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Abstract. We present a general solution-generating result within the bidifferential calcu-
lus approach to integrable partial differential and difference equations, based on a binary
Darboux-type transformation. This is then applied to the non-autonomous chiral model,
a certain reduction of which is known to appear in the case of the D-dimensional vacuum
Einstein equations with D − 2 commuting Killing vector fields. A large class of exact so-
lutions is obtained, and the aforementioned reduction is implemented. This results in an
alternative to the well-known Belinski–Zakharov formalism. We recover relevant examples
of space-times in dimensions four (Kerr-NUT, Tomimatsu–Sato) and five (single and double
Myers–Perry black holes, black saturn, bicycling black rings).
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1 Introduction

The bidifferential calculus formalism aims to understand integrability features and solution-
generating methods for (at least a large class of) integrable partial differential or difference
equations (PDDEs) resolved from the particularities of examples, i.e., on an as far as possible
universal level [16, 17, 19]. The most basic ingredient is a graded associative algebra, supplied
with two anti-commuting graded derivations of degree one. It can and should be regarded
as a generalization (in the spirit of noncommutative geometry) of the algebra of differential
forms on a manifold, but supplied with two analogs of the exterior derivative. Once a PDDE
is translated to this framework, it is simple to elaborate its integrability conditions. In fact, it
could not be simpler.

In this framework, Darboux transformations (see [35,54,62] and the references therein) have
first been addressed in [19]. In the latter work, we had also obtained a very simple solution gene-
rating result that evolved into improved versions in recent applications [15, 18, 20]. Its relation
with Darboux transformations has been further clarified in [15] (see Appendix A therein), an
essential step toward the much more general result that we present in this work. The resulting
class of solutions is expressed in a universal way, in the sense that the corresponding formula
holds simultaneously for all integrable PDDEs possessing a bidifferential calculus formulation.
Choosing a bidifferential calculus associated with a specific PDDE, we can generate infinite
families of (soliton-like) solutions.

mailto:dimakis@aegean.gr
mailto:folkert.mueller-hoissen@ds.mpg.de
http://dx.doi.org/10.3842/SIGMA.2013.009
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In Section 2 we recall some basics of bidifferential calculus and set up the stage in a concise
way to formulate our general result about Darboux transformations. This hardly requires pre-
vious knowledge and can be taken as an independent and self-contained step into the world of
integrable PDDEs. That this is indeed a very powerful tool, is demonstrated in the rest of this
work, where we concentrate on one of the more tricky examples of integrable PDEs.

In Section 3 we elaborate in detail the example of the non-autonomous chiral model equation(
ρgzg

−1)
z

+ ε
(
ρgρg

−1)
ρ

= 0 (1.1)

for an m ×m matrix g, where ρ > 0 and z are independent real variables and ε = ±1.1 With
ε = 1, this governs the case of the stationary, axially symmetric vacuum Einstein (m = 2) and
Einstein–Maxwell (m = 3) equations in four dimensions, where we have two commuting Killing
vector fields, one spacelike and the other one asymptotically timelike (see, e.g., [2,3,48,68]). In
an analogous way, (1.1) with m > 3 appears in the dimensional reduction of (the bosonic part
of) higher-dimensional supergravity theories to two dimensions (see, e.g., [5, 25, 30, 36, 45, 73]).
With ε = −1, the above equation appears in the case of vacuum solutions of Einstein’s equations
in four dimensions with two commuting spacelike Killing vector fields [2,4,34,77], describing in
particular cylindrical gravitational waves.

In Section 3, we also present a reduction condition that, imposed on the obtained family of
solutions, achieves that g is symmetric. Any such real and symmetric g determines a solution
of the vacuum Einstein equations in m + 2 dimensions, as recalled in Section 4. The resulting
recipe to construct solutions of the vacuum Einstein equations is close to the familiar Belinski–
Zakharov method [2–4], which has been applied in numerous publications. In a sense, what we
obtained is a kind of matrix version of the latter.

A well-known reformulation of the equations obtained from the integrable reduction of the
four-dimensional vacuum Einstein (and also the Einstein–Maxwell) equations by introduction
of the so-called twist potential (a crucial step toward the Ernst equation), connects space-time
metrics in a different way with the non-autonomous chiral model (see, e.g., [58]). Solutions
of the latter are then required to have a constant determinant. This allows a constant seed
and thus an application of the restricted solution-generating result in [15] (also see Remark 4.3
below). It does not work in the more direct approach we take in the present work, but here we
resolve the restriction in [15].

In Section 4 we elaborate several examples in four and five space-time dimensions, and show
that the resulting metrics include important solutions of Einstein’s equations, in particular some
of the more recently found black objects in five dimensions, which have no counterpart in four
dimensions (see, e.g., [25, 42,45,73]). Here we used Mathematica2 in a substantial way.

Section 5 contains some concluding remarks.

2 Binary Darboux transformations in bidifferential calculus

A graded associative algebra is an associative algebra Ω over C with a direct sum decomposi-
tion Ω =

⊕
r≥0 Ωr into a subalgebra A := Ω0 and A-bimodules Ωr, such that ΩrΩs ⊆ Ωr+s.

A bidifferential calculus (or bidifferential graded algebra) is a unital graded associative algebra Ω,
equipped with two (C-linear) graded derivations3 d, d̄ : Ω→ Ω of degree one (hence dΩr ⊆ Ωr+1,
d̄Ωr ⊆ Ωr+1), with the properties

d2 = d̄2 = dd̄ + d̄d = 0. (2.1)

1A subscript indicates a partial derivative with respect to the corresponding variable. Formally, ρ 7→ iρ relates
the two values of ε in (1.1).

2Mathematica Edition: Version 8, Wolfram Research, Inc., Champaign, Illinois, 2010.
3Hence d and d̄ both satisfy the graded Leibniz rule d(χχ′) = (dχ)χ′ + (−1)rχdχ′, for all χ ∈ Ωr and χ′ ∈ Ω.
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In the bidifferential calculus approach to integrable PDDEs we are looking for a choice
(Ω, d, d̄) and some φ ∈ A, or some invertible g ∈ A, such that either

d̄dφ = dφdφ (2.2)

or

d
[
(d̄g)g−1

]
= 0 (2.3)

is equivalent to a certain PDDE. The two equations are related by the Miura equation

(d̄g)g−1 = dφ, (2.4)

which establishes a kind of Miura transformation4 between the two equations (2.2) and (2.3).
This equation has both, (2.2) and (2.3), as integrability conditions. As a consequence, if we find
a solution pair (φ, g) of (2.4), then φ solves (2.2) and g solves (2.3).

In the following theorem, we formulate a solution-generating result which amounts to a trans-
formation that takes a given solution (φ0, g0) of the Miura equation (2.4) to a new solution
of (2.4),

(φ0, g0) 7→ (φ, g).

This induces corresponding transformations of solutions of (2.2), respectively (2.3).
Let nowA be the algebra of all finite-dimensional5 matrices, with entries in a unital algebra B.

The product of two matrices is defined to be zero if the sizes of the two matrices do not match.
In the following we assume that there is a graded algebra Ω with Ω0 = A, and a bidifferential
calculus (Ω,d, d̄), and such that d and d̄ preserve the size of matrices. I = Im and I = In
denote the m×m, respectively n×n, identity matrix, and we assume that they are annihilated
by d and d̄. Furthermore, Mat(m,n,B) denotes the set of m× n matrices over B.

Theorem 2.1. Let φ0, g0 ∈ Mat(m,m,B) solve the Miura equation (2.4). Let P ,Q ∈
Mat(n, n,B) be invertible solutions of

d̄P = (dP )P , d̄Q = QdQ, (2.5)

which are independent in the sense that QY = Y P implies Y = 0. Let U ∈ Mat(m,n,B) and
V ∈ Mat(n,m,B) be solutions of the linear equations6

d̄U = (dU)P + (dφ0)U , d̄V = QdV − V dφ0. (2.6)

Furthermore, let X ∈ Mat(n, n,B) be an invertible solution of the Sylvester-type equation

XP −QX = V U . (2.7)

Then

φ = φ0 + UX−1V , g =
(
I + U(QX)−1V

)
g0 (2.8)

solve the Miura equation (2.4), and thus also (2.2), respectively (2.3).

4The original Miura transformation maps solutions of the modified Korteweg–de Vries equation to solutions
of the Korteweg–de Vries equation.

5An extension to a suitable class of ∞-dimensional matrices, respectively operators, is certainly possible.
6If we are primarily interested in solving (2.3), it is more convenient to replace dφ0 by (d̄g0)g−1

0 in these
equations, by use of the Miura equation for (φ0, g0).
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Proof. Acting on (2.7) with d̄, using the rules of bidifferential calculus, (2.5), (2.6), and (2.7)
again, we find

Q[d̄X − (dX)P + (dQ)X + (dV )U ] = [d̄X − (dX)P + (dQ)X + (dV )U ]P .

Since P and Q are assumed to be independent, this implies7

d̄X − (dX)P + (dQ)X + (dV )U = 0. (2.9)

Using also (2.5) and (2.7), we easily deduce that

d̄(QX)−1 = −X−1
[
(dX)X−1(XP )− (dV )U

]
(QX)−1

= (dX−1)
[
I + V U(QX)−1

]
+ X−1(dV )U(QX)−1.

This is then used in the elaboration of

d̄g = d̄
[
(I + U(QX)−1V )g0

]
via the graded derivation (Leibniz) rule for d̄. We eliminate all further terms involving a d̄ with
the help of (2.6), and apply (2.7) to eliminate a P in favor of a Q. Finally we obtain d̄g = (dφ)g
with φ given by (2.8). Our assumptions ensure that the inverse of g exists. It is given by

g−1 = g−10

(
I −U(XP )−1V

)
.

The integrability conditions of (2.6) and (2.9) are satisfied as a consequence of (2.5) and d̄dφ0 =
dφ0dφ0 (which follows from (d̄g0)g

−1
0 = dφ0). �

For a reader acquainted with corresponding results about binary Darboux transformations in
the literature on integrable systems, the similarity will be evident (see, e.g., [12, 35, 54, 59, 62]).
It is close to results in [63–65]8. A new feature, however, is the dependence of the linear
equations (2.6) on solutions P and Q of the nonlinear equations (2.5). This generalization is
crucial for our application to the Einstein equations. As already mentioned in the introduction,
Theorem 2.1 considerably generalizes previous, more restricted results, see in particular [15].

