On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials

Pieter ROFFELSEN

Radboud Universiteit Nijmegen, IMAPP, FNWI, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
E-mail: roffelse@science.ru.nl
Received August 14, 2012, in final form December 07, 2012; Published online December 14, 2012
http://dx.doi.org/10.3842/SIGMA.2012.099

Abstract

We study the real roots of the Yablonskii-Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the nth Yablonskii-Vorob'ev polynomial equals $\left[\frac{n+1}{2}\right]$. We prove this conjecture using an interlacing property between the roots of the Yablonskii-Vorob'ev polynomials. Furthermore we determine precisely the number of negative and the number of positive real roots of the nth Yablonskii-Vorob'ev polynomial.

Key words: second Painlevé equation; rational solutions; real roots; interlacing of roots; Yablonskii-Vorob'ev polynomials

2010 Mathematics Subject Classification: 34M55

1 Introduction

In this paper we study the real roots of the Yablonskii-Vorob'ev polynomials $Q_{n}(n \in \mathbb{N})$. Yablonskii and Vorob'ev found these polynomials while studying the hierarchy of rational solutions of the second Painlevé equation. The Yablonskii-Vorob'ev polynomials satisfy the defining differential-difference equation

$$
Q_{n+1} Q_{n-1}=z Q_{n}^{2}-4\left(Q_{n} Q_{n}^{\prime \prime}-\left(Q_{n}^{\prime}\right)^{2}\right),
$$

with $Q_{0}=1$ and $Q_{1}=z$.
The Yablonskii-Vorob'ev polynomials Q_{n} are monic polynomials of degree $\frac{1}{2} n(n+1)$, with integer coefficients. The first few are given in Table 1. Yablonskii [8] and Vorob'ev [7] expressed the rational solutions of the second Painleve equation,

$$
P_{\mathrm{II}}(\alpha): w^{\prime \prime}(z)=2 w(z)^{3}+z w(z)+\alpha,
$$

with complex parameter α, in terms of logarithmic derivatives of the Yablonskii-Vorob'ev polynomials, as summerized in the following theorem:

Theorem 1. $P_{\mathrm{II}}(\alpha)$ has a rational solution iff $\alpha=n \in \mathbb{Z}$. For $n \in \mathbb{Z}$ the rational solution is unique and if $n \geq 1$, then it is equal to

$$
w_{n}=\frac{Q_{n-1}^{\prime}}{Q_{n-1}}-\frac{Q_{n}^{\prime}}{Q_{n}} .
$$

The other rational solutions are given by $w_{0}=0$ and for $n \geq 1, w_{-n}=-w_{n}$.
In [5] we proved the irrationality of the nonzero real roots of the Yablonskii-Vorob'ev polynomials, in this article we determine precisely the number of real roots of these polynomials. Clarkson [1] conjectured that the number of real roots of Q_{n} equals $\left[\frac{n+1}{2}\right]$, where $[x]$ denotes the integer part of x for real numbers x. In Section 2 we prove this conjecture and obtain the following theorem, where Z_{n} is defined as the set of real roots of Q_{n} for $n \in \mathbb{N}$.

Table 1.

Yablonskii-Vorob'ev polynomials	
$Q_{2}=$	$4+z^{3}$
$Q_{3}=$	$-80+20 z^{3}+z^{6}$
$Q_{4}=$	$z\left(11200+60 z^{6}+z^{9}\right)$
$Q_{5}=$	$-6272000-3136000 z^{3}+78400 z^{6}+2800 z^{9}+140 z^{12}+z^{15}$
$Q_{6}=$	$-38635520000+19317760000 z^{3}+1448832000 z^{6}-17248000 z^{9}+627200 z^{12}$
	$+18480 z^{15}+280 z^{18}+z^{21}$
$Q_{7}=$	$z\left(-3093932441600000-49723914240000 z^{6}-828731904000 z^{9}+13039488000 z^{12}\right.$
	$\left.+62092800 z^{15}+5174400 z^{18}+75600 z^{21}+504 z^{24}+z^{27}\right)$
$Q_{8}=$	$-991048439693312000000-743286329769984000000 z^{3}$
	$+37164316488499200000 z^{6}+1769729356595200000 z^{9}+126696533483520000 z^{12}$
	$+407736096768000 z^{15}-6629855232000 z^{18}+124309785600 z^{21}+2018016000 z^{24}$
	$+32771200 z^{27}+240240 z^{30}+840 z^{33}+z^{36}$

