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Abstract. We present a rigorous quantization scheme that yields a quantum field theory in
general boundary form starting from a linear field theory. Following a geometric quantization
approach in the Kähler case, state spaces arise as spaces of holomorphic functions on linear
spaces of classical solutions in neighborhoods of hypersurfaces. Amplitudes arise as integrals
of such functions over spaces of classical solutions in regions of spacetime. We prove the
validity of the TQFT-type axioms of the general boundary formulation under reasonable
assumptions. We also develop the notions of vacuum and coherent states in this framework.
As a first application we quantize evanescent waves in Klein–Gordon theory.
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1 Introduction

The general boundary formulation (GBF) is an axiomatic approach to quantum theory and to
quantum field theory in particular [16, 19]. Its mathematical structure consists of an axiomatic
system in the spirit of topological quantum field theory (TQFT) [1] and shows similarities
with Segal’s approach to quantum field theory [28]. Its physical interpretation is based on
a probability rule that generalizes the Born rule [19, 21]. Key features of the GBF are that
it provides a strictly local description of physics and accommodates theories without metric
background naturally. The latter feature is in marked contrast to older and more established
axiomatic approaches to quantum field theory such as those based on the Wightman axioms [29],
the Osterwalder–Schrader axioms [26, 27] or the Haag–Kastler axioms [14]. The GBF was
conceived particularly as a possible framework to accommodate a quantum theory of gravity
[11, 16, 19, 22, 24].

Quantum field theories in a GBF form have been described so far principally by using Feyn-
man path integral quantization combined with the Schrödinger representation [5, 6, 7, 8, 9, 10,
11, 12, 13, 16, 20, 23, 25]. Compared to “infinitesimal” approaches that are based on expo-
nentiating a generator of time evolution, such as canonical quantization, the path integral has
the advantage of naturally generalizing at least formally to general spacetime regions which are
neither naturally nor uniquely described by some kind of “evolution”. But the Schrödinger–
Feynman approach has also disadvantages. In particular, it is not in general clear how the
Schrödinger representation should be defined, the boundary value problems that occur are in
general not well-posed and the Feynman path integral is frequently ill defined. These problems
can be solved or mitigated for particular theories and contexts (as shown for example by the
mentioned works), but a quantization scheme that avoids these problems is clearly desirable.
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The present article is concerned with a quantization scheme that starts with a linear field
theory and yields a quantum field theory satisfying the axioms of the GBF. The classical theo-
ry is provided in the form of spaces of solutions of the field equations near hypersurfaces and
in regions of spacetime. These spaces of solutions are real vector spaces, but carry additional
structure in the case of hypersurfaces, making them into complex Hilbert spaces. The addi-
tional structure is a symplectic structure that can naturally be obtained from a Lagrangian
formulation of the classical theory as well as a compatible complex structure. The quantization
for each hypersurface proceeds then as a geometric quantization in the Kähler case, that is, as
a holomorphic quantization. The Hilbert spaces so obtained are Fock spaces, realized as spaces
of holomorphic functions. The quantization for each spacetime region consists in the assignment
to each holomorphic function on the boundary, of its integral over the space of classical solutions
in the region’s interior. This yields the amplitude maps.

In order to be able to properly formulate the quantization scheme it is necessary to use the
theory of Gaussian integration in infinite-dimensional vector spaces. While this is not in itself
a new subject, we have not found in the literature a treatment suitable to our needs. We thus
develop the relevant theory here ourselves. In particular, it is important that the we deal with
a proper positive measure and that the arising Fock spaces are concretely realized as spaces of
holomorphic functions in the spirit of Bargmann’s approach [2, 3]. This also facilitates a proper
treatment of coherent states.

As a first application we quantize Klein–Gordon theory for three different choices of admis-
sible hypersurfaces in Minkowski space. The first choice is the “standard choice” of equal-time
hypersurfaces, provided for comparison. The other two choices involve families of timelike hy-
persurfaces that previously were treated in the GBF via Schrödinger–Feynman quantization
[8, 9, 20, 23]. In contrast to those treatments, however, we provide a complete quantization of
the relevant spaces of classical solutions. That is, the quantization not only includes propagating
waves, but also evanescent waves, i.e., waves that behave exponentially in space.

We start in Section 2 by providing a suitable version of the axiomatic framework of the GBF,
with a description of the geometric data, the core axioms and the vacuum axioms. In Section 3
we review ingredients for the quantization, including aspects of Lagrangian field theory, geomet-
ric quantization as well as mathematical foundations of Gaussian integration and holomorphic
functions in infinite-dimensional vector spaces, as used subsequently. Section 4 provides the
core of the paper, laying out in detail the quantization scheme, the role of coherent states and
some aspects of the physical interpretation. Section 5 presents the application to Klein–Gordon
theory for three different types of geometric setting, incorporating a quantization of evanescent
waves in the case of timelike hypersurfaces. Finally, we provide some conclusions and an outlook
in Section 6.

