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1 Introduction
Systems of partial differential equations of the form

‘ 'S iy
v =e = =12, N, (1.1)

called generalized two-dimensional Toda lattices have very important applications in Liouville
and conformal field theories, they are studied in details (see [3, 5, 6, 9, 10, 11, 13, 27, 28, 29,
30, 34, 36] and the references therein). Here the matrix A = {a;;} is the Cartan matrix of
an arbitrary finite or affine Lie algebra. It is known that in the former case system (1.1) is
Darboux integrable while in the latter case — S-integrable. The widely known Drinfel’d—Sokolov
formalism allows one to construct the Lax representation for the system (1.1) in terms of the
Lie algebra canonically associated with the corresponding Cartan matrix A.

The problem of finding discrete versions of the system is intensively studied (see, for instance,
[2, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 38, 39, 40]). Recently, in [18] integrable differential-
difference analog of system (1.1) was suggested

j=i—1 i=N ) o
) ) ’ > v+ ’]Z ai jvi+3ai;(vi+ol) _
V], — vy = e 77! =it , i=1,2,...,N. (1.2)
Here the functions v/ = v/(n,z), 7 = 1,..., N are the searched field variables. The subindex

denotes a shift of the discrete variable n or the derivative with respect to x: ri =ri(n+k,x)

*This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full
collection is available at http://www.emis.de/journals/SIGMA /GMMP2012.html
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and ) = %rj (n,z). A particular case of (1.2), corresponding to the algebra Cy is also studied
in [37].

In the present article we study the problem of further discretization of system (1.1), i.e.
the problem of finding a rule allowing to assign to any Cartan matrix a system of integrable
difference-difference equations approximating in the continuum limit system (1.2) and therefore
system (1.1). As it was pointed out in [40] the problem of discretization is important from
physical viewpoint, they might have applications in discrete field theory and in quantum physics
(see also [22, 25, 38]). They can also be regarded as difference schemes in numerical computations
(see [23]).

Following questions were addressed in [40]:

1) whether there exists an integrable discrete version for any two dimensional Toda field
equation (1.1);

2) which kind of algebraic structure (like Lie algebra or Lie group) is naturally related to
discrete versions.

The subject has intensively been studied during the last 10-15 years. Various discrete versions
of Toda field equations were investigated in literature (see [15, 22, 24, 25, 39] and references
therein). As an alternative answer to the first question we suggest a fully discrete version of
system (1.1) in the following form

j=i—1 ) Jj=N . ) .
. . . . > aijud > aiul gt saq(ud tul )
R ST S . U0t 2. iU o3ty 1 Uy o ,
e MU U170 1 — ¢ J=1 j=itl , i=1,2,...,N, (1.3)

which evidently approximates (1.1) and (1.2). Here v/ = w/(n,m), j = 1,2,..., N, is a set
of the field variables. The subindex indicates shifts of the arguments n, m as follows uzk =
w/(n +4,m + k). The system corresponding to the algebra Ay coincides with that found years
ego by Hirota (see [21]). Obviously, system (1.3) is invariant under the replacement n <> —m.
This property is inherited from the fact that system (1.1) is invariant under the change x > y.

The main result of the present article is in formulating of the conjecture below and proving
it for numerous examples of Lie algebras.

Conjecture.

a) If A is the Cartan matriz of a semi-simple Lie algebra then (1.3) is Darboux integrable,
in other words, it admits a complete set of integrals in both directions. Roughly speaking
Darboux integrable difference-difference equations can be reduced to ordinary difference
equations.

b) If A is the Cartan matriz of an affine Lie algebra then (1.3) is S-integrable, i.e. it can be
integrated by means of the inverse scattering transform method. It is generally accepted
that existence of generalized symmetries or Lax pairs indicates S-integrability.

Part a) of the conjecture is proved for the cases: Az, By, C3, G2, D3 by finding complete
sets of integrals. Systems corresponding to the algebras Ay, By, Cn are studied by using Lax
pair in Section 6. In the cases Ay, By (C2), G2 the exponential system (1.3) reads as follows

1 1 1 1 1 1 2 2 2 2 2 1 2 2
—up1 Uy oty U ] — 6“0,1*"1,0*“1,0’ —ui Ul o tug U0 ] — e*C“o,1+“0,1+“1,0’

(& (&

where ¢ takes only three values ¢ = 1,2,3. Here the values ¢ = 1, ¢ = 2, ¢ = 3 correspond
to the algebras As, By or Cs, Go respectively. Let us introduce a notation for the nonlinear
second-order partial difference operator by setting

A(u) = e*u1,1+m,o+u0,1*u0,o _ 1’
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then the last system takes a compact form
A(ul) = eatuiomwo  A(u?) = e CUoatuiatuio, (1.4)

Integrals in both directions for system (1.4) are given in Section 2.

Since the map defined in (1.3) converts any N x N matrix to a system of difference-difference
equations one can easily specify the form of systems corresponding to any Cartan matrix canoni-
cally related to a finite or affine Lie algebra both of classical series or exceptional. For instance,
for the algebra D3 with the Cartan matrix

2 -1 -1

-1 0 2
we have an integrable system of the form
1 1,2 .3 b 42 a2 S S B
A(ul) — el0,1HU1,0~UT 0 Ui, A(UQ) —e “0,1+“0,1+“1,07 A(u?)) — e Y0, U1t UL

Complete sets of integrals for this system is given in Section 2.
For the Kac-Moody algebra Ag) with the Cartan matrix

2 -1
(40
the corresponding system is

A(ul) = eu(l),r*'u%,o_“%,o7 A(UQ) — ot tud s Ful (1.5)

For the difference-difference systems corresponding to the algebras Ao, Agl), Ag) genera-

lized symmetries are found, for As the symmetries have usual form, for Agl), AéQ) they have
nonlocal form (or, they are of hyperbolic type, see Definition 1.5 below). In the literature
generalized symmetries are regarded as a criterion of integrability. Thus one concludes that
systems (1.5), (3.1) provide new examples of 2 x 2 S-integrable quad graph models.

Stress that the number of the field variables in all three systems (1.1), (1.2), (1.3) coincides
with the rank of the corresponding Lie algebra.

It is known that any system of difference-difference equations of hyperbolic type admits
a pair of characteristic Lie algebras which are effectively evaluated (see [14]). Characteristic
Lie algebras of system (1.3) are closely connected with the Lie algebra canonically related to
the given Cartan matrix A. In our opinion this relation could allow one to answer the second
question in [40] (see the list of questions above).

The problem of developing discrete versions of the Drinfel’d—Sokolov formalism is also chal-
lenging since today systems of discrete equations are very popular. They have a large variety of
application in theoretical physics, in discrete geometry, in the theory of tau functions in lattice
Toda field equations. The present article would also provide an “experimental” background for
creating a discrete theory parallel to the Drinfel’d—Sokolov formalism.

The article is organized as follows. In Section 1.1 notions of the integrals and generalized
symmetries of both evolutionary and hyperbolic type for quad graph equations are defined.
Sufficient condition of complete set of integrals is proved. In Section 2 a method of discretization
of Darboux integrable models preserving integrability is discussed. The method is explained in
details by an example of the Liouville equation [19]. Then it is applied to the system (1.2) to
get its difference-difference analog. The case Bs is studied in more details. These simulations
allowed us to guess the formula (1.3). Complete sets of independent integrals for the systems
Ao, By, Oy, G4, D3 are presented.
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Generalized symmetries are evaluated for the systems corresponding As, Agl), AéQ) in Sec-

tion 3. Special attention is paid to hyperbolic type symmetries which provide a semi-discrete
version of the consistency around a cube property of quad graph equations [1]. In Section 4
the concept of the characteristic Lie algebra (see [14]) of discrete models is briefly discussed.
Here a complete description of such algebra is obtained for the system of difference-difference
equations As.

In Section 5 cutting off conditions for the Hirota equation preserving integrability are studied
by using the method suggested in [15]. It turned out that some of the systems in the class (1.3)
can be obtained from the Hirota equation by imposing proper boundary conditions. Since the
cutting off conditions are compatible with the Lax representation one can derive together with
the reduced discrete system also its Lax pair. In Section 5 the Lax pairs for the difference-
difference systems Ay, By, Cy, Agl), Dg\?) are found.

In Section 6 an algorithm is suggested to look for integrals via the Lax pair. In Section 7 widely
known periodical reduction of the Hirota equation is discussed. The Lax pair for this system
found in [41] is rewritten in terms of the Cartan—Weyl basis for the algebra Ag\l,). Emphasize
that the difference-difference system obtained as a periodical reduction and that given by the

formula (1.3) corresponding to A%) are not equivalent (see Remark 7.1 below).

1.1 Integrals and symmetries for quad graph systems

Consider a system of quad graph equations of general form

H(un,m’ Up41,m, Un,m+1, un+1,m+1) = 0; (16)

where u = u,,, is a vector-function depending on two integers and ranging on CN: u =

(u',u?, ..., uV)T. As usually we request that equation (1.6) can be solved with respect to any

of the arguments Wy, Wpt1,m, Unm+1, Un+1,m+1. I other words there exists a set of functions
H&ELED guch that

Up41,m+1 = HLl(un,mv Un+1,m; un,m-l—l);
Up—1,m+1 = H(il’l) (un—l,ma Up m, un,m—i—l)a
Upt+1,m—1 = H(L_l) (un+1,ma Un,m, un,mfl)a
Up—1,m—-1= H(_L_l) (unfl,my Up,m, un,mfl)-

Define the following standard set of dynamical variables which consists of the variable u,, .,
and its shifts u,y »,m and w,, 4 where k,1 € Z

S = {un+k’m, un7m+l : k,l (S Z}

By [u] we denote a finite set of dynamical variables, for instance notation h = h([u]) means that
function h depends on a finite number of dynamical variables. Define shift operators D,,, D,
acting due to the rules

Dy f(n,m) = f(n,m+ 1), Dyf(n,m)= f(n+1,m).

Definition 1.1.

i) Function F'([u],n,m) (function I([u],n,m)) is called m-integral (respectively n-integral)
of the equation (1.6) if the following identity holds D,,F' = F (or, D,I = I) on arbitrary
solutions of equation (1.6).
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i1) Integrals of the form F' = F(n) (I = I(m)) are called trivial.

i71) Equation admitting N non-trivial independent integrals in each direction is called Darboux
integrable.

iv) Set of integrals is called independent if none of them can be expressed through the other

integrals and their shifts.

It can be easily proved that m-integrals do not depend on the variables wy, ,,; with [ # 0
and similarly n-integrals do not depend on . ,, where k # 0.
Now formulate a very simple and convenient sufficient condition of complete set of integrals.

