|  | SIGMA 8 (2012), 057, 15 pages       arXiv:1208.4666      
https://doi.org/10.3842/SIGMA.2012.057Contribution to the Special Issue “Geometrical Methods in Mathematical Physics”
 A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
Hongli An a and Colin Rogers b, c
a) College of Science, Nanjing Agricultural University, Nanjing 210095, P.R. China
 b) School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia
 c) Australian Research Council Centre of Excellence for Mathematics & Statistics of Complex Systems, School of
Mathematics, The University of New South Wales, Sydney, NSW2052, Australia
 Received May 27, 2012, in final form August 02, 2012; Published online August 23, 2012 Abstract
A 2+1-dimensional anisentropic magnetogasdynamic system with a
polytropic gas law is shown to admit an integrable elliptic vortex
reduction when γ=2 to a nonlinear dynamical subsystem with
underlying integrable Hamiltonian-Ermakov structure. Exact solutions
of the magnetogasdynamic system are thereby obtained which describe
a rotating elliptic plasma cylinder. The semi-axes of the elliptical
cross-section, remarkably, satisfy a Ermakov-Ray-Reid system.
 Key words:
magnetogasdynamic system; elliptic vortex; Hamiltonian-Ermakov structure;  Lax pair. 
pdf (355 kb)  
tex (18 kb)
 
 References
 
Cerveró J.M., Lejarreta J.D., Ermakov Hamiltonians, Phys.
  Lett. A 156 (1991), 201-205.Dyson F.J., Dynamics of a spinning gas cloud, J. Math. Mech.
  18 (1969), 91-101.Ermakov V.P., Second-order differential equations: conditions for complete
  integrability, Univ. Izv. Kiev 20 (1880), no. 9, 1-25.Ferapontov E.V., Khusnutdinova K.R., The characterization of two-component
  (2+1)-dimensional integrable systems of hydrodynamic type,
  J. Phys. A: Math. Gen. 37 (2004), 2949-2963,
  nlin.SI/0310021.Haas F., Goedert J., On the Hamiltonian structure of Ermakov systems,
  J. Phys. A: Math. Gen. 29 (1996), 4083-4092,
  math-ph/0211032.Neukirch T., Quasi-equilibria: a special class of time-dependent solutions of
  the two-dimensional magnetohydrodynamic equations, Phys. Plasmas
  2 (1995), 4389-4399.Neukirch T., Cheung D.L.G., A class of accelerated solutions of the
  two-dimensional ideal magnetohydrodynamic equations, R. Soc. Lond.
  Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 2547-2566.Neukirch T., Priest E.R., Generalization of a special class of time-dependent
  solutions of the two-dimensional magnetohydrodynamic equations to arbitrary
  pressure profiles, Phys. Plasmas 7 (2000), 3105-3107.Ovsiannikov L.V., A new solution of the hydrodynamic equations, Dokl.
  Akad. Nauk SSSR 111 (1956), 47-49.Ray J.R., Nonlinear superposition law for generalized Ermakov systems,
  Phys. Lett. A 78 (1980), 4-6.Reid J.L., Ray J.R., Ermakov systems, nonlinear superposition, and solutions of
  nonlinear equations of motion, J. Math. Phys. 21 (1980),
  1583-1587.Rogers C., A Ermakov-Ray-Reid reduction in 2+1-dimensional
  magnetogasdynamics, in Group Analysis of Differential Equations and
  Integrable Systems, Editors N.M. Ivanova, P.G.L. Leach, R.O. Popovych,
  C. Sophocleous, P.A. Damianou, Department of Mathematics and Statistics,
  University of Cyprus, Nicosia, 2011, 164-177.Rogers C., Elliptic warm-core theory: the pulsrodon, Phys. Lett. A
  138 (1989), 267-273.Rogers C., An H., Ermakov-Ray-Reid systems in (2+1)-dimensional
  rotating shallow water theory, Stud. Appl. Math. 125
  (2010), 275-299.Rogers C., Hoenselaers C., Ray J.R., On (2+1)-dimensional Ermakov systems,
  J. Phys. A: Math. Gen. 26 (1993), 2625-2633.Rogers C., Malomed B., An H., Ermakov-Ray-Reid reductions of variational
  approximations in nonlinear optics, Stud. Appl. Math., to appear.Rogers C., Malomed B., Chow K., An H., Ermakov-Ray-Reid systems in
  nonlinear optics, J. Phys. A: Math. Theor. 43 (2010),
  455214, 15 pages.Rogers C., Schief W.K., Multi-component Ermakov systems: structure and
  linearization, J. Math. Anal. Appl. 198 (1996), 194-220.Rogers C., Schief W.K., On the integrability of a Hamiltonian reduction of a
  2+1-dimensional non-isothermal rotating gas cloud system,
  Nonlinearity 24 (2011), 3165-3178.Rogers C., Schief W.K., The pulsrodon in 2+1-dimensional magneto-gasdynamics:
  Hamiltonian structure and integrability, J. Math. Phys.
  52 (2011), 083701, 20 pages.Schäfer G., Gravity-wave astrophysics, in Relativistic Gravity Research with
  Emphasis on Experiments and Observations, Lecture Notes in Physics,
  Vol. 410, Springer-Verlag, Berlin, 1992, 163-183.Steen A., Om Formen for Integralet af den lineare Differentialligning af anden
  Orden, Forhandl. af Kjobnhaven  (1874), 1-12. |  |