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Abstract. For operators of many different kinds it has been proved that (generalized)
Darboux transformations can be built using so called Wronskian formulae. Such Darboux
transformations are not invertible in the sense that the corresponding mappings of the opera-
tor kernels are not invertible. The only known invertible ones were Laplace transformations
(and their compositions), which are special cases of Darboux transformations for hyperbolic
bivariate operators of order 2. In the present paper we find a criteria for a bivariate linear
partial differential operator of an arbitrary order d to have an invertible Darboux trans-
formation. We show that Wronkian formulae may fail in some cases, and find sufficient
conditions for such formulae to work.
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1 Introduction

Darboux transformations are shape preserving transformations of linear partial differential op-
erators. These transformations were originally introduced in [2] first for operators

−D2
x + u− λ, (1)

corresponding to Sturm–Liouville equations, where u ∈ K, and where K is some differential
field (see Section 2), and λ is a constant, and, secondly, for operators of the form

DxDy + aDx + bDy + c, (2)

where a, b, c ∈ K, which is a form equivalent up to a change of variable to stationary 2D
Schrödinger operator. These transformations were suggested as a possible method for the solu-
tion of the corresponding linear partial differential equations1. By exploiting these ideas many
new kinds of integrable 1D and 2D Schrödinger equations have been discovered. See, for example,
this influential paper [8].

Decades later, Darboux transformations became a standard tool of the inverse scattering
method, where they are applied to the linear partial differential operators forming the Lax pair
and thus eventually serve for the solution of nonlinear partial differential equations [6, 9].

A Darboux transformation for an arbitrary linear partial differential operator L can be defined
as follows. An operator L is transformed into operator L1 with the same principal symbol (see
Section 2) by means of operator M if there is a linear partial differential operator N such that

NL = L1M. (3)

?This paper is a contribution to the Special Issue “Symmetries of Differential Equations: Frames, Invariants
and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html

1Though we cannot guarantee in advance that it will be successful.
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In this case we shall say that there is a Darboux transformation for pair (L,M); we also say
that L admits a Darboux transformation generated by M. We define the order of a Darboux
transformation as the order of the M corresponding to it.

If a linear partial differential operator L ∈ K[Dx, Dy] has a right factor Dx+ l, then it admits
a Darboux transformation generated by M = Dx + l. Indeed, suppose L = F (Dx + l), then for
arbitrary t ∈ K: (Dx+ t)L = (Dx+ t)F(Dx+ l), that is L transforms into (Dx+ t)F. However,
a general Darboux transformation is not implied by a factorization.

For operator (1) the only possible Darboux transformations are those generated by M = Dx−
ψ1,xψ

−1
1 , where ψ1 is in the kernel of the operator (1). For operator (2) Darboux transformations

can be generated by each of the following:

My = Dx − ψ1,xψ
−1
1 , (4)

Mx = Dy − ψ1,yψ
−1
1 , (5)

where ψ1 is in the kernel of operator (2). For operator (2), however, there are also Darboux
transformations that are generated by M of a form Dx +m or Dy +m, m ∈ K, but cannot be
represented as either (4) or (5). These transformations are known as Laplace transformations.
Specifically, these transformations are transformations of operators L of the form (2) and are
generated by M = Dx + b, or M = Dy + a, provided the Laplace invariant k = by + ab − c is
not zero (or the invariant h = ax + ab− c is not zero). See more about Laplace transformations
in [12]. It is also known that Laplace transformations are invertible [3].

Moreover, it has been proved [10] that Laplace transformations are the only two Darboux
transformations of (2) generated by M of a form Dx +m or Dy +m, m ∈ K that cannot be
represented as either (4) or (5). Operators (4) and (5) can be equivalently defined by their
action on functions in terms of Wronskians:

Mx(ψ) =

(
Dx −

ψ1,x

ψ1

)
(ψ) =

∣∣∣∣ ψ ∂xψ
ψ1 ∂xψ1

∣∣∣∣
− |ψ1|

,

My(ψ) =

(
Dy −

ψ1,y

ψ1

)
(ψ) =

∣∣∣∣ ψ ∂yψ
ψ1 ∂yψ1

∣∣∣∣
− |ψ1|

.

