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Abstract. In this paper we will explicitly work out the complex first-order SUSY transfor-
mation for the harmonic oscillator in order to obtain both real and complex new exactly-
solvable potentials. Furthermore, we will show that this systems lead us to exact complex
solutions of the Painlevé IV equation with complex parameters. We present some concrete
examples of such solutions.
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1 Introduction

Supersymmetry was introduced in quantum field theory in order to relate the bosonic and
fermionic sectors into one unified superfield [37]. This theoretical framework is described by
some deformations of Lie algebras and their commutation relations. Although there is no expe-
rimental evidence of supersymmetry in nature yet, its concepts have aroused new ideas in other
fields of science.

The supersymmetric quantum mechanics (SUSY QM) is one of these new ideas: while first
developed by Witten [39], it was soon related to the Darboux transformation and to the facto-
rization method, which was thought to be completed in 1951 by Infeld and Hull [25] but it was
developed further as a paradigm to obtain new exactly-solvable by Mielnik [30] and others [6,
7, 17, 31, 35] and deepen into the algebraic structure of quantum systems. Even more, for
those potentials that are not exactly-solvable we still have a powerful new tool to develop
approximation methods, giving rise to a whole new branch of study called spectral design [5],
since one can obtain an exactly-solvable potential with a prescribed spectrum, i.e. with some
given energy levels.

In this paper we will use the scheme of SUSY QM to obtain complex partner potentials.
As far as we know, they were first developed in [4], where complex potentials with real energy
spectra were obtained using complex transformation functions associated with real factorization
energies and later in [19] with complex factorization energies. On the other hand, in this work
we will study complex potentials with complex energy spectra.

The theoretical framework of SUSY QM have connections with other branches of study, for
example with non-classical orthogonal polynomials and the special functions [34], which are so-
lutions of linear differential equations. In this paper, we are interested in some other functions
that play an analogous role as special functions, but now for non-linear differential equations.
Specifically, we are talking about the Painlevé equations. Some specialists (for example [15, 26])
consider that solutions of the Painlevé equations will be the future members of special functions
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in the twenty-first century. It turns out that one of these equations, the Painlevé IV equa-
tion (PIV) (see [24]), is closely related to potentials obtained by SUSY QM from the harmonic
oscillator. Note that PIV also appears in other areas of physics, for example in fluid mecha-
nics [38], non-linear optics [21], and quantum gravity [22]. It also arises in mathematics, e.g., in
the symmetric reduction of several partial differential equations like Boussinesq equation [14],
dispersive wave equation [32], non-linear cubic Schrödinger equation [12], and auto-dual Yang–
Mills field equations [1].

The SUSY QM technique has been used before to obtain solutions of PIV; however, they
are either real or complex but associated with a differential equation having real parame-
ters [9, 10, 11]. In this work we will expand the solution set to obtain complex solutions,
associated now with complex parameters of PIV.

To accomplish this, the structure of the paper is the following: in Section 2 we will work out
the complex scheme of the first-order SUSY QM. In Section 3 we will describe the second-order
polynomial Heisenberg algebras and its relationship with PIV. Then, in Section 4 we will use the
first-order SUSY partners of the harmonic oscillator in order to connect with complex solutions
to PIV. These solutions shall be studied in Section 5. Finally, we will present our conclusions in
Section 6.

2 Complex SUSY QM

Let us begin with a given Hamiltonian H which has been completely solved, i.e., all of its
eigenvalues Ek and eigenfunctions ψk, k = 0, 1, . . . are known:

H = −∂2 + V (x), (1)

Hψk(x) = Ekψk(x), (2)

where ∂ = d/dx and we are using natural units such that ~ = m = 1.
Now, we use the factorization method which is equivalent to SUSY QM but much simpler in

this case. We propose that H is factorizable as

H = A−A+ + ε. (3)

In the standard real factorization method there is an extra condition A+ ≡ (A−)†. In this paper
we do not use this constrain, but rather we simply ask that

A+ = −∂ + β(x), A− = ∂ + β(x), (4)

where β(x) is a complex function to be found. This choice represents a more general factorization
than the usual real one [33].

