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1 Statement of results

1.1 Motivation

This paper is motivated by the Givental and Kim observation [10] that the characteristic variety
of the quantum differential equation of a flag variety is a Lagrangian variety of the classical Toda
lattice. The quantum differential equation is a system of differential equations ~∂iψ = bi ◦ ψ,
i = 1, . . . , r, defined by the quantum multiplication ◦ and depending on a parameter ~. The
system defines a flat connection for all nonzero values of ~. Givental and Kim, in particular,
observe that the characteristic variety of this system is the Lagrangian variety of the classical
Toda lattice, defined by equating to zero the first integrals of the Toda lattice.

In this paper we describe a similar relation between the KZ equation and the classical
Calogero–Moser system. On numerous relations between the KZ equations and quantum Calo-
gero–Moser systems see [2, 3, 6, 7, 14].

1.2 Classical Calogero–Moser system

Fix an integer n > 2. Denote ∆ = {z = (z1, . . . , zn) ∈ Cn | za = zb for some a 6= b}, the union of

diagonals. Consider the cotangent bundle T ∗(Cn −∆) with symplectic form ω =
n∑
a=1

dpa ∧ dza,

where p1, . . . , pn are coordinates on fibers. The classical Calogero–Moser system on T ∗(Cn−∆)
is defined by the Hamiltonian

H =

n∑
a=1

p2a −
∑

16a<b6n

2

(za − zb)2
.

mailto:mukhin@math.iupui.edu
mailto:vtarasov@math.iupui.edu
mailto:vt@pdmi.ras.ru
mailto:anv@email.unc.edu
http://dx.doi.org/10.3842/SIGMA.2012.072


2 E. Mukhin, V. Tarasov, and A. Varchenko

The system is completely integrable. For

Q =



p1
1

z1 − z2
1

z1 − z3
. . .

1

z1 − zn
1

z2 − z1
p2

1

z2 − z3
. . .

1

z2 − zn
. . . . . . . . . . . . . . .

1

zn − z1
1

zn − z2
1

zn − z3
. . . pn


, (1.1)

let det(u−Q) = un −Q1u
n−1 + · · · ±Qn be the characteristic polynomial. Then Q1, . . . , Qn is

a complete list of commuting first integrals, and H = Q2
1 −Q2.

We will be interested in the subvariety L0 ⊂ T ∗(Cn −∆) defined by the equations

L0 =
{

(z,p) ∈ T ∗(Cn −∆) | Qa(z,p) = 0, a = 1, . . . , n
}
. (1.2)

Theorem 1.1 ([23]). For any n, the subvariety L0 is smooth and Lagrangian.

See propositions in Section 6 of [23]. Another proof of Theorem 1.1 will be given in Section 2.4.

1.3 Gaudin Hamiltonians and KZ characteristic variety

Fix an integer N > 2. Denote V = CN the vector representation of the Lie algebra glN .
The Hamiltonians of the quantum Gaudin model are the linear operators H1, . . . ,Hn on the
space V ⊗n,

Ha(z) =
N∑

i,j=1

∑
b 6=a

e
(a)
ij e

(b)
ji

za − zb
, (1.3)

where eij are the standard generators of glN , e
(a)
ij is the image of 1⊗(a−1) ⊗ eij ⊗ 1⊗(n−a), and

z1, . . . , zn are distinct complex numbers, see [9]. The operators commute, [Ha(z), Hb(z)] = 0 for
all a, b. The operators commute with the glN -action on V ⊗n.

Let λ = (λ1, . . . , λN ) ∈ ZN>0 be a partition of n with at most N parts, λ1 > · · · > λN ,
|λ| = λ1 + · · ·+ λN = n. Denote

Sing V ⊗n[λ] =
{
v ∈ V ⊗n | eiiv = λiv, i = 1, . . . , N ; eijv = 0 for all i < j

}
,

the subspace of singular vectors of weight λ. The Gaudin Hamiltonians preserve Sing V ⊗n[λ].
We define the spectral variety of the Gaudin model on Sing V ⊗n[λ],

SpecN,λ =
{

(z,p) ∈ T ∗(Cn −∆) | ∃ v ∈ Sing V ⊗n[λ] with Ha(z)v = pav, a = 1, . . . , n
}
.

The spectral variety is a Lagrangian subvariety of T ∗(Cn−∆), see, for example, Proposition 1.5
in [20].