The consecutive application of a sequence of n Darboux transformations leads to one Darboux
transformation of order n, which then can be defined in terms of Wronskians of order n. Indeed,
if we define a (t, s) Wronkian, t+ s = n− 1, of functions f1, . . . , ft+s as the n× n determinant

Wt,s(f, f1, . . . , ft+s) =

∣∣∣∣∣∣
f ∂xf . . . ∂txf ∂yf . . . ∂syf

. . . . . . . . . . . . . . . . . . . . .
ft+s ∂xft+s . . . ∂txft+s ∂yft+s . . . ∂syft+s

∣∣∣∣∣∣ ,
then we can reformulate Darboux’s original result [2] and join it to the result [13] for operators
of the form

DxDx + aDx + bDy + c, a, b, c ∈ K (6)

as follows.

Theorem 1. If m + n linearly independent ψ1, . . . , ψm+n in the kernel of L of the form (2)
or (6) are given, then operator M given by

M(ψ) = (−1)n+mWm,n(ψ,ψ1, . . . , ψm+n)

Wm−1,n(ψ1, . . . , ψm+n)

defines some Darboux transformation for L.
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In [1], which preceded [13], this theorem was proved for operators of the form (6) with
constant coefficients. The general question whether a Darboux transformation of order n can
be represented as a sequence of Darboux transformations of order one is open for operators of
the form (2). In [11] the statement was proved for operators of the form (2) with arbitrary (i.e.
not necessarily constant) coefficients, but for transformations of order two only. For operators
of the form (1), the statement is an implication of the Crum theorem [6], which states that
a Darboux transformation of order n is generated by M which can be defined by the same
Wronskian formulae (with the only difference that this is a case of a single variable):

Mψ =
Wn−1,0(ψ1, . . . , ψn, ψ)

Wn−2,0(ψ1, . . . , ψn)
.

Generalizations of Darboux transformations have been introduced for other types of operators
and for systems of operators. Thus, in [5] one is defined in terms of a twisted derivation D
satisfying D(AB) = D(A) + σ(A)B, where σ is a homomorphism. Such twisted derivations
include regular derivations, difference and q-difference operators and superderivatives as special
cases. The corresponding M can be expressed by the same formulae in terms of Wronskians.

However, a straightforward generalization of Theorem 1 would not be true for many other
kinds of operators. This fact has not been much stressed in relevant papers. Below is possibly
the first explicit example of such a situation.

Example 1. Consider operator L = D2
xDy + yD2

x + xD2
y + 1 and an element of its kernel,

ψ1 = sin

(
y√
x

)
∈ kerL.

Straightforward computations show that no M in the form (4), nor in the form (5), generates
a Darboux transformation for operator L. There are, however, other ψ1 ∈ kerL, which generate
Darboux transformations with M in the form (4) or (5).

In the present paper we are interested in answering the following questions.

1. Laplace transformations are known to be invertible, but essentially no other invertible
transformations are known. Are there such transformations? Can we study their nature?

2. Example 1 indicates that Wronkian formulae do not work in some cases. Can we describe
cases in which Wronkian formulae do work?

Specifically, in the present paper we show that there are many more kinds of operators
than just the one (2) which admit invertible (see the precise definition in Section 4) Darboux
transformations. We give criteria which allow us to describe all possible invertible Darboux
transformations of arbitrary linear partial differential operators L and generated by M in the
formDx+m orDy+m. Given an arbitrary operator L ∈ K[Dx, Dy], we give sufficient conditions
that guarantee that Wronskian formulae (4) and (5) work.

This paper is organized as follows. Section 2 outlines notation. Section 3 starts with the
simple fact that a Darboux transformation for a pair (L,M = Dx+m), m ∈ K exists if and only
if a Darboux transformation for pair (Lg, Dx) exists (analogously, for pairs with M = Dy +m).
Then Theorem 2 states necessary and sufficient conditions that guarantee that a Darboux
transformation for pair (Lg, Dx) exists. In Section 4 we define invertible transformations as
transformations such that the corresponding mapping kerL → kerL1 is invertible. Theorem 3
states necessary and sufficient conditions that guarantee that a Darboux transformation for pair
(Lg, Dx) is invertible (as well as for pairs with M = Dy+m). It also describes all other possible
cases for the dimension of the kernel of mapping kerL→ kerL1. In Section 5 Theorem 4 states
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that if in the kernel of operator L there is a subspace of large enough dimension generated by
elements that differ from each other by a multiplication of a function of variable y, then each
of those elements ψ1 gives the same M = Dx − ψ1,xψ

−1
1 , and this M generates a Darboux

transformation. In other words, we state when Darboux Wronskian formulae work for arbitrary
bivariate linear partial differential operator. There is also an analogous statement for the case
M = Dy − ψ1,yψ

−1
1 .