Working out the operations in (3), using the definitions in (1) and (4), we obtain one condition
for β(x)

β′ + β2 = V (x)− ε,

which is a Riccati equation.
On the other hand, if we consider a similar factorization but in a reversed order and introduce

a new Hamiltonian H̃, defined by H̃ = −∂2 + Ṽ and

H̃ = A+A− + ε, (5)

it turns out that

Ṽ (x) = V (x)− 2β′(x).
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Besides, from equations (3) and (5) it is straightforward to show that [4, 33]

H̃A+ = A+H, HA− = A−H̃, (6)

which are the well known intertwining relationships with A+, A− being the intertwining opera-
tors. From equations (2) and (6) we can obtain the eigenvalues and eigenfunctions of the new
Hamiltonian H̃ as follows

H̃A+ψk(x) = A+Hψk(x) = EkA
+ψk(x), H̃

[
A+ψk(x)

]
= Ek

[
A+ψk(x)

]
.

Therefore, the eigenfunctions ψ̃k of H̃ associated with the eigenvalues Ek become

ψ̃k ∝ A+ψk(x) ∝ W (u, ψk)

u
,

where W is the Wronskian, β(x) = [ln u(x)]′, and u(x) is an eigenfunction of H (in general
a non-physical one) associated with a complex eigenvalue ε, i.e.

Hu = εu.

Furthermore, the eigenstates ψ̃k are not automatically normalized as in the real SUSY QM since
now

〈A+ψn|A+ψn〉 = 〈ψn|(A+)†A+ψn〉,

and in this case (A+)†A+ 6= (H− ε). Nevertheless, since they are normalizable we can introduce
a normalizing constant Cn, chosen for simplicity as Cn ∈ R+, so that

ψ̃n(x) = CnA
+ψn(x), 〈ψ̃n|ψ̃n〉 = 1.

Finally, there is a wavefunction

ψ̃ε ∝
1

u
,

that is also eigenfunction of H̃

H̃ψ̃ε = εψ̃ε.

If it is normalizable, it turns out that Ṽ (x) is a complex potential which Hamiltonian H̃ has the
following spectrum

Sp(H̃) = {ε} ∪ {En, n = 0, 1, . . . }, (7)

and ε ∈ C although in particular ε could be real.

3 Polynomial Heisenberg algebras and PIV

A polynomial Heisenberg algebra (PHA) is a particular deformation of the Heisenberg–Weyl
algebra [18, 36]. Although there is a general definition of a m-th order PHA, in this work we
will only be interested in the second-order case.

A second-order PHA is defined by

[H,L±] = ±2L±, [L−, L+] = Q(H + 2)−Q(H) = P (H),

where P and Q are second- and third-order polynomials, respectively.
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Figure 1. Diagram of the two equivalent SUSY transformations. Above: the three-step first-order

operators L±
1 , L±

2 , and L±
3 allow to accomplish the transformation. Below: the direct transformation

achieved through the third-order operators L±.

This definition means that L± act like ladder operators for the system described by the
Hamiltonian H [13, 20]. As usual, L+ will be a creation operator and L− an annihilation one, i.e.,

L±ψk ∝ ψk±1.

In this case, both L± will be third-order differential ladder operators. Now, we propose
a closed-chain of three SUSY transformations [2, 3, 16, 23, 28, 36] so that L± can be expressed as

L+ = L+
3 L

+
2 L

+
1 = (∂ − f3)(∂ − f2)(∂ − f1),

L− = L−1 L
−
2 L
−
3 = (−∂ − f1)(−∂ − f2)(−∂ − f3). (8)

In general, (L−)† 6= L+, except in the case where all fi ∈ R. As a matter of fact, in this article we
are interested precisely in the case where fi 6∈ R. Each Li fulfills two intertwining relationships
of kind

Hi+1L
+
i = L+

i Hi, HiL
−
i = L−i Hi+1, (9)

where i = 1, 2, 3. In Fig. 1 we present a diagram of the SUSY transformations.
If we equate the two different factorizations associated with (9) which lead to the same

Hamiltonians we get

Hi+1 = L+
i L
−
i + εi = L−i+1L

+
i+1 + εi+1, i = 1, 2.

In addition, the closure condition is given by

H4 = L+
3 L
−
3 + ε3 = H1 − 2 = L−1 L

+
1 + ε1 − 2.

By making the corresponding operator products we get the following system [2, 29, 36]

f ′1 + f ′2 = f21 − f22 + ε1 − ε2, (10a)

f ′2 + f ′3 = f22 − f23 + ε2 − ε3, (10b)

f ′1 + f ′3 = f23 − f21 + ε3 − ε1 + 2. (10c)

Eliminating f22 from (10a) and (10b) we get

f ′1 + 2f ′2 + f ′3 = f21 − f23 + ε1 − ε3,

and from here we substitute f21 from (10c) to obtain

f ′1 + f ′2 + f ′3 = 1,

which, after integration becomes

f1 + f2 + f3 = x. (11)
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Now, substituting (11) into (10a)

f1 =
x− f3

2
+

1− f ′3
2(x− f3)

− ε1 − ε2
2(x− f3)

.