The Gaudin Hamiltonians are the right hand sides of the KZ equations,

κ∂ziI(z) = Hi(z)I(z), i = 1, . . . , n,

where κ ∈ C× is a parameter. The spectral variety SpecN,λ is, by definition, the characteristic
variety of the κ-dependent D-module defined by the KZ equations with values Sing V ⊗n[λ].

Example. If λ = (n, 0, . . . , 0), then SpecN,λ is given by the equations pa =
∑
b 6=a

(za−zb)−1, a = 1,

. . . , n. If N = n and λ = (1, . . . , 1), then SpecN,λ is given by the equations pa = −
∑
b 6=a

(za−zb)−1,

a = 1, . . . , n.
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Theorem 1.2.

(i) The variety SpecN,λ does not depend on N . Namely, consider λ as a partition of n with
at most N + 1 parts. Then SpecN,λ = SpecN+1,λ. From now on we denote SpecN,λ by
Specλ.

(ii) For any n, the variety L0 is the disjoint union of the varieties Specλ, where the union is
over all partitions λ of n.

By Theorem 1.1, each Specλ is smooth and Lagrangian.
Part (i) of Theorem 1.2 is proved in Section 2.2, and part (ii) is proved in Section 2.4.

1.4 Master function generates Specλ

Let λ be a partition of n with at most N parts. Denote la =
N∑

b=a+1

λb, a = 1, . . . , N − 1. Denote

l = l1 + · · ·+ lN−1. Consider the set of l variables

t =
(
t
(1)
1 , . . . , t

(1)
l1
, . . . , t

(N−1)
1 , . . . , t

(N−1)
lN−1

)
and the affine space Cn × Cl with coordinates z, t. The function ΦN,λ : Cn × Cl → C,

ΦN,λ(z, t) =
∑

16a<b6n

log(za − zb)−
n∑
a=1

la∑
i=1

log
(
t
(1)
i − za

)
+ 2

N−1∑
k=1

∑
16i<j6lk

log
(
t
(k)
i − t

(k)
j

)
−
N−2∑
k=0

lk∑
i=1

lk+1∑
j=1

log
(
t
(k)
i − t

(k+1)
j

)
is called the master function, see [21, 22].

The master function depends on λ, but not on N . Namely, consider λ as a partition of n
with at most N + 1 parts. Then ΦN,λ = ΦN+1,λ. From now on we denote ΦN,λ by Φλ.

Critical points of Φλ with respect to t are given by the equation dtΦλ = 0. Denote by Critλ
the critical set of Φλ with respect to t,

Critλ =
{

(z, t) ∈ Cn × Cl | dtΦλ(z, t) = 0
}
.

This is an algebraic subset of the domain of Cn × Cl, where the master function is a regular
(multivalued) function. Denote by Lλ ⊂ T ∗(Cn −∆) the image of the map

Critλ → T ∗(Cn −∆), (z, t) 7→ (z,p), where pa =
∂Φλ
∂za

(z, t), a = 1, . . . , n.

Theorem 1.3. For any n and a partition λ of n, we have Lλ ⊂ Specλ and Specλ is the closure
of Lλ in T ∗(Cn −∆).

Theorem 1.3 is proved in Section 2.1.

1.5 Calogero–Moser space Cn and cotangent bundle T ∗(Cn − ∆)

The Calogero–Moser system has singularities if some of z1, . . . , zn coincide. These singularities
can be resolved and the Calogero–Moser system can be lifted by the map ξ given by (1.4) below
to a regular completely integrable Hamiltonian system on the Calogero–Moser space Cn, see [13].

Denote

C̃n =
{

(Z,Q) ∈ gln × gln | rank([Z,Q] + 1) = 1
}
.
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The group GLn of complex invertible matrices acts on C̃n by simultaneous conjugation. The
action is free and proper, see [23]. The quotient space Cn is called the n-th Calogero–Moser
space. The Calogero–Moser space Cn is a smooth affine variety of dimension 2n, see [23].

The group Sn freely acts on Cn − ∆ by permuting coordinates. The action lifts to a free
action on T ∗(Cn −∆). Define the map

ξ : T ∗
(
Cn −∆

)
→ T ∗

(
Cn −∆

)
/Sn → Cn (1.4)

by the rule: (z,p) is mapped to (Z,Q), where Z = diag(z1, . . . , zn) and Q is defined by (1.1).
The map ξ induces an embedding T ∗(Cn −∆)/Sn → Cn whose image is Zariski open in Cn.

