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Abstract. A three-dimensional model of the far turbulent wake behind a self-propelled body
in a passively stratified medium is considered. The model is reduced to a system of ordinary
differential equations by a similarity reduction and the B-determining equations method.
The system of ordinary differential equations satisfying natural boundary conditions is solved
numerically. The solutions obtained here are in close agreement with experimental data.
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1 Introduction

Most flows occurring in nature and engineering practice are turbulent (see, e.g., [10, 20, 22]).
Semiempirical models of turbulence are widely used in the modeling of turbulent flows
[16, 21, 27]. However, there are only a few analytical results on such models (see, e.g., [2, 11]).

The far turbulent wake behind an axisymmetric body in a stratified medium is an example of
a free shear flow. Sufficiently complete experimental data on the dynamics of turbulent wakes
generated by moving bodies in stratified fluids were obtained by Lin and Pao [17].

The far turbulent wake behind an axisymmetric towed body in a linearly stratified medium
was numerically simulated in [9]. Chernykh et al. [6] carried out the numerical simulation of the
dynamics of turbulent wakes in a stable stratified medium based on hierarchy of second order
closure models. Calculation results obtained in [6, 9] are in close agreement with experimental
data [17].

Similarity solutions for several turbulence models were constructed in [7, 13, 14, 15]. In
the current paper we consider three-dimensional semiempirical model of the far turbulent wake
behind an axisymmetrical self-propelled body in a passively stratified medium (see [6, 4, 25]
and the references therein).

This paper is organized as follows. In Section 3 we determine the most general continuous
classical symmetry group of the model and obtain the similarity reduction of the model. In
Section 4 we use the B-determining equations (BDEs) method [1, 12] to transform the reduced
system into a system of ordinary differential equations (ODEs).

In the last section, we consider a boundary value problem for the system of ODEs. We use
the modified shooting method and the asymptotic expansion of the solution in the vicinity of
the singular point to solve this problem. Finally, computational results are given.

?This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full
collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html
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2 Model

The following three-dimensional semiempirical model of turbulence was constructed in [4, 6, 25]
to calculate characteristics of the far turbulent wake behind an axisymmetric self-propelled body
in a passively stratified medium:
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where e is the turbulent kinetic energy, ε is the kinetic energy dissipation rate, 〈ρ1〉 is the averaged
density defect, and 〈ρ′2〉 is the density fluctuation variance. All the unknown functions depend
on x, y, and z. The quantities Ce = 0.136, Cε = Ce/δ, δ = 1.3, Cε2 = 1.92, Cρ = 0.208,
C1ρ = 0.087, CT = 1.25 are generally accepted empirical constant [8, 21]. U0 is the free stream
velocity. The marching variable x in the equations (1)–(4) acts as time.

This model is based on the three-dimensional parabolized system of averaged Navier–Stokes
equations in the Oberbeck–Boussinesq approximation (see [5, 26])
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where Ud = U0 − U is the defect of the averaged longitudinal velocity component; U , V and W
are the mean flow velocity component along x-, y- and z-axes, respectively; 〈p1〉 is the deviation
from the hydrostatic pressure due to stratification ρs(z); g is the gravity acceleration; 〈ρ1〉 is
the averaged density defect: ρ1 = ρ− ρs; ρs = ρs(z) is the undisturbed fluid density assumed to
be linear: ρs(z) = ρ0(1−az), a > 0 is a constant; the prime indicates the pulsating components;
〈 〉 indicates averaging.

In [9, 26] the Reynolds stress tensor components 〈u′iu′j〉, the turbulent flows 〈u′iρ′〉, and the

density fluctuation variance 〈ρ′2〉 are defined by the algebraic relations [21]. Since the flow in
the far turbulent wake is considered, these relations are simplified as follows
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Differential transport equations [21] are used in [4, 6, 25] to determine the kinetic turbulent
energy e, the kinetic energy dissipation rate ε, and the shear Reynolds stress v′w′:
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The turbulent viscosity coefficients in these equations are Key = Ky, Kez = Kz, Kεy = Key/δ,
Kεz = Kez/δ. The model (1)–(4) is an analogue of the equations (5)–(22) (for the diffusion
approximation in a homogeneous fluid V = 0, W = 0, and g = 0). In what follows, we assume
that the free stream velocity U0 equals unity.