Remark 2.1. As a consequence of (2.5), P and −Q solve the n× n version of (2.2). Since we
assume that they are invertible, P and Q−1 solve the n× n version of (2.3). If U is a solution
of the first of (2.6), then also UP , by use of the first of (2.5). If V is a solution of the second
of (2.6), then also QV , by use of the second of (2.5).

Remark 2.2. By direct computations one verifies the following “scaling property”. Let U
and V solve (2.6) and let

ĝ0 = wg0, Û = UW 1, V̂ = W 2V ,

with a solution (ϕ,w) of the m = 1 version of (2.4), and invertible W i ∈ Mat(n, n,B), subject
to

[W 1,P ] = 0, [W 2,Q] = 0.

We further assume that ϕ and w are in the center of Ω.9 If W 1 and W 2 satisfy

d̄W 1 = (dW 1)P + (d̄w)w−1W 1, d̄W 2 = QdW 2 −W 2(d̄w)w−1,

7It is a key feature of Theorem 2.1 that this equation is automatically solved if P and Q are independent.
Relaxing the latter assumption, the theorem remains valid if this equation is added to the assumptions.

8The precise relation has still to be clarified.
9This holds, e.g., in the case of the non-autonomous chiral model treated in Section 3. But this assumption

will be a (perhaps too) severe restriction if B involves differential or difference operators.
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then Û and V̂ solve (2.6), with φ0 replaced by φ̂0 = φ0 + ϕI. Furthermore, X̂ = W 2XW 1

solves (2.7) with U , V replaced by Û , V̂ . For the new solutions of (2.4) (and thus (2.2),
respectively (2.3)), determined by the theorem, we find

φ̂ = φ+ ϕI, ĝ = wg,

where φ and g are given by (2.8). Hence, under the stated conditions, multiplication of g0 by
a “scalar” solution w of (2.3) simplify amounts to multiplication of g by w. In the special case
where w is the identity element and g thus remains unchanged, the above equations for W 1

and W 2 still allow non-trivial transformations of U and V . These results will be used in
Section 4.

Remark 2.3. Let (φi, gi), i = 1, 2, be two solutions obtained via Theorem 2.1 from the same
seed solution (φ0, g0). Let (P i,Qi,U i,V i) be corresponding solutions of (2.5) and (2.6). Then

P =

(
P 1 0
0 P 2

)
, Q =

(
Q1 0
0 Q2

)
, U = (U1,U2), V =

(
V 1

V 2

)
also solve (2.5) and (2.6). If P and Q are independent and if (2.7) has an invertible solution X,
then (2.8) determines a new solution of (2.4), and thus new solutions of (2.2) and (2.3). This
expresses a nonlinear superposition principle. By iteration, one can build superpositions of an
arbitrary number of “elementary” solutions, hence (analogs of) “multi-solitons”.

Remark 2.4. We note that the first of equations (2.6) is a special case (and n × n matrix
version) of the general linear equation

d̄ψ − Aψ = dψP, where A = dφ. (2.10)

Here P is a solution of the nonlinear equation

d̄P = (dP )P.

An n× n matrix version of it appears in (2.5). The integrability condition of (2.10) is (2.2). If
we set A = (d̄g)g−1, the integrability condition is (2.3) instead. A similar statement holds for
the second of equations (2.6), the “adjoint linear system”. The Darboux transformation (2.8) is
“binary” since it involves solutions of the linear system as well as of the adjoint.

Remark 2.5. In the special case where Ω is the algebra of matrix-valued differential forms
on a manifold, and d the exterior derivative, any tensor field N of type (1, 1) with vanishing
Nijenhuis torsion determines a map d̄N satisfying the above conditions [7, 31]. Moreover, ac-
cording to Frölicher–Nijenhuis theory [31], any d̄ such that (2.1) holds has to be of this form.
Finite-dimensional integrable systems have been considered in this framework in [13]. The ge-
neralization to Lie algebroid structures is nicely described in [6]. See also [1, 51, 52] for related
aspects. We should stress, however, that in our central examples we depart from differential
geometry and consider a differential calculus in a weaker sense (e.g., of noncommutative geo-
metry).

The setting of the above theorem allows in principle structures far away from classical calculus
and in particular differential geometry, then dealing with equations beyond differential and
difference equations. A somewhat more restricted framework is given by setting

Ω = A⊗
∧(

CN
)
,

where
∧

(CN ) denotes the exterior (Grassmann) algebra of the vector space CN . In this case
it is sufficient to define suitable operators d and d̄ on A, since they extend to Ω in an evident
way. Many integrable PDDEs have been treated in this framework and in the next section we
turn to an important example.
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3 Solutions of the non-autonomous chiral model

The non-autonomous chiral model is well-known to be a reduction of the (anti-) self-dual Yang–
Mills equations, for which a very simple bidifferential calculus exists [19] (that may actually
be considered as a prototype). From the latter one can then derive a bidifferential calculus
for (1.1). It is determined by

df = −fzξ1 + eθ
(
fρ − ρ−1fθ

)
ξ2, d̄f = e−θ

(
fρ + ρ−1fθ

)
ξ1 + εfzξ2

for f ∈ C∞(R3) (cf. [15]). ξ1, ξ2 is a basis of
∧1(C2). Choosing B = C∞(R3), d and d̄ extend

to A⊗
∧

(C2) via d(f1ξ1 + f2ξ2) = (df1) ∧ ξ1 + (df2) ∧ ξ2 and d(fξ1 ∧ ξ2) = (df) ∧ ξ1 ∧ ξ2 = 0,
and correspondingly for d̄. For an m×m matrix-valued function g, (2.3) now takes the form(

ρgzg
−1)

z
+ ε
(
ρgρg

−1)
ρ
−
[(
gρ + ρ−1gθ

)
g−1
]
θ

+
(
gθg
−1)

ρ
= 0,

which reduces to (1.1) if g does not depend on θ. The coordinate θ is needed to have the prop-
erties of a bidifferential calculus, but addressing (1.1) we are primarily interested in equations
for objects that do not depend on it.

Using this bidifferential calculus, the Miura equation (2.4) decomposes into(
gρ + ρ−1gθ

)
g−1 = −eθφz, gzg

−1 = εeθ
(
φρ − ρ−1φθ

)
.

If g is θ-independent, this requires

φ = e−θφ̃, (3.1)

with θ-independent φ̃, and then reduces to

gρg
−1 = −φ̃z, εgzg

−1 = φ̃ρ + ρ−1φ̃. (3.2)

In the following, we elaborate Theorem 2.1 using the above bidifferential calculus. Section 3.1
provides the complete solution of the two nonlinear equations (2.5) under the condition that P
(respectively Q) has geometrically simple spectrum (i.e., for each eigenvalue there is a unique
corresponding Jordan block in the Jordan normal form), also see [15]. In this case the two
equations actually coincide. Then it only remains to solve linear equations, see Section 3.2 and
Section 3.3 below. In Section 3.4 we present a condition to be imposed on the data in order
to achieve that the solution g is symmetric (or Hermitian). This reduction is crucial in the
context of Einstein’s equations, see Section 4. Most of the following is, however, independent
of additional assumptions and provides a general procedure to construct solutions of the non-
autonomous chiral model. The corresponding equations cannot be solved explicitly without some
restrictions, in particular on the form of the seed solution. We content ourselves with providing
illustrative and important examples relevant in the context of gravity in Section 4.

3.1 The equations for P and Q

In terms of

P̃ := eθP ,

the first of the two equations (2.5) decomposes into the following pair of equations,

P̃ ρ + ρ−1
(
P̃ θ − P̃

)
= −P̃ zP̃ , εP̃ z =

[
P̃ ρ − ρ−1

(
P̃ θ − P̃

)]
P̃ , (3.3)
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which are autonomous in the variable θ. Assuming that P̃ and I + εP̃
2

are invertible, and that
P̃ is θ-independent, (3.3) implies

P̃
2 − 2ρ−1(zI −A)P̃ − εI = 0, (3.4)

with an arbitrary constant n × n matrix A (also see [15]). This is a matrix version of the
pole trajectories in the Belinski–Zakharov approach [2,4]. A well-known symmetry of the latter

extends to the matrix case: (3.4) is invariant under P̃ 7→ −εP̃−1. For the following result, see
Lemma 4.1 in [15].

Lemma 3.1. Any θ-independent, invertible solution of (3.4), which commutes with its deriva-
tives with respect to ρ and z, solves (3.3).

A can be taken in Jordan normal form A = block-diag(An1 , . . . ,Ans), without restriction of
generality, and a solution of (3.4) is then given by

P̃ = block-diag(P̃ n1 , . . . , P̃ ns),

where the block P̃ ni is a solution of (3.4) with A replaced by the Jordan block Ani , see the next
examples. Under the assumption that P̃ has geometrically simple spectrum, this is the most
general solution of d̄P = (dP )P with θ-independent P̃ = eθP [15].

Example 3.1. If A is diagonal, i.e., A = diag(a1, . . . , an) with constants ai, corresponding
solutions of (3.4) are given by P̃ = diag(p̃1, . . . , p̃n), where p̃i is any of

pi = ρ−1(z − ai + Ri), p̄i = ρ−1(z − ai −Ri), (3.5)

with Ri =
√

(z − ai)2 + ερ2. Note that p̄i = −ε/pi.

Remark 3.1. For better comparison with the relevant literature, we will sometimes write

pi =
ρ

µi
, p̄i =

ρ

µ̄i
,

where

µi =
√

(z − ai)2 + ερ2 − (z − ai), µ̄i = −
√

(z − ai)2 + ερ2 − (z − ai). (3.6)

µi and µ̄i are often referred to as (indicating the presence of) a soliton and an anti-soliton,
respectively. Note that µ̄i = −ερ2/µi. If ε = 1, then µi is non-negative and only vanishes on
a subset of {ρ = 0}.

Example 3.2. For an r × r Jordan block

Ar = aIr + N r, N r =



0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

...
...