Theorem 1.2. Let us given a set of m-integrals of the form

I :I(j)(n,m,u,Dnu,Dflu,...,DZju), v; >0, j=1,...,N. (1.7)

out

Suppose that for any j and for all n, m at least one of the derivatives differs from zero and

the condition

det J. 0 1.8
ot (52 # (1.9
holds for all n, m. Then the integrals constitute a complete set of integrals.

Proof. Suppose in contrary that the set of integrals (1.7) is not independent. Then at least
one of the integrals, say for definiteness /(y) is a function of the form

Iny = Q(L2), L3y, - - - s I(nys Dnd(2), Dudsy, - .., Dud (s .- ) (1.9)

depending on the other integrals and their shifts. Differentiating (1.9) with respect to u’ we
obtain the following equalities

oy 0Ol 0Q Ny 0Q

The latter can be regarded as a linear algebraic system with the coefficient matrix {83[;? } and
0Q 80
1

a solution ( VBl m) which obviously is not trivial. Therefore according to the well-
known theorem the determinant of the coefficient matrix should vanish. But it contradicts (1.8).
Thus our assumption that the set of integrals is dependent is not correct. Theorem is proved. W

Remark 1.3. Condition (1.8) actually means that jacobian of the map u — I = (I(l), . ,I(N))
differs from zero for any value of the variables u, Dpu, D2u, ..., Dju ranging in a domain. Here
v = max{4’/}. Note that (1.8) is not a necessary condition for independent integrals. In the
Example 6.1 we have a pair of independent integrals I(;y and I(y) for which condition (1.8) is
violated.

Definition 1.4. An equation of the form

is called generalized symmetry of (1.6) if the following compatibility condition is satisfied

d

@ (un+1’m+1 — F(l’l)) 0.

‘F:O,un,m)t:G’ =
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It can be shown that function G([u]) is a solution of linearized equation

G=0.
aun—&—l,m—‘,—l 8un-l—l,m aun,m—i—l 8un,m

There are systems of the form (1.6) which do not admit evolutionary type symmetries, how-
ever they admit symmetries of more complicated structure. We call them hyperbolic type
symmetries. Such type symmetries for (1.6) consist of two semi-discrete equations

d d d ~(d
—ZUn+lm = G <dtun,m7 [u}> ) &un,m—i-l =G <dtun,m7 [11]) . (110)

dt
Definition 1.5. Pair of equations (1.10) define a hyperbolic type symmetry for (1.6) if equa-
tions (1.6), (1.10) constitute a commuting triple, i.e. the following compatibility conditions are
satisfied

%F(M) = DG = D,G

by means of equations (1.6), (1.10).

Hyperbolic type symmetries are constructed in Section 3. They are nothing else but non-local
symmetries (see, for instance, [35]) rewritten in a more convenient form. In the other hand side
existence of hyperbolic type symmetries (1.10) for equation (1.6) can be regarded as a semi-
discrete generalization of the well-known property of consistency around a cube [1, 4, 32] which
is approved to be a criterion of integrability.

2 Systematic approach to the problem of discretization
of the Darboux integrable systems

The problem of finding integrable discretizations of the integrable partial differential equation
is very complicated and not enough studied. The same is true for evaluating the continuum
limit for discrete models. In [19] an effective algorithm of discretization (as well as evaluation
of the continuum limit) of Darboux integrable equations is suggested based on the integrals. In
this section we discuss the essence of the algorithm and apply it to exponential type systems.
Note that sets of integrals for the systems corresponding to Ao, Ba, G2, D3 considered in this
section as easily proved by applying sufficient condition given in Theorem 1.2 are independent.

2.1 Explanation of the method with example of Liouville equation

Its well-known that the famous Liuoville equation u,, = e admits integrals in both directions:
W = g — 0.5u2 and W = Uyy — 0.5u§. Indeed, it is very easy to check that D,JV = 0 and
D, W = 0.

Consider now the problem of finding all chains of the form

tz(n+1,2) = f(z,t(n,x),t(n + 1,2),ty(n,x)), (2.1)
having the function I = t,, — %tf as their n-integral. Equality D, I = I implies

Fot fite - fuf + futa — 3 = tea — 5ta” (2.2)
By comparing the coefficients before ¢, in (2.2) we have f;, = 1. Therefore,

Fz,t b1 te) = to + d(z, £, t). (2.3)
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We substitute (2.3) into (2.2) and get dy + dity + diyty + dyyd — 38,2 — dt, — 3d? = —3t,%,
or equivalently, d; + dy;, —d = 0 and d, + di, d — %d2 = 0. We solve the last two equations

simultaneously and find that d = Cez(t) and C'is an arbitrary constant. Therefore, chain (2.1)

with n-integral I = ¢,, — %t;f becomes t1; = ty +Celt11/2 The last equation in its turn admits
also an z-integral F' = e(1=1)/2 4 (t1=12)/2,
The next step consists in describing equations of the form

U(’I’L +1,m+ 1) = f(’U(TL, m)a U(’I’L +1, m)7 U(TL, m + 1)) (24)
with m-integral F' = e"17" + "1~ "2, Denote w;; := e~ V. In the new variables F' = %ﬁvzo is
an m-integral of equation w11 = g(wop 0, w1,0,wo,1). Dy F = F implies

w0 + W Dyg+w

2,0 00 _ ng + Wor (2.5)

w1,0 g

We differentiate both sides of (2.5) with respect to wy and apply the shift operator D,; L we

have
1 Ow o D 1 Owo o D
_ Gweond D! <> =D,! <w2’° ng) = Guie = wo,1
w1,0 g w1,0 g wo,0
Therefore,
Wo,1W1,0
g = W —+ c(w070,w071). (26)

We substitute (2.6) into (2.5) and get

w
=2 = c(wr0,9) + wo,1- (2.7)
w1,0

)

Substitution of (2.6) into (2.7) implies that c(woo,wo1)w = c(wig,g)wip, or the same,
c(wo,0, wo,1)w = Dy(c(wo,0,wo,1)wop). Suppose that equation w1 = g(w, w1 g, wo,1) does not
admit an m-integral of the first order, then c(wq,0,wo1)wo0 = Dp(c(wo, wo,1)woo) = C =
const. Thus, c¢(wo,0,wo,1) = C/wo. Finally, g(woo, w10, wo1) = % + % Therefore,
the equation (2.4) searched with m-integral F' = eV1.07%0.0 4 ¢V1.07%2,0 hecomes e V1170.0 =
C + e v107%.1  where C is an arbitrary constant. Note that this equation is symmetric with
respect to variables vio and vg 1. Therefore, n-integral for the equation can be obtained by

simply changing in m-integral variables v;o into variables vg ;, j = 1, 2.
2.2 Application of the algorithm of discretization
to the system corresponding to the algebra B,

Apply the reasonings above to the system (1.1) corresponding to the algebra By. The first step
has already been done in [18], where the differential-difference system was found

1 1 wltul—w? 2 2 —2ultul4u?
T z =€ v Uy g — Uy =€ i (28)

admitting two independent n-integrals having the form

Iy = 2uj, + ud, — 2(u)” + 2up? — (u,),

2
T
gy (U3, = u) + b (ug — 202) + (uh)' + (up)”(u2)” = 2(ul) ",
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which are also integrals of fully continuous system (1.1) corresponding to the same algebra. It
was shown in [18] that system (2.8) admits also z-integrals

1.1 141,22 1.1 2,2 1.1
F(l) = e U0 TUL 4 T UITUZTUZ U 4 QU U TUT U | pUp—UZ
20,2 o1 1.,2_ .2 1 1,1 1_o9,1_,2.1,2 2_ .2
F(Q) — e uptul te 2ug+2u;+ui—uj + 2% ug+2u; u2+62u1 2uy—uj+u; 4 U2, (29)
The goal of this section is to construct a difference-difference system having the same func-

tions F{1) and F{g) as their m-integrals.
To make the formulas shorter we change the variables

a=e ", b=e" (2.10)

where a, b are new unknowns.
The given m-integrals in these variables read

a albg ale as b() a02b2 apan a22b1 b3
Fpy=—+—14 == 4+=2 Flgy = — 2 =,
1) al + a2b2 albg + a27 ) bl + a12b1 + CL12 a%bg b2

(2.11)

Formulas (2.9) define integrals for a semi-discrete system (2.8) while (2.11) defines integrals for
a certain difference-difference system, that is why the variables in (2.11) should be labeled by
a double index, however we omitted here and below in this section the second index, because
its value is zero for all considered variables. Now we will look for the equations desired in the
variables a, b in the form

a1,1 = f(ao,0,a1,0,a0,1,b0,0,b1,0,b0,1), bi,1 = g(ao,0,a1,0,a0,1,b0,0,b1,0,b0,1)-

Substitute the integrals (2.11) into the equations for m-integrals D, F{(1) = F(1), D F(2) = Fa)
and bring them to the following form

apn  fDRg  gDnf Dif ag | aibs  asb L

+ + = —_— , 2.12a
[ DufDng  fDng Dnf a1 agby  aiba  a ( )
b ’D D D,f?* D2 b 2b 2 b
(J,1+CL0,12 ng+2a0,12nf 92 nf” Dug _ b a02 2 +2aoa22 a2 b1 b3 g 1op)
g 1?9 f [?Dng  Dng b1 a1®b ay atba  bo

By differentiating equation (2.12b) with respect to the variables ag, bs we get equations

1
Z@ZO@@:Q 1 209 _ 1 dg _ bos
D,g "0ay daq

= s 2 =
Dpg "0b1 by  9bi by’

which imply immediately

b1.0bo,1 N 91(a0,0, @0,1,b0,0, bo,1)
bo.o bo,o

g(ag0,a1,0,a0,1,b0,0,b1,0,b0,1) =

Similarly, differentiation of (2.12a) with respect to as, b3 yields
1 L0 1 of aoa

Dof "8a1  ap = day  ap’

[ —J D o )
b2anDng+an by aghy < by aghy ™ (aof — ara0,1)

From these equations we get

a1,0001 Chip
ao,0 ao,0

f(@o,0,a1,0,a0,1,b0,0,b1,0,b0,1) =
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By differentiating (2.12) with respect to ay we obtain

2

aix 0 Dpgi  bix by
- )

baba1 Oaz az1  aibay  aibe

ap,1 az,1b1,1 1 0 asby
2 4+ 2 N D = 2* +2——
ai,1a1 araiiba  ba1bag Oaso a2by’

The last two equations can be rewritten as follows

9 Dngt o1 0 D ai 191
~ — ) A 2——
Oday ay;1 apaop,1 Oay ao, 140

By getting rid of the variable d,, Dy,g1 in these equations we find

Dngi a1
—n7 = 5 <~ g1 = Claal.

