must take, namely ϕ(nt,x) = f(t, x), we can extend ϕ to NMAN−

using the character χp, 2
m−1

, 2
m−1

. This can be used to define ϕ on all of G via limits, because

NMAN− sits as an open dense subset of G. To exemplify how this process works, let us choose
the simplest example. Let k : R → R be given by k(x) = x. By explicitly decomposing the
element(a b

c d

)
,

a11 a12 a13
a21 a22 a23
a31 a32 a33


in G in its N ×MAN− components, we determine that

ϕ

(a b
c d

)
,

a11 a12 a13
a21 a22 a23
a31 a32 a33


= sgn(d)p|d|

2
m−1

(
a21 + a31
1 + a11

) 1
m
(

−2(a21 + a31)

(1 + a11)(a12 − a13)

) 2
1−m

for a11 6= −1 and a12 6= a13. As expected, ϕ restricts to f on N , more specifically ϕ(nt,x) =
f(t, x). To extend ϕ to the elements in G for which a11 = −1, we notice that in this case the
conditions on the group elements force a12 = ±a13 and a21 = ±a31. If a11 = −1, a12 = ±a13 6= 0,
and a21 = −a31, we can use limits to determine the appropriate value for ϕ

ϕ

(a b
c d

)
,

 −1 ±a13 a13
−a31 a22 a23
a31 a32 a33

 = sgn(d)p|d|
2

m−1

(
∓1

a31

) 1
m
(
∓2

a31a13

) 2
1−m

.

The values of ϕ when a21 = a31 and when a12 = a13 = 0 can be determined in a similar fashion.
The resulting map can be shown to be smooth and it was constructed in such way that the
condition ϕ(gq−) = χp, 2

m−1
, 2
m−1

(q−)−1ϕ(g) is satisfied. Therefore, the so defined ϕ belongs to

I
(
p, 2

m−1 ,
2

m−1

)
and its image f belongs to I ′

(
p, 2

m−1 ,
2

m−1

)
.

This procedure can be repeated for higher dimensions. For example, if we let k : R2 → R be
a 2-dimensional harmonic polynomial, then the corresponding map ϕ is given by

ϕ


(a b

c d

)
,


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



 = sgn(d)p|d|

2
m−1 (k(z1, z2))

1
m

×
(
a44
(
1 + z21 + z22

)
− a34

(
− 1 + z21 + z22

)
− 2(a14z1 + a24z2)

) 2
1−m ,

where

z1 =
(a11 + a22)(a31 + a41)− (a12 − a21)(a32 + a42)

(a12 − a21)2 + (a11 + a22)2
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and

z2 =
(a11 + a22)(a32 + a42)− (a12 − a21)(a31 + a41)

(a12 − a21)2 + (a11 + a22)2

whenever a12 6= a21 or a11 6= −a22. In this case determining the smooth extension to the whole
group is more involved, but it mimics the procedure used in the one-dimensional case. It is easy
to see that the so defined map ϕ restricts to k(x)1/m on N as desired.

6.2 Other solutions

To stay within the smooth class of functions, some of the well-known solutions of the porous
medium equation can only be considered for specific values of m. This is the case of the solutions
obtained via separation of variables. It is well known that these solutions are of the form

u(t, x) = ((m− 1)(t− t0))−1/(m−1)F (x),

where ∆Fm(x) + F (x) = 0, see [16, Chapter 4]. When m > 1 these solutions have a non-remo-
vable singularity at t = t0. However, for m < 1 these solutions satisfy the condition u(t0, x) = 0.
Solutions of this type would need to be extended to sections in I

(
p, 2

m−1 ,
2

m−1
)

in a similar
fashion as we extended the stationary solutions. This in itself can be a complicated problem.

For source-type solutions, the smooth category would need to be abandoned and other cate-
gories may be considered. However, the induced representation may no longer carry the structure
of a global G-module. For more information in this direction see [2].

7 Compact picture

To study the structure of IndGQ−
(
χp, 2

m−1
, 2
m−1

)
as a G-representation, it is useful to look at

an isomorphic copy of it called the compact picture. To construct I ′
(
p, 2

m−1 ,
2

m−1

)
, we used

restriction to the non-compact subgroup N ∼= R1,n. To construct the compact picture of

IndGQ−
(
χp, 2

m−1
, 2
m−1

)
we use restriction to the maximal compact subgroup K ⊂ G.

The Iwasawa decomposition of G is given by G = KAN−. Since AN− ⊂ Q−, a map in
the induced picture is completely determined by its restriction to K. The compact picture is
defined as the image of this restriction, that is

I ′′
(
p,

2

m− 1
,

2

m− 1

)
=
{
ζ ∈ C∞(K)

∣∣∣ ∃ϕ ∈ IndGQ−
(
χp, 2

m−1
, 2
m−1

)
: ζ(k) = ϕ(k) ∀ k ∈ K

}
and it is isomorphic to IndGQ−

(
χp, 2

m−1
, 2
m−1

)
as vector spaces. The space can be given the

structure of a G-module so that the restriction map is intertwining. Consequently,

IndGQ−
(
χp, 2

m−1
, 2
m−1

)
∼= I ′

(
p,

2

m− 1
,

2

m− 1

)
and I ′

(
p, 2

m−1 ,
2

m−1

)
∼= I ′′

(
p, 2

m−1 ,
2

m−1

)
as G-modules. The space I ′′

(
p, 2

m−1 ,
2

m−1

)
contains

an open dense subset given by{
ζ ∈ C∞(K)

∣∣∣ ζ(kµ) = χp, 2
m−1

, 2
m−1

(µ)−1ζ(k) for k ∈ K and µ ∈M ∩K
}

(see [9, Chapter 2]). Since, SO(n+ 1)/SO(n) ∼= Sn we obtain{
F ∈ C∞(S1 × Sn)

∣∣∣F (θ + jπ, z) = (−1)jpF (θ, z) for j ∈ Z
}

is an open dense set in I ′′
(
p, 2

m−1 ,
2

m−1

)
. This gives a more concrete realization of the repre-

sentation spaces and exhibits their infinite dimensionality.
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