. . . 1
0 · · · · · · · · · 0


,

(3.4) has the solutions (see [15])

P̃ r = ρ−1

(
zIr −Ar +

r−1∑
k=0

(
1/2

k

)
(±R)1−2k

[
2(a− z)N r + N2

r

]k)
,
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where R =
√

(z − a)2 + ερ2. This is an upper-triangular Toeplitz matrix and thus commutes
with its derivatives. In particular, we have P̃ 1 = p̃ = ρ−1[z − a±R] and

P̃ 2 = p̃

(
1 ∓R−1
0 1

)
, P̃ 3 = p̃

1 ∓R−1 ± ε
2ρR

−3p̃−1

0 1 ∓R−1
0 0 1

 .

For the solutions P̃ obtained in this way, and thus P , we have

d̄P = (dP )P = P (dP ),

so that they also provide us with solutions Q = e−θQ̃, with θ-independent Q̃, of the second
of (2.5), also see [15].

Recall that on the way to the above results we assumed that P̃ and I + εP̃
2

are invertible,

and then also Q̃ and I + εQ̃
2
. These assumption will also be made throughout in the following.

Remark 3.2. The source matrix A for P̃ and the corresponding source matrix A′ for Q̃ can
be assumed to be simultaneously in Jordan normal form, without restriction of generality. Since
this is achieved by similarity transformations with constant transformation matrices, the latter
can be absorbed by redefinitions that restore all the equations obtained from Theorem 2.1. But
in general this will no longer be so if we impose a reduction condition that relates P̃ and Q̃, as
in Section 3.4 below.

3.2 The equations for U and V

Setting φ0 = e−θφ̃0 with a θ-independent φ̃0 (cf. (3.1)), (2.6) is autonomous in the variable θ.
Assuming that U , V are θ-independent, and using the fact that φ̃0 has to solve the Miura
equations (3.2) together with some g0, we obtain the following systems of linear differential
equations for U and V ,

Uρ =
(
g0,ρg

−1
0 U − g0,zg−10 UP̃

)(
I + εP̃

2)−1
,

U z =
(
g0,zg

−1
0 U + εg0,ρg

−1
0 UP̃

)(
I + εP̃

2)−1
, (3.7)

and

V ρ =
(
I + εQ̃

2)−1(
Q̃V g0,zg

−1
0 − V g0,ρg

−1
0

)
,

V z = −
(
I + εQ̃

2)−1(
V g0,zg

−1
0 + εQ̃V g0,ρg

−1
0

)
. (3.8)

These equations have to be solved for the given seed solution g0 of (2.3). For diagonal g0, this
is done in the next example for the V -equations. Similar results are easily obtained for the
U -equations.

Example 3.3. Let

Q̃ = diag(p̃1, . . . , p̃n), g0 = diag(w1, . . . , wm),

where p̃i is either pi or p̄i in (3.5), and wα is a non-vanishing solution of the scalar (i.e., m = 1)
version

[ρ(lnw)ρ]ρ = −ε[ρ(lnw)z]z (3.9)
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of the non-autonomous chiral model (1.1). Writing V = (Viα), where i = 1, . . . , n and α =
1, . . . ,m, (3.8) reads

(lnViα)ρ =
1

1 + εp̃2i
(p̃i(lnwα)z − (lnwα)ρ) ,

(lnViα)z = − 1

1 + εp̃2i
((lnwα)z + εp̃i(lnwα)ρ) .

Let us list some simple solutions. If wα is constant, then also Viα. If p̃i = pi, then

Viα = kiα

{
(ρpi)

−1/2 if wα = ρ,

(ρpi)
1/2
(
1 + εp−1i p−1α

)
if wα = pα,

where pα shall be given by the same expression as some pi, but with in general different constant,
say a′α. kiα is an arbitrary constant. If p̃i = p̄i, then

Viα = kiα

{
(pi/ρ)1/2 if wα = ρ,

(pi/ρ)1/2(1 + εpipα)−1 if wα = pα.

More complicated solutions are now obtained by noting the following.

• If Viα is a solution for wα, then V −1iα is a solution for w−1α .

• If wα is the product of two solutions of (3.9), then Viα is the product of the respective
solutions for the factors.

3.3 The Sylvester equation and the solution formula

Recalling that U , V and Q̃ are θ-independent, the formula for (θ-independent) g in (2.8) requires
X = eθX̃ with θ-independent X̃. (2.7) becomes the θ-independent Sylvester equation

X̃P̃ − Q̃X̃ = V U . (3.10)

If spec(P̃ ) ∩ spec(Q̃) = ∅, then (3.10) has a unique solution, for any choice of the matrices
on the right hand side. The two matrices P and Q are then independent, hence Theorem 2.1
implies that10

g =
(
I + U

(
Q̃X̃

)−1
V
)
g0 (3.11)

solves the non-autonomous chiral model equation (1.1). Obviously, scaling U or V with an
arbitrary non-zero constant leaves g invariant. We recall from [15] (see Remark 4.4 therein) that

det g =
det P̃

det Q̃
det g0. (3.12)

Example 3.4. Let P̃ be diagonal, as in Example 3.1, and also Q̃, with eigenvalues q̃i, given by
an expression of the same form as p̃i. If they have no eigenvalue in common, i.e., {p̃i}∩{q̃i} = ∅,
then the unique solution of (3.10) is given by the Cauchy-like matrix

X̃ij =
(V U)ij
p̃j − q̃i

.

10We have to choose Q̃ invertible and make sure that the solution X̃ of (3.10) is invertible. See [14, 38] for
conditions that guarantee the latter.
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A vast literature exists on solutions of the Sylvester equation (3.10), more generally with
non-diagonal matrices P̃ and Q̃ (and not necessarily satisfying the spectrum condition that
guarantees a unique solution).

Proposition 3.1 ( [14,37,44]). Let spec(P̃ ) ∩ spec(Q̃) = ∅ and

P(λ) =
n∑
k=0

Pkλ
k

be the characteristic polynomial of P̃ . Then the unique solution of the Sylvester equation (3.10)
is given by

X̃ = −P(Q̃)−1
n∑
k=1

Pk

k−1∑
i=0

Q̃
k−1−i

V UP̃
i
. (3.13)

Remark 3.3. (2.9) takes the form

X̃ρ + ρ−1X̃ + X̃zP̃ − Q̃zX̃ − V zU = 0,

εX̃z −
(
X̃ρ − ρ−1X̃

)
P̃ +

(
Q̃ρ + ρ−1Q̃

)
X̃ + V ρU = 0. (3.14)

If we drop the spectrum condition for P̃ and Q̃, these equations also have to be solved. Otherwise
they are a consequence of our assumptions (see the proof of Theorem 2.1). (3.14) will only be
used in the proof of Proposition 4.1 in Appendix B.

Remark 3.4. Using the above results, we also obtain solutions φ of (2.2), given by the expression
in (2.8), which in the case under consideration and via (3.1) takes the form

εφ̃zz +
(
φ̃ρ + ρ−1φ̃

)
ρ

=
[
φ̃ρ + ρ−1φ̃, φ̃z

]
(which corrects a typo in (4.3) of [15]).

3.4 A reduction condition

It is of particular interest (see Section 4) to find a convenient condition which guarantees that
the solution matrix g given by (3.11) is symmetric, i.e., gᵀ = g, where ᵀ means matrix transpose.
The following result is easily verified by a direct computation.

Lemma 3.2. Let P̃
ᵀ

= −εQ̃−1 and gᵀ0 = g0. If V solves (3.8), then U = (V g0)
ᵀ solves (3.7).

Proposition 3.2. Let P̃
ᵀ

= −εQ̃−1, spec(P̃ )∩ spec(Q̃) = ∅, gᵀ0 = g0, and U = (V g0)
ᵀ. Then

g given by (3.11) is symmetric.

Proof. Using gᵀ0 = g0 and U = (V g0)
ᵀ, the Sylvester equation (3.10) and its transpose lead to

Q̃
[
Q̃X̃ − (Q̃X̃)ᵀ

]
= Q̃

[
X̃P̃ − P̃

ᵀ
X̃
ᵀ]

=
[
Q̃X̃ + εX̃

ᵀ
P̃
−1]

P̃ =
[
Q̃X̃ − (Q̃X̃)ᵀ

]
P̃ .

In the last two steps we used P̃
ᵀ

= −εQ̃−1. Now the spectrum condition implies Q̃X̃ = (Q̃X̃)ᵀ.
Together with gᵀ0 = g0 and U = (V g0)

ᵀ, this shows that g given by (3.11) is symmetric. �

Remark 3.5. Lemma 3.2 and Proposition 3.2 also hold with transposition replaced by any
involutory anti-automorphism of the matrix algebra, hence in particular for Hermitian conju-
gation. The Hermitian reduction of the non-autonomous chiral model appears in particular in
the context of the (electro-vacuum) Einstein–Maxwell equations in four dimensions with two
commuting Killing vector fields (also see [15]).
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In terms of the matrix

Γ := −QX̃ = ε
(
P̃
ᵀ)−1

X̃, (3.15)

which is symmetric under the assumptions of Proposition 3.2 (see the proof of Proposition 3.2),
the Sylvester equation (3.10) takes the form of a Stein equation,

Γ + εP̃
ᵀ
ΓP̃ = V g0V

ᵀ. (3.16)

Implementing the assumptions of Proposition 3.2 in the solution formula (3.11), we have

g =
(
I − g0V ᵀΓ−1V

)
g0. (3.17)

If P̃ is diagonal, i.e., P̃ = diag(p̃1, . . . , p̃n), and if p̃ip̃j 6= −ε for all i, j, then the solution of (3.16)
is given (via Example 3.4) by

Γij = ε
(V g0V

ᵀ)ij
p̃ip̃j + ε

. (3.18)

This is essentially the corresponding matrix (usually denoted by Γ) in the Belinski–Zakharov
method [2, 3].

Remark 3.6. From Remark 2.3 we deduce the following superposition result. Let (P̃ i,V i), i =
1, . . . , N , be solutions of (3.3) and (3.8) with Q̃i = −ε(P̃ ᵀi )−1, for the same seed solution g0. Then
P̃ = block-diag(P̃ 1, . . . , P̃N ) and V = (V ᵀ1, . . . ,V

ᵀ
N )ᵀ solve (3.3) and (3.8) with Q̃ = −ε(P̃ ᵀ)−1.