Theorem 2. For every $n \in \mathbb{N}$, the number of real roots of Q_{n} equals

$$
\begin{equation*}
\left|Z_{n}\right|=\left[\frac{n+1}{2}\right] . \tag{1}
\end{equation*}
$$

Furthermore for $n \geq 2$,

$$
\begin{equation*}
\min \left(Z_{n-1}\right)>\min \left(Z_{n+1}\right), \quad \max \left(Z_{n-1}\right)<\max \left(Z_{n+1}\right) \tag{2}
\end{equation*}
$$

The argument is inductive and an important ingredient is the fact that the real roots of Q_{n-1} and Q_{n+1} interlace, which is proven by Clarkson [1].

Kaneko and Ochiai [4] found a direct formula for the lowest degree coefficients of the Yablonskii-Vorob'ev polynomials Q_{n} depending on n. In particular the sign of $Q_{n}(0)$ can be determined for $n \in \mathbb{N}$. In Section 3 we use this to determine precisely the number of positive and the number of negative real roots of Q_{n}, which yields to the following theorem.

Theorem 3. Let $n \in \mathbb{N}$, then the number of negative real roots of Q_{n} is equal to

$$
\left|Z_{n} \cap(-\infty, 0)\right|=\left[\frac{n+1}{3}\right] .
$$

The number of positive real roots of Q_{n} is equal to

$$
\left|Z_{n} \cap(0, \infty)\right|= \begin{cases}{\left[\frac{n}{6}\right]} & \text { if } n \text { is even } \\ {\left[\frac{n+3}{6}\right]} & \text { if } n \text { is odd }\end{cases}
$$

As a consequence, for every $n \in \mathbb{N}$, we can calculate the number of positive real poles of the rational solution w_{n} with residue 1 and with residue -1 , and the number of negative real poles of the rational solution w_{n} with residue 1 and with residue -1 .

2 Number of real roots

Let P and Q be polynomials with no common real roots. We say that the real roots of P and Q interlace if and only if in between any two real roots of P, Q has a real root and in between any two real roots of Q, P has a real root. Throughout this paper we use the convention $\mathbb{N}=\{0,1,2, \ldots\}$ and define $\mathbb{N}^{*}:=\mathbb{N} \backslash\{0\}$.

Theorem 4. For every $n \in \mathbb{N}, Q_{n}$ has only simple roots. Furthermore for $n \geq 1, Q_{n-1}$ and Q_{n+1} have no common roots and Q_{n-1} and Q_{n} have no common roots.

Proof. See Fukutani, Okamoto and Umemura [3].
Theorem 5. For every $n \geq 1$, the real roots of Q_{n-1} and Q_{n+1} interlace.
Proof. See Clarkson [1].
Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions and $x \in \mathbb{R}$. We say that f crosses g positively at x if and only if $f(x)=g(x)$ and there is a $\delta>0$ such that $f(y)<g(y)$ for $x-\delta<y<x$ and $f(y)>g(y)$ for $x<y<x+\delta$. We say that f crosses g negatively at x if and only if $f(x)=g(x)$ and there is a $\delta>0$ such that $f(y)>g(y)$ for $x-\delta<y<x$ and $f(y)<g(y)$ for $x<y<x+\delta$. So f crosses g negatively at x if and only if g crosses f positively at x.

Let $m \in \mathbb{N}$ and suppose that f is m times differentiable, then we denote the m th derivative of f by $f^{(m)}$ with convention $f^{(0)}=f$.

Proposition 1. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be analytic functions and $x \in \mathbb{R}$. Then f crosses g positively at x if and only if there is an $m \geq 1$ such that $f^{(i)}(x)=g^{(i)}(x)$ for $0 \leq i<m$ and $f^{(m)}(x)>$ $g^{(m)}(x)$.

Similarly f crosses g negatively at x if and only if there is a $m \geq 1$ such that $f^{(i)}(x)=g^{(i)}(x)$ for $0 \leq i<m$ and $f^{(m)}(x)<g^{(m)}(x)$.

