|  | SIGMA 8 (2012), 063, 14 pages      arXiv:1209.4151     
https://doi.org/10.3842/SIGMA.2012.063Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”
 Singular Isotonic Oscillator, Supersymmetry and Superintegrability
Ian Marquette
School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
 Received July 20, 2012, in final form September 14, 2012; Published online September 19, 2012 Abstract
In the case of a one-dimensional nonsingular Hamiltonian H and a singular supersymmetric partner Ha, the Darboux and factorization relations of supersymmetric quantum mechanics can be only formal relations. It was shown how we can construct an adequate partner by using infinite barriers placed where are located the singularities on the real axis and recover isospectrality. This method was applied to superpartners of the harmonic oscillator with one singularity. In this paper, we apply this method to the singular isotonic oscillator with two singularities on the real axis. We also applied these results to four 2D superintegrable systems with second and third-order integrals of motion obtained by Gravel for which polynomial algebras approach does not allow to obtain the energy spectrum of square integrable wavefunctions. We obtain solutions involving parabolic cylinder functions.
 Key words:
supersymmetric quantum mechanics; superintegrability; isotonic oscillator; polynomial algebra; special functions. 
pdf (552 kb)  
tex (179 kb)
 
 References
 
Abramowitz M., Stegun I.A., Handbook of mathematical functions, with formulas,
  graphs, and mathematical tables, Dover Publications, New York, 1972.Agboola D., Zhang Y.Z., Unified derivation of exact solutions for a class of
  quasi-exactly solvable models, J. Math. Phys. 53 (2012),
  042101, 13 pages, arXiv:1111.1050.Andrianov A., Cannata F., Ioffe M., Nishnianidze D., Systems with higher-order
  shape invariance: spectral and algebraic properties, Phys. Lett. A
  266 (2000), 341-349, quant-ph/9902057.Berger M.S., Ussembayev N.S., Isospectral potentials from modified
  factorization, Phys. Rev. A 82 (2010), 022121, 7 pages,
  arXiv:1008.1528.Berger M.S., Ussembayev N.S., Second-order supersymmetric operators and excited
  states, J. Phys. A: Math. Theor. 43 (2010), 385309,
  10 pages, arXiv:1007.5116.Bermúdez D., Fernández C. D.J., Non-Hermitian Hamiltonians and the
  Painlevé IV equation with real parameters, Phys. Lett. A
  375 (2011), 2974-2978, arXiv:1104.3599.Bermúdez D., Fernández C. D.J., Supersymmetric quantum mechanics and
  Painlevé IV equation, SIGMA 7 (2011), 025, 14 pages,
  arXiv:1012.0290.Cariñena J.F., Perelomov A.M., Rañada M.F., Santander M., A quantum
  exactly solvable nonlinear oscillator related to the isotonic oscillator,
  J. Phys. A: Math. Theor. 41 (2008), 085301, 10 pages.Casahorran J., Esteve J.G., Supersymmetric quantum mechanics, anomalies and
  factorization, J. Phys. A: Math. Gen. 25 (1992),
  L347-L352.Das A., Pernice S.A., Supersymmetry and singular potentials, Nuclear
  Phys. B 561 (1999), 357-384, hep-th/9905135.Dean P., The constrained quantum mechanical harmonic oscillator, Proc.
  Cambridge Philos. Soc. 62 (1966), 277-286.Demircioglu B., Kuru  S., Önder M., Verçin A., Two
  families of superintegrable and isospectral potentials in two dimensions,
  J. Math. Phys. 43 (2002), 2133-2150,
  quant-ph/0201099.Fellows J.M., Smith R.A., Factorization solution of a family of quantum
  nonlinear oscillators, J. Phys. A: Math. Theor. 42 (2009),
  335303, 13 pages.Fernandez F.M., Simple one-dimensional quantum-mechanical model for a particle
  attached to a surface, Eur. J. Phys. 31 (2010), 961–-967,
  arXiv:1003.5014.Frank W.M., Land D.J., Spector R.M., Singular potentials, Rev. Modern
  Phys. 43 (1971), 36-98.Gendenshtein L., Derivation of exact spectra of the Schrödinger equation by
  means of supersymmetry, JETP Lett. 38 (1983), 356-359.Grandati Y., Solvable rational extensions of the isotonic oscillator,
  Ann. Physics 326 (2011), 2074-2090, arXiv:1101.0055.Gravel S., Hamiltonians separable in Cartesian coordinates and third-order
  integrals of motion, J. Math. Phys. 45 (2004), 1003-1019,
  math-ph/0302028.Hall R.L., Saad N., Yesiltas Ö., Generalized quantum isotonic
  nonlinear oscillator in d dimensions, J. Phys. A: Math. Theor.