If spec(P̃ )∩ spec(−ε(P̃ ᵀ)−1) = ∅, and if (3.16) has an invertible solution Γ, then (3.17) is again
a symmetric solution of (1.1).

4 Solutions of the vacuum Einstein equations

In D dimensions, let us consider a space-time metric of the form

ds2 = gαβdx
αdxβ + f

(
εdρ2 + dz2

)
,

where the (real) components gαβ, α, β = 1, . . . ,m, and the function f only depend on the
coordinates ρ and z (and thus not on x1, . . . , xm). The metric then obviously admits m = D−2
commuting Killing vector fields11. For the next result, see, e.g., [2, 5, 25,73]12. If

(1) the matrix g = (gαβ) satisfies det g = −ερ2,

(2) g solves the m×m non-autonomous chiral model equation (1.1),

(3) f is a solution of the compatible system of linear equations

(ln f)ρ = −1

ρ
+

1

4ρ
tr
(
U2 − εV2

)
, (ln f)z =

1

2ρ
tr(UV), (4.1)

where U := ρgρg
−1 and V := ρgzg

−1,

11It is not the most general metric admitting m = D − 2 commuting Killing vector fields. See, e.g., [2].
12There are also reductions of the Einstein vacuum equations to the non-autonomous chiral model equation

using a non-Abelian Lie algebra of Killing vector fields. See the case with a null (i.e., lightlike, or isotropic) Killing
vector field in four dimensions treated in [67].
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then the metric is Ricci-flat, hence a solution of the vacuum Einstein equations (with vanishing
cosmological constant).

Since g has to be real and symmetric, corresponding conditions have to be imposed on the
matrix data of the class of solutions obtained in Section 3, so that these solutions determine Ricci-
flat metrics (also see [15]). Such conditions have been found in Section 3.4, and, accordingly, in
all examples of this section we shall set

Q̃ = −
(
P̃
−1)ᵀ

, U = (V g0)
ᵀ. (4.2)

Typically we will regard these equations as defining Q̃ and U in terms of P̃ , V and g0. In most
of the examples below, P̃ is diagonal. The (symmetric) solution of the non-autonomous chiral
model is then given by (3.17) with Γ in (3.18). If P̃ is not diagonal, we have to proceed via
the solution (3.13) of the Sylvester equation (still assuming that the spectrum condition holds)
and (3.15).

According to the following remark, the determinant condition (1) can always be achieved
if m is odd. There is a slight restriction if m is even.

Remark 4.1. By taking the trace of (1.1), one finds that det g and any power of it is a solution
of (1.1) in the scalar case (also see [2,4]). We further note that ĝ = wg, with any non-vanishing
solution w of the scalar equation, is again a solution of (1.1). For a solution g given by (3.17),
using (3.12) and (4.2) we find that

w =

(
ρ2

(det P̃ )2(−1)n+1εdet g0

)1/m

achieves that det ĝ = −ερ2. Since w has to be real, for even m this requires (−1)n(−εdet g0) > 0.

In the next subsection, we address (4.1). Then we sketch a useful procedure to construct
non-diagonal metrics from diagonal ones in such a way that the diagonal metric is recovered by
setting some parameters to zero. A collection of relevant examples in four and five space-time
dimensions follows. The method is indeed of most interest for D = 4 and D = 5. The higher
the number of dimensions, the more restrictive is the assumption of D − 2 commuting Killing
vector fields for the set of solutions of the vacuum Einstein equations.

4.1 Solutions of the equations for the metric function f

Example 4.1. For a diagonal solution g0 of (1.1), so that (g0)αα solves (3.9), (4.1) leads to

f0 = κρ−1
m∏
α=1

fα,

where κ is an arbitrary constant and fα has to be a solution of

(ln f)ρ =
ρ

4

(
(lnw)2ρ − ε(lnw)2z

)
, (ln f)z =

ρ

2
(lnw)ρ(lnw)z, (4.3)

with w replaced by (g0)αα. If w is a constant, then also f. Let us write f[w] for the solution of
the above equations for a given solution w of (3.9), and let ∝ denote equality up to a non-zero
constant factor. In particular, we have

f[µ̃i] ∝
µ̃i√

µ̃2i + ερ2
, where µ̃i = ±

√
(z − ai)2 + ερ2 − (z − ai)
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(cf. (3.6)). More generally, we find

f

[
ρk
µ̃1 · · · µ̃r
µ̃′1 · · · µ̃′s

]
∝ ρk2/4

(
µ̃1 · · · µ̃r
µ̃′1 · · · µ̃′s

)k/2( r∏
i=1

f[µ̃i]

) s∏
j=1

f[µ̃′j ]

(∏
i<k

F[µ̃i, µ̃k]

)

×

∏
j<l

F[µ̃′j , µ̃
′
l]

 r∏
i

s∏
j

F[µ̃i, µ̃
′
j ]
−1,

where µ̃′i is µ̃i with the constant ai replaced by some constant a′i, and we introduced the abbre-
viation

F[µ̃i, µ̃j ] =
µ̃iµ̃j

µ̃iµ̃j + ερ2
=

µ̃i − µ̃j
2(ai − aj)

,

where the last equality holds if ai 6= aj . The µ̃i (and also the µ̃′i) need not be distinct in the
above formula. Using these results in our formula for f0, we have the solution of (4.1) for a large
class of diagonal solutions of (1.1). See Appendix A for some details, and also [3].

For the proofs of the following propositions, see Appendix B.

Proposition 4.1. Let f0 be a solution of (4.1) for a seed g0 (solution of the Miura equation).
Let g be a corresponding solution of the non-autonomous chiral model from the family obtained
in Section 3 (i.e., given by (3.11), where the ingredients are subject to the respective equations).
Then

f = κf0ρ
−n det P̃ det Q̃det X̃[

det
(
I + εP̃

2)
det
(
I + εQ̃

2)]1/2 ,
with an arbitrary constant κ, solves (4.1) with the right hand sides evaluated with g.

Proposition 4.1 does neither assume that g0 and g are symmetric, nor the reduction condi-
tions (4.2). The following corollary now specializes to the case of this reduction.

Corollary 4.1. Let g0 be symmetric, Q̃
ᵀ

= −εP̃−1, spec(P̃ ) ∩ spec(Q̃) = ∅, and U = (V g0)
ᵀ.

Then the solution of (4.1) corresponding to g given by (3.17) is

f = κf0ρ
−n (det P̃ )2

det
(
I + εP̃

2) det Γ,

with an arbitrary constant κ.

A convenient formula for the determinant of the solution Γ of the Stein equation seems not
to be available in the literature.

If we have to modify a solution g in order to achieve the determinant condition (1), the
following result is of great help.

Proposition 4.2. Let f be a solution of (4.1) for a given solution g from the class obtained
in Section 3, and let f(w) be a solution of (4.1) for a scalar solution w of the non-autonomous
chiral model (1.1). Then

f̂ = (ρf(w))
m−1 f(w det g)

f(det g)
f (4.4)

solves (4.1) with ĝ = wg (which also solves (1.1) according to Remark 4.1). If det ĝ = −ερ2,
this reduces to

f̂ =
wf

(ρf(w))m
. (4.5)
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Due to these results, the problem of explicitly computing solutions of the vacuum Einstein
equations, based on the results in Section 3 and with a diagonal seed, essentially boils down

to that of solving the linear equations (3.8) for V . For diagonal Q̃ = −εP̃−1, solutions of the
latter have already been obtained in Example 3.3. Although we do not yet have general results
in case of a non-diagonal Q̃, corresponding examples are treated below in Examples 4.3 and 4.4.

4.2 From diagonal to non-diagonal solutions

In the following, we impose the reduction conditions (4.2), which determine Q̃ in terms of P̃ ,
and U in terms of V and g0, and restrict our considerations to the case ε = 1.

We translate a procedure due to Pomeransky [60], which has been formulated and applied
in the Belinski–Zakharov (BZ) approach, to our framework. We start with a diagonal (hence
in particular static) solution of the above dimensionally reduced vacuum Einstein equations.
The corresponding solution g̃ of (1.1) is thus diagonal. According to Remark 2.2 we may still
simplify it by multiplication with a suitable scalar solution of (1.1). Now some (anti-) solitons
are removed from it in the following way.

• Removal of a soliton pi = ρµ−1i (i.e., a soliton at z = ai) from g̃αα. This means multipli-
cation of g̃αα by −p−2i . In the BZ language, the corresponding trivial BZ vector has a 1
at the αth position and otherwise zeros.

• Removal of an anti-soliton p̄j = −p−1j = −ρ−1µj (i.e., an anti-soliton at z = aj) from g̃ββ .

This means multiplication of g̃ββ by p̄−2j = −p2j .

Afterwards these solitons are reintroduced, with more freedom, in the following way.

• In order to reintroduce the corresponding soliton, set P̃ kk = pi, for some k. The kth row

of the matrix V that solves (3.8) (with Q̃
ᵀ

= −P̃−1), or rather the vector formed by its
constant coefficients, generalizes the aforementioned trivial BZ vector. It’s αth component
has to be non-zero.

• To reintroduce the corresponding anti-soliton, set P̃ ll = p̄j , for some l. The lth row of the
matrix V generalizes the corresponding trivial BZ vector if its βth component is non-zero.

After multiplication with a suitable scalar solution of (1.1), in order to achieve the determinant
condition, this leads to a non-diagonal (and thus typically stationary) generalization of the
original diagonal metric. We recover the latter by suitably fixing the parameters introduced in
the second step.

In particular, this offers the possibility to reconstruct a known non-diagonal solution from its
diagonal specialization (provided the latter can be achieved) via the solution-generating tech-
nique. Some well-known examples of four-dimensional space-times are recovered in Section 4.3
in this way. The above procedure will be applied in the five-dimensional case in Section 4.4.