2
ata ap,1

The last implication is due to the assumption that F{;) and F{,) are integrals of the lowest order.
As a result we get equations

P
ai,1a0,0 — a1,0a0,1 = Cby, b1,1b0,0 — b1,0b01 = Crag ;-

After some rescaling we can put C' = ¢ = 1. Finally, we end up with the system of discrete
equations

2
ai,;1a0,0 — a1,000,1 = b1, b1,1b0,0 — b1,0bo1 = ag ;-
corresponding to the algebra By. Turn back to the original variables u', u? (see (2.10))
1wl 4ul —u? 2 —2ul  4u? 4u?
Ay = %017 "1,07 %0, Au” =e 0,1T%0,1T %10,

By construction the last system admits pair of integrals (2.9) in which the second index for the
variables u', u? is omitted, since its value is the same for all variables. To find the integrals in
the other direction one uses the discrete symmetry n <> —m of the system.

2.3 Integrals of the systems corresponding to the algebras A,, G2, D3
2.3.1 System corresponding to the algebra A,

The Cartan matrix of As is
2 -1
A= .
-1 2
The discrete system for As looks as follows
A(ul) = eatuio=wio  A(u?) = e HatuBatulo, (2.13)
For system (2.13) m-integrals are
F(l) — e‘“%,o'*‘u%,o + 6_“3,0"’“%,0"'“%,0_“%,0 + eu%,o_“%,o7
F(Q) — e_utl),o'*‘“%,o + eu%,o_“%,o_u%,o"‘“%,o + e“%,o_ug,().

To find the integrals in the other direction one uses the discrete symmetry n < —m of the
system.
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2.3.2 System corresponding to the algebra Gs

The Cartan matrix of G is

2 -1
(4 3)
The discrete system for G is of the form

1 1 2 1 2 2
A(ul) — e“o,1+“1,0_u1,07 A(UQ) — 6_3“0,1"‘“0,1"‘“1,0'

Its m-integrals are
1 1 1 1 2 1 1 2 1 2 1 2
F(l) = 41,07 420 + e%-1,0"%-20 + eu1,0+u1,0_“1,0_u2,0 + eu71,0+u0,0_u0,0_u71,0
2 1 2 1 2 1 2 1 1 1 1
us 4 +H2us o —us o—2u UG +2up n—ug n—2u- 22U A —UT 1 —U
+ %10 0,07%0,0 1,0 4 40,0 0,07 %10 1,0 4 2¢%%0,0 Lo~ "0,
2 2 1 2 2 1 1 2 1 2 1 1 1 1
Fl) = e¥2.07U5,0 4 3%0,0TU0,07UL 073U 10 | 30,00 2,0 %00 - Fe¥0.0T U0 U107 Y20
2 1 1 2 1 1 1 1 1 1 1
4 3eUiot3ur 072U 0 Uy U2 0y 3eBU1 0 U007 2U20 | e3%0,0T U010
1 2 2 1 1 2 2 2 1 2 2 2
+ 3€3u0,0+“1,0_“0,0_2“1,0_u—1,0 + 36“1,0+“1,0_“2,0_“—1,0 + 2€2u1,0+“0,0_“2,0
1 2 2 1 1 2 1 2 1 2 2 1 2 2
+ 63“1,0+u2,0_u1,0_3“2,0 + 63u1,0+2“1,0_3u0,0_2“2,0 + 63“0,0+2u1,0_2u0,0_3u1,0 + e“z,o"’“il,o_

To find the integrals in the other direction one uses the discrete symmetry n < —m of the
system.

2.3.3 System corresponding to the algebra D3

The Cartan matrix of Dj is

2 -1 -1
A=1-1 2 0
-1 0 2

The discrete system for D3 looks as
1 1 2 3 2 2 1 3 3 1
A(ul) — 6“0,14‘“1,0—“0,1—“0,1’ A(UQ) — 6“0,14‘“1,0—“1,0’ A(u?’) = U0,1TU10 Y10
Its m-integrals are
3 3 2 2 2 1 1 2 1 3 1 3
F(l) = e%0,07%=1,0 + et1,07 %20 + 6“1,0+“1,0_“2,0_u0,0 + 6“1,0"’"0,0_"0,0_“1,07
2 2 3 3 3 1 1 3 1 2 1 2
F(Q) = e%0,074%=1,0 + e¥1,07 %20 + 6“1,0+“1,0_u2,0_u0,0 + 6“1,0"’"0,0_"0,0_“1,07
1 1 1 1 2 2 3 3 2 2 3 3
F(S) = e%1,07 %20 + e%0,0" =10 + e“o,o‘“l,o"‘“o,o_ufl,o + 6“0,0_u71,0+“0,0_u1,0+
1 1 2 2 3 3 1 1 2 2 3 3
+ 6“1,0‘“0,0"’“0,0_“1,0+“0,0_“1,0 + e“o,o_“1,0"‘“0,0_“71,0"‘“0,0‘“4,0.
By applying Theorem 1.2 one can prove that these integrals provide a complete set of inde-

pendent integrals. To find the integrals in the other direction one uses the discrete symmetry
n <> —m of the system.

3 Symmetries of discrete systems

In this section we demonstrate that the discrete systems admit generalized symmetries. For the
case of the simple Lie algebras the systems admit local symmetries while for the case of affine
algebras the symmetries are nonlocal.
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3.1 Generalized symmetries for the system A,

Higher symmetries for system corresponding to As are found by using the method suggested
in [12] (see also [26]). The lowest order symmetry is of the form

1 1 2 2
du%) 0 3e%0,07 1,0 dug 0 3e%0,0 7% 1,0

1 ) B —
dt D, F(l) dt Dy, F(l)

The next order symmetry depends on arbitrary functions f(z,y), g(z) of two and respectively
one variable and has the form

du} Fyy, D Froy) + g(Dy L F
oo _ I, D Fey) + 9D (1))6“5»0’“1*10+f(F(1)7D;fF(2>)—g(F(l))

at Di Fig)
+9(Dy' Fry) — Iy, Do Fioy) + <D_77;2F 0 D Fiz) = 90w) gy,
Dm F
dugo _ f(Fy, D' Fio) + f (Do), Di’Fla) = 9(Fw) a2,
_ i e
-1 _9 9
D" Fa)

3.2 Evaluation of hyperbolic type symmetries for the system Agl)
The method for searching nonlocal symmetries is illustrated with the following example

—U1 1 —U —U1,0—U —2v —v1,1—V —v1,0—V —2u,
e UL,17U00 _ oTULOTUOL — o 1,0’ e VL1700 _ oTVL,07V0,1 — o 0,1’ (31)

corresponding to the algebra Agl) with the Cartan matrix

2 =2
A= (_ L ) |
Recall that the continuous version of the system is

Uzy = exp(2u — 2v), Ugy = exp(2v — 2u). (3.2)

It can be proved that system (3.2) does not have any local generalized symmetry, however it
has nonlocal generalized symmetries, the simplest one can be represented in terms of s = u + v,
r=u — v as follows

3 4 2
Tt = Tggy — 2T, Syt = 2Ty Togy — 3Ty — Tay + F (W, Wy).

Here F is an arbitrary function and W = s,, — 72 is the y-integral of system (3.2). Note that

years ago in [9] it was observed that equation r; = 7,4, — 273 is consistent with the system (3.2).
For the fully discrete analogue (3.1) of the system (3.2) we have a very similar situation.
The system (3.1) does not have any local generalized symmetry. One has to look for a nonlocal
symmetry. The main trouble arising in this case is connected with the guessing of the structure
of non-locality and the form of the symmetry.
Rewrite system (3.1) in the form

2 2
ai,1a0,0 — a1,000,1 = by g, b1,1b0,0 — b1,0b01 = ag 15 (3.3)

where a; j = exp(—u; ), b j = exp(—v; ;).
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We will look for the hyperbolic type symmetry (see Definition 1.5) of (3.3) in such a form

Orar 0 = f1(ao,0,a1,0)0:a0,0 + f(a—1,0,a0,0,a1,0,a20,b-1,0,b0,0,b1,0,b20),
0¢b1,0 = g1(bo,0, b1,0)0tbo,0 + g(a—1,0, ao,0, a1,0,a2,0,b—1,0,b0,0, b1,0, b2,0)- (3.4)

Here f1, g1, f, g are unknown functions. Right hand side of (3.4) corresponds to the function G
n (1.10). The function G is evaluated in terms of G below by means of the compatibility
conditions.

From (3.4) we can find

01,1 = Dy (f1)0ra0,1 + Di f, Ob11 = Dp(91)0:bo1 + Ding. (3.5)
After differentiation (3.1) with respect to t by means of the systems (3.4), (3.5) we get

Oraoo(a1,1 — ao,1f1) + Orao,1(ao,0Dm fi — a1,0) — 20:boob1,0g1 = -,
—2a0,10¢a0,1 + O¢boo(b1,1 — bo,191) + Otbo,1(bo,oDmgt — b1g) =+ . (3.6)

Here the right hand sides do not depend on the derivatives of dynamical variables with respect
to t. By applying the operator D,, to both sides of (3.6) we obtain

0ra0,0f1Dn(a11 — a0 f1) + 0rao1 Do f1Dn(ao0Dm f1 — a10) — 20:b1,0b2,091 Dng1 = - -+,
—2a1,10¢ Dy f1 + 04bo,091 Dn (b1,1 — bo,191) + 0¢bo,1 Dimg1 D (bo,oDingt — b1g) = -+ . (3.7)

System of equations (3.6), (3.7) is a system of linear algebraic equations with unknowns 0.a,,
Otbo,o, Orap,1, O¢bo,1. If the determinant of this system is different from zero, then due to the
Cramer’s rule the system has unique solution, and therefore the searched generalized symmetry
is local. This output is in contradiction with our previous study proving the absence of local
symmetries. Thus the determinant should be zero

a1 — fiao,1 ao,0Dm f1 — a1
filaz1 —a1,1Dnf1) (a1,0DnDyf1 — a2,0) D f1
0 —2a1,1Dp, f1
0 —2a0,1
—2b1 091 0
—2b2,091 Dn g1 0
g1(b21 — b11Dng1) Dpmg1(b1,0DnDimgr — b2o)|
b1,1 — g1bo,1 bo,0Dmg1 — b1
Vanishing of the determinant implies
f1(ao,0,a1,0) = a1,0/aop, 91(bo,0,b1,0) = b1,0/bo,0, (3.8)

In virtue of (3.8) equations (3.6), (3.7) take the form

Orao,0 n daon  Oboo 2 L 0.