Set C(n) = Cn/Sn and let spec(X) ∈ C(n) stand for the point given by the eigenvalues of
a square matrix X. The canonical map

π : Cn → C(n) × C(n), (Z,Q) 7→ (spec(Z), spec(Q)),

is a finite map of degree n!, see [4]. This map and its fiber over 0× 0 were studied, for example,
in [4, 8, 11].

Let C0
n be the subvariety π−1(C(n) × 0) ⊂ Cn. Identifying C(n) × 0 with C(n) we get a map

π0 : C0
n → C(n), (Z,Q) 7→ spec(Z),

induced by π. We will describe π0 in Section 1.8.

1.6 Wronski map

For a partition λ of n, introduce λ̃ = {λ̃1, . . . , λ̃n} by λ̃i = λi + n− i. Denote

fi(u) = uλ̃i +

λ̃i∑
j=1

λ̃i−j /∈λ̃

fiju
λ̃i−j , i = 1, . . . , n.

Denote Xλ the n-dimensional affine space of n-tuples {f1, . . . , fn} of such polynomials. The
polynomial algebra C[Xλ] = C[fij , i = 1, . . . , n, j ∈ {1, . . . , λ̃i}, λ̃i − j /∈ λ̃] is the algebra of
regular functions on Xλ.

If z = (z1, . . . , zn) are coordinates on Cn, then σ = (σ1, . . . , σn), where σa is the a-th
elementary symmetric function of z1, . . . , zn, are coordinates on C(n) = Cn/Sn.

For arbitrary functions g1(u), . . . , gn(u), introduce the Wronskian determinant by the formula

Wr(g1(u), . . . , gn(u)) = det


g1(u) g′1(u) . . . g

(n−1)
1 (u)

g2(u) g′2(u) . . . g
(n−1)
2 (u)

. . . . . . . . . . . .

gn(u) g′n(u) . . . g
(n−1)
n (u)

 .

We have

Wr(f1(u), . . . , fn(u)) =
∏

16i<j6n

(
λ̃j − λ̃i

)
·

(
un +

n∑
a=1

(−1)aWau
n−a

)

with W1, . . . ,Wn ∈ C[Xλ]. Define an algebra homomorphism

Wλ : C[C(n)]→ C[Xλ], σa 7→Wa.

The corresponding map Wrλ : Xλ → C(n) is called the Wronski map.
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Denote

X0
λ = Xλ ∩Wr−1λ

((
Cn −∆

)
/Sn

)
.

Irreducible representations of the symmetric group Sn are labeled by partitions λ of n. Denote
by dλ the dimension of the irreducible representation corresponding to λ. The Wronski map is
a finite map of degree dλ, see, for example, [18].

1.7 Universal differential operator on Xλ

Given an n×n matrix A with possibly noncommuting entries aij , we define the row determinant
to be

rdetA =
∑
σ∈Sn

(−1)σa1σ(1)a2σ(2) · · · anσ(n).

Let x = (f1, . . . , fn) be a point of Xλ. Define the differential operator Dλ,x by

Dλ,x =
∏

16i<j6n

(
λ̃j − λ̃i

)−1 · rdet


f1(u) f ′1(u) . . . f

(n)
1 (u)

f2(u) f ′2(u) . . . f
(n)
2 (u)

. . . . . . . . . . . .
1 ∂ . . . ∂n

 ,

where ∂ = d/du. It is a differential operator in variable u,

Dλ,x =
∑

06i6j6n

Pij(x)un−j ∂n−i, (1.5)

with Pij ∈ C[Xλ]. By formulae (2.11) and (2.3) in [18], we have

n∑
i=1

Pii

n∏
j=i+1

(s+ j) =
n∏
j=1

(s− λj + j), (1.6)

where s is an independent formal variable.

Let x ∈ X0
λ. Fix zx = (z1,x, . . . , zn,x) ∈ Cn corresponding to Wrλ(x) ∈ C(n). Then

Dλ,x =
n∏
a=1

(u− za,x)

(
∂n −

n∑
a=1

1

u− za,x
∂n−1

+
n∑
a=1

1

u− za,x

−pa,x +
∑
b 6=a

1

za,x − zb,x

 ∂n−2 + · · ·


for suitable numbers px = (p1,x, . . . , pn,x), see Lemma 3.1 in [16].