Remark 4.2. According to an observation at the end of Remark 2.2, any transformation V 7→
WV with a constant n × n matrix W that commutes with P̃

ᵀ
(i.e., [W , P̃

ᵀ
] = 0) leaves g

given by (3.17) invariant. If P̃ is diagonal, any diagonal W commutes with it. We can then use
such a transformation of V to scale in each row of V one of the non-zero constant coefficients
to a fixed value like 1. In the above step of reintroduction of solitons, without restriction of
generality we can thus fix the constants appearing in the respective positions of the rows of V .
If P̃ = P̃ r (see Example 3.2), then W is an arbitrary constant, lower-triangular Toeplitz matrix
and we can again rescale one non-zero coefficient in each row of the corresponding matrix V
to a chosen value (different from zero), without changing the corresponding solution g. This
feature generalizes to a P̃ that is block-diagonally composed of matrices P̃ r.
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4.3 Solutions of the vacuum Einstein equations in four dimensions

Let D = 4, hence m = 2, and ε = 1. We thus consider stationary and axially symmetric
solutions of the vacuum Einstein equations. The metric components gαβ, α, β = 1, 2, should
then refer to coordinates x1 = t (time) and x2 = ϕ (angle around the symmetry z-axis), ρ is the
coordinate distance from the axis. This interpretation in general imposes additional conditions
on the metric. The simple solution

g0 =

(
−1 0
0 ρ2

)
(4.6)

of (1.1) corresponds to the four-dimensional Minkowski metric ds2 = −dt2 + ρ2dϕ2 + dρ2 + dz2

in cylindrical coordinates. The solution f0 of (4.1) with g given by (4.6) is simply a constant,
which can be set to 1 (since this can be achieved by a coordinate transformation).

In order to facilitate comparison with the relevant literature, in the following we will mainly
use the µi introduced in (3.6), instead of the pi, see Remark 3.1. Furthermore, we will frequently
use the abbreviation (also see [73])

Rij = ρ2 + µiµj = 2(ai − aj)
µiµj
µi − µj

,

where the last equality holds if ai 6= aj .

Example 4.2 (Kerr-NUT). In order to recover the Kerr-NUT metric, we start with its static
specialization, the Schwarzschild metric. The latter corresponds to the following solution of (1.1),

g̃ =

−µ2µ1 0

0 ρ2
µ1
µ2

 .

Next we remove a soliton at z = a1 from g̃11 and a soliton at z = a2 from g̃22. The resulting
matrix is simplified by rescaling it with the inverse of

w = ρ−2µ1µ2.

We obtain the seed solution

g0 = w−1g̃ diag
(
−(ρ/µ1)

−2,−(ρ/µ2)
−2) ,

which is nothing but (4.6). Next we reintroduce the two solitons (n = 2) via

P̃ = diag

(
ρ

µ1
,
ρ

µ2

)
.

The respective solution of (3.8) (with Q̃ = −P̃−1) is

V =

(
v11 v12µ

−1
1

v21 v22µ
−1
2

)
,

with constants viα (see Example 3.3). According to Remark 4.2, we can set v11 = v22 = 1
without restriction of generality. Let us rename the remaining parameters in V ,

c1 = v12, c2 = v21.



16 A. Dimakis and F. Müller-Hoissen

Now we obtain the matrix Γ from (3.18). Then ĝ = wg, with g given by (3.17), satisfies the
determinant condition, i.e., det ĝ = −ρ2, and has the components

ĝ11 =
1

h

((
c21 + c22

)
ρ2µ1µ2(µ1 − µ2)2 − µ1µ2

((
1 + c21c

2
2

)
R2

12 − 2c1c2R11R22

))
,

ĝ12 =
(µ1 − µ2)R12

h

(
c1
(
c22µ

2
2 − ρ2

)
R11 + c2

(
c21ρ

2 − µ21
)
R22

)
,

ĝ22 =
1

h

(
−(µ1 − µ2)2

µ1µ2

(
c21ρ

8 + c22µ
4
1µ

4
2

)
+

ρ2

µ1µ2

((
µ41 + c21c

2
2µ

4
2

)
R2

12 − 2c1c2µ
2
1µ

2
2R11R22

))
,

where

h = (µ1 − µ2)2
(
c21ρ

4 + c22µ
2
1µ

2
2

)
+
(
µ21 + c21c

2
2µ

2
2

)
R2

12 − 2c1c2µ1µ2R11R22.

Furthermore, according to Example 4.1, we have

f(w) ∝
µ1µ2√

R11R22R12
.

Corollary 4.1 and Proposition 4.2 then yield

f̂ = − κ

µ1µ2R11R22
h,

with a constant κ. Setting a2 = −a1 = σ,

c1 =
m + σ

a + b
, c2 =

a + b

m− σ
, κ = C (m− σ)2

4σ2
, σ =

√
m2 − a2 + b2,

with new constants a, b, m and C, and passing over from the coordinates ρ and z to new
coordinates r and θ via

ρ =
√

(r −m)2 − σ2 sin θ, z = (r −m) cos θ,

we obtain the Kerr-NUT metric in Boyer–Lindquist coordinates, as given by (8.48) and (8.49)
in [2]. We can compose N Kerr-NUT data blockwise into larger matrices (the new P̃ and V
are then 2N × 2N , respectively 2N × 2 matrices), and obtain again a symmetric solution of
the non-autonomous chiral model equation, see Remark 3.6. The determinant condition is again
achieved by multiplication with a suitable scalar. In this way we can recover the multi-Kerr-NUT
solutions [50].

Choosing for P̃ the non-diagonal solution of (3.4) resulting from an n × n Jordan block
matrix An (see Example 3.2), we should expect that the resulting family of solutions of the
non-autonomous chiral model can be obtained alternatively via a “soliton coincidence” limit
(“pole fusion” in the Belinski–Zakharov formalism [2]) of the family of solutions obtained with
a diagonal P̃ (with distinct eigenvalues). This is confirmed by the following example.

Example 4.3. Again, let n = 2 and g0 as in (4.6). Now we choose

P̃ =
ρ

µ1

(
1 −R−1
0 1

)
,

where µ1 = R − z with R =
√
z2 + ρ2. This is P̃ 2 in Example 3.2 (with a = 0). We find the

solution

V =

(
v11 v12µ

−1
1

v21 v22µ
−1
1 − 2v12R−111

)
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of (3.8), with constants viα. Computing the solution of the Sylvester equation via (3.13), the
symmetric matrix Γ is obtained from (3.15). We have to rescale the resulting g, given by (3.17),
to ĝ = wg with w = ρ−2µ21, in order to arrange the determinant condition. It turns out that ĝ
only depends on the parameters viα via α = v12/v11 and β = det(viα)/v211. Furthermore, we
find that ĝ also results from the corresponding (Kerr-NUT) solution in Example 4.2 in the
limit σ → 0, after setting c1 = α and c2 = α−2(α− 2βσ).

The Kerr-NUT metric consists of two solitons of multiplicity one. The Tomimatsu–Sato
metrics [72] are known to generalize it to two solitons of multiplicity δ ≥ 1 (see, e.g., [2])13. We
should then expect that, for fixed δ, this solution can be obtained alternatively with P̃ consisting
of two blocks P̃ δ as given in Example 3.2 (corresponding to the δ × δ Jordan block Aδ). For
δ = 2 this is confirmed in the next example.

Example 4.4 (Tomimatsu–Sato). In the static limit, the δ = 2 Tomimatsu–Sato metric (also
see [49]) reduces to the Zipoy–Voorhees metric. The latter corresponds to the diagonal solution

g̃ = diag
(
−µ−21 µ22, ρ

2µ21µ
−2
2

)
of (1.1). Now we remove twice a soliton at z = a1 = σ from g̃11, and also twice a soliton at
z = a2 = −σ from g̃22. With a simplifying scaling we obtain the seed

g0 = w−1g̃ diag
(
ρ−4µ41, ρ

−4µ42
)
, w = ρ−4µ21µ

2
2.

The resulting g0 is again (4.6). Next we reintroduce the two double-solitons via14

P̃ =


ρµ−11 −2ρR−111 0 0

0 ρµ−11 0 0

0 0 ρµ−12 −2ρR−122

0 0 0 ρµ−12

 .

The solution of (3.8) is then given by

V =


v11 v12µ

−1
1

v21 v22µ
−1
1 − 2v12R−111

v31 v32µ
−1
2

v41 v42µ
−1
2 − 2v32R−122

 .

Again, the matrix Γ is obtained via (3.13) and (3.15). Next we have to compute ĝ = wg, with g
given by (3.17), and

f̂ = κρ−6wf−2(w)

(det P̃ )2 det Γ

det(I + P̃
2
)
, where f(w) = ρ3

(
µ21µ

2
2

R11R12R22

)2

.

According to Remark 4.2, without restriction of generality we can set

v11 = v21 = v32 = v42 = 1.

Choosing

v12 = v22 = v31 = v41 =
q

1 + p
, κ = σ−2

(
1 + p

4p

)4

,

13The Tomimatsu–Sato metrics are in fact limiting cases of multiple Kerr-NUT solutions [21,50].
14Noting that p1/R1 = 2ρ/R11, this consists of two blocks of the form P̃ 2 in Example 3.2.
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in terms of prolate spheroidal coordinates x, y, given by

ρ = σ
√

(x2 − 1)(1− y2), z = σxy, (4.7)

and after a coordinate transformation t 7→ t − 4σp−1qϕ, we obtain the δ = 2 Tomimatsu–Sato
metric

ds2 = −A
B
dt2 + 8σ

(
1− y2

)qC
pB

dtdϕ+ σ2
(
1− y2

) D
p2B

dϕ2

+
B

p4(x2 − y2)3

(
dx2

x2 − 1
+

dy2

1− y2

)
,

with

A =
(
1− y2

)4
g(Z)g(−Z),

B =
(
g(x) + q2y4

)2
+ 4q2y2

(
px3 + 1− (px+ 1)y2

)2
,

C = q2(px+ 1)y4
(
−y2 + 3

)
+
(
−2q2

(
px3 + 1

)
+ (px+ 1)g(x)

)
y2 −

(
2px3 − px+ 1

)
g(x),

D = p2q4
(
x2 − 1

)
y8 + 4q2(px+ 1)

(
p3x3 + 3p2x2 − p3x+ 4px− 3p2 + 4

)
y6

− 2q2
(
3p4x6 + 4p3x5 − 3p4x4 + 8p3x3 + 37p2x2 − 12p3x+ 48px− 13p2 + 24

)
y4

+ 4q2
(
p4x8 − p4x6 + 4p3x5 − 4p3x3 + 15p2x2 + 24px− 3p2 + 12

)
y2

+ g(x)
(
p4x6+ 6p3x5− p4x4+ 16p2x4− 12p3x3+ 32px3+ 15p2x2+ 6p3x− 15p2+ 16

)
,

where p2 + q2 = 1 and

g(x) = p2x4 + 2px3 − 2px− 1, Z2 =
x2 − y2

1− y2
.