- 7 f fa

ap,0 ap,1 bo.0 b1 0 b2 b% 0 Dm

Oraop . Orao1 atb() 0 av ai o [ Dnf 2
0 4 2% — 2 Dug+ - -1 _Zmd 2,

ap,0 ap,1 bo 0 b2 o b% 0 Dn 5370 " aio a1 bip

Otboo  Otbon Owap1  boa bo,o
+ -2 - 2 mY,

bo,0 bo,1 ap,1 ag ag
ob Ob 0 b 2 D

100,0 i t00,1 _9 ta0,1 _ ;,1 Dyg + nd + Dy f — g Lmd (3'9)

bo,0 bo,1 ap,1 aiy ai, ai,1 bio b1
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We can see that the left hand sides of the first and third equations as well as the left hand sides
of the second and fourth equations of the last system are identical. Comparison of their right
hand sides gives a system of two equation for f, g

a1,0 a1 a1,0a0,1 a1,100,0 2
O DD f — Bl p G001 ) G11900 2 p 0, 3.10
bg,o e b%,o al,lbio " al,Obio b2,0 " ( )
1,0 b1 b1,0bo,1 b1,1b0,0 2
ata ai bl,1a0,1 51,0%,1 ai

Differentiate (3.10) and (3.11) with respect to ag, b3, b—1,0 or a_1 o and get

bo,oaoo Of _D (bo,oao,o of >

a%,o 8b—l,O aio 8()_170
D ago Af _ @ of 201,108, of 5.12)
" a3 g 0a_1p a3y 0a_1p af 1bo,0 "ob_10’

ai.o ag . ai.1 89 ag 2[)1701)2,0 89 . 51,060,1 8g

7 - 7Dm ) m + m - )
boo Oazp  boy1  Oazp Obao  arobi dazo  bo,ob1,1 Obao
of n 2b1p Og a1,100,0 ) of

D

(3.13)

dasy  apy1 Oazo  aipap1 | Oagp’
of n 2010 09 2CL0701?2,0D of n ao0b1,1 of
Obag  apy1 Obag  arpapa | Oasg  apibio | Obag’

dg n 2b170a3,0 of _ b%,ﬂbg,fl 1 Og
Ob_10  aiobi,—1boo _10 b b3, " b1’
dg 2a50b10  Of b%,oao,—lbo,qD_l dg

da_10 aiobi—1bopda_1p  aooboobi—1 " Dda—ig
2
4ao,oa—1,0b1,0 3f 2a_1,0 89
a1,0bo,—1b1,-1b0,0 Ob_10  bo—1 Ob_1

We use the last system of eight equations in order to specify dependence of the functions f, g
on the variables a_1 9, a2,0, b—1,0, b2,0 corresponding to the lowest and highest values of the first
index. From the first equation in (3.12) we get

af CW%,O
db_10  bopaoo

Then the second equation takes the form

a? a? 2
Dm< 00 Of 00 Of 4 C7<171,1a0,1.

aj o 0a_1, aj o 0a_1, bo,1b0,0

2a-1,100,1
bo,1b0,0
D,, — 1, so we have to put C; = 0 and then

It can easily be proved that the expression does not belong to the image of the operator

of C4a%70
daro  agy
From the pair of equations (3.13) we have

dg _ 0 dg :Czbo,o
Oaz o ’ O0ba bio
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Continuing this way one can find dependence of the functions f, g on the variables a_1 9, a2,

b_1,0, b2,0
2
Fo ap,nba, 00820 5 | ) 20,0020 ao0bz o  2boar0b20
= 2 2
1,0 a1,0 al,ObLo bl,()
2
——5——C4+ fi1(ao,0,a1,0,b0,0,b1,0),
ap,o
2 3 9
_ booba, boob20 -y, bigb-10 bigaZqg n 2b1,0a1,00-1,0
4 b a2 b3 a?
1,0 0,0 0,0%0,0 0,0
2
b1 pa-1,0

Cs + 91(@0,0, a1,0, b0,0, b1,0)-
ap,0b0,0

For the functions fi, g1 from the same system (3.10), (3.11) we obtain the following non-
homogeneous equations

ai,1 a1,000,1 1,100,0 2
J1— Dnfi — ——5 ht—"f—17—Dgr1="--, 3.14
b% 0 " bg,o " al,lb%,o " al,Ob%,o b2,0 " ( )
b1,0 b1 b1,0b0,1 b1,1b0,0 2
mg1 + Dng1 — 5 Dng1 — 591+ —Dnfi="--. (3.15)
a1,1 1,1 517100,1 bl,an,l aii
Differentiating (3.15) with respect to the variable as g we get
ao0 091 ao,0 091 2C5(aj ya1,0 — b gbo,1) ag1a-1,0—b11b3 o
- D — = + 2(04 — CQ) .
bo,0 Oa1,0 bo,0 da1,0 a0,000,1b1,1b1,0 ao,0b0,000,1b0,1

From this equation we can find

a0 091 2C2a1,0bo0

Cy = Cy, + Cs,

bo,0 Oa1,0 ao,nb1,0

therefore

2 12
ai 0b.0 a1,0b0,0
C2 + 06 9 i

2

+ g2(ao,0, bo,0, b1,0)-
ag obl 0 ao,0

g1 =

Differentiating (3.15) with respect to bg o we get

092 ) 992 bo,0b1,0 a3 yaopa—1,1 — b ob1,0bo,1
D,, - =2(Ch1 — Cg)————+2(C; - C : :
(5171,0 db1,0 (G = Co) a0,000,1 (G = Gs) a0,000,000,1b0,1

)

therefore
Cs = C1, Cs = Cq, g2 = C3b10 + g3(ao0,bo,0)-

Now apply the operator D, ! to the equation (3.14) and then differentiate the obtained result
with respect to the variable b_1 g

3 3
D aoobio O0f1 ao,obio 0f1 o0 b3 pbo,1 — a1,0a3 4
m — = 20>
aiy Oboo aiy oo a0,000,1b1,001,1

therefore

2
al,obO,O

3 b2
fr=0C ;oboo + Cs + fa(ao0,a1,0,b1,0).

ap,0b1,0
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Substitute in (3.14) the expression found instead of f; and differentiate with respect to agg to
get

0 0 apas , — b3 b
D, ( p) > _0f2 _ 2Cy — ) 10,1 — Piobor.
Oay o Oai a0,000,1b1,001,1

therefore
Cs = (1, fo = Coar0+ f3(ao,0,b1,0)-

For the functions f3, g3 we have a system

at,o ai,1 a1,000,1 41,1G0,0
D, fy — 210901 py — 2 Dygs = 2(Cy — Cs),
b%o mf3 b%o nf3 CLle%’O mf3+ b2 f b270 n.93 ( 9 3)

b by b1.0b b b 2
3°DnDings + 5= Dngs — 3 Dings — 52 g5 + — Dy f3 = 2(Ca = C3). (3.16)
a1,1 1,1 1,140,1 1,040,1 1,1

We see that (3.16) is satisfied identically if one chooses
Co=0Cs,  f3=0, g3=0.
Thus we find the final form of the symmetry searched

Oa10  Oraop ap,0b2,0 . a1,0bo,0
e bR A Dy Cl +
a0 ap,o a1,0b1,0  ao,0b1,0

a1 00— 2bg.ob a? b2 ap ol a2 b3
+02< 1,0 1,0+ 0,0 2,0+ 1,0 00+ 0,0 2,0+ ap,092,0 4y,

2 2 2 B) )
Qg0 bl,o ao Obl 0 aio al 0b1 0
Ob1o  Oibopo a_1,0b1,0 . a1,0b0,0
- = + (3.17)
b1,0 bo,o ap0boo  ap,0b1,0

_|_

2 12 P
2a10a-1,0 = bo,ob2, CLl o000 bo1obipg  a-10b7g
+ Cy 2 b2 + 2 12 12 2 52 + Cs.
0,0 1,0 0,001,0 0,0 0,000,0

Here C1, Cy, C5 are arbitrary constants. From (3.9) one can find the function G, then (1.10)
looks like

0, O¢b 0, b 2a_ b
t@0,1 _ Otbo,0 ta0,0+01,()< a 1,0_0,0)

= 1
ap,1 bo,0 ap,0 ap,0 \ bo,o ap,1

2 2 12 2 2 2
bo,o ao,obo,o Qg0 ap,0@0,1 ap,000,1

2b1 ob_ 202 ja? 2a1 0a_ a_10b? b2 ga10
+02< 1,0b-1,0 10910 | 2010010 10 %o N

a0,0b0,0 ao,0bo,1  a0,0b0,0b0,1

8,5()071 28,5(1070 3&5()070 2b170a_1,0 b0,0a071 a—l,Oaal
- + Cy +
bo,1 ao,0 bo.o

2 2 2
L C (26%1,0@—170 201 0b—10  2a01bipa—10  2b10aZ19 G ob10
2

2 2 2 2 12 T2
ap,o0 bo,o ao,obO,l ao,obo,o ao,obO,l
2 2 2
aO,lb—LO ao,la—l,obl,o
T2 T 22 b + Cs. (3.18)
0,090,1 a0p,09p,000,1

Thus we have proved the following

Theorem 3.1. Equations (3.17) and (3.18) define a hyperbolic type symmetry for equation (3.3).
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Remark 3.2. By applying the replacement n <+ —m to the equations (3.17) and (3.18) one can
obtain the second hyperbolic type symmetry for equation (3.3).