Let us define now a useful new function as g ≡ f3 − x, from which we get

f1 = −g
2

+
g′

2g
+
ε1 − ε2

2g
.

Similarly, by plugging (11) into (10b) and using g we obtain

f2 = −g
2
− g′

2g
− ε1 − ε2

2g
,

Now that we have f1, f2, f3 in terms of g, we replace them in (10c) in order to obtain

gg′′ =
1

2
(g′)2 +

3

2
g4 + 4g3x+ 2g2

(
x2 + ε1 + 1− ε1 + ε2

2

)
− (ε1 − ε2)2

2
,

which is the Painlevé IV equation (PIV)

gg′′ =
1

2
(g′)2 +

3

2
g4 + 4g3x+ 2g2

(
x2 − a

)
+ b,

with parameters

a =
ε1 + ε2

2
− ε3 − 1, b = −(ε1 − ε2)2

2
.

Since, in general f ∈ C then g ∈ C. In addition, εi ∈ C which implies that a, b ∈ C and so g is
a complex solution to PIV associated with the complex parameters a, b.

4 First-order SUSY partners of the harmonic oscillator

In this section we will show that the complex first-order SUSY transformation applied to the
harmonic oscillator leads to a system with third-order ladder operators which is naturally ruled
by a second-order PHA.

Let us begin with the harmonic oscillator potential

V (x) = x2.

As in Section 2, we propose two operators A+ and A− that fulfill equations (4) and (6) so that

Ṽ = V − 2β′(x),

with the condition that β(x) should solve the Riccati equation

β′ + β2 = V − ε. (12)

The previous scheme can be written in terms of a solution of the initial stationary Schrödinger
equation u by substituting β = (ln u)′ in (12) in order to obtain

−u′′ + V u = εu,
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Figure 2. Examples of SUSY partner potentials of the harmonic oscillator using the two complex

factorization energies ε = −1 + i with λ = κ = 1 (left) and ε = 3 + i10−3 with λ = κ = 2 (right). Its real

(dashed line) and imaginary (dotted line) parts are compared to the harmonic oscillator (solid line).

whose general solution, for any ε ∈ C, is given by

u(x) = exp(−x2/2)

[
1F1

(
1− ε

4
,
1

2
;x2
)

+ (λ+ iκ)x 1F1

(
3− ε

4
,
3

2
;x2
)]

. (13)

With this formalism, the first-order SUSY partner potential Ṽ of the harmonic oscillator is
given by

Ṽ (x) = x2 − 2[lnu(x)]′′.

The previously known results for the real case [27] are obtained by taking ε ∈ R, κ = 0 and
expressing λ as

λ = 2ν
Γ
(
3−ε
4

)
Γ
(
1−ε
4

) .
On the other hand, for ε ∈ C the transformation function u(x) is complex and so is Ṽ (x).

In Fig. 2 we present some examples of complex SUSY partner potentials of the harmonic
oscillator generated for ε ∈ C and compare them with the initial potential. Let us note that
these new potentials have the same real spectra as the harmonic oscillator, except that they have
one extra energy level, located at the complex value ε. This kind of spectrum is represented in
the diagram of Fig. 3. Note that this can be interpreted as the superposition of the two ladders
shown in equation (7).

5 Complex solutions to Painlevé IV equation

In this Section we will see that for each first-order SUSY partner of the harmonic oscillator we
will have three different complex solutions of PIV.

First of all, let us note that the ladder operators associated with H̃ are given by

L± = A+a±A−,

or, explicitly,

L+ = (−∂ + β)(−∂ + x)(∂ + β) = (∂ − β)(∂ − x)(∂ + β),

L− = (−∂ + β)(∂ + x)(∂ + β) = (−∂ + β)(−∂ − x)(−∂ − β). (14)
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Figure 3. The complex energy plane which contains the eigenvalues of the SUSY generated Hamil-

tonian H̃. Along the real line it is drawn the usual ladder formed by the energy levels En = 2n + 1,

n = 0, 1, . . . , and out of the real line there is a new level of the complex value ε.