These are the expressions (32)–(35) in [49]15.

Remark 4.3. The m = 2 non-autonomous chiral model is also related to the D = 4 vacuum
Einstein equations with two commuting Killing vector fields in another way, via the Ernst
equation (see, e.g., [68]). In this case, one has to impose a different determinant condition:
det g = 1. This allows a constant seed g0, and thus constant matrices U , V , in which case the
application of Theorem 2.1 is considerably simplified. The solutions obtained in this way include
the multi-Kerr-NUT metrics (see [15] for details)16. A similar construction with m = 3 leads
to the (electrically and magnetically) charged generalizations, the multi-Demianski–Newman
metrics [15].

4.4 Solutions of the vacuum Einstein equations in five dimensions

Let m = 3 and ε = 1. In this case it seems that no relevant solutions can be obtained by
choosing as the seed a diagonal solution of the non-autonomous chiral model corresponding to
five-dimensional Minkowski space-time. It then becomes a subtle problem to choose a suitable
seed solution. Here insights about the “rod structure” of the putative axis ρ = 0 are of great
help [2,9,27,36,60]. Some important solutions that have been obtained or recovered previously in
the Belinski–Zakharov approach will now be presented in our framework. We use the procedure
outlined in Section 4.2.

15We obtained a factor q4 in the expression for D, whereas there is a factor q2 in [49]. We believe that the
latter is a typo.

16In [78, 80], solutions of the five-dimensional Einstein–Maxwell equations are constructed from a pair of solu-
tions of the m = 2 non-autonomous chiral model with symmetric g and det g = 1.
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4.4.1 Myers–Perry black holes

The higher-dimensional generalization of a static black hole is given by the Schwarzschild–
Tangherlini solution [71]. The corresponding diagonal solution of (1.1) is

g̃ = diag

(
−µ1
µ2
, µ2,

ρ2

µ1

)
.

The seed g0 is obtained from g̃ as follows:

• Remove a soliton at z = a1 from g̃33.

• Remove an anti-soliton at z = a2 from g̃22.

• Multiply the resulting matrix by w−1, with w = −µ1/µ2, to achieve a simpler form.

This results in

g0 = diag

(
1,
ρ2

µ1
, µ2

)
.

According to Example 4.1, the associated solution of (4.1) is (up to a constant factor)

f0 =
µ2√
R11R22

.

Next we reintroduce the soliton and the anti-soliton via

P̃ = diag

(
ρ

µ1
,−µ2

ρ

)
.

The first row of the 2×3 matrix V should have a non-zero entry in the third component, which
means we recreate the soliton at z = a1 in the respective diagonal component of the seed. The
second row of V should have a non-zero entry in the second component, which means we recreate

the anti-soliton at z = a2. According to Example 3.3, the solution of (3.8) (with Q̃ = −P̃−1) is
given by

V =

v11 v12
µ1
R11

v13
R12

µ1µ2

v21 v22
R12

ρ2
v23

µ2
R22

 ,

with constants viα. The corresponding solution of the Stein equation (3.16) is obtained
from (3.18). With g given by (3.17), the new solution

ĝ = wg

satisfies the determinant condition: det ĝ = −ρ2. We find

f(w) =
R12

ρ
√
R11R22

(up to a constant factor). Without restriction of generality, we can set v13 = v22 = 1 (see
Remark 4.2). With the restrictions and renamings

v12 = v23 = 0, c1 = v11, c2 = v21,
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use of Corollary 4.1 and Proposition 4.2 yields

f̂ = κµ2
c21c

2
2µ

3
1µ2 − (µ1 − µ2)2

(
µ1
(
c21µ1µ2 + c22ρ

2
)

+R2
12

)
(µ1 − µ2)2R11R12R22

,

with a constant κ. The corresponding metric is given by

ds2 = ĝ11dt
2 + ĝ22dϕ

2 + ĝ33dψ
2 + 2ĝ12dtdϕ+ 2ĝ13dtdψ + 2ĝ23dϕdψ + f̂

(
dρ2 + dz2

)
.

Setting

a1 = −σ, a2 = σ,

with a constant σ, in terms of prolate spheroidal coordinates x, y, given by (4.7), we have

ĝ11 = −
(
4σx+

(
a21 − a22

)
y − ρ20

)
ω−1,

ĝ12 = −a1ρ20(1− y)ω−1,

ĝ13 = −a2ρ20(1 + y)ω−1,

ĝ22 =
1− y

4

(
4σx+ a21 − a22 + ρ20 + 2a21ρ

2
0(1− y)ω−1

)
,

ĝ23 =
1

2
a1a2ρ

2
0

(
1− y2

)
ω−1,

ĝ33 =
1 + y

4

(
4σx− a21 + a22 + ρ20 + 2a22ρ

2
0(1 + y)ω−1

)
,

f̂ =
ω

8
, ω = 4σx+ (a21 − a22)y + ρ20.

Performing a linear transformation of the coordinates t, ϕ, ψ,

(t, ϕ, ψ) 7→
(
t− a1ϕ− a2ψ,−

a1
c2
ϕ+

a2c2
4σ

ψ,
a1c1
4σ

ϕ− a2
c1
ψ

)
,

and setting

σ =
1

4

√
(ρ20 − a21 − a22)

2 − 4a21a
2
2, κ =

(a21 − a22)
2 − (4σ + ρ20)

2

16σρ20
,

c21 =

∣∣∣∣4σ(ρ20 − a21 + a22 − 4σ)

ρ20 + a21 − a22 + 4σ)

∣∣∣∣ , c22 =

∣∣∣∣4σ(ρ20 + a21 − a22 − 4σ)

ρ20 − a21 + a22 + 4σ

∣∣∣∣ ,
we recover the analogue of the Kerr metric, i.e., the Myers–Perry solution [36,56,57] of the five-
dimensional vacuum Einstein equations, precisely in the form of equation (19) in [60]. Switching
on the constants v12 and v23 (which we set to zero above), leads to a more general class of
space-times.

4.4.2 Black saturn

A black saturn [22] (also see [11, 69, 79]) is a black hole surrounded by a black ring17. In the
following, we show how the black saturn solution, originally obtained in [22], can be recovered
in our approach. Let us start with the same static solution of the non-autonomous chiral model
as in [22],

g̃ = diag

(
−µ1µ3
µ2µ4

,
ρ2µ4
µ3µ5

,
µ2µ5
µ1

)
.

This is motivated by a rod structure analysis (also see [9, 27, 36]). A suitable seed solution is
then constructed as follows.

17Black rings are similar to black holes, but with horizon topology S1 × SD−3. They only appear in D > 4
dimensions. See [8, 10,23,24,26,28,29,32,33,40,41,43,46,47,55,61,74–76].
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• Remove anti-solitons at z = a1 and at z = a3 from g̃11.

• Remove a soliton at z = a2 from g̃11.

• Multiply the resulting matrix by w−1 with w = ρ2µ2
µ1µ3

to simplify its form.

This results in

g0 = w−1g̃ diag

(
−ρ

2µ22
µ21µ

2
3

, 1, 1

)
= diag

(
1

µ4
,
µ1µ4
µ2µ5

,
µ3µ5
ρ2

)
.

The corresponding solution of (4.1) is obtained via Example 4.1,

f0 = k2µ3µ4µ5
R12R15R24R45√

R11R22R33R14R25R35R44R55
,

with a constant k. We have n = 3 and choose P̃ diagonal with

P̃ 11 = −µ1/ρ, P̃ 22 = ρ/µ2, P̃ 33 = −µ3/ρ.

The solution of the equations for V is then given by

V =


v11
R14

µ1
v12
R12R15

R11R14
v13

ρ2µ1
R13R15

v21
µ2µ4
R24

v22
µ2µ5R12R24

µ1µ4R22R25
v23

µ1R23R25

µ22µ3µ5

v31
R34

µ3
v32
R23R35

R13R34
v33

ρ2µ3
R33R35

 ,

with constants viα. Without restriction of generality, we can set

v11 = v21 = v31 = 1.

The case considered in Section 2.2 of [22] should then correspond to the subclass of solutions
given by

v12 = v22 = v33 = 0.

The authors of [22] then only elaborate the special case

v32 = 0

further. In this case, however, the removal of the anti-soliton at z = a3 from the original
static metric and the subsequent reintroduction via P̃ 33 is actually redundant. This means that
the black saturn space-time can already be obtained from n = 2 data. The solution Γ of the
Stein equation (3.16) is given by (3.18). With g given by (3.17), we set ĝ = wg to satisfy the
determinant condition. Then ĝ reduces to g̃ if v13 = v23 = 0, as expected. We find

f(w) =
R12R23√

R11R22R33R13

(up to a constant factor) and, using Corollary 4.1 and Proposition 4.2,

f̂ = −κρ−6wf0f−3(w)

(det P̃ )2 det Γ

det
(
I + P̃

2) ,
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which turns out to be a lengthy expression. Setting

v13 = 2c1(a1 − a5), v23 = c2[4(a2 − a3)(a2 − a4)]−1, κ = 4
(a1 − a2)2(a2 − a3)2

(a1 − a3)2
,

with constants ci, we obtain the metric

ds2 = −H2

H1

(
dt+

ω

H2
dψ

)2

+H1

(
k2P(dρ2 + dz2) +

G1

H1
dϕ2 +

G2

H2
dψ2

)
,

where

G1 =
ρ2µ4
µ3µ5

, G2 =
µ3µ5
µ4

, P = R15R2
34R45,

H1 = F−1
(
M0 + c21M1 + c22M2 + c1c2M3 + c21c

2
2M4

)
,

H2 =
µ3
µ4F

(
µ1
µ2
M0 − c21

ρ2

µ1µ2
M1 − c22

µ1µ2
ρ2

M2 + c1c2M3 + c21c
2
2

µ2
µ1
M4

)
,

F = µ1µ5(µ1 − µ3)2(µ2 − µ4)2
(

5∏
i=1

Rii

)
R13R14R23R24R25R35,

with

M0 = µ2µ
2
5(µ1 − µ3)2(µ2 − µ4)2R2

12R2
14R2

23,

M1 = ρ2µ21µ2µ3µ4µ5(µ1 − µ2)2(µ1 − µ5)2(µ2 − µ4)2R2
23,

M2 = ρ2µ21µ
−1
2 µ3µ4µ5(µ1 − µ2)2(µ1 − µ3)2R2

14R2
25,

M3 = 2µ21µ3µ4µ5(µ1 − µ3)(µ1 − µ5)(µ2 − µ4)R11R22R14R23R25,

M4 = µ41µ
−1
2 µ23µ

2
4(µ1 − µ5)2R2

12R2
25,

ω =
2

F
√
G1

(
c1R1

√
M0M1 − c2R2

√
M0M2 + c21c2R2

√
M1M4 − c1c22R1

√
M2M4

)
,

and Ri =
√

(z − ai)2 + ρ2. This is the black saturn metric18 as given in [22, 73], with some
obvious changes in notation, but some deviations in the factors µi in the expressions for M2, M3

and M4.