By analogy with the continuous case we have a differential constraint completely consistent
with system (3.3), which is obtained from the last system by applying the operator (D, — 1)~}
to the difference of the two equations

Ob oa a_10b a_10a
1000 _ 0100 _ ~ @-10 1,0+02< 10410

= 2
ap,0

2 2
b_1obio  aZq0bip
b " a0.0b
0,0 ap,o @0,0%0,0

2 2 12
b5,0 a5,006,0
Under the Cole-Hopf type transformation

. ap o b1
Gp0 = ——, 0,0 =

@o,0 0,0

system (3.3) converts to the following one

AN A A A A A 29 A ~
a1,100,000,1 — 41,0040,1340,0 = bl,o(ao,o —ap,1),

b1.1b0,0b0.1 — b1,0bo.1b0,0 = d%,l(i)ﬂ,l — boo). (3.19)

This transformation brings our hyperbolic type symmetry to generalized symmetry of usual form
for the new system (3.19)

~9 ~9 s .3 )
R . a a 2b1 oG Q, . b R
Oraoo = C (bl,o + A0’0> + Cy <A 00 , 21,0700 , Ag’o +a10+ A1’0> + Csag,,

b070 a—1,0 b070 bO 0 0,0
02 9% b a2 P2 i3
5 0,0 . A apoboo 5 0,0 0,0 0,0 5
Otboo = C1 | = +app | +Co | ——=+bio+—+—+ + C3bo,0-
a-1,0 a-1,0 boo bo10 GZ1p

3.3 Hyperbolic type symmetries for the system Agz)

The Cartan matrix of Ag2) is

2 -1
(3.
The discrete system for Ag) looks as
Aul) = evotulo—ulo, Au?) = o dug g i o

First part of its hyperbolic type symmetry (function G) is

1 1 2ul j—ud o —ul 2ul  —2ud  +u? j—u3 2ud o —2ul o +u? j—ul
(Ul,o — uO,O)t = (] (e™M1.0 %007 20 4 *U1 0T M0,0TUT 0T Y20 4 U007 U0 UL 0T U0
1 1 1 1 1 1 1 1 1 1
+ 621‘0,0_“1,0_“71,0) + 02 (364“1,0_2u0,0_2“2,0 + 6“1,0_“0,0"’”2,0_"3,0
1 2 1 2 1 1 1 2 2 1 1 1 1
+ e %2,0T%1,0T%0,07%0,0 + 3edu1,0~U2,03Up o TUT g U2 g + 2e41,0 " U2,0T U001 0
1 1 2 2 2 2 2 1 2 2 1
4 eturo—dug 0t 2u 0 —2u5 09Uz 02Ul 0 Ug0 4 Je¥1,0 U201 U0 Y10
1 1 1 1 1 2 2 1
4 e 0Tt 10T U007 U 2,0 4 e~ du1 0t 2uq o —2uq g +4ug g
1 1 2 1 2 1 1 2 2
+ edu,0— g 0Tz 0—3uz o= U1 o + e U1,0TU1 0T UG 0~ o

1 1 1 1 2 1 2
4 36_2“1,0_2u71,0+4“0,0 4 e 0,02 0T U2 07430
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+ 363“%,0"‘“%,0_“171,0_“3,0"’4“(1),0 + e_“%,0_“%,0_3“171,0+“g,0+4u(1),0) + 037
(U%,O - “(2),0)t =204 (672“%,0+u%,0*“3,0+2“(1),0+ 26*“},0*“171,0+2u(1),0+ e*u%,oJFQu(l),o*“%,o*2“171,0)

+ 202 (Qe”i,o_ué,o"‘“(l),o_“l—l,o + 26_“5,0"‘“%,04‘“(1),0_“(2),0
+ 46_3“%,0"‘“%,0_“1—1,0_“3,0"‘4“(1),0 + 6_4“},04‘2“?,0_2“%,0"‘4“(1),0
+ 25@,0‘“%,0‘*‘“%,0‘“&,0 + @_ug,o"'guio_ug,o + 26_“%,0‘*‘“171,0‘5‘“(1),0_“172,0
+ 9e U otuly o tug o—uZy + fo~ut0—uE o—3uly oFuf o +Hug o
+ 26_“%,0"‘“6,0"‘“3,0_“1—2,0 + 6_“%,0"‘2“(2),0_“2—1,0 + 66_2“%,0_2“1—1,04‘4“(1),0
n 672u%,0+4ué70+2ug,074u1_1’0) + 20,

Here C1, Cy, C3 are arbitrary constants. Second part of hyperbolic type symmetry (function C~¥)

can be evaluated automatically from the compatibility conditions.
And for combination we have a local constraint

(2u[1)70 - Uao)t =2C (6211,(1)7071&707“17170 + 62u(1),0*2u171,0+“%,0*“%,0>
+ 202 (e_ul—l,o_u%,o'*‘“(l),o'*‘“},o + e“%,o‘*‘“io_“l—l,o_“%,o
+ 6_3“%,0+“%,0+4“é,0_“1—1,0_“g,0 + 36_2“%,0"‘4“5,0_2“1—1,0
4 3o~ ul0—ud o H4ug o —Buly otud o 4 et otuly otud o—uZy
+ e Ut otud otuly g—uls g + o 2uf g Haug o —duly o +2uf

2 2 2 2 1 2 1
4 e_u1,0+2“0,0_u71,0 4 26_“1,0+“0,0+u0,0_“72,0> .

4 Characteristic m-algebra for the case A,
Let us describe briefly the properties of the characteristic Lie algebras of the system
ap,p0a1,1 = a1,0a0,1 + b1, bo,ob1,1 = b1obo,1 + ao1- (4.1)

Recall that system (4.1) corresponds to the simple Lie algebra As. First we concentrate on the
notion of the characteristic m-algebra for the system (4.1). Lie algebra on the other destination
is studied similarly. Recall that according to the definition an m-integral F'(ago,bo0,a1,0,b1,0,
a—10,b-10,...) should satisfy the equation D,,F' = F. In the coordinate representation this
condition reads

F(CLOJ, b(),l, a171, b171, a_171, b_171, . ) = F(CL()’(), 1)070, a170, b170, a_l,o, b_170, . ) (4.2)

Evidently the right hand side in (4.2) does not depend on the variables ap; and bp; hence

1F = 0, 8b8 D 1F 0 as well as Y1F = 0, YosF = 0 where
Y; == D} Bao le, Yg = Dm 6b0 D,,. Denote through L,, the Lie algebra generated by the
operators X; = 6@(‘? Xy = 6 , Y1, Y5, Algebra L,, is called characteristic m-algebra.

Obviously, operators Xl, Xy are the first-order linear differential operators, or vector fields.
The operators Y7, Y5 can also be rewritten as vector fields of the form

0 aip b1,0bo,—1 0 a_1,0 bo,—1 0
Y, = + - + + oo
Oagp app  ao,0bo0a0,—1,/ Oaip app  @0,000,—1/) Oa_1,
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+ 1 0 < a—1,0 + 1 > 0 +
bo,—1 Ob1 o apobo,—1  ao,0a0,—1/) Ob_1, ’

0 b1, ap,0 ) 0 <b10 a—1,0 > 0
Yoo+ (20— % (0 L T
2 Obo o <bo,0 bo,obo,—1/) Ob1 boo  bo,obo—1,) Ob_1

We use the following lemma to show that m-algebra is of finite dimension.

Lemma 4.1. Suppose that the vector field

= 0 0 = 0 0
K = ; <ak8ak + a_kaa_k> + ; <5kabk + rB—kab_k)

satisfies the equality D, KD, ' = hK, where h is a function depending on shifts of variables a
and b, then K = 0.

Lemma can be proved by applying both sides of the equation D, KD, ! = hK to the dyna-
mical variables ay, by.
One can easily check that

1 b
DXiD =20 p XD = x4+ 2%,
a1,0 a1,0 b1,0
_ B bo._
Dy Dl =%y, Wty byt = Oty
ay,—1 ap,—1b1,—1 b1, -1

Put X; = a0 X1, Xo = booXa, Y1 = ag 1Y, Y2 = by,_1Y2, then

- - - b - -
D X1D,' = X1, DpXaDp'= —2—Xi + X,
a0,001,0

W1y, DYaDIl=Ys.

D,YiD =Y, — b

Taking commutators of the vector fields X 1, Xg, 571, Y, we get vector fields

P =[X1,Y], Py =Xy, Y1, P3 = [ Xy, Ys].
Lemma 4.2.
DP D' =P — —20_y,
bo,—1b1,—1

b _
D PyD;t =Py 0 p 0]

a0,001,0 bo,—1b1,-1

ap,—1b1p a1,-1b1o )\ o ap,—1bo0 ai,—1a00b10 \ o
+ 5 + 5 X1+ 5 + 5 Y5,
45,0010 0,047 b5,—1b1,-1  a1,0b0,-1b7 _,

P

bi—1 o

D,PsD,; ' = P3 — Xi.
0,0a1,0

Lemma can be proved by direct calculations. It allows to derive the following table of com-
mutators which shows that the characteristic Lie algebra L,, is of dimension seven:

X1 X5 Y: Y, P Py Ps
X1 0 0 P 0 0 Ry 0
X5 0 0 Py Ps Ry Ry —2X9
i | P | - P 0 0 27 R3 Ra
Y, 0 —P3 0 0 0 Ry 0
Py 0 —Ri | -2 0 0 Q1 Q2
P, | —Ri | —Ry| —R3 | —Ry | —Q1| O Q3
P 0 | 2Xy | —Ry 0 | —Q2| —Q3 0
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Here the following notations are used

) | B2, -
Ry = X5 — P+ 5=Y,
bo,—1 bO,fl
2 b 2 b3
ap,—10p o ap,-1% o~  2ag,_1boo &
2 = 5 3 — 3 b X27
0,005 1 0,005 1 ap,0bo,—1
202 b 2 b~ 2a3 b
0,—100,0 ap,—1bo 0 0,—100,0
R3 = — P — =Y + X1,
ag obo,—1 ap,0bo,—1 ag obo,—1
~ a
0,-1 ap,—1
Ry=-Y1 — 2 Xy - Py,
5,0 @0,0
o2
ap,—1bo,0 ag,—1b0,0 boo &
Qr=—"—"F""P-3P— P+ — X1+ Y1,
a0,0b0,—1 ag obo,—1 bo.—1
2b0 0 ~
QQ - : YZ - 2P37
bo,—1
ao,—1bo,0 ap,—1 o 1b0 0%
Q3 = -3+ Py — X2— 5 Yo.
ap,0bo,—1 ) ao,obo,_l

Due to the reasonings above any m-integral F'(.. ., ao0, bo,0, @1,0,b1,0, @2,0,b2,0, . .. ) should satisfy
equations

PUF) =0, PAF)=0. PyF)=0. (4.3)

Solving system (4.3), it is enough to assume that F' depends on by, aoo, b1,0, ai,0, b20,
as, or, alternatively, ' depends on a_1,, bo,o, @00, b1,0, @1,0, b20. Under such assumptions
system (4.3) generates two systems of the first-order linear partial differential equations which
can be solved by Jacobi method. By solving these systems we find two independent m-integrals

a—10 . a10boo . bao
apo  apobio b1

boo = appb2o | a2
9 k 3 + 9

Fl = ’
) bio aiobio aip

Flo =
5 Cutting off constraints for the Hirota equation
and discrete Zakharov—Shabat systems

In this section we construct Lax pairs for discrete systems corresponding to Cartan matrices of
series Ay, By, C, D](\?) and Agl). To this end we impose cutting off constrains for the Hirota
equation compatible with its Lax pair.