This system has third-order differential ladder operators, therefore it is ruled by a second-order
PHA and so we can apply our analysis of Section 3 by identifying the ladder operators L± given
in equations (14) with those of equations (8). This identification leads to

f1 = −β, f2 = x, f3 = β. (15)

Recall that the function g = f3− x fulfills the Painlevé IV equation, then one solution to PIV is

g = β − x.

Let ψEi , i = 1, 2, 3, be the states annihilated by L−, where Ei represents the factorization
energy for the corresponding extremal state. In particular, let ψE3 be annihilated by L−3 , and
from equation (8) we can see that it is also annihilated by L−. By solving L−3 ψE3 = 0 we get

ψE3 ∝ exp

[
−
∫
f3(y)dy

]
,

from which it can be shown that the corresponding solution to PIV reads

g3(x, ε) = −x− ln[ψE3(x)]′.

For our complex first-order SUSY partner potential Ṽ (x), generated by using the complex
seed solution u(x) of equation (13), the three extremal states (up to a numerical factor) and
their corresponding energies consistent with equations (15) are given by:

ψE1 = A+a+u, E1 = ε+ 2, ψE2 = A+ exp
(
−x2/2

)
, E2 = 1,

ψE3 = u−1, E3 = ε. (16)

Nevertheless, the labelling given in equations (16) is not essential, so that by making cyclic
permutations, associated with the three extremal states of equations (16) we get three solutions
to PIV:

gi(x, ε) = −x− ln[ψEi(x)]′,
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Figure 4. Complex solutions to PIV. The solid line corresponds to the real part and the dashed to the

complex one. g1(x) for ε = −1 + i10−2 and λ = κ = 1; g2(x) for ε = 4 + i2−1, λ = κ = 1; and g3(x) is

given for ε = 1 + i and λ = 3, κ = 1.

with i = 1, 2, 3. The corresponding parameters a, b of PIV are given by:

a1 = −1

2
(ε+ 5), b1 = −1

2
(ε− 1)2 , a2 = ε− 1, b2 = −2,

a3 =
1

2
(1− ε), b3 = −1

2
(ε+ 1)2 , (17)

where we have added the subscript corresponding to the extremal state used. In Fig. 4 we have
presented one example for each of the three families of solutions.

From equations (17) we can see that ai is linear in ε for all three cases. So, instead of studying
the parametric relationship of a, b in terms of ε let us analyze bi = bi(ai), namely,

b1 = −2(a1 + 3)2, b2 = −2, b3 = −2(a3 − 1)2. (18)

Then, we can choose ai ∈ C but bi will be fixed by its corresponding relationship with ai. In
Fig. 5 we show the domain for b3 from equations (18). There are similar plots for b1 but for b2
remember that b2 = −2 ∀ a2 ∈ C.

6 Conclusions

In this work we have applied the first-order SUSY QM to the harmonic oscillator potential to
obtain systems with third-order ladder operators which are ruled by second-order PHA. From
this system we have obtained complex solutions g1, g2, and g3 of the Painlevé IV equation.

It is worth to notice that complex solutions have not been generated in this context, never-
theless, the work of Bassom et al. [8, Section 3.3] is general and can be applied to a PIV with
complex parameters. An extension of the parameter space to the complex plane is helpful at
least when PIV appears in the reduction of other non-linear differential equations. Moreover, it
can be used in the future to study complex extensions of those physical systems described by PIV.
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Figure 5. Parameter space where we show Re(b3) (left) and Im(b3) (right) in function of Re(a3) and

Im(a3). The plots for b1(a1) and b2(a2) are similar.

We first discussed the complex first-order SUSY transformation for general systems. We
defined then the PHA and established explicitly the relationship of the second-order case with
the Painlevé IV equation. We also studied the complex SUSY partner potentials of the harmonic
oscillator with an analysis of the energy spectra of the new potentials. Then, we obtained
complex solutions of the Painlevé IV equation and we analized the complex parameter space
where the solutions can appear. We concluded that there are three different families of complex
solutions for each complex first-order SUSY transformation.

In the future we would like to address the higher-order SUSY transformation in order to
extend the space of complex solutions of the Painlevé IV equation and to study in more detail
the properties of these solutions.
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Comm. Math. Phys. 142 (1991), 313–344.

[23] Gravel S., Hamiltonians separable in Cartesian coordinates and third-order integrals of motion, J. Math.
Phys. 45 (2004), 1003–1019, math-ph/0302028.
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