4.4.3 Double Myers–Perry black hole solution

In order to recover the double Myers–Perry black hole solution obtained in [39], we start with
the matrix that determines a static two-black hole solution (cf. (3.1) in [70]),

g̃ = diag

(
−µ1µ4
µ2µ5

,
ρ2µ3
µ1µ4

,
µ2µ5
µ3

)
.

Removal of two solitons µ2, µ5 and two anti-solitons µ1, µ4 from g̃11, and simplification with
a suitable factor, leads to

g0 = w−1g̃ diag

(
−
(
µ21µ

2
4

µ22µ
2
5

)−1
, 1, 1

)
= diag

(
−1,

ρ2µ3
µ2µ5

,
µ1µ4
µ3

)
, w =

µ2µ5
µ1µ4

.

18Additional conditions have to be imposed on the remaining parameters in order to achieve asymptotic flatness
and absence of naked and conical singularities, see [11,22].
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According to Example 4.1, the corresponding solution of (4.1) is given by

f0 =
µ1µ4
µ3

 5∏
i=1
i 6=3

√
Rii


−1

R13R23R34R35

R14R25R33
.

We have n = 4 and reintroduce the removed solitons and anti-solitons via

P̃ = diag
(
−ρ−1µ1,−ρ−1µ4, ρµ−12 , ρµ−15

)
.

The solution of (3.8) is given by

V =



v11 v12
R12R15

ρ2R13
v13

µ1R13

R11R14

v21 v22
R24R45

ρ2R34
v23

µ4R34

R14R44

v31 v32
µ2µ5R23

µ3R22R25
v33

µ3R12R24

µ1µ2µ4R23

v41 v42
µ2µ5R35

µ3R25R55
v43

µ3R15R45

µ1µ4µ5R35


.

In order to recover the double Myers–Perry black hole solution presented in [39], we reduce the
set of solutions obtained in this way by restricting V to

V =


1 v12

R12R15

ρ2R13
0

1 v22
R24R45

ρ2R34
0

1 0 0
1 0 0

 .

We immediately notice that this means in particular “trivializing” the solitons at z = a2 and
z = a5. Hence, the solution obtained with this special choice of V can already be obtained from
n = 2 data. We should expect, however, a 4-soliton transformation to be necessary in order to
generate a (sufficiently general) double black hole solution, which suggests to explore the above
more general solution. This will not be done here, and we return to the special case with the
above restricted V . Again, we obtain Γ from (3.18). Let ĝ be the resulting solution (3.17),
multiplied by w to achieve the determinant condition. From Example 4.1, we obtain

f(w) = ρ−1

 5∏
i=1
i 6=3

√
Rii


−1

R12R15R24R45

R14R25
,

and then f̂ via Corollary 4.1 and Proposition 4.2. Setting

v12 =
b(a1 − a3)

2(a1 − a2)(a1 − a5)
, v22 =

c(a3 − a4)
2(a2 − a4)(a4 − a5)

,

κ =

(
4

(a1 − a2)(a1 − a5)(a2 − a4)(a4 − a5)
(a1 − a4)(a2 − a5)

)2

,

with constants b, c, this results in the metric

ds2 = −H2

H1

(
dt+

ω

H2
dϕ

)2

+
ρ2µ3H1

µ2µ5H2
dϕ2 +

µ2µ5
µ3

dψ2 + k
H1

F

(
dρ2 + dz2

)
,
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where

H1 = M0 + b2M1 + c2M2 + bcM3 + b2c2M4,

H2 =
ρ2

µ2µ5

(
µ1µ4
ρ2

M0 − b2
µ4
µ1
M1 − c2

µ1
µ4
M2 − bcM3 + b2c2

ρ2

µ1µ4
M4

)
,

F = µ23(µ1 − µ4)2
(

5∏
i=1

Rii

)
R12R2

14R15R24R2
25R45

R13R23R34R35
,

ω = −2

(
µ3
µ2µ5

)1/2 (
bR1

√
M0M1 + cR4

√
M0M2 − b2cR4

√
M1M4 − bc2R1

√
M2M4

)
,

with

M0 = µ2µ
2
3µ5(µ1 − µ4)2R2

12R2
15R2

24R2
45,

M1 = µ21µ
2
2µ3µ

2
5(µ1 − µ3)2R2

14R2
24R2

45,

M2 = µ22µ3µ
2
4µ

2
5(µ3 − µ4)2R2

12R2
14R2

15,

M3 = 2µ1µ
2
2µ3µ4µ

2
5(µ1 − µ3)(µ3 − µ4)R11R12R15R24R44R45,

M4 = ρ4µ21µ
3
2µ

2
4µ

3
5(µ1 − µ3)2(µ1 − µ4)2(µ3 − µ4)2.

With obvious changes in notation, this is the metric obtained in [39].

Remark 4.4. It is plausible that one can start with the diagonal solution of the non-autonomous
chiral model corresponding to a static triple black hole space-time (see (4.1) in [70]) and construct
a space-time with three Myers–Perry black holes. This procedure should continue to produce
solutions with an arbitrary number of rotating black holes.

4.4.4 Bicycling black rings

Let us start with the solution

g̃ = diag

(
−µ1µ5
µ3µ7

,
ρ2µ3µ7
µ2µ4µ6

,
µ2µ4µ6
µ1µ5

)
of (1.1), which corresponds to a static metric. Removal of a soliton at z = a7 and an anti-soliton
at z = a1 from g̃11, and a rescaling, leads to the seed metric

g0 = w−1g̃ diag

(
µ27
µ21
, 1, 1

)
= diag

(
µ5
µ3
,−ρ

2µ1µ3
µ2µ4µ6

,−µ2µ4µ6
µ5µ7

)
, w = −µ7

µ1
,

with the following solution of (4.1) (up to a constant factor),

f0 =
µ2µ4µ6
µ5µ7

R12R14R16R23R25R27R34R35R36R45R47R56R67√
R11R13R22R2

24R2
26R33R44R2

46R55R57R66

√
R77

.

We have n = 2 and shall set

P̃ = diag
(
−ρ−1µ1, ρµ−17

)
.

The solution of (3.8) is then given by (see Example 3.3)

V =

 v11
R13

R15
v12
R12R14R16

µ1R11R13
v13

µ1R15R17

R12R14R16

v21
µ3R57

µ5R37
v22

µ2µ4µ6R17R37

µ1µ3R27R47R67
v23

µ5R27R47R67

µ2µ4µ6R57R77

 .
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Without restriction of generality, we can set v11 = v21 = 1. But we do restrict the class of
solutions by setting

v12 = v23 = 0.

Again, the solution Γ of the Stein equation is obtained from (3.18). The resulting solution (3.17)
of the non-autonomous chiral model has to be modified to ĝ = wg, with w as given above, in
order to achieve the determinant condition. We have (disregarding a constant factor)

f(w) = ρ−1
R17√
R11R77

,

and, from Corollary 4.1 and Proposition 4.2,

f̂ = κρ−5wf0f
−3
(w)

(det P̃ )2 det Γ

det
(
I + P̃

2) ,
which results in a lengthy expression. Setting

v13 = c1, v22 = b2
(a7 − a4)(a7 − a5)(a7 − a6)

(a7 − a1)(a7 − a3)2
, κ = 4(a7 − a1)2,

we obtain the metric19

ds2 = −H2

H1

(
dt− ω1

H2
dϕ− ω2

H2
dψ

)2

+
1

H2

(
G1dϕ

2 +G2dψ
2 − 2Jdϕdψ

)
+ PH1

(
dρ2 + dz2

)
,

where

H1 = M0 + c21M1 + b22M2 − b22c21M3,

H2 =
µ5
µ3

(
µ1
µ7
M0 − c21

ρ2

µ1µ7
M1 − b22

µ1µ7
ρ2

M2 − b22c21
µ7
µ1
M3

)
,

G1 =
ρ2µ1µ5
µ2µ4µ6

(
M0 − c21

ρ2

µ21
M1 + b22M2 + b22c

2
1

ρ2

µ21
M3

)
,

G2 =
µ2µ4µ6
µ3µ7

(
M0 + c21M1 − b22

µ27
ρ2
M2 + b22c

2
1

µ27
ρ2
M3

)
,

ω1 = b2
R77

µ7

(
µ1µ5
µ2µ4µ6

)1/2(√
M0M2 − c21

ρ

µ1

√
M1M3

)
,

ω2 = c1
R11

µ1

(
µ2µ4µ6
ρ2µ3µ7

)1/2(√
M0M1 − b22

µ7
ρ

√
M2M3

)
,

J = b2c1ρ
2µ1µ2µ3µ4µ

2
5µ6(µ3 − µ7)2(µ4 − µ7)(µ5 − µ7)(µ6 − µ7)

×R11R12R13R14R2
15R16R17R27R77,

and

M0 = µ4µ
3
5µ6µ7(µ3 − µ7)4R2

12R2
13R2

14R2
16R2

17R2
27,

M1 = ρ2µ21µ2µ3µ
2
4µ5µ

2
6(µ1 − µ7)2(µ3 − µ7)4R4

15R2
17R2

27,

19Here we used ai − aj = (µi − µj)(ρ
2 + µiµj)/(2µiµj) to eliminate ai − aj .
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M2 = ρ4µ1µ2µ
2
3µ

2
5µ7(µ4 − µ7)2(µ5 − µ7)2(µ6 − µ7)2R2

12R2
13R2

14R2
16,

M3 = ρ4µ31µ
2
2µ

3
3µ4µ6(µ4 − µ7)2(µ5 − µ7)2(µ6 − µ7)2R4

15R2
17,

P =
µ2

µ1µ45µ7(µ3 − µ7)4
R23R25R34R35R36R45R47R56R57R67

R12R13R14R2
15R16R17R2

24R2
26R27R2

37R2
46

.