It is well known that Hirota chain

i 1,5+1
to.ot1 1 —t] Oto 1= tJ to (5.1)
admits the Lax pair consisting of two linear discrete equations [7]
G+, JH1,5-1

1.0 to 0 i1 j ; 0,1 to,0
{0 ]+1 @/’670 - wg),o J %71 = w{),o 5 7 ¢ . (5.2)
e £ oth

Here the lower indices mean as previously shifts of the arguments, and the upper index enume-
rates the field variables ¢/ and eigenfunctions 7. Exclude from the system of equations (5.2) all
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the eigenfunctions with the upper index different from j. As a result one gets a linear discrete
hyperbolic equation for 17

: : j1+11 61 tg)o o
J J B ) J
P11~ Y10 — i 01+ 7 g ¥o,0 = 0. (5.3)
1,0t0,1

It is remarkable that by construction formulas (5.2) define Laplace transformations for the
linear hyperbolic equation (5.3). Evidently, equation (5.1) is invariant under the transformation
defined as n — 1 —m, m — 1 —n. Under this transformation the Lax pair (5.2) transforms to
a Lax pair

tj—gl()t‘(y)_()l t]+1 t]

J ] —1,070,0 -1 J J j+1

Y10 =Y, T RN Yo,0 > Yo,-1 = t]+1tj yo,o ~Y0,0 (5.4)
~1,0t0,0 0,1

and equation (5.3) transforms to an equation

J 4Tl J 4 J i+l
yj t10t01 yj tl,OtO,lyj t10%0,1 y_j —0 (5.5)
11~ i, Y10~ 7 5 Yoot Gy Yoo =0 )
too 't tool11 tho t
. It
Put ypo = = 090 o> then Lax pair (5.4) transforms to a Lax pair
JH1 4 JH1 g+l i 2
J M( j e j fo,1t=10 to—1t=10 11 (5.6)
971,0 - t] t]+1 9070 ) g(],—l - t]+1tj+1 gU,O t]+1t]+1 go’o y .
0,0 1,-1

and equation (5.5) transforms to an equation

) ] t] Otj+11 ) t] Othrl )
j j 1 i
911~ 910 — tﬁ'lt 90,1 tﬁ'lt 90,0 = 0. (5.7)

Equations (5.6) define Laplace transformations for the linear hyperbolic equation (5.7). Thus
we have two different Lax pairs for the Hirota chain and consequently two families (5.3), (5.7)
of linear discrete hyperbolic equations enumerated by j. Study the question when an equation
from one family can be related, by a linear transformation, to an equation from the other family.
To this end we evaluate the Laplace invariants of these equations.

Recall that the Laplace invariants of a discrete hyperbolic type equation of the form

ao,0f1,1 + boofi0+ coofo1+ doofoo=0
are given by (see [2, 8, 31, 33])

bo.oc bo.1c
Ky = 200610 oy = 201900
ao,0d1,0 a0,0do,1
By virtue of these formulas the invariants Ky, Koy and K14, Ko of equations (5.3), (5.7)
are, respectively,

i G141 Sl J o

_ tygtig t11 o2 to1 tio ~ tiglon

W — 5 5 2 = ) 1lg = ) 29 — & .
] j+1 ]+1 J+1 Jj+1 J 47

t10t21 to1 1 oo t to.0t1,1

It is known that two linear hyperbolic type equations are related to one another by a linear
transformation only if their corresponding Laplace invariants are equal. Evidently in generic
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case coincidence of the Laplace invariants generates two constraints on the field variables ¢/ =
t/(n,m). Only for some special cases it gives only one constraint. We are interested in such
special cases. For instance pair of equations Ky (n,m, j) = Kig(n+1,m,j—1), Koy(n,m,j) =
Kog(n+1,m,j — 1) is equivalent to the constraint

tj*l — tj+1

which is interpreted as a cutting off boundary condition for the chain (5.1). For simplicity we
put j = 0, so the boundary condition becomes

-1 _ 41

tio="1o1- (5.8)
Lemma 5.1. Hirota equation (5.1) is compatible with the reduction of the type of parity

t m

m—i, k= i7m+k

and boundary condition (5.8) is a consequence of this reduction.

Following [15] we can construct a Lax pair for the reduced chain. Under the boundary
condition (5.8) we have coincidence of the invariants

Kiy(n,m,j) = Kig(n+1,m,j — 1), Kop(n,m,j) = Kog(n+1,m,j — 1),
and

Kig(n,m,j) = Kiyp(n,m —1,j — 1), Kag(n,m,j) = Koy(n,m — 1,5 — 1),
and we can relate the eigenfunctions

9(1),1 = /\¢8,07 9?,0 = )\wé,o-

We study the finite reductions of the chain (5.1) on a finite interval Ny < j < Ng. The
reduction is obtained by imposing the boundary conditions at the left end-point j = Np,

tNL 1_ tNL+1 (5.9)
and respectively at the right end-point j = Ng
o =1 (5.10)

First we concentrate on the left end-point. Due to the reasonings above the eigenfunctions
should satisfy the following gluing conditions

1
Np—1 N Np—1
U’L )\01La QL —A¢—10

These conditions allow one to close the Lax equations at the left end-point

sty L

_ =10 "1, N _ /Np — Np,

910~ N, N.+1 ( 90,0 + MpE 0) 01 =%ty 0,1 (5.11)
toLtL AN t
0,0-20 0,0

From (5.2), (5.6) we have

tNL+1tNL+1 t tNL+2 tNL+1tNL
N, 0,—1 "—1,0 N 0, —1 Np+1 N, N, +1
L _ L _ L w L _ w _ w L
90-1 = NL+1 NL+1 90,0 NL+1 NL+1 900 > NL+1 NL 0,0
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To derive similar equations at the point Nr we use the right end-point constraint (5.10), for
which we have

Nr _ ,Ng—1 Nr _ Ng-—1
90,0 = %0,-1 > %,o =910 -

These conditions allow one to close the Lax equations at the right end-point

Nr—1,Ng

pNet 100 L0 Nl Vg

L0 T Np—1,Ng V0.0 g10 >

1,0 0,0
tNR tNR (NRfl)Z

Nr—-1 _ “0,-1"—-10 Np—-1 _ 0,—1 ¢NR71 (5 12)

907—1 - tNRtNR 9010 tNRtNR 0,—1 - :
0,0 "—1,—1 0,0 "—1,—1

From (5.2), (5.6) we have

Nr 4Nr—1 Ng,Np—2

NR—I _ —I,O —1,[) ( NR—I + NR—2) NR—l _ NR—l + 0,1 070 NR—2

9-10 = N1 Np_ 90,0 90,0 ) 01 = %oo0 Nn—1,Np—1 00
0,0 —2,0 0,0 0,1

The Lax pair found above is not convenient to work with because the operators contain shifts
in opposite directions. Below we show that it can be rewritten in a usual form.

Shift of equation (5.11) forward with respect to the variable n brings it to the form

tNL+1tNL
N, 10 o N, ApVE
= N.+190,0 0,0 7

t]—glot{ 0 1 ! tlfo k—"l_lo N,

J _ b 0 j j—1 _ j—k “1L,0"—1,0 L i+1

0= g1 %00 "9l = > (1) & g0t (=1 A6
0,0%0,0 k=N, 0,0%0,0

Ny +1<j<Ng—1.

Shift of equation (5.12) forward with respect to the variable m brings it to the form

Ng,Ng Np—1\2
Na—1 _ toit=1o Np—1 (tog ) Np—1
901 = N N 90,0 NeyNg_ 100
070 7171 0,0 —1,1
JES R ES] JES R A
;o thioton ;0 tioton 1
901 = SIS 90,0 Lt 901 =
0,0 211 0,0 211
AN NSt 8 ot e totoh |
Y Y ] ) ) k B B NR*]. . o
VRSS! o+ D L gk k1900 T T AT Ny Y00 o Np<j<Nr—1
0,0 211 k=j+1 '-1,1%0,0%0,0 0,0 0,0

So we have the following system of linear equations

H5t 1
i t10 %0 i+ :
10~ 517 Yoo~ %o, NL<j<Nr-2 (5.13)
th0 10
N ton e et th ot* 1o N
—1 — ) ) -1 N —k? ) ) k Nr—1
wl,(}f ~ /Np-1 NRw07§ + Z (=17 k 4k+1 90,0""(_1> . A%ﬁ’ (5.14)
to topo k=N, t6,0t0,0

N v Lo Tl v NS Lol T

L — L —__= 2 R—1 -0t "0 =10 k
Yor =%oo T3 NN, Yoo > Nk 1 900 (5.15)

0,1t0,0 =Ny 0,1t0,00,0
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Ry .
Qbg),1:¢(])0 j1j1 (]),07 Np+1<j<Ng-—1,
’ ty tO 1
! th otk+110
] k - k 1 .
Gio= Z( 1)/~ 7t tk+1900+( 1)+ /\%o, Np <j<Ngp-—1,
k=N, 0,00
j t] t]+1 ] NRfl t tk tk+1 3 tOO é\fég 1 NR 1
901 = t]+1 ]+1 90,0 Z t]—i-l t tk+1900 + t]+1t Y00
1,1 k=j+1 '=1,1%0,0%0

Np <j<Np-—1

In the next subsection we gather these equations to a matrix form.