2 Preliminaries

Let K be a differential field of characteristic zero with commuting derivations ∂x, ∂y. Let
K[Dx, Dy] be the corresponding ring of linear partial differential operators overK, whereDx,Dy

correspond to derivations ∂x, ∂y.
Operators L ∈ K[Dx, Dy] have the general form

L =
d∑

i+j=0

aijD
i
xD

j
y, aij ∈ K. (7)

The formal polynomial

SymL =
∑
i+j=d

aijX
iY j

in the formal variables X, Y is called the principal symbol of L.
One can either assume the field K to be differentially closed, in other words containing all the

solutions of, in general nonlinear, partial differential equations with coefficients in K, or simply
assume that K contains the solutions of those partial differential equations that we encounter
on the way.

Let f ∈ K, and L ∈ K[Dx, Dy]; by Lf we denote the composition of operator L with the
operator of multiplication by a function f , while L(f) mean the application of operator L to f .
For example,

Dxf = fDx + fx ∈ K[Dx, Dy], Dx(f) = fx ∈ K.

The second lower index attached to a symbol denoting a function means the derivative of that
function with respect to the variables listed there. For example,

f1,xyy = ∂x∂x∂yf1.

Definition 1. Given some operator R ∈ K[Dx, Dy] and an invertible function g ∈ K, the
corresponding gauge transformation is defined as

R→ Rg, Rg = g−1 ◦R ◦ g,

where ◦ denotes the operation of the composition of operators in K[Dx, Dy].

Remark 1. The principal symbol of an operator in K[Dx, Dy] is invariant under the gauge
transformations.

Lemma 1. Let M,L ∈ K[Dx, Dy] and let a Darboux transformation exist for the pair (M,L).
Then one exists also for (Mg,Lg), where g is an arbitrary invertible element of K.

Proof. Indeed, (3) implies g−1 ◦N ◦ g ◦ g−1 ◦L ◦ g = g−1 ◦L1 ◦ g ◦ g−1 ◦M ◦ g, and, therefore,
Ng ◦ Lg = Lg1 ◦Mg. Since gauge transformations do not change the symbol of an operator, the
proof is complete. �
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3 Darboux transformations generated by M = Dx or M = Dy

Lemma 2. Let L be an arbitrary linear partial differential operator in K[Dx, Dy]. If there
exists a Darboux transformation for the pair (L,M = Dx +m), m ∈ K then there is a Darboux
transformation for pair (Lg, Dx). If there exists a Darboux transformation for pair (L,M =
Dy +m), then there exists a Darboux transformation for pair (Lg, Dy).

Proof. Consider a Darboux transformation for the pair (L,M = Dx + m), and consider g,
a solution of gx/g = −m. Then Mg = Dx. Then by Lemma 1 there is also a Darboux
transformation for pair (Lg, Dx). Analogous reasoning applies for the pair (L,M = Dy+m). �

Theorem 2. Let L be an arbitrary linear partial differential operator in K[Dx, Dy], that is, an
operator of the form (7).

Operator L has a Darboux transformation generated by M = Dx if and only if

a0j = Gjk(y)a0k (8)

for all non-zero a0j and a0k, j = 0, . . . , d, k = 0, . . . , d. Here Gjk(y) are some functions of the
variable y.

Operator L has a Darboux transformation generated by M = Dy if and only if

ai0 = Fik(x)ak0 (9)

for all non-zero ai0 and ak0, i = 0, . . . , d, k = 0, . . . , d. Here Fik(x) are some functions of the
variable x.