Proof. This is proven easily using Taylor's theorem.
Lemma 1. For every $n \in \mathbb{N}^{*}$ we have

$$
\begin{align*}
& Q_{n+1}^{\prime} Q_{n-1}-Q_{n+1} Q_{n-1}^{\prime}=(2 n+1) Q_{n}^{2}, \tag{3a}\\
& Q_{n+1}^{\prime \prime} Q_{n-1}-Q_{n+1} Q_{n-1}^{\prime \prime}=2(2 n+1) Q_{n} Q_{n}^{\prime}, \tag{3b}\\
& Q_{n+1}^{\prime \prime \prime} Q_{n-1}-Q_{n+1} Q_{n-1}^{\prime \prime \prime}=2(2 n+1)\left(Q_{n}^{\prime}\right)^{2}+(2 n+1) Q_{n} Q_{n}^{\prime \prime} . \tag{3c}
\end{align*}
$$

Proof. See Fukutani, Okamoto and Umemura [3].
The following proposition contains some well-known properties of the Yablonskii-Vorob'ev polynomials, see for instance Clarkson and Mansfield [2].

Proposition 2. For every $n \in \mathbb{N}, Q_{n}$ is a monic polynomial of degree $\frac{1}{2} n(n+1)$ with integer coefficients. As a consequence, for $n \geq 1$,

$$
\lim _{x \rightarrow \infty} Q_{n}(x)=\infty, \quad \lim _{x \rightarrow-\infty} Q_{n}(x)=\left\{\begin{array}{lll}
-\infty & \text { if } n \equiv 1,2 \quad(\bmod 4), \\
\infty & \text { if } n \equiv 0,3 & (\bmod 4)
\end{array}\right.
$$

By Proposition 2, Q_{n} has real coefficients and hence we can consider Q_{n} as a real-valued function defined on the real line, that is, we consider

$$
Q_{n}: \mathbb{R} \rightarrow \mathbb{R}
$$

Proposition 3. Let $n \in \mathbb{N}^{*}$, if $x \in \mathbb{R}$ is such that Q_{n+1} crosses Q_{n-1} positively at x, then

$$
Q_{n+1}(x)=Q_{n-1}(x)>0 .
$$

Similarly if $x \in \mathbb{R}$ is such that Q_{n+1} crosses Q_{n-1} negatively at x, then

$$
Q_{n+1}(x)=Q_{n-1}(x)<0 .
$$

Proof. Let $n \in \mathbb{N}^{*}$. Suppose $x \in \mathbb{R}$ is such that Q_{n+1} crosses Q_{n-1} positively at x. If

$$
Q_{n+1}(x)=Q_{n-1}(x)=0
$$

then Q_{n+1} and Q_{n-1} have a common root, which contradicts Theorem 4.
Let us assume

$$
\begin{equation*}
Q_{n+1}(x)=Q_{n-1}(x)<0 \tag{4}
\end{equation*}
$$

Then by Proposition 1,

$$
\begin{equation*}
Q_{n+1}^{\prime}(x)-Q_{n-1}^{\prime}(x) \geq 0 \tag{5}
\end{equation*}
$$

Therefore, by equation (3a),

$$
\begin{aligned}
0 \leq(2 n+1) Q_{n}(x)^{2} & =Q_{n+1}^{\prime}(x) Q_{n-1}(x)-Q_{n+1}(x) Q_{n-1}^{\prime}(x) \\
& =Q_{n+1}(x)\left(Q_{n+1}^{\prime}(x)-Q_{n-1}^{\prime}(x)\right) \leq 0
\end{aligned}
$$

where in the last inequality we used equation (4) and equation (5).
We conclude

$$
(2 n+1) Q_{n}(x)^{2}=Q_{n+1}(x)\left(Q_{n+1}^{\prime}(x)-Q_{n-1}^{\prime}(x)\right)=0
$$

so $Q_{n}(x)=0$ and $Q_{n+1}^{\prime}(x)=Q_{n-1}^{\prime}(x)$. Therefore by equation (3b),

$$
\begin{aligned}
Q_{n+1}(x)\left(Q_{n+1}^{\prime \prime}(x)-Q_{n-1}^{\prime \prime}(x)\right) & =Q_{n+1}^{\prime \prime}(x) Q_{n-1}(x)-Q_{n+1}(x) Q_{n-1}^{\prime \prime}(x) \\
& =2(2 n+1) Q_{n}(x) Q_{n}^{\prime}(x)=0
\end{aligned}
$$