5.1 Lax pair for systems corresponding to the algebras D](\z,), Agl)

Imposing of non-degenerate boundary conditions (5.9), (5.10) at both end-points Ny,

Npg = N leads to the system corresponding to the matrix Dg\gll, N >2
2 i i+1 .
tg,Ot(l),l — 1 0758 L= (to1)", tootln — to 1= t té 19 1<j<N-1,
N N N—-1)2
tootta — totor = (g ")

(5.16)

(5.17)

(5.18)

=0 and

(5.19)

Write the set of equations (5.13)—(5.18) in the form of a Lax pair for system (5.19). Denote the

eigenvector as follow P = (40,41, ... V=1t g% gt ..., ¢V 1T, Introduce 2N x 2N matrices
t1 19
Gofo 3 g 0 0 0
0,041,0
£ otb,0
0 > —1 ... 0 0 0
ts ot
0,0t1,0
0 1 1 2 N-1 N
(—DN-1x 0 t Ot?vo ( l)Ntl(’]Ot_llo (_1)N—1t1iot—21,o bty T
—1 ...
tlot1,0 t0,0%0,0 to,0%0,0 to.0 tN
9ot
A= 0,010, Lo ,
ty ot ty ot
A 0 0 — T —i 0
t0,0t0,0 t0,0t0,0
. . ptl
A 0 0 (1) e 0
ty ot
0,0%0,0
0 41 1 42 N-1,N
(_1)N)\ 0 0 (_1)N—1t1,0t71,o (— )Nt1,ot71,o t1o 210
.. 0T T2 SN=TN
10,0t0,0 t0,0t0,0 too too
1 N-1 1 N
1 0 lto,lto,o l(t 1) t! —1,0 lto 1t 10t0 lto 1t 1,0t0,1
0 N N1
Mg atlo A 0 ot0ats0 A t01to0t0 At 1 too o
td o2
t?’ot?’l 1 0 0 0 0
0,0t0,1
too “t0
B = 0,0 oz
0 0 0,0t0.0 - t91tl1 0 t8.0t%1,0t5,1 t9.0tY1 0t01
T N - T 3T 32 - N1
1100 to0t=1,1 tZ1,1%0,0t0,0 t1_1 lt ty
1 N-1 2 2 N
0 0 t9,0t0,0 0 tZ1,0t0,1 £9,0tY1 ot
2t t2 ot 2t *%N
Z1,1%0,0 0,0°=1,1 Z1,1%0,0
N—1y2 N N
0 0 (too ) 0 0 124 0to,1
tN Lt N N
~1,1%0,0 0,0t=1,1



24 R. Garifullin, I. Habibullin and M. Yangubaeva

It is straightforward to check that the compatibility condition of the equations

P o= AP, Py1 = BP (5.20)
is equivalent the system (5.19).
Example 5.2. Consider a particular case when Ny, =0 and Np =1

tg,Ot(l),l - t?,0t8,1 = (t(1),1)2a t(l),Otil - tiot(l),l = (t?,o)Q-

The system corresponds to algebra Agl). Its Lax pair is given by (5.20) with the matrices

1 0 0 1 1 0 1 241
t1.00,0 by tiot_1,0 1 1t0,1t0,0 1 (tO,l) 110
o T R RED Y ! X0 10 ¢l
A= 0,0%1,0 0,0%0,0 B = 0,1%0,0 0,0%0,1%0,0
- 0 41 ) - (9 )2 (41
)\ 1(,)0 711,0 0,&) 0,1 171,0
1 1
t0,0t0,0 to,0t=1,1 to,0t=1,1

Example 5.3. If one imposes condition (5.9) for N;, = 0 and (5.10) for Ng = 2, then

0 40 0 4,0 _ (41 \2 1 41 1 41 _ 40 42 2 42 2 4,2 _ (1 \2
toott 1 — 1 oto1 = (to1) " to,0t1,1 — t10to,1 = ti0t0,1> tgotia — tiotos = (t1o)"-

The Lax pair is of the form (5.20) where A and B are 4 x 4 matrices

t1.0t0,0
tl7 toY _1 0 0
0,0t1,0
2 1 0 41 142
A Hotoo  tiol-10 tiotiio
- 2 i1 0 ¢l T w2
A — 0,0t1,0 0,0%0,0 0,0%0,0
- t9 0L 10 ’
- 0 o 0
0,0%0,0
0 41 1 42
A 0 CHoltio totlio
t9,0t0,0 t9,0t3,0
141 1 241 1 42 42
1 1toatoo 1 (65,0710 1 t0att1,0%0,
0 12 00 71 0T 12
Atd1t50 A tootoitoo A t91t0,0ts0
9 12
Bolhs 4 0 0
B — | footon
= 0 41 1,1 0 42 42
0 t0,0%0,0 to,1t 10 0,0t 1,001
1 2 1 1 1 1 2
tZ11t5,0 t0,0t=1,1 t_1,1%0,0%0,0
132 2 42
0 (t(),()) 0 t—l,()t(),l
T2 o2
Z1ath0 15,0t211

Remark 5.4. In Example 5.2 we give a Lax pair realized in 2 x 2 matrices, while general
formula (5.20) generates 3 x 3 matrices. The matter is that in the Lax pair obtained directly
from (5.20) we made in this case some additional reduction.

5.2 Lax pair for systems corresponding to the algebras Ay

Instead of boundary condition (5.8) we can use also the degenerate boundary conditions of the
form

thNe=l —¢ the =1 (5.21)

at the left end-point and
tNetl —o, Ve =1 (5.22)

at the right end-point. The degenerate boundary conditions imply that the corresponding eigen-
functions are zero: gVt~ =0 and yNE = 0.
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In order to obtain the system corresponding to the Cartan matrix Ay _1 we cut off the Hirota
chain by imposing degenerate boundary conditions (5.21) at the point Ny = 0 and (5.22) at
Ngr = N. The resulting reduction is as follows

1,1 1,1 2 W, i i—1,j+1 .
toot1,1 — tioto, = o1 tool11 — tiotor = o ton » 2<j<N-2 (5.23)

N—1,N—1 N—1,N—1 _ ,N—2
too tin —tio toq =tio -

In this case our algorithm gives the Lax pair found years ago in [21]. In order to formulate it

introduce the eigenvector P = (9,4, ..., 9N"1)T and N x N matrices
to
-+ =1 ... 0 0 1 0 0 ... 0 0
fo.0 2 41 t2
1,000 0.1 1 0 0 0
O &, 00 Rl
7 ’ 2 tO 0
U= L ov=| 0 Base 0 0
thltN72 0,0%0,1
0 0 1,0 0,0 _1
N—1,N—-2
to,o ti0 N-2
T 0 0 0 w20 1
0,0 . = —=
0 0 0 T o

It is easy to check that the compatibility condition of the equations
P o=UP, Py1=VP.

leads to the system (5.23).

5.3 Lax pair for systems corresponding to the algebras By

We impose boundary condition (5.21) for N, = 0 and (5.10) for Np = N. The resulting
reduction is as follows

t(l],Ot%,l - t%,ot(lm = t%,l? tg,ot]i,l - t{,ot%,l = tiﬁltéjlv 2<j<N-1, (5.24)

N N N N _ (;N—1\2
tool1,1 — tioton = (t1,0 )"

System (5.24) can be rewritten in form of (1.3) by changing the variables t/ = e~*’. It corre-

sponds to the algebra By. The system admits a Lax pair. Let us denote P = (0,41, .., PNt

g% g%, ...,¢"HT and introduce 2N x 2N matrices
tio
t17’ -1 0 - 0 0 . 0
" Btk
0 =— -1 ... 0 0 0
t5 ot
0,0'1,0
N ;N-1 1 1 42 N-1,N
0 0 t1.0t0,0 (71)Nt71,0 (71)N—1t1,0t71,0 Ctio T
T ot .0 totso T too tho
A= 0, o 000 , (5.25)
0 0 0 L0 0 0
tol,o 1
t ty ot
0 O O _ 711,0 liO 1,0 O
0,0 t0,0%0,0
1 142 N-1,N
0 0 0 (_1)N—1t—1,0 (_1)Nt1i0t—1,0 tl,o tfl,o

T 2 NN
0,0 £0,0%0,0 L0 to,o
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1 0
81
T 1 0 0 0
0,0%0,1
to.0to.1
0 o - 0 0 0 e 0
0,001
to Lo
B = to,0 to, . (5.26)
AP S 12 t2 Nt
0 0 0,0 0,1%=1,0 Z1,0t0,1 —1,0%0,1
.. T N 71 1 T T 42 --- N—1
t21,1t0,0 toot=1,1 t21,1%0,0%0,0 t£1,1t070 t(l)\jo
1 AN-1 2 2 1 4N 4N
0 0 t0,0t0,0 0 121 oton 0,0t21 0t001
cee 2 N ) ce N—1
tZ11to,0 15,0t211 t2_1,1t070 té\fo
N—1y2 N 4N
0 0 (tho ) 0 0 24 olo1
- NN ... NN
—1,1%,0 0,00-1,1

Then according to our general scheme the compatibility condition of the equations
Pio= AP, Py1 = BP
leads to the system (5.24).

Remark 5.5. The system By can be obtained from the system Aoy _1 by imposing the cutting
off constraint of the form

N+1 _ ,N—1
tog =tio

(see Lemma 5.1 above).

6 Method of finding integrals from Lax representation for
the systems corresponding to the Cartan matrices Ayx, By

In this section we show that the Lax pair allows one to generate integrals for the systems
corresponding to the simple Lie algebras Ay, By. Concentrate on m-integrals. Due to the
definition we have two different expression for the shifted eigenvector Py 1, k > 1

P = Vi oUk—1,0Ux—2,0 - - U1,0Up P,
and similarly
Pp1=Uk—11Up—21---U11Up1 Vo0 P.
Comparison of these two formulas yields
Dy (Uk—1,0Uk—2,0 - - U1,0U0,0) = Vie,oUg—1,0Ug—2,0 - - - Ul,oUo,OVOTol.

Due to the triangular structure of the matrices Vo and Vpo the map converting any upper
triangular matrix X to a matrix X = Vj o X Vojol leaves unchanged the element of the matrix X
located at the right upper corner: (X);n = X’l, ~- Thus the corresponding element, denote
it through I(,_ny (k > N), of the upper triangular matrix Ug_1,0Uk—20--U1oUop is an m-
integral. In such a way we get a set of integrals (1), I(3), ..., (). Examples below show that
they constitute a complete set of m-integrals, however we are not able to prove this fact in
general. In a similar way one can find integrals in the other direction.
Let us illustrate the statement above with the following
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Example 6.1. Consider the system (5.23) for N =3
1,1 1,1 2 2 4,2
toot1,1 — tioto,1 = 10,1 tootia — tiota1 = tio-
Recall its Lax pair
P o=UP, Py1 =VP,

where P = (¢°, ¢!, 4?)T and

tl
ti—’o -1 0 1 0 0
0,0
8 otbo B T
U=|0 53 -1], V=1,
0,0"1,0 2 t(l) o
0 0 2 0z !
t% o 0,0%0,1

Evaluate the elements at the right upper corner for the following two products Us oUi 0Up,o and
Us,0U2,0U1 0Up,0 and find two independent m-integrals

th g tit3  titdd td
Iy=3+15+5 o= f<1>+ pv i von

t i 2 tit2 il 13
where the second index for the variables ¢!, ¢ is omitted. Since the integral I (2) is too complicated
one can choose a more simple one

T —1 tO tQtO t%
Loy = D Uy Puliy = Iey) = 31+ 1 + 55

By using Theorem 1.2 one can check that integrals I(;) and I( 2) provide a complete set of
integrals.