Lemma 1.4. The map

ψλ : X0
λ → T ∗

(
Cn −∆

)
/Sn, x 7→

(
zx,px

)
,

is an embedding whose image is Specλ /Sn.

Lemma 1.4 is proved in Section 2.3.



6 E. Mukhin, V. Tarasov, and A. Varchenko

1.8 Description of π0

Theorem 1.5.

(i) The irreducible components of the subvariety C0
n ⊂ Cn are naturally labeled by partitions λ

of n, C0
n = ∪λC0

λ, where C0
λ is the closure of ξ(Specλ) in Cn.

(ii) For any λ, the equations Qa = 0, a = 1, . . . , n, define C0
λ in Cn with multiplicity dλ.

(iii) The irreducible components of C0
n do not intersect. Each component is an n-dimensional

submanifold of Cn isomorphic to an n-dimensional affine space, [23].

(iv) Let λ be a partition of n. Then there is an embedding ϕλ : Xλ → C0
n whose image is C0

λ

and such that the following diagram is commutative:

Xλ C0
λ

-
ϕλ

C(n)

A
A
AU

Wrλ
�
�
��
π0

C.f. the statements (i)–(iii) with results in [8].

The map ϕλ is given by the following construction. The restriction of ϕλ to X0
λ is the

composition ξ ◦ ψλ, where ξ is given by (1.4). This map extends from X0
λ to an embedding

Xλ → C0
n, see Section 2.5.

Parts (i) and (ii) of Theorem 1.5 are proved in Section 2.4. Parts (iii) and (iv) of Theorem 1.5
are proved in Section 2.5.

Remark. It follows from Theorem 1.5 that π−1(0 × 0) consists of points labeled by partitions
and the multiplicity of the point corresponding to a partition λ equals (dλ)2.

The fact that the points of π−1(0×0) are labeled by partitions was explained in [4]. The fact
that the multiplicity equals (dλ)2 was formulated in [4] as Conjecture 17.14 and proved in [8].

2 Proofs

2.1 Proof of Theorem 1.3

Assume that a point z = (z1, . . . , zn) has distinct coordinates. The Bethe ansatz construction
assigns an eigenvector ω(z, t) of Gaudin Hamiltonians Ha(z) on Sing V ⊗n[λ] to a critical point
(z, t) of the master function Φλ(z, t), see [1, 12, 19, 20],

Ha(z)ω(z, t) =
∂Φλ
∂za

(z, t)ω(z, t), a = 1, . . . , n. (2.1)

Formula (2.1) shows that Lλ ⊂ Specλ. By Theorem 6.1 in [19] the Bethe vectors form a basis
of Sing V ⊗n[λ] for generic z ∈ Cn −∆. This proves Theorem 1.3.

2.2 Proof of part (i) of Theorem 1.2

It is easy to see that Sing V ⊗n[λ] and the action on it of the Hamiltonians Ha(z) do not depend
on N . Hence, SpecN,λ does not depend on N .

Another (less straightforward) proof of part (i) follows from formula (2.1) and the fact
that ΦN,λ does not depend on N .
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2.3 Proof of Lemma 1.4

Lemma 2.1. For every λ, the spectral variety Specλ /Sn ⊂ T ∗(Cn − ∆)/Sn is smooth. For
different λ’s the spectral subvarieties do not intersect.

Proof. Let x ∈ X0
λ and Wrλ(x) be a projection of zx = (z1,x, . . . , zn,x). By [18], the points

x ∈ X0
λ are in a one-to-one correspondence with the eigenvectors of the Gaudin Hamiltonians on

Sing V ⊗n[λ]. Denote vx the eigenvector corresponding to x. By Lemma 3.1 in [16] the numbers
px = (p1,x, . . . , pn,x) are eigenvalues of H1(zx), . . . ,Hn(zx) on vx. Hence, the image of ψλ is
Specλ /Sn.

By Theorem 3.2 in [16], the coordinates z1,x, . . . , zn,x, p1,x, . . . , pn,x generate all functions
on X0

λ. This proves that ψλ is an embedding of X0
λ to T ∗(Cn −∆)/Sn.

By Theorem 3.2 in [16], the coefficients Pij(x) in (1.5) are given by some universal functions
in zx, px independent of λ. Hence formula (1.6) implies that the spectral varieties for different
λ’s do not intersect. �

Lemma 2.2. For every λ the spectral variety Specλ lies in the variety L0 defined in (1.2).