We conclude $Q_{n+1}^{\prime \prime}(x)=Q_{n-1}^{\prime \prime}(x)$. Since $Q_{n}(x)=0$ and, by Theorem $4, Q_{n}$ has only simple roots, we have $Q_{n}^{\prime}(x) \neq 0$. Therefore by (3c),

$$
\begin{aligned}
Q_{n+1}(x)\left(Q_{n+1}^{\prime \prime \prime}(x)-Q_{n-1}^{\prime \prime \prime}(x)\right) & =Q_{n+1}^{\prime \prime \prime}(x) Q_{n-1}(x)-Q_{n+1}(x) Q_{n-1}^{\prime \prime \prime}(x) \\
& =2(2 n+1)\left(Q_{n}^{\prime}(x)\right)^{2}+(2 n+1) Q_{n}(x) Q_{n}^{\prime \prime}(x) \\
& =2(2 n+1)\left(Q_{n}^{\prime}(x)\right)^{2}>0
\end{aligned}
$$

Since $Q_{n+1}(x)<0$ we conclude $Q_{n+1}^{\prime \prime \prime}(x)<Q_{n-1}^{\prime \prime \prime}(x)$. So $Q_{n+1}^{\prime}(x)=Q_{n-1}^{\prime}(x), Q_{n+1}^{\prime \prime}(x)=$ $Q_{n-1}^{\prime \prime}(x)$ but $Q_{n+1}^{\prime \prime \prime}(x)<Q_{n-1}^{\prime \prime \prime}(x)$. Therefore by Proposition $1, Q_{n+1}$ does not cross Q_{n-1} positively at x and we have obtained a contradiction. We conclude that

$$
Q_{n+1}(x)=Q_{n-1}(x)>0
$$

The second part of the proposition is proven similar.
We prove theorem 2, using Theorem 5 and Proposition 3.
Proof of Theorem 2. Observe that (1) is correct for $n=0,1,2,3,4$. Furthermore it is easy to see that (2) is true for $n=1,2,3$. We proceed by induction, suppose $n \geq 4$ and

$$
\left|Z_{n-1}\right|=\left[\frac{n}{2}\right]
$$

Then Q_{n-1} has at least 2 real roots. By Theorem 5 the real roots of Q_{n-1} and Q_{n+1} interlace, hence Q_{n+1} has a real root. Let us define

$$
z:=\min \left(Z_{n+1}\right), \quad z_{1}:=\min \left(Z_{n-1}\right), \quad z_{2}:=\min \left(Z_{n-1} \backslash\left\{z_{1}\right\}\right)
$$

so z is the smallest real root of Q_{n+1} and z_{1} and z_{2} are the smallest and second smallest real root of Q_{n-1} respectively.

By Theorem 5 the real roots of Q_{n-1} and Q_{n+1} interlace, hence either $z<z_{1}$ or $z_{1}<z<z_{2}$. We prove that $z_{1}<z<z_{2}$ can not be the case. Suppose $z_{1}<z<z_{2}$ and suppose $n \equiv 0,1$ $(\bmod 4)$, then by Proposition 2 ,

$$
\lim _{x \rightarrow-\infty} Q_{n-1}(x)=\infty
$$

Hence $Q_{n-1}(x)>0$ for $x<z_{1}$. Since $Q_{n-1}\left(z_{1}\right)=0$, this implies $Q_{n-1}^{\prime}\left(z_{1}\right) \leq 0$. By Theorem 4, Q_{n-1} has only simple roots, hence $Q_{n-1}^{\prime}\left(z_{1}\right) \neq 0$, so $Q_{n-1}^{\prime}\left(z_{1}\right)<0$. Therefore by Proposition 1, Q_{n-1} crosses 0 negatively at z_{1}. Hence $Q_{n-1}(x)<0$ for $z_{1}<x<z_{2}$, in particular

$$
\begin{equation*}
Q_{n-1}(z)<0 \tag{6}
\end{equation*}
$$

Since $n \equiv 0,1(\bmod 4)$, we have by Proposition 2 ,

$$
\lim _{x \rightarrow-\infty} Q_{n+1}(x)=-\infty
$$

Therefore $Q_{n+1}(x)<0$ for $x<z$, in particular

$$
Q_{n+1}\left(z_{1}\right)<0
$$

Define the polynomial $P:=Q_{n+1}-Q_{n-1}$, then

$$
P\left(z_{1}\right)=Q_{n+1}\left(z_{1}\right)-Q_{n-1}\left(z_{1}\right)=Q_{n+1}\left(z_{1}\right)-0<0
$$

and by equation (6),

$$
P(z)=Q_{n+1}(z)-Q_{n-1}(z)=0-Q_{n-1}(z)>0
$$

So P is a polynomial with $P\left(z_{1}\right)<0, P(z)>0$ and $z_{1}<z$. Hence there is a $z_{1}<x<z$ such that P crosses 0 positively at x, for instance