Note added. Most of Section 2.1 as well as part of Section 2.2 were published in essentially
identical form in [17] as Section 3.1 and 3.3 respectively. However, before this publication by
a journal, this content was already publicly available in the preprint version of the present paper.
This is clearly referenced in the abovementioned paper. Moreover, this content is nothing but
a slightly adapted version of material published earlier in the paper [19] by the author as the
initial part of Section 2.

2 Axioms

2.1 Geometric data

In the tradition of TQFT we may think of the core axioms of the GBF as describing an as-
sociation of “algebraic” data to “geometric” data as well as properties that this association
satisfies. In the present case on the “algebraic” side we are mainly dealing with Hilbert spaces
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and maps between Hilbert spaces. (The description “functional analytic” data instead of “alge-
braic” data might be more appropriate.) On the “geometric” side we are dealing with certain
topological manifolds, possibly with additional structure. In the following we will make use
only of purely topological structure (and could even further abstract from that if desired).
Nevertheless, we will continue to use the word “geometric” with the understanding that one
should in general expect the topological manifolds to come equipped with additional struc-
ture.

Concretely, our geometric setting is the following: There is a fixed positive integer d ∈ N. We
are given a collection of oriented topological manifolds of dimension d, possibly with boundary,
that we call regions. Furthermore, there is a collection of oriented topological manifolds without
boundary of dimension d − 1 that we call hypersurfaces. All manifolds may only have finitely
many connected components. When we want to emphasize explicitly that a given manifold is
in one of those collections we also use the attribute admissible. These collections satisfy the
following requirements:

• Any connected component of a region or hypersurface is admissible.

• Any finite disjoint union of regions or of hypersurfaces is admissible.

• Any boundary of a region is an admissible hypersurface.

• If Σ is a hypersurface, then Σ, denoting the same manifold with opposite orientation, is
admissible.

It will turn out to be convenient to also introduce empty regions. An empty region is topologically
simply a hypersurface, but thought of as an infinitesimally thin region. Concretely, the empty
region associated with a hypersurface Σ will be denoted by Σ̂ and its boundary is defined to be
the disjoint union ∂Σ̂ = Σ ∪ Σ. There is one empty region for each hypersurface (forgetting its
orientation). When an explicit distinction is desirable we refer to the previously defined regions
as regular regions.

There is also a notion of gluing of regions. Suppose we are given a region M with its boundary
a disjoint union ∂M = Σ1 ∪ Σ ∪ Σ′, where Σ′ is a copy of Σ. (Σ1 may be empty.) Then, we
may obtain a new manifold M1 by gluing M to itself along Σ, Σ′. That is, we identify the
points of Σ with corresponding points of Σ′ to obtain M1. The resulting manifold M1 might
be inadmissible, in which case the gluing is not allowed. The gluing is unique in the sense
that if there are different ways to make this identification the resulting manifolds M1 must be
indistinguishable in our setting.

As already mentioned, the manifolds carry additional structure in general. This has to be
taken into account in the gluing and will modify the procedure as well as its possibility in the
first place. Our description above is merely meant as a minimal one. Moreover, there might be
important information present in different ways of identifying the boundary hypersurfaces that
are glued. Such a case can be incorporated into our present setting by encoding this information
explicitly through suitable additional structure on the manifolds.

2.2 Core axioms

The core axioms listed in the following are a refinement of the axioms introduced in [19] and [25].
In fact, the formulation here is closer to that in [25], but without corners. For easier compari-
son, we preserve to a large extend the naming conventions used in those works. Here, as in
the following, ⊗ denotes the tensor product of vector spaces, while ⊗̂ denotes the completed
tensor product of Hilbert spaces. We add some more specific comments after the listing of the
axioms.



4 R. Oeckl

(T1) Associated to each hypersurface Σ is a complex separable Hilbert space HΣ, called the
state space of Σ. We denote its inner product by 〈·, ·〉Σ.

(T1b) Associated to each hypersurface Σ is a conjugate linear isometry ιΣ : HΣ → HΣ. This
map is an involution in the sense that ιΣ ◦ ιΣ is the identity on HΣ.

(T2) Suppose the hypersurface Σ decomposes into a disjoint union of hypersurfaces Σ = Σ1 ∪ · · ·
· · · ∪Σn. Then, there is an isometric isomorphism of Hilbert spaces τΣ1,...,Σn;Σ : HΣ1⊗̂ · · ·
· · · ⊗̂HΣn → HΣ. The composition of the maps τ associated with two consecutive decom-
positions is identical to the map τ associated to the resulting decomposition.

(T2b) The involution ι is compatible with the above decomposition. That is τΣ1,...,Σn;Σ◦(ιΣ1⊗̂ · · ·
· · · ⊗̂ιΣn) = ιΣ ◦ τΣ1,...,Σn;Σ.

(T4) Associated with each region M is a linear map from a dense subspace H◦∂M of the state
space H∂M of its boundary ∂M (which carries the induced orientation) to the complex
numbers, ρM : H◦∂M → C. This is called the amplitude map.