Proof. Let x ∈ X0
λ and zx = (z1,x, . . . , zn,x) corresponds to Wrλ(x). By Theorem 3.2 in [16],

det
(
(u− Zx)(v −Qx)− 1

)
=

∑
06i6j6n

Pij(x)un−jvn−i,

where Zx = diag(z1,x, . . . , zn,x), Qx is given by (1.1) in terms of zx and px, and Pij(x) are given
by (1.5). This implies that det(v −Qx) = vn and hence Specλ ⊂ L0. �

2.4 Proofs of parts (i) and (ii) of Theorem 1.5,
part (ii) of Theorem 1.2, and Theorem 1.1

Consider the Lie algebra gln with standard generators eij . Fix a set of complex numbers q =
(q1, . . . , qn). Consider the weight subspace

V ⊗n[1, . . . , 1] =
{
w ∈ V ⊗n | eiiw = w, i = 1, . . . , n

}
and the Gaudin Hamiltonians

Ha(z, q) =
n∑
i=1

qie
(a)
ii +

n∑
i,j=1

∑
b 6=a

e
(a)
ij e

(b)
ji

za − zb
,

which generalize the Gaudin Hamiltonians in (1.3). The generalized Gaudin Hamiltonians act
on V ⊗n[1, . . . , 1]. By Theorem 5.3 in [17], for generic (z, q) the generalized Gaudin Hamilto-
nians H1(z, q), . . . ,Hn(z, q) have an eigenbasis in V ⊗n[1, . . . , 1]. By Theorem 4.3 in [15] the
eigenvectors are in one-to-one correspondence with the preimages of the point (z, q) under the
map π : Cn → C(n) × C(n). This identification sends an eigenvector w with Ha(z, q)w = paw,
a = 1, . . . , n, to the point (Z,Q), where Z = diag(z1, . . . , zn) and Q is defined by (1.1).

The gln-action on every eigenvector of the Gaudin Hamiltonians Ha(z, q = 0) on the space
Sing V ⊗n[λ] generates a dλ-dimensional subspace in V ⊗n[1, . . . , 1] of eigenvectors of Ha(z, q=0).
The identification of Theorem 4.3 in [15] implies that Specλ has multiplicity dλ when defined by
the equations Qa(z,p) = 0, a = 1, . . . , n. More precisely, the identification tells that dλ points
of the π−1(z, q) collide to one point of Specλ, when q → 0. This proves part (ii) of Theorem 1.5.

Since
∑
λ d

2
λ = n!, we conclude that L0 = ∪λ Specλ. This proves part (i) of Theorem 1.5,

part (ii) of Theorem 1.2, and Theorem 1.1.
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2.5 Proof of parts (iii) and (iv) of Theorem 1.5

Every point of Xλ is a point of Wilson’s adelic Grassmannian Grad(n), which is identified with
the Calogero–Moser space Cn by the main Theorem 5.1 in [23]. For generic points of Xλ the
map is x 7→ (Zx, Qx). The induced map of functions C[Cn] → C[Xλ] is constructed as follows.
Consider P (u, v) = det((u−Z)(v−Q)−1) as a polynomial in u, v whose coefficients are functions
on Cn, P (u, v) =

∑
i,j P̃iju

n−jvn−i. The coefficients P̃ij generate C[Cn], see Lemma 4.1 in [15].

The map C[Cn]→ C[Xλ] is defined by the formula P̃ij 7→ Pij , where Pij are given by (1.5), see
Theorem 4.3 in [15]. By Lemma 3.4 in [18] the image of this map is C[Xλ]. Hence Xλ → Cn
is an embedding. By formula (1.6) the images do not intersect for different λ’s. This proves
parts (iii) and (iv) of Theorem 1.5.

3 Further remarks

Fix distinct complex numbers q = (q1, . . . , qn). Let σa(q), a = 1, . . . , n, be the elementary
symmetric functions of q. Define

Lq =
{

(z,p) ∈ T ∗(Cn −∆) | Qa(z,p) = σa(q), a = 1, . . . , n
}
.

Theorem 3.1. The subvariety Lq is irreducible, smooth, and Lagrangian.

Define the spectral variety of the Gaudin Hamiltonians Ha(z, q), a=1, . . . , n, on V ⊗n[1, . . . , 1]
by the formula

Specq =
{

(z,p) ∈ T ∗(Cn −∆) | ∃ v ∈ V ⊗n[1, . . . , 1] with Ha(z, q)v = pav, a = 1, . . . , n
}
.