  43 (2010), 465304, 8 pages, arXiv:1010.0620.Ince E.L., Ordinary differential equations, Dover Publications, New York,
  1944.Jevicki A., Rodrigues J.P., Singular potentials and supersymmetry breaking,
  Phys. Lett. B 146 (1984), 55-58.Junker G., Supersymmetric methods in quantum and statistical physics, Texts and
  Monographs in Physics, Springer-Verlag, Berlin, 1996.Kraenkel R.A., Senthilvelan M., On the solutions of the position-dependent
  effective mass Schrödinger equation of a nonlinear oscillator related
  with the isotonic oscillator, J. Phys. A: Math. Theor. 42
  (2009), 415303, 10 pages.Lathouwers L., The Hamiltonian H=(−1/2)d2/dx2+x2/2+λ/x2 reobserved, J. Math. Phys. 16 (1975), 1393-1395.Marquette I., An infinite family of superintegrable systems from higher order
  ladder operators and supersymmetry, J. Phys. Conf. Ser. 284
  (2011), 012047, 8 pages, arXiv:1008.3073.Marquette I., Superintegrability and higher order polynomial algebras,
  J. Phys. A: Math. Theor. 43 (2010), 135203, 15 pages,
  arXiv:0908.4399.Marquette I., Superintegrability with third order integrals of motion, cubic
  algebras, and supersymmetric quantum mechanics. I. Rational function
  potentials, J. Math. Phys. 50 (2009), 012101, 23 pages,
  arXiv:0807.2858.Marquette I., Superintegrability with third order integrals of motion, cubic
  algebras, and supersymmetric quantum mechanics. II. Painlevé
  transcendent potentials, J. Math. Phys. 50 (2009), 095202,
  18 pages, arXiv:0811.1568.Marquette I., Supersymmetry as a method of obtaining new superintegrable
  systems with higher order integrals of motion, J. Math. Phys.
  50 (2009), 122102, 10 pages, arXiv:0908.1246.Marquette I., Winternitz P., Superintegrable systems with third-order integrals
  of motion, J. Phys. A: Math. Theor. 41 (2008), 304031,
  10 pages, arXiv:0711.4783.Márquez I.F., Negro J., Nieto L.M., Factorization method and singular
  Hamiltonians, J. Phys. A: Math. Gen. 31 (1998),
  4115-4125.Mei W.N., Lee Y.C., Harmonic oscillator with potential barriers - exact
  solutions and perturbative treatments, J. Phys. A: Math. Gen.
  16 (1983), 1623-1632.Mielnik B., Factorization method and new potentials with the oscillator
  spectrum, J. Math. Phys. 25 (1984), 3387-3389.Post S., Tsujimoto S., Vinet L., Families of superintegrable Hamiltonians
  constructed from exceptional polynomials, J. Phys. A: Math. Theor.,
  to appear, arXiv:1206.0480.Quesne C., Higher-order SUSY, exactly solvable potentials, and exceptional
  orthogonal polynomials, Modern Phys. Lett. A 26 (2011),
  1843-1852, arXiv:1106.1990.Robnik M., Supersymmetric quantum mechanics based on higher excited states,
  J. Phys. A: Math. Gen. 30 (1997), 1287-1294,
  chao-dyn/9611008.Samsonov B.F., Ovcharov I.N., The Darboux transformation and exactly solvable
  potentials with a quasi-equidistant spectrum, Russian Phys. J.
  38 (1995), 765-771.Sesma J., The generalized quantum isotonic oscillator, J. Phys. A:
  Math. Theor. 43 (2010), 185303, 14 pages.Slavyanov S.Yu., Confluent Heun equation, in Heun's Differential Equations, The
  Clarendon Press, Oxford University Press, New York, 1995, 87-127.Slavyanov S.Yu., Lay W., Special functions. A unified theory based on
  singularities, Oxford Mathematical Monographs, Oxford University Press,
  Oxford, 2000.Spiridonov V., Universal superpositions of coherent states and self-similar
  potentials, Phys. Rev. A 52 (1995), 1909-1935,
  quant-ph/9601030.Tkachuk V.M., Supersymmetric method for constructing quasi-exactly and
  conditionally-exactly solvable potentials, J. Phys. A: Math. Gen.
  32 (1999), 1291-1300, quant-ph/9808050.Veselov A.P., On Stieltjes relations, Painlevé-IV hierarchy and complex
  monodromy, J. Phys. A: Math. Gen. 34 (2001), 3511-3519,
  math-ph/0012040.Whittaker E.T., Watson G.N., A course of modern analysis. An introduction to
  the general theory of infinite processes and of analytic functions; with an
  account of the principal transcendental functions, Cambridge Mathematical
  Library, Cambridge University Press, Cambridge, 1996.Witten E., Dynamical breaking of supersymmetry, Nuclear Phys. B
  188 (1981), 513-554.Znojil M., Comment on "Supersymmetry and singular potentias"
  [Nuclear Phys. B 561 (1999), 357-384], Nuclear
  Phys. B 662 (2003), 554-562, hep-th/0209262.Znojil M., PT-symmetric harmonic oscillators, Phys.
  Lett. A 259 (1999), 220-223, quant-ph/9905020. |  |