With obvious changes in notation, this is the “bicycling” black bi-ring solution obtained in [23]
(also see [47]), except for the fact that we have a minus sign instead of a plus in the expressions
for ω1 and ω2.

5 Final remarks

We presented a general formulation of binary Darboux-type transformations in the bidifferential
calculus framework. Whenever a PDDE can be cast into the form (2.2) or (2.3), Theorem 2.1
can be applied and it will typically generate a large class of exact solutions. Meanwhile
a bidifferential calculus formulation is available for quite a number of integrable PDDEs.

We elaborated this general result for the case of the non-autonomous chiral model, consid-
erably extending previous results in [15]. We also presented conditions that, imposed on the
matrix data that determine the general class of solutions, guarantee that the resulting solution
of the non-autonomous chiral model is symmetric (or Hermitian). If the solution is also real,
then it is known to determine a Ricci-flat metric, i.e., a solution of the vacuum Einstein equa-
tions, dimensionally reduced to two dimensions. We essentially solved the equations resulting
from the assumptions in Theorem 2.1 in the case of a diagonal seed metric, though not yet the
V -equations in sufficient generality if P̃ is non-diagonal (but see Examples 4.3 and 4.4). All this
provides a working recipe to compute quite easily solutions of the vacuum Einstein equations.
In particular, in the four-dimensional case we recovered (multi-) Kerr-NUT (in a different way
than in [15]) and the δ = 2 Tomimatsu–Sato solution. In the five-dimensional case we recovered
single and double Myers–Perry black holes, the “black saturn” and the “bicycling black ring”
solutions. The more general solutions still have to be explored. In view of the complexity of the
latter solutions, it is certainly an advantage to have now an independent method at our disposal
to derive, verify or generalize them. Surely further important solutions of Einstein’s equations
in D ≥ 4 space-time dimensions can be recovered using this method and there is a chance to
discover interesting new solutions. We concentrated on examples in the stationary case ε = 1,
but developed the formalism as well for the wave case ε = −1 [2,4]. It is not difficult to recover
relevant examples in this case too.

The recipe to construct solutions of the non-autonomous chiral model and the dimensionally
reduced vacuum Einstein equations, obtained from Theorem 2.1, is – not surprisingly – a variant,
a sort of matrix version, of the well-known method of Belinski and Zakharov [2–4].

One should look for suitable ways to spot physically relevant solutions within the plethora
of solutions. How are desired properties of solutions, like asymptotic flatness, absence of naked
singularities and proper axis conditions encoded in the (matrix) data that determine a solution?
Here the rod structure analysis [2, 9, 27, 36], developed for the Belinski–Zakharov approach and
frequently used, is of great help.

Section 3 also paved the way toward a treatment of other reductions of the non-autonomous
chiral model, which, e.g., are relevant in the Einstein–Maxwell case and supergravity theories.

In this work we only elaborated Theorem 2.1 for a particular example of an integrable equation
in the bidifferential calculus framework. Although we already applied a more restricted version
of it previously to several other integrable equations, it will be worth to reconsider them and
to also explore further equations, using the much more general solution-generating tool we now
have at our disposal. Furthermore, it should be clarified whether, e.g., the examples in [63–65]
fit into the framework of Theorem 2.1. We should also mention that Sylvester equations, like
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those that arise from (2.7), and more generally operator versions of them, are ubiquitous in the
theory of integrable systems. In particular, they are related to a Riemann–Hilbert factorization
problem [66] and they are at the roots of Marchenko’s operator approach [53].

Appendix A. Addendum to Example 4.1

From (4.3) we find that

f[ρ] ∝ ρ1/4, f[wk] ∝ f[w]k
2
, f[w1w2] ∝ f[w1]f[w2]F[w1, w2],

where F[w1, w2] has to solve

(lnF[w1, w2])ρ =
ρ

2

(
(lnw1)ρ(lnw2)ρ − ε(lnw1)z(lnw2)z

)
,

(lnF[w1, w2])z =
ρ

2

(
(lnw1)ρ(lnw2)z + (lnw1)z(lnw2)ρ

)
(also see [47]). It is easy to verify that

F[w1 · · ·wr, w′1 · · ·w′s] ∝
r∏
i=1

s∏
j=1

F[wi, w
′
j ].

In particular, F[wk1 , w
l
2] ∝ F[w1, w2]

kl. Furthermore, we have

F
[
ρkw1, ρ

lw2

]
∝ ρkl/2wl/21 w

k/2
2 F[w1, w2].

It follows that

f[ρkw] ∝ ρk2/4wk/2f[w], f[µ̃1 · · · µ̃r] ∝

(
r∏

k=1

f[µ̃k]

)∏
i<j

F[µ̃i, µ̃j ]

 ,

and

f

[
µ̃1 · · · µ̃r
µ̃′1 · · · µ̃′s

]
∝ f[µ̃1 · · · µ̃r]f[µ̃′1 · · · µ̃′r]

r∏
i

s∏
j
F[µ̃i, µ̃′j ]

,

from which the main result in Example 4.1 is easily deduced.

Appendix B. Some proofs

Proof of Proposition 4.1. Using (ln detY )ρ = tr(YρY
−1) for an invertible (and differentiable)

matrix function Y , we obtain

(ln f)ρ = (ln f0)ρ + tr
(
−ρ−1I + X̃ρX̃

−1
+ P̃ ρP̃

−1
+ Q̃ρQ̃

−1 − εP̃ ρP̃
(
1 + εP̃

2)−1
− εQ̃ρQ̃

(
1 + εQ̃

2)−1)
,

(ln f)z = (ln f0)z + tr
(
X̃zX̃

−1
+ P̃ zP̃

−1
+ Q̃zQ̃

−1 − εP̃ zP̃
(
1 + εP̃

2)−1
− εQ̃zQ̃

(
1 + εQ̃

2)−1)
,



28 A. Dimakis and F. Müller-Hoissen

for the expression of f in Proposition 4.1. In order to verify that (4.1) holds, we have to show
that these expressions equal the corresponding right hand sides of (4.1), evaluated with

U = −ρφ̃z = −ρ
[
φ̃0,z +

(
UX̃

−1
V
)
z

]
= U0 − ρ

(
U zX̃

−1
V −UX̃

−1
X̃zX̃

−1
V + UX̃

−1
V z

)
,

V = V0 + ε
[
ρ
(
UρX̃

−1
V −UX̃

−1
X̃ρX̃

−1
V + UX̃

−1
V ρ

)
+ UX̃

−1
V
]
,

where U0 = −ρφ̃0,z and V0 = ε(ρφ̃0,ρ + φ̃0).
20 We work on the right hand sides of (4.1) and, as

intermediate steps, we consider tr(U2 − U2
0 ), tr(V2 − V20 ) and tr(UV − U0V0) separately. First

we eliminate derivatives of φ0 with the help of (3.7) and (3.8). Then we eliminate V U using
the Sylvester equation, and V zU , V ρU via (3.14). Rewriting (3.14) with the help of (3.10), we
obtain a version that allows us to also replace all occurencies of V U z and V Uρ. Several times
one has to exploit the cyclicity of the trace. Finally we use

P̃ ρ = ρ−1P̃
(
I − εP̃ 2)(

I + εP̃
2)−1

, P̃ z = 2ερ−1P̃
2(
I + εP̃

2)−1
(which follows from (3.3)), and the corresponding equations for Q̃, to show that (4.1) holds.

Proof of Proposition 4.2. Using Û = U + ρ(lnw)ρI and V̂ = V + ρ(lnw)zI, we have

tr
(
Û2 − U2

)
= 2ρ(lnw)ρ trU +mρ2(lnw)2ρ = 2ρ2(lnw)ρ(ln det g)ρ +mρ2(lnw)2ρ,

and a corresponding expression for tr(V̂2 − V2). Furthermore,

tr
(
Û V̂ − UV

)
= ρ2

(
(lnw)ρ(ln det g)z + (lnw)z(ln det g)ρ +m(lnw)ρ(lnw)z

)
.

With the help of (4.1) we obtain(
ln
f̂

f

)
ρ

=
1

4ρ
tr
(
Û2 − U2 − ε

(
V̂2 − V2

))
=
ρ

2

(
(lnw)ρ(ln det g)ρ − ε(lnw)z(ln det g)z

)
+m

ρ

4

(
(lnw)2ρ − ε(lnw)2z

)
,(

ln
f̂

f

)
z

=
1

2ρ
tr
(
Û V̂ − UV

)
=
ρ

2

(
(lnw)ρ(ln det g)z + (lnw)z(ln det g)ρ

)
+m

ρ

2
(lnw)ρ(lnw)z.

Next we use

(ln(ρf(w)))ρ =
ρ

4

(
(lnw)2ρ − ε(lnw)2z

)
, (ln(ρf(w)))z =

ρ

2
(lnw)ρ(lnw)z,

and the corresponding equations for f(det g) and f(w det g), to deduce that(
ln

f(w det g)

ρf(w)f(det g)

)
ρ

=
ρ

2

(
(lnw)ρ(ln det g)ρ − ε(lnw)z(ln det g)z

)
,(

ln
f(w det g)

ρf(w)f(det g)

)
z

=
ρ

2

(
(lnw)ρ(ln det g)z + (lnw)z(ln det g)ρ

)
.

Inserting the last expressions in our previous results, we obtain (4.4) by integration. Let us now
assume that det ĝ = −ερ2, and thus det g = −ερ2w−m. With

f(ρ2wk) ∝ wk(ρf(w))k
2

(see Example 4.1), (4.5) results from (4.4).

20This is quite a tour de force and a more elegant proof would be desirable.
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