3 Similarity solution

The infinitesimal symmetry group [18, 19] of the model (1)–(4) is spanned by the eight vector
fields
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Available experimental data [10, 17] and numerical calculations [9, 20, 27] show that the flow in
the far turbulent wake can be considered to be close to a self-similar flow. We therefore consider
the linear combination of scaling vector fields X6 and X7
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We obtain the reduced system by introducing similarity variables. Using (23) and changing
to polar coordinates ξ = r cosφ, η = r sinφ the reduced system becomes
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where E = E(r), G = G(r), H = H(r, φ), and R = R(r, φ). Here, and throughout, subscripts
denote derivatives, so Hr = ∂H/∂r, etc.

Lie’s classical method do not provide solution of the reduced system agreed with experimental
data. We therefore use the BDEs method.

4 BDEs method

The concept of BDEs of a system of partial differential equations (PDEs) was introduced
in [1, 12]. Consider a scalar PDE
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denotes the set of coordinates corresponding to all k-th order partial derivatives of u with respect
to x. In the BDEs method, an extension of the classical symmetry determining relations is made
by incorporating an additional factor B(x, u, u1, u2, . . . ). For a scalar PDE (28), BDE is
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a multi-index. Equality (29) must hold for all solutions of (28).
Now we use the BDEs method to reduce (26) and (27) to some ODEs. Consider more general

equation than (26)

Hφφ + r2Hrr +A(r)Hr +B(r)H + C(r) sinφ = 0, (30)

where A(r), B(r), and C(r) are arbitrary functions. BDE corresponding to (30) is
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rh+ b1(r, φ)Drh+ b2(r, φ)h = 0. (31)

Here, and throughout Dφ, Dr are the operators of total differentiation with respect to φ and r.
The function h may depend on r, φ, H and derivatives of H. The functions b1(r, φ) and b2(r, φ)
are to be determined together with the function h. Note that if we let in (31)

b1(r, φ) = A(r), b2(r, φ) = B(r),

we obtain the classical determining equation [18, 19].
For simplicity, we assume that a solution of (31) is independent of r and partial derivatives

of H with respect to r

h = Hφφ + h1 (φ,H,Hφ) . (32)

Substituting (32) into (31) gives a polynomial equation for derivatives of the fourth order. This
polynomial must identically vanish. We can express the derivatives Hrrφφ, Hφφφφ, Hrφφ, Hφφφ,
and Hφφ using (30). The coefficient of Hrrr implies b1(r, φ) = A(r).

As a result, the left side of (31) is a polynomial in Hrr and Hrφ. Collecting similar terms we
obtain
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Substituting the functions b1, b2, and h1 into the left side of (31) we obtain the polynomial
with respect to Hr and Hφ. This polynomial must identically vanish. Collecting similar terms
we have

(B(r)H + C(r) sinφ)h3H − h3φφ + (2h′2 −B(r))h3 + C(r)(h2 cosφ− sinφ) = 0,
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where h4 is an arbitrary constant.
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Clearly, that the Riccati equation (33) has the partial solution

h2 = tanφ

for h4 = 1/2.
Thus we find the solution of (31)

h = Hφφ +Hφ tanφ.

The corresponding differential constraint h = 0 has the general solution

H = H1(r) sinφ+H2(r), (34)

where H1 and H2 are arbitrary functions.
Next we use (34) and consider the equation (27) in more general form

Rφφ + r2Rrr +K(r)Rr + L(r)R+M(r) sin2 φ+N(r) sinφ+ P (r) = 0, (35)

where K(r), L(r), M(r), N(r), and P (r) are arbitrary functions. The BDEs method applied to
the equation (35) gives rise to the following results:

N(r) = 0, b1(r, φ) = K(r), b2(r, φ) = L(r)− 8 sin−2 2φ,

h = Rφφ − 2Rφ cot 2φ.

Integrating differential constraint h = 0 corresponding to the BDE solution (34), we find

R = R1(r) sin2 φ+R2(r), (36)

where R1(r) and R2(r) are arbitrary functions. Using (34) and (36) we obtain the following
corollary in terms of variables x, y, and z.
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ξ2 + η2.
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(a) (b)

(c) (d)

Figure 1. Calculated profiles as ξ = 0: (a) normed profile of E, (b) normed profile of G, (c) profile

of H, (d) normed profile of R.