Proof. Let there be a Darboux transformation for the pair (L, Dx). This means that for some
L1 ∈ K[Dx, Dy] and n ∈ K

(Dx + n)L = L1Dx. (10)

The right hand side of this operator equality does not contain terms of the form cDj
y, c ∈ K.

On the other hand for j = 1, . . . , d the coefficient of Dj
y in the left hand side is

na0j + a0j,x = 0. (11)

The ‘free’ coefficient on the right hand side of (10) is zero, while on the left hand side it is

na00 + a00,x = 0. (12)

Equating the expressions for n obtained from each of the equalities (11) and (12), we see that
condition (8) is satisfied.

The analogous statement for the case M = Dy can be proved similarly.
To prove the theorem in the other direction, suppose that the conditions (8) are satisfied.

Consider then the operator equality (10) defining a Darboux transformation for the pair (L, Dx).
It implies equalities (11), (12), from which n can be determined uniquely and without contra-
diction. In general, equality (10), which is an equality of operators of orders d + 1, implies
(d+ 3)(d+ 2)/2 equalities of the corresponding coefficients, of which (d+ 1) are equalities (11)
and (12). Thus, we have a linear algebraic system of a maximum (d + 3)(d + 2)/2 − (d + 1)
equations to solve. The unknowns in this system are the coefficients of L1, an operator of
order d and their number is (d + 2)(d + 1)/2. Thus the number of equations in this system is
less than or equal to the number of unknowns, so there is at least one non-zero solution.

Analogously we can prove that conditions (9) guarantee that there is a Darboux transforma-
tion for pair (L, Dy). �
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4 Invertible Darboux transformations

Consider a Darboux transformation L→ L1 of operators in K[Dx, Dy] generated by an operator
M ∈ K[Dx, Dy]. This transformation implies a mapping of the linear vector spaces

kerL→ kerL1 : w 7→M(w).

This mapping is invertible if it is an isomorphism, that is if its kernel is zero

kerL ∩ kerM = {0}.

In this case we shall say that the Darboux transformation is invertible.

Remark 2. Darboux transformations of the operator L ∈ K[Dx, Dy] generated by M con-
structed using Wronkian formulae are not invertible. Indeed, we take some number of known
solutions of L(ψ) = 0 and then construct M as a Wronkian. Then by construction all those
solutions belong to the kernel of M.

Theorem 3. If the operator L ∈ K[Dx, Dy] given by (7) admits a Darboux transformation
generated by M = Dx or M = Dy then

dim(ker(L) ∩ ker(M)) =

{
∞, a0k = 0, ∀ k ∈ {0, . . . , d},
dy, otherwise,

where dy is the largest j such that a0j 6= 0. In particular, we have a criteria for a Darboux
transformation generated by M = Dx or M = Dy to be invertible. Namely, it is invertible if
and only if all of the following hold

a0k = 0 ∀ k ∈ {1, . . . , d}, a00 6= 0.

Proof. Suppose there is a Darboux transformation for the pair (L, Dx). The kernel of the
operator M consists of functions of the form g = g(y).

Let there be index k, k > 0 such that the coefficients of Dk
y , k = 1, . . . , d are not zero:

a0k 6= 0. Then using (8) compute

L(g(y)) =
d∑
j=0

a0jD
j
y(g(y)) = a0k

d∑
j=0

Gjk(y)D
j
y(g(y)).

Thus, L(g(y)) = 0 is equivalent to a linear differential equation of order dy. The solution space
of such an equation has dimension dy.

If there is no such k that the coefficient at Dk
y , k = 1, . . . , d is not zero, then either a00 = 0

and then kerL ∩ kerM = {f(y)}, or a00 6= 0 and kerL ∩ kerM = {0}.
The statement for the pair (L, Dy) can be proved analogously. �

Corollary 1. Laplace transformations (see Section 1) are the only invertible Darboux transfor-
mation generated by M = Dx +m or by M = Dy +m for operators in the form DxDy + aDx +
bDy + c, a, b, c ∈ K.

Proof. In [10] it has been proved that a Darboux transformation generated by M = Dx +m
or by M = Dy + m is either a Laplace transformation, that is generated by M = Dx + b or
M = Dy + a, or generated by M in the form Dx −ψ1,xψ

−1
1 , or Dy −ψ1,yψ

−1
1 , where ψ1 ∈ kerL.