$$
x:=\inf \left\{t \in\left(z_{1}, z\right) \mid P(t)>0\right\}
$$

has the desired properties.
Since $P=Q_{n+1}-Q_{n-1}$ crosses 0 positively at x, Q_{n+1} crosses Q_{n-1} positively at x. But $z_{1}<x<z_{2}$, hence

$$
\begin{equation*}
Q_{n+1}(x)=Q_{n-1}(x)<0 \tag{7}
\end{equation*}
$$

This contradicts Proposition 3.
If $n \equiv 2,3(\bmod 4)$, then by a similar argument, there is a $z_{1}<x<z$ such that Q_{n+1} crosses Q_{n-1} negatively at x with

$$
Q_{n+1}(x)=Q_{n-1}(x)>0
$$

which again contradicts Proposition 3.
We conclude that $z_{1}<z<z_{2}$ can not be the case and hence $z<z_{1}$, that is,

$$
\min \left(Z_{n-1}\right)>\min \left(Z_{n+1}\right)
$$

Let us define

$$
w:=\max \left(Z_{n+1}\right), \quad w_{1}:=\max \left(Z_{n-1}\right), \quad w_{2}:=\max \left(Z_{n-1} \backslash\left\{w_{1}\right\}\right)
$$

so w is the largest real root of Q_{n+1} and w_{1} and w_{2} are the largest and second largest real root of Q_{n-1} respectively.

Suppose $w_{1}>w$, then by a similar argument as the above, there is a $w_{2}<x<w$ such that Q_{n+1} crosses Q_{n-1} positively at x with

$$
Q_{n+1}(x)=Q_{n-1}(x)<0
$$

This is in contradiction with Proposition 3 , so $w_{1}<w$, that is

$$
\begin{equation*}
\max \left(Z_{n-1}\right)<\max \left(Z_{n+1}\right) \tag{8}
\end{equation*}
$$

Let $z_{1}<z_{2}<\cdots<z_{k}$ be the real roots of Q_{n-1} with $k=\left[\frac{n}{2}\right]$ and $z_{1}^{\prime}<z_{2}^{\prime}<\cdots<z_{m}^{\prime}$ be the real roots of Q_{n+1}. Then by equations (7) and (8), $z_{1}^{\prime}<z_{1}, z_{k}<z_{m}^{\prime}$ and since by Theorem 5 the real roots of Q_{n-1} and Q_{n+1} interlace, we have

$$
z_{1}^{\prime}<z_{1}<z_{2}^{\prime}<z_{2}<z_{3}^{\prime}<z_{3}<\cdots<z_{k-1}^{\prime}<z_{k-1}<z_{k}^{\prime}<z_{k}<z_{k+1}^{\prime}=z_{m}^{\prime}
$$

Hence $m=k+1$, that is,

$$
\left|Z_{n+1}\right|=m=k+1=\left[\frac{n}{2}\right]+1=\left[\frac{n+2}{2}\right]
$$

The theorem follows by induction.

3 Number of positive and negative real roots

For a polynomial P we denote the set of real roots of P by Z_{P}.
Lemma 2. Let P and Q be polynomials with real coefficients, both a positive leading coefficient and only simple roots. Assume that the real roots of P and Q interlace. Furthermore suppose both P and Q have a real root and

$$
\min \left(Z_{P}\right)>\min \left(Z_{Q}\right), \quad \max \left(Z_{P}\right)<\max \left(Z_{Q}\right)
$$

Then we have the following relations between the number of negative and positive real roots of P and Q,

$$
\begin{gathered}
\left|Z_{Q} \cap(-\infty, 0)\right|=\left|Z_{P} \cap(-\infty, 0)\right|+ \begin{cases}1 & \text { if } P(0)=0, \\
0 & \text { if } Q(0)=0, \\
1 & \text { if } P(0)>0 \text { and } Q(0)>0, \\
0 & \text { if } P(0)>0 \text { and } Q(0)<0, \\
0 & \text { if } P(0)<0 \text { and } Q(0)>0, \\
1 & \text { if } P(0)<0 \text { and } Q(0)<0,\end{cases} \\
\left|Z_{Q} \cap(0, \infty)\right|=\left|Z_{P} \cap(0, \infty)\right|+ \begin{cases}1 & \text { if } P(0)=0, \\
0 & \text { if } Q(0)=0, \\
0 & \text { if } P(0)>0 \text { and } Q(0)>0, \\
1 & \text { if } P(0)>0 \text { and } Q(0)<0, \\
1 & \text { if } P(0)<0 \text { and } Q(0)>0, \\
0 & \text { if } P(0)<0 \text { and } Q(0)<0 .\end{cases}
\end{gathered}
$$