5 Calculation results

The system of ODEs (39)–(43) has to satisfy the conditions

E′ = G′ = H ′1 = R′1 = R′2 = 0, τ = 0, (44)

E = G = H1 = R1 = R2 = 0, τ →∞. (45)

Conditions (44) take into account flow symmetry with respect to the OX axis. The boundary
conditions (45) imply that all functions take zero values outside the turbulent wake.

The system of ODEs (39)–(43) satisfying boundary conditions (44), (45) was solved numeri-
cally. Additional difficulties are caused by the fact that the coefficients of ODEs have singula-
rities. The problem was solved by the modified shooting method and asymptotic expansion of
the solution in the vicinity of the singular point [3, 15]

E = c1(τ − a)10/7 + o
(
|τ − a|10/7

)
, G = −30Cec

2
1

7a
(τ − a)13/7 + o

(
|τ − a|13/7

)
,

H =
7Cρ

a(7Cρ − 10Ce)
(τ − a) + o(|τ − a|),
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(a) (b)

(c) (d)

Figure 2. Calculated functions: (a) the function E/E0, (b) the function G/G0, (c) the function H, (d)

the function R/R0.

R1 =
49C2

ρ(7(2a+ 1)Cρ − 20aCe)

2a2(7Cρ − 10Ce)2(5Ce − 7Cρ1)
(τ − a)2 + o

(
|τ − a|2

)
,

R2 =
7Cρ

2(5Ce − 7C1ρ)
(τ − a)2 + o

(
|τ − a|2

)
.

The value of α is taken to be 0.23 in accordance with experimental data [9, 17]. The results
for the problem solution are illustrated in Figs. 1 and 2. Fig. 1 shows the profiles of the functions
E/E0, G/G0, H, and R/R0 as ξ = 0, where subscript 0 denotes the axial value. The functions
E/E0, G/G0, H, and R/R0 are plotted in Fig. 2. The functions E/E0 and G/G0 are bell-
shaped and determine shapes of the normalized turbulent kinetic energy and the normalized
kinetic energy dissipation rate respectively. Similarly, H and R/R0 determine shapes of the
average density defect and the normalized density fluctuation varience respectively.

The function H(0, η) characterizing the degree of fluid mixing in the turbulent wake is given
in Fig. 1c. The maximum value of this function equals 0.258. This is in consistent with the
present notions of incomplete fluid mixing in the wakes [23, 24].

In Fig. 3 adapted from [6] the normalized values of the turbulent energy along the wake

axis e
1/2
0 /U0 = e(x, 0, 0)/U0 are compared with experimental data [17], computational results [9]
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Figure 3. Axial values of the turbulent energy.

and results of numerical simulation based on two semi-empirical turbulence models (Model1 and
Model2 in [4, 6]). The coordinate x is normalized by the body diameter D. The results obtained
here are in close agreement with Lin and Pao’s experimental data.

Acknowledgements

The authors are grateful to Professor G.G. Chernykh for many helpful and stimulating discus-
sions. The authors would like to thank unknown referees for valuable comments which corrected
and improved the first version of this paper. This work was supported by the Russian Foun-
dation for Basic Research (project no. 10-01-00435) and programme ‘Leading scientific schools’
(grant no. NSh-544.2012.1).

References

[1] Andreev V.K., Kaptsov O.V., Pukhnachov V.V., Rodionov A.A., Applications of group theoretical methods
in hydrodynamics, Mathematics and its Applications, Vol. 450, Kluwer Academic Publishers, Dordrecht,
1998.

[2] Barenblatt G.I., Galerkina N.L., Luneva M.V., Evolution of a turbulent burst, J. Eng. Phys. Thermophys.
53 (1987), 1246–1252.

[3] Cazalbou J.B., Spalart P.R., Bradshaw P., On the behavior of two-equation models at the edge of a turbulent
region, Phys. Fluids 6 (1994), 1797–1804.

[4] Chashechkin Yu.D., Chernykh G.G., Voropaeva O.F., The propagation of a passive admixture from a local
instantaneous source in a turbulent mixing zone, Int. J. Comp. Fluid Dyn. 19 (2005), 517–529.

[5] Chernykh G.G., Fedorova N.N., Moshkin N.P., Numerical simulation of turbulent wakes, Russian J. Theor.
Appl. Mech. 2 (1992), 295–304.

[6] Chernykh G.G., Fomina A.V., Moshkin N.P., Numerical models for turbulent wake dynamics behind a towed
body in a linearly stratified medium, Russian J. Numer. Anal. Math. Modelling 21 (2006), 395–424.