In the latter case, ψ1 ∈ (kerL ∩ kerM), and, therefore, the mapping kerL → kerL1 is not
invertible.
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Consider a Darboux transformation for pair (L,M = Dx + b). To use the criteria obtained
in Theorem 3, we consider a gauge transformation of both operators of this pair. We use g ∈ K
such that M becomes Dx, that is Mg = Dx. Such g can be easily found as any solution of
gxg
−1 = −b. Consider now Lg,

Lg = DxDy +
(
a+ gyg

−1)Dx +
(
b+ gxg

−1)Dy + c+ a gxg
−1 + bgyg

−1 + gxyg
−1

= DxDy +
(
a+ gyg

−1)Dx + c− a b+ bgyg
−1 + gxyg

−1

= DxDy +
(
a+ gyg

−1)Dx + c− a b− by
= DxDy +

(
a+ gyg

−1)Dx + k,

where k is one of two Laplace invariants of L (see Section 1). Thus, k 6= 0 is the necessary and
sufficient condition for the Darboux transformation for the pair (L,M = Dx+b) to be invertible.
Analogously, h 6= 0 is the necessary and sufficient condition for Darboux transformation for pair
(L,M = Dy + a) to be invertible. �

Example 2 (an invertible Darboux transformation). Consider the operator

L = DxD
2
y +D2

x + xDx + 1.

The coefficients of L satisfy condition (8), and, therefore, there is a Darboux transformation
for L generated by M = Dx. Since there is no term in the form Di

y and L(1) = 1 6= 0,
then by Theorem 3 the Darboux transformation for pair (L,M) is invertible. This Darboux
transformation takes L into

L1 = DxD
2
y +D2

x + xDx + 2.

The corresponding operator N is Dx. In this case there is an inverse transformation of operators,
L1 7→ L by means of M′ = N′ = Dx.

From any such example one can generate a whole series of examples of Darboux transforma-
tions with M of the form Dx +m or Dy +m, m 6= 0 by considering gauge transformations of L
and M.

5 Solution-based Darboux transformations

Theorem 4. Let an operator L be of the form L =
d∑

i+j=0
aijD

i
xD

j
y, aij ∈ K, and k = d if

a0d 6= 0, and k = d− 1, otherwise. Then if there are

ψ1, ψ2, . . . , ψk ∈ kerL/{0}

such that

ψi
ψ1

= Ti(y), (13)

for some non-constant functions Ti(y) ∈ K, i = 2, . . . , k, and

W0,k−1(1, T2, . . . , Tk) 6= 0, (14)

then there is a Darboux transformation for L generated by

M = Dx −
ψ1,x

ψ1
.

Analogously, if instead of (13) and (14) conditions ψiψ
−1
1 = Fi(x) and Wk−1,0(1, T2, . . . , Tk) 6= 0

hold, then there is a Darboux transformation for L generated by M = Dy − ψ1,yψ
−1
1 .
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Remark 3. Condition (14) implies that ψ1, ψ2, . . . , ψk are linearly independent. The condition
that ψ1, ψ2, . . . , ψk are linearly independent does not necessarily imply condition (14).

Proof. Assume we have non-zero ψ1, ψ2, . . . , ψk ∈ kerL, such that (13) and (14) hold. Then
for the operator L′ = Lψ1 =

∑d
i+j=0 a

′
ijD

i
xD

j
y, a′ij ∈ K we have

1 ∈ kerL′, Ti(y) ∈ kerL′, i = 1, . . . , k.

The former means that a′00 = 0, while the latter implies that

d∑
j=1

a′0jD
j
y(Ti(y)) = 0, i = 2, . . . , k (15)

which is a linear system of k − 1 equations. The number of unknowns a′0j is the number of
non-zero a′0j , j = 1, . . . , d. If k = d, then the number of the unknowns is less or equal to k. If
k = d− 1, then a0d = 0, and since the principal symbol of an operator is invariant with respect
to the gauge transformations, a′0d = a0d = 0. Which means that in this case the number of
unknowns is also less than or equal to k.