Theorem 3.2. We have Lq = Specq.

Consider the set of n(n− 1)/2 variables

t =
(
t
(1)
1 , . . . , t

(1)
n−1, . . . , t

(n−2)
1 , t

(n−2)
2 , t

(n−1)
1

)
and the affine space Cn × Cn(n−1)/2 with coordinates z, t. Consider the master function Φq :
Cn × Cn(n−1)/2 → C,

Φq(z, t) =
∑

16a<b6n

log(za − zb)−
n∑
a=1

n−1∑
i=1

log
(
t
(1)
i − za

)
+ 2

n−1∑
k=1

∑
16i<j6n−k

log
(
t
(k)
i − t

(k)
j

)
−
n−2∑
k=0

n−k∑
i=1

n−k−1∑
j=1

log
(
t
(k)
i − t

(k+1)
j

)
+

n−1∑
k=1

n−k∑
i=1

(qk+1 − qk)t
(k)
i + q1

n∑
a=1

za,

see [5]. Denote by Critq the critical set of Φq with respect to t,

Critq =
{

(z, t) ∈ Cn × Cn(n−1)/2 | dtΦq(z, t) = 0
}
.

Denote by L̃q ⊂ T ∗(Cn −∆) the image of the map

Critq → T ∗(Cn −∆), (z, t) 7→ (z,p), where pa =
∂Φq
∂za

(z, t), a = 1, . . . , n.
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Theorem 3.3. We have L̃q ⊂ Specq and Specq is the closure of L̃q in T ∗(Cn −∆).

Consider the canonical map π : Cn → C(n)×C(n), (Z,Q) 7→ (spec(Z), spec(Q)). Denote by Cqn
the subvariety π−1(C(n)×q) ⊂ Cn. Identifying C(n)×q with C(n) we get a map πq : Cqn → C(n),
(Z,Q) 7→ spec(Z), induced by π.

Denote

fi(u) = eqiu(u+ fi1), i = 1, . . . , n.

Denote by Xq the n-dimensional affine space of n-tuples {f1, . . . , fn} of such quasiexponentials.
The polynomial algebra C[Xλ] = C[f11, . . . , fn1] is the algebra of regular functions on Xq. We
have

Wr(f1(u), . . . , fn(u)) = e(q1+···+qn)u
∏

16i<j6n

(qj − qi) ·

(
un +

n∑
a=1

(−1)aWau
n−a

)

with W1, . . . ,Wn ∈ C[Xq]. Define an algebra homomorphism

Wq : C[C(n)]→ C[Xq], σa 7→Wa.

Let Wrq : Xq → C(n) be the corresponding map of spaces.

Theorem 3.4.

(i) The equations Qa = qa, a = 1, . . . , n, define Cqn in Cn with multiplicity 1.

(ii) There is an embedding ϕq : Xq → Cqn whose image is Cqn and such that the following
diagram is commutative:

Xq Cqn
-
ϕq

C(n)

A
A
AU

Wrq
�
�
��
π0

The map ϕq is given by the following construction. For x = (f1, . . . , fn) ∈ Xq, define the
differential operator Dq,x by

Dq,x = e−(q1+···+qn)u
∏

16i<j6n

(qj − qi)−1 rdet


f1(u) f ′1(u) . . . f

(n)
1 (u)

f2(u) f ′2(u) . . . f
(n)
2 (u)

. . . . . . . . . . . .
1 ∂ . . . ∂n

 .

Then

Dq,x =
n∑
i=0

n∑
j=0

Pij(x)un−j∂n−i,

where Pij ∈ C[Xq].

Denote X0
q = Xq ∩Wr−1λ

(
(Cn −∆)/Sn

)
and consider the map

ψq : X0
q → T ∗

(
Cn −∆

)
/Sn, x 7→

(
zx,px

)
,
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where zx ∈ Cn projects to Wrq(x) ∈ C(n) and px = (p1,x, . . . , pn,x),

pa,x = − Res
u=za,x


n∑
j=0

P2,j(x)un−j

n∏
i=1

(u− qi)

+
∑
b6=a

1

za,x − zb,x
.

Then the restriction of ϕq to X0
q is the composition ξ ◦ ψq, where ξ is given by (1.4). This map

extends from X0
q to an embedding Xq → Cqn .

The proofs of Theorems 3.1–3.4 are basically the same as the proofs of Theorems 1.1–1.5.
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