[7] Efremov I.A., Kaptsov O.V., Chernykh G.G., Self-similar solutions of two problems of free turbulence, Mat.
Model. 21 (2009), 137–144 (in Russian).

[8] Gibson M.M., Launder B.E., On the calculation of horizontal, turbulent, free shear flows under gravitational
influence, J. Heat Transfer 98 (1976), 81–87.

[9] Hassid S., Collapse of turbulent wakes in stable stratified media, J. Hydronautics 14 (1980), 25–32.

[10] Hinze J.O., Turbulence: an introduction to its mechanism and theory, McGraw-Hill Series in Mechanical
Engineering, McGraw-Hill Book Co., Inc., New York, 1959.

http://dx.doi.org/10.1007/BF00871083
http://dx.doi.org/10.1063/1.868241
http://dx.doi.org/10.1080/10618560500448580
http://dx.doi.org/10.1163/156939806779801939
http://dx.doi.org/10.1115/1.3450474


10 O.V. Kaptsov and A.V. Schmidt

[11] Hulshof J., Self-similar solutions of Barenblatt’s model for turbulence, SIAM J. Math. Anal. 28 (1997),
33–48.

[12] Kaptsov O.V., B-determining equations: applications to nonlinear partial differential equations, European J.
Appl. Math. 6 (1995), 265–286.

[13] Kaptsov O.V., Efremov I.A., Invariant properties of the far turbulent wake model, Comput. Technol. 10
(2005), no. 6, 45–51 (in Russian).

[14] Kaptsov O.V., Efremov I.A., Schmidt A.V., Self-similar solutions of the second-order model of the far
turbulent wake, J. Appl. Mech. Tech. Phys. 49 (2008), 217–221.

[15] Kaptsov O.V., Shan’ko Yu.V., Family of self-similar solutions of one model of the far turbulent wake, in
Proceedinds of International Conference “Computational and Information Technologies in Sciences, En-
gineering, and Education” (September 20–22, 2006, Pavlodar, Kazakhstan), Vol. 1, TOO NPF “EKO”,
Pavlodar, 2004, 576–579 (in Russian).

[16] Launder B.E., Spalding D.B., Mathematical models of turbulence, Academic Press, London, 1972.

[17] Lin J.T., Pao Y.H., Wakes in stratified fluids, Ann. Rev. Fluid Mech. 11 (1979), 317–338.

[18] Olver P.J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, Vol. 107,
Springer-Verlag, New York, 1986.

[19] Ovsiannikov L.V., Group analysis of differential equations, Academic Press Inc., New York, 1982.

[20] Pope S.B., Turbulent flows, Cambridge University Press, Cambridge, 2000.

[21] Rodi W., Examples of calculation methods for flow and mixing in stratified fluids, J. Geophys. Res. 92
(1987), 5305–5328.

[22] Schlichting H., Boundary layer theory, McGraw-Hill, New York, 1955.

[23] Vasiliev O.F., Kuznetsov B.G., Lytkin Yu.M., Cherhykh G.G., Development of the turbulized fluid region
in a stratified medium, Fluid Dyn. (1974), no. 3, 45–52 (in Russian).

[24] Voropaeva O.F., Far momentumless turbulent wake in a passively stratified medium, Comput. Technol. 8
(2003), no. 3, 32–46 (in Russian).

[25] Voropaeva O.F., Chernykh G.G., On numerical simulation of the dynamics of the turbulized fluid regions
in stratified medium, Comput. Technol. 1 (1992), no. 1, 93–104 (in Russian).

[26] Voropaeva O.F., Moshkin N.P., Chernykh G.G., Internal waves generated by turbulent wakes in a stably
stratified medium, Dokl. Phys. 48 (2003), 517–521.

[27] Wilcox D.C., Turbulence modeling for CFD, DCW Industries, Canada, 1994.

http://dx.doi.org/10.1137/S0036141095290033
http://dx.doi.org/10.1017/S0956792500001832
http://dx.doi.org/10.1017/S0956792500001832
http://dx.doi.org/10.1007/s10808-008-0031-5
http://dx.doi.org/10.1146/annurev.fl.11.010179.001533
http://dx.doi.org/10.1007/978-1-4684-0274-2
http://dx.doi.org/10.1029/JC092iC05p05305
http://dx.doi.org/10.1134/1.1616064

	1 Introduction
	2 Model
	3 Similarity solution
	4 BDEs method
	5 Calculation results
	References