In a similar way integrals for the system (5.24), corresponding to the algebra By, are con-
structed. Let us consider a matrix ® of dimension 2N x 2N

E1y E12>
b= , 6.1
(E21 Eoo (6:1)
where E7; is the unity matrix of dimension N, F1o, Es; are matrices of dimension N with zero

entries, Fog is a matrix of dimension N with the unity adverse diagonal. By an automorphism
X — ®X®~! the matrices (5.25) and (5.26) are transformed to the triangular matrices

T2 -1 0 0 0 0
0,0
t7 ot
0 %90 -1 0 0 0
0,0°1,0
N ;N-1 N-1,N N-1 1
0 0 1,000 t10 to10 t10 —1,0 1 NitZio
TN N1 - tN-T,N (N-2,N-1 (_ ) 1
A= 0,01,0 N0 0.0 0,0 ‘0,0 0,0
e t tN tN—QtN—l tl 5
0 0 0 1]\(]) . . ]1\}0 . ;]1,? ( 1)N—1 110
PN N — =
0,0 to 0,0 “to,0 0,0
EVRALY: N
0 0 . 0 0 W R (—1) o
0,0 ‘0,0 0,0
th
0 0 0 0 0 Lo
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1 0
81
5 1 . 0 0 0 ... 0
t5,0%0,1
to.0to.1
0 =5 . 0 0 0 ... 0
2t
0,0%0,1
tho t0
_ 0 NoTN=T 1 0 0 0
B — t0,0 t011 (62)
t(];fgl tNl OtONl
0 0 v yoae ML 0 ... 0
t,1,1t07? Ntoéot71’1 N-1,N—1
1 G N-= —3,N 4N —1,N—
0 0 t0,0t0,0 t0,0 t71,0t0,1 t71,0t0,1 0
) N—1,N—1,N N—1,N—1
tZ11t0 to11to0 too  to,o t-11
N—1,\2 N N N—1,N—1 1 1
0 0 (to,o ) 124 0t0,1 - 10t0,1 1510210
v N N N—-1 N—2,N—1 1 T
tfl,lt0,0 tl—l,lto,o t(])\fo t1—1,1t0,0 0,0 t0,0t71,1

By an automorphism acting as follows X — F~!XF matrix (6.2) is transformed to a lower
triangular matrix for which all diagonal entries are equal to the unity. Here F' is a 2N x 2N
matrix of the form

o Ein Eis
Ey Fa)’
. . . . o too t8,0 :
Fy is a diagonal matrix such that Fyo = diag N N=T s T and E;; are defined
—1,0 —1,0 —1,0

in (6.1). Reasonings similar to that of the case Ay allow one to derive the integrals.

Example 6.2. Consider the system (5.24) for N = 2
1 41 1 41 2 2 42 2 42 1 \2
tool11 — troto, = to,15 toolt1 —tiots1 = (tio) -
Recall its Lax pair
P o= AP, Py1 = BP,

1
%2 -1 0 0 1 0 0 0
0 t%,oté,o tl—l,O _t%,0t2—1,0 tlto),;l 1 0 0
A= t%,ot%,o tcl),o tcl),otg,o B = 0,0%0,1 1 1 41 2 2
= 0 0 1, 0 ) = 0 i t0,02 t(l),ltl—l,O 1’5—1,?%,12
2o t711,1t02,0 10,0021, tfé,lto,%to,o
0 0 7t171,o t%,ot%Lo 0 72(t0’0)2 7t51’()2t0’1
Do thofl, 21 1%00 t0,0t%11

By an automorphism X — ®X®~! transform the matrices A and B to the triangular matrices

i
ti—’o -1 0 0 1 0 0 0
0,0 2
2 41 1 42 1 t
0 olo,o tiotli0 t-ip I 0’11 1 0 0
A t% ot} 0 B t(lJ ot% 0 ttl) 0 > f0.0%0.1 1 32 2 2
A= R T L ) B = 0 (t,0) 24 0t5,1 0 . (6-3>
0 0 100210 i Z 2 2 12
t5,0t5,0 t5,0 Tt 0.0 9ot 1 1
e L 0 0.0 tZ10t51  tioton
—1, T2 T 1 2 ;a1
0 0 0 t21at60 t1,1t0,0%0,0 t=1,1t00
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By automorphism X — F~!XF transform the matrices (6.3) to the triangular matrices

i
t%f’o —1 0 0 1 0 0 O
0,0 2
2t} t! 10,1
0 A.0b.0 1,0 1 T 1 1 0 0
A t5.0t1,0 _t(l) 0 5 fo.0t0.1 142
A= RS R +2 5 B = (to,o) 1
0 0 1,0t0,0 %0 0 o 0
tootto tio ogot
t}) o 0 to,o t0,1
20,0 T2 T O
0 0 0 i, 15,1%6,0 to,0t0,1

Evaluate the elements at the right upper corner for the following products /12701211,01210,0 and
A3 0A20A1,0A0,0 and find two independent m-integrals

L touB a8 1

W=7l 2 2 b

poo_ b a6 iRt ()5 B ot ottt o

@77 T ded Tl ded T ded2 22 2l ded d2d 4
Replace the integral I(3) by a more simple one

~ t2 (t1)2t2 tltl (tl)QtQ t2

Ioy=Ig) +I\Dply= -3+ 3524231 4 2814 3

@ =IO g Ty Tl T @rg T 8

Here the second index for the variables t!, t? is omitted, since its values s 1s zero for all considered
variables. It can be proved by using Theorem 1.2 that integrals /(1) and (o) constitute a complete
set of integrals.

7 Periodic boundary conditions

In this section we discuss briefly the well known periodically closed reduction of the Hirota chain
(see for more details and the references [41]). Close the chain (5.1) by imposing the periodical
boundary conditions

1 N N+ 40

)

Close the Lax pair (5.2) by setting the conditions on the eigenfunctions

_ 1
pTh=agN, N = St (7.1)
As a result we get a finite system of the form
0 40 0 40 N 41 i 4 i g i—1,5+1 ,
tooti,1 — tioto,1 = t1oto,1s tool11 — tiotos = tio tor » 1<j<N-1, (7.2)

N 4N N 4N N—1,0
toot1,1 — troto =t to1s
which is closely connected with the Cartan matrix Ag\l,).
Boundary conditions (7.1) reduce the sequence of linear discrete equations (5.2) to a Lax pair
for the reduced system (7.2). Introduce the eigenvector P = (¢°, ¢!, ..., ™)T and N+1x N +1

matrices
0 ¢! td N
0,0“1,0 _1 O 0 1 0 O )\ 0,170,0
t9 ¢l 70 0
1,0%0,0 0,0%0,1
0 t% Ot(l) 0 1 O t(2),1t8,0 1 O 0
Botlo t9,0t0,1
— t3 12 o 13 4L
Uu=1 o 0 200 g |, V= o 200 0
t3 t2 2 12
0,0'1,0 0,0%0,1
N 40 N—-1
1 0 O toyotl,o O 0 t0,0 t8,1 1
N 40
A t1 0t0,0 tooton
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If the functions 0,1, ...tV solve the system (7.2) then the overdetermined system of linear
equations
Pio=UP, Py=VP (7.3)

is compatible (see [41]).

Remark 7.1. Note that system (7.2) differs from the system corresponding to the same algeb-
ra A%) but defined by the formula (1.3).

For example the system (7.2) for N = 2 is of the form

0 40 0 4,0 _ 42 4 1 41 1 41 _ 40 42

to,ot1,1 — t1,0to,1 = t1,0t0,15 toot1,1 — t1oto,1 = t1,0t0,19

2 42 2 42 _ 41 40

to,0t11 — t1oto,1 = t1,0%0,1- (7.4)
In terms of the variables u® = —logt?, u! = —logt', u> = —logt? it looks like

A(uo) — e“?,0+“8,1*“(1),1*“%,07 A(ul) — e*“?,o+“1,0+“é,1*“%,1,

9 0 1 2 42
A(u ) — e ¥0,1 U101 U1 0 ud1 (7_5)

while formula (1.3) gives the system
0\ uY 4ul,—ul —u? 1\ —ud 4wl Fud  —u?
A(u ) = e¥10tM0,1 M0 0, A(u ) S e R
0 oyl 42 42
A(uQ) — e %0, U,1 T U o TUG 1
After permutations n <> m we get
0 100 ol a2 S0 gl gl a2
A(uo) = L0101 %010, A(ul) S S KRR R R
0 1 2 2
A(UQ) — e ¥1,07U1,0TUT 0 FUG 1 (7.6)

Obviously, systems (7.5) and (7.6) are different.
Let us give also the Lax pair for the system (7.4). Let us consider vector P = (¢°, !, ¢?)T.
Introduce 3 x 3 matrices

9t td (12
e S 1 0 Aglse
1,0%0,0 0,0%0,1
£3 0t.0 t5.1t0.0
U=| 0 2% -1 |, V=|3F 1 0
0,0'1,0 s 0 0,0%0,1 -
1 0 to,otl,o 0 to,lto,o 1
2 70 2 12
A 11 0t0,0 15,0t0,1

If the functions ¢, t!, t? satisfy the system (7.4) then the equations
Pio=UP, Pyy =VP.
are compatible.

Remark 7.2. The Lax pair (7.3) can be rewritten in terms of the Cartan-Weyl basis of the
algebra Ag\l,)

Pio=(-A+eMotoo)yp Py = (E+e"rAe”00) P,

i

N _ N N '
where A = 3" fi, A=Y e;, U= ulh;, e =t
=0 =0 =0

[hi, hj] = 0, e, f5] = 0ijhi, [hi,ej] = Ajjej, (hi, 5] = —Aij [,

and A;; are elements of the Cartan matrix of the algebra A%).
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8 Conclusions

A map is suggested converting any N x N matrix A to a finite system of difference-difference
equations of exponential type (see (1.3)). A hypothesis is formulated claiming that if A coin-
cides with the Cartan matrix of a finite or affine Lie algebra then the corresponding system
is integrable. The hypothesis is approved by numerous examples. The systems obtained are
rather simple and elegant. They essentially differ from those studied earlier (see survey [25] and
references therein). For instance, the system corresponding the algebra Go given in [25] reads as

T (w = DT (u+ 1) = T ()T () + T2 (w),

3m

- ) (w5 = T 0+ 70 (- 2) T (w0 3).
% T3(r2r2+1 (“ + ?1)>
~ 12T o0 + T (w3 ) 7 (w0 3) 7, )
T <“ % T72r3+2 (“ + >
= T T a0 + T T (- 5) T (w5 )
while our formula (1.3) generates Gy system which can be represented as follows

1 2 42 2 2 _ (41 3
tn mtn—l—l m+1 tn—i—l,mtn,m—i-l tn m+1> tn,mtn+1,m+1 - tn—l—l,mtn,m—l—l - (tn+1,m> .

In a recent article by Kimura, Yamashita and Nakamura [23] a new application of conserved
quantities of discrete-time integrable systems to numerical computations is suggested. The
systems studied in the present paper might have applications in such kind numerical methods.
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