Proof. Let $z_{1}>z_{2}>\cdots>z_{n}$ be the real roots of P and $z_{1}^{\prime}>z_{2}^{\prime}>\cdots>z_{m}^{\prime}$ be the real roots of Q. Observe that

$$
z_{n}=\min \left(Z_{P}\right)>\min \left(Z_{Q}\right)=z_{m}^{\prime}, \quad z_{1}=\max \left(Z_{P}\right)<\max \left(Z_{Q}\right)=z_{1}^{\prime} .
$$

Therefore, since the real roots of P and Q interlace, we have

$$
\begin{equation*}
z_{1}^{\prime}>z_{1}>z_{2}^{\prime}>z_{2}>\cdots>z_{n}^{\prime}>z_{n}>z_{n+1}^{\prime}=z_{m}^{\prime} \tag{9}
\end{equation*}
$$

In particular $m=n+1$.
Suppose $P(0)=0$. Then there is an unique $1 \leq k \leq n$ such that $z_{k}=0$. So equation (9) implies

$$
z_{1}^{\prime}>z_{1}>z_{2}^{\prime}>z_{2}>\cdots>z_{k-1}^{\prime}>z_{k-1}>z_{k}^{\prime}>z_{k}=0>z_{k+1}^{\prime}>z_{k+1}>\cdots>z_{n}^{\prime}>z_{n}>z_{n+1}^{\prime}
$$

Therefore

$$
\begin{aligned}
& \left|Z_{Q} \cap(-\infty, 0)\right|=n+1-(k+1)+1=n-k+1=\left|Z_{P} \cap(-\infty, 0)\right|+1, \\
& \left|Z_{Q} \cap(0, \infty)\right|=k=\left|Z_{P} \cap(0, \infty)\right|+1 .
\end{aligned}
$$

The case $Q(0)=0$ is proven similarly.
Suppose $P(0)>0$ and $Q(0)>0$. Since P has a positive leading coefficient and is not constant, we have

$$
\lim _{x \rightarrow \infty} P(x)=\infty .
$$

Therefore, since z_{1} is the largest real root of $P, P(x)>0$ for $x>z_{1}$. Since P has only simple roots, P crosses 0 positively at z_{1}, so $P(x)<0$ for $z_{2}<x<z_{1}$. Again since P has only simple roots, P crosses 0 negatively at z_{2}, so $P(x)>0$ for $z_{3}<x<z_{2}$. Inductively we see that when $1 \leq i<n$ is even, $P(x)>0$ for $z_{i+1}<x<z_{i}$, and when $1 \leq i<n$ is odd, $P(x)<0$ for $z_{i+1}<x<z_{i}$. Furthermore $P(x)>0$ for $x<z_{n}$ if n is even and $P(x)<0$ for $x<z_{n}$ if n is odd.

Similarly we have, for $1 \leq i<n+1$ even, $Q(x)>0$ for $z_{i+1}^{\prime}<x<z_{i}^{\prime}$, and for $1 \leq i<n+1$ odd, $Q(x)<0$ for $z_{i+1}^{\prime}<x<z_{i}^{\prime}$. Furthermore $Q(x)<0$ for $x<z_{n+1}^{\prime}$, if n is even and $Q(x)>0$ for $x<z_{n+1}^{\prime}$, if n is odd.

There are three cases to consider: $z_{1}>0>z_{n}, z_{1}<0$ and $z_{n}>0$.
We first assume $z_{1}>0>z_{n}$. Then there is an unique $1 \leq k \leq n$ such that $z_{k}>0>z_{k+1}$. Since $z_{k}>0>z_{k+1}$ and $P(0)>0$, we conclude that k is even. By equation (9),

$$
z_{k}^{\prime}>z_{k}>0>z_{k+1}>z_{k+2}^{\prime}
$$

Since k is even, $Q(x)>0$ for $z_{k+1}^{\prime}<x<z_{k}^{\prime}$ and $Q(x)<0$ for $z_{k+2}^{\prime}<x<z_{k+1}^{\prime}$. But $z_{k+2}^{\prime}<0<z_{k}^{\prime}$ and $Q(0)>0$, hence $z_{k+1}^{\prime}<0<z_{k}^{\prime}$. Therefore

$$
\begin{aligned}
& \left|Z_{Q} \cap(-\infty, 0)\right|=n+1-(k+1)+1=\left|Z_{P} \cap(-\infty, 0)\right|+1, \\
& \left|Z_{Q} \cap(0, \infty)\right|=k=\left|Z_{P} \cap(0, \infty)\right| .
\end{aligned}
$$