The Wronkian in (14) has the first column (1, 0, . . . , 0)t, and the first row (1, T2, . . . Tk).
Thus, if we remove the first column and the first row, the rank of the corresponding matrix is
k − 1. Then the rank of the transpose of the latter matrix is also k − 1,

rank

T ′2 . . . T
(k−1)
2

. . . . . . . . .

T ′k . . . T
(k−1)
k

 = k − 1.

This is a (k − 1)× (k − 1) matrix and adding extra column (T k2 , . . . , T
k
k )
t on the right does not

change the rank. Thus linear system (15) has matrix with rank k − 1 and less or equal to k
unknowns, and, therefore, condition

a′0j = Gjk(y)a
′
0k

holds for all non-zero a′0j and a′0k, j = 0, . . . , d, k = 0, . . . , d for some Gjk(y) ∈ K. Thus,
by Theorem 2 there exists a Darboux transformation for the pair (L′, Dx). Therefore, there is
a Darboux transformation for pair (L, ψ1Dxψ

−1
1 ), that is for pair (L, Dx − ψ1,xψ

−1
1 ).

The second statement, giving sufficient conditions for the existence of a Darboux transfor-
mation for L generated by M = Dy − ψ1,yψ

−1
1 , can be proved analogously. �

Example 3. For operators of the form DxDy + aDx + bDy + c, a, b, c ∈ K k = 1, Theorem 4
then means that it is enough to have one ψ ∈ kerL to guarantee that a Darboux transformation
for pair (L,M = Dx − ψ1,xψ

−1
1 ) exists. This agrees with result of Theorem 1.

Remark 4. The statement of Theorem 4 is not true when formulated in the opposite direction.
Let there be a Darboux transformation for the pair (L,M = Dx − ψ1,xψ

−1
1 ), where ψ1 ∈ kerL.

Then there is a Darboux transformation for the pair (L′ = Lψ1 ,M′ = Mψ1 = Dx), a
′
00 = 0.

If d′y is the largest j such that a′0j 6= 0, and since a′00 = 0 Theorem 3 implies that there are
either d′y (or infinitely many) linearly independent

ui ∈ kerL′ ∩ kerM′, i = 1, . . . , d′y (or i = 1, . . . ,∞). (16)

Since M′ = Dx, each of them is a function of the variable y solely. Since 1 ∈ kerL ∩ kerL, we
can choose (16) in such a way that u1 = 1. Then

φ1 = ψ1, φ2 = ψ1u2, . . . ∈ kerL ∩ kerM,
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and ψi/ψ1, i = 1, . . . , d′y are some function of y solely. Thus, if the number d′y is less then k, we
cannot get k

ψ1, ψ2, . . . , ψk ∈ kerL ∩ kerM.

Example 4 (the largest j such that a0j 6= 0 is not invariant under gauge transformation).
Consider the operator

L = D2
xDy +D2

yDx −
1

x
D2
y +Dy,

and ψ1 = x ∈ kerL. Then

L′ = Lψ1 = D2
xDy +D2

yDx +
2

x
DxDy +Dy.

Thus, dy = 2 and d′y = 1, and there exists (a non-invertible) Darboux transformation generated

by M = Dx − ψ1,xψ
−1
1 = Dx − 1

x . It takes L into

L1 = D2
xDy +D2

yDx −
1

x
D2
y +

(
1− 2

x2

)
Dy,

and the corresponding N is N = M.

Theorem 4 states some conditions under which an operator has non-invertible Darboux trans-
formations generated by M in the form Dx − ψ1,xψ

−1
1 or Dy − ψ1,yψ

−1
1 , where ψ1 ∈ kerL.

6 Conclusions

The paper provides the first ideas for the general (algebraic) theory of invertible first-order
Darboux transformations for bivariate linear partial differential operators of arbitrary order d
and of arbitrary form. Although the order of the auxiliary operator has been restricted to the
first order, the major operator is taken in general form.

Future work may include strengthening of Theorem 4 to describe a criteria. It is not known
yet how to extend these ideas to the important three dimensional case, the generalized Laplace
transformations for which have been recently developed in [3]. It is also extremely important to
extend these ideas for discrete analogies that are under active development now [4, 7].

References

[1] Bagrov V.G., Samsonov B.F., Darboux transformation of the Schrödinger equation, Phys. Part. Nuclei 28
(1997), 374–397.
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