Let us assume $z_{1}<0$, then P has no positive real roots. Observe $Q(x)<0$ for $z_{2}^{\prime}<x<z_{1}^{\prime}$. Suppose $z_{1}^{\prime}>0$, then $z_{2}^{\prime}>0$ since $Q(0)>0$. Hence by equation (9), $z_{1}^{\prime}>z_{1}>z_{2}^{\prime}>0$, so $z_{1}>0$ and we have a contradiction. So $z_{1}^{\prime}<0$, hence all the real roots of Q are negative and we have

$$
\begin{aligned}
& \left|Z_{Q} \cap(-\infty, 0)\right|=m=n+1=\left|Z_{P} \cap(-\infty, 0)\right|+1, \\
& \left|Z_{Q} \cap(0, \infty)\right|=0=\left|Z_{P} \cap(0, \infty)\right| .
\end{aligned}
$$

Finally let us assume $z_{n}>0$, then P has no negative real roots. By equation (9), $z_{n}^{\prime}>0$. Since $P(0)>0, P(x)>0$ for $x<z_{n}$, therefore n must be even. Hence $Q(x)>0$ for $z_{n+1}^{\prime}<x<z_{n}^{\prime}$ and $Q(x)<0$ for $x<z_{n+1}^{\prime}$. Since $z_{n}^{\prime}>0$ and $Q(0)>0$, this implies $z_{n+1}^{\prime}<0<z_{n}^{\prime}$. Therefore

$$
\left|Z_{Q} \cap(-\infty, 0)\right|=1=\left|Z_{P} \cap(-\infty, 0)\right|+1, \quad\left|Z_{Q} \cap(0, \infty)\right|=n=\left|Z_{P} \cap(0, \infty)\right|
$$

This ends our discussion of the case $P(0)>0$ and $Q(0)>0$. The remaining cases are proven similarly.

Taneda [6] proved that for $n \in \mathbb{N}$:

- if $n \equiv 1(\bmod 3)$, then $\frac{Q_{n}}{z} \in \mathbb{Z}\left[z^{3}\right]$;
- if $n \not \equiv 1(\bmod 3)$, then $Q_{n} \in \mathbb{Z}\left[z^{3}\right]$.

Hence $Q_{n}(0)=0$ if $n \equiv 1(\bmod 3)$. By Theorem 4 , for every $n \geq 1, Q_{n-1}$ and Q_{n} do not have a common root. Therefore $Q_{n}(0)=0$ if and only if $n \equiv 1(\bmod 3)$.

Let us denote the coefficient of the lowest degree term in Q_{n} by x_{n}. That is, we define $x_{n}:=Q_{n}(0)$ if $n \not \equiv 1(\bmod 3)$, and $x_{n}:=Q_{n}^{\prime}(0)$ if $n \equiv 1(\bmod 3)$. In [5] we derived the following recursion for the x_{n} :

$$
x_{0}=1, \quad x_{1}=1
$$

and

$$
x_{n+1} x_{n-1}=\left\{\begin{array}{lll}
(2 n+1) x_{n}^{2} & \text { if } n \equiv 0 & (\bmod 3) \tag{10}\\
4 x_{n}^{2} & \text { if } n \equiv 1 & (\bmod 3) \\
-(2 n+1) x_{n}^{2} & \text { if } n \equiv 2 & (\bmod 3)
\end{array}\right.
$$

We remark that the above recursion can be used to determine the x_{n} explicitly, a direct formula for x_{n} is given by Kaneko and Ochiai [4].

Lemma 3. For every $n \in \mathbb{N}$,

$$
\operatorname{sgn}\left(Q_{n}(0)\right)=\left\{\begin{aligned}
-1 & \text { if } n \equiv 3,5,6,8 \quad(\bmod 12) \\
0 & \text { if } n \equiv 1,4,7,10 \quad(\bmod 12) \\
1 & \text { if } n \equiv 0,2,9,11 \quad(\bmod 12)
\end{aligned}\right.
$$

where sgn denotes the sign function on \mathbb{R}.
Proof. By induction using recursion (10), we have

$$
\operatorname{sgn}\left(x_{n}\right)=\left\{\begin{aligned}
-1 & \text { if } n \equiv 3,5,7,6,8,10 \quad(\bmod 12) \\
1 & \text { if } n \equiv 0,1,2,4,9,11 \quad(\bmod 12)
\end{aligned}\right.
$$

The lemma follows from this and the fact that $Q_{n}(0)=0$ if and only if $n \equiv 1(\bmod 3)$.
We apply Lemma 2 to the Yablonskii-Vorob'ev polynomials to prove Theorem 3.
Proof of Theorem 3. Let $n \geq 2$, then by Proposition 2, Theorem 4 and Theorem $5, P:=$ Q_{n-1} and $Q:=Q_{n+1}$ are monic polynomials with only simple roots such that the real roots interlace. Furthermore by Theorem 2, both P and Q have a real root and

$$
\min \left(Z_{P}\right)>\min \left(Z_{Q}\right), \quad \max \left(Z_{P}\right)<\max \left(Z_{Q}\right)
$$

So we can apply Lemma 2 together with Lemma 3 and obtain:

$$
\begin{aligned}
& \left|Z_{n+1} \cap(-\infty, 0)\right|=\left|Z_{n-1} \cap(-\infty, 0)\right|+ \begin{cases}0 & \text { if } n \equiv 0,3 \quad(\bmod 6), \\
1 & \text { if } n \equiv 1,2,4,5 \quad(\bmod 6),\end{cases} \\
& \left|Z_{n+1} \cap(0, \infty)\right|=\left|Z_{n-1} \cap(0, \infty)\right|+ \begin{cases}0 & \text { if } n \equiv 0,1 \quad(\bmod 3), \\
1 & \text { if } n \equiv 2 \quad(\bmod 3) .\end{cases}
\end{aligned}
$$

Observe that $Z_{0}=\varnothing, Z_{1}=\{0\}$ and $Z_{2}=\{-\sqrt[3]{4}\}$. The theorem is obtained by applying the above recursive formulas inductively.

Let us discuss an example. By Theorem 1, the unique rational solution of $P_{\mathrm{II}}(\alpha)$ for the parametervalue $\alpha:=21$ is given by

$$
w_{21}=\frac{Q_{20}^{\prime}}{Q_{20}}-\frac{Q_{21}^{\prime}}{Q_{21}} .
$$

By Theorem 4, Q_{20} and Q_{21} do not have common roots and the roots of Q_{20} and Q_{21} are simple. Hence the poles of w_{21} are precisely the roots of Q_{20} and Q_{21}, the roots of Q_{20} are poles of w_{21} with residue 1 and the roots of Q_{21} are poles of w_{21} with residue -1 .

By Theorem 2, Q_{20} has 10 real roots and by Theorem 3, 7 of them are negative and 3 of them are positive. Similarly Q_{21} has 11 real roots, 7 of them are negative and 4 of them are positive.

Therefore w_{21} has 21 real poles, 10 with residue 1 and 11 with residue -1 . More precisely w_{21} has 7 positive real poles, 3 with residue 1 and 4 with residue -1 and w_{21} has 14 negative real poles, 7 with residue 1 and 7 with residue -1 .

References

[1] Clarkson P.A., Special polynomials associated with rational solutions of the Painlevé equations and applications to soliton equations, Comput. Methods Funct. Theory 6 (2006), 329-401.
[2] Clarkson P.A., Mansfield E.L., The second Painlevé equation, its hierarchy and associated special polynomials, Nonlinearity 16 (2003), R1-R26.
[3] Fukutani S., Okamoto K., Umemura H., Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations, Nagoya Math. J. 159 (2000), 179-200.
[4] Kaneko M., Ochiai H., On coefficients of Yablonskii-Vorob'ev polynomials, J. Math. Soc. Japan 55 (2003), 985-993, math.QA/0205178.
[5] Roffelsen P., Irrationality of the roots of the Yablonskii-Vorob'ev polynomials and relations between them, SIGMA 6 (2010), 095, 11 pages, arXiv:1012.2933.
[6] Taneda M., Remarks on the Yablonskii-Vorob'ev polynomials, Nagoya Math. J. 159 (2000), 87-111.
[7] Vorob'ev A.P., On the rational solutions of the second Painlevé equation, Differ. Uravn. 1 (1965), 79-81.
[8] Yablonskii A.I., On rational solutions of the second Painlevé equation, Vesti AN BSSR, Ser. Fiz.-Tech. Nauk (1959), no. 3, 30-35.