(T3x) Let Σ be a hypersurface. The boundary ∂Σ̂ of the associated empty region Σ̂ decom-
poses into the disjoint union ∂Σ̂ = Σ ∪ Σ′, where Σ′ denotes a second copy of Σ. Then,
τΣ,Σ′;∂Σ̂(HΣ ⊗HΣ′) ⊆ H◦∂Σ̂

. Moreover, ρΣ̂ ◦ τΣ,Σ′;∂Σ̂ restricts to a bilinear pairing (·, ·)Σ :
HΣ ×HΣ′ → C such that 〈·, ·〉Σ = (ιΣ(·), ·)Σ.

(T5a) Let M1 and M2 be regions and M := M1 ∪M2 be their disjoint union1. Then ∂M =
∂M1 ∪ ∂M2 is also a disjoint union and τ∂M1,∂M2;∂M (H◦∂M1

⊗ H◦∂M2
) ⊆ H◦∂M . Moreover,

for all ψ1 ∈ H◦∂M1
and ψ2 ∈ H◦∂M2

ρM ◦ τ∂M1,∂M2;∂M (ψ1 ⊗ ψ2) = ρM1(ψ1)ρM2(ψ2).

(T5b) Let M be a region with its boundary decomposing as a disjoint union ∂M = Σ1 ∪Σ ∪Σ′,
where Σ′ is a copy of Σ. Let M1 denote the gluing of M with itself along Σ,Σ′ and
suppose that M1 is a region. Note ∂M1 = Σ1. Then, τΣ1,Σ,Σ′;∂M

(ψ ⊗ ξ ⊗ ιΣ(ξ)) ∈ H◦∂M
for all ψ ∈ H◦∂M1

and ξ ∈ HΣ. Moreover, for any ON-basis {ξi}i∈I of HΣ, we have for all
ψ ∈ H◦∂M1

ρM1(ψ) · c(M ; Σ,Σ′) =
∑
i∈I

ρM ◦ τΣ1,Σ,Σ′;∂M
(ψ ⊗ ξi ⊗ ιΣ(ξi)), (2.1)

where c(M ; Σ,Σ′) ∈ C \ {0} is called the gluing anomaly factor and depends only on the
geometric data.

We proceed to make some more detailed comments on the axioms. A small technical
refinement compared to [19, 25] is that the amplitude map in axiom (T4) is only required
to be defined on a dense subspace. This is sensible, since the amplitude map is generically not
continuous. The definition only on a dense subspace was to some extend implicit previously,
but is now made completely explicit. This also affects some of the other axioms.

A more important change as compared to [19, 25] is the splitting of what previously was the
axiom (T5), formulating the gluing of two disjoint regions, into two parts, (T5a) and (T5b).
This serves several purposes. Firstly, we may not only glue two disjoint regions together, but
we may also perform gluings of different parts of the boundary of a connected region. Indeed,
this was already actually used in [25]. On the other hand, any gluing of disjoint unions can
of course be described by first joining the regions into a single (non-connected) region and

1In the setting of a global background (compare terminology of [19]), that is if all regions and hypersurfaces
are submanifolds of a given manifold of dimension d, we may need to allow here unions that are disjoint only up
to boundaries. However, in such a case we shall still think of the regions as “disjoint”.
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then performing gluings on this region only. So there is no loss of generality involved in the
change.

The most important change as compared to [19, 25] is that we slightly weaken the gluing
axiom. Namely, we introduce a scalar factor c(M ; Σ,Σ′) into the gluing equation (2.1). We call
this the gluing anomaly factor. It is a variant of what Turaev calls an anomaly cocycle [31],
where the group in question is here the multiplicative group of complex numbers without 0.
This yields another reason for the splitting of the gluing axiom into (T5a) and (T5b): The
axiom (T5a) does not involve such a factor.

The reasons for introducing the gluing anomaly factor are also several. The first and most
obvious one is that in the quantization scheme we are going to present, axiom (T5b) would
simply not be valid without this factor. Of course, this could be fixed be introducing additional
assumptions, but their general significance is not transparent at present. Another reason comes
from the vacuum axioms (to be discussed in more detail below). Taken strictly, these would
demand that the amplitude of a region without boundary is equal to 1.2 On the other hand,
in simple examples of TQFTs with finite-dimensional vector spaces the amplitude for a torus
is equal to the dimension of the vector space associated with a single boundary component of
a cylinder. This can be accommodated by “moving” this quantity into the anomaly factor. So
we can make such examples of TQFTs compatible with both the core axioms and the vacuum
axioms by utilizing the gluing anomaly factor. As a further remark note that this suggests
that we formulate an explicit axiom that demands that the amplitude for a region without
boundary be 1. However, since we do not want to even assume the existence of admissible
regions without boundary, we do not do this. Moreover, as already mentioned, the vacuum
axioms (when enforced) take care of this.

Finally, we mention that we have dropped the unitarity axiom (T4b) as it does not seem to
be satisfied in the present quantization scheme. This does not mean, however, that we do not
obtain unitary evolution when it is to be expected, see in particular Sections 4.5 and 5. On
the other hand, the precise physical significance of axiom (T4b) as formulated in [19, 25] is not
transparent at present.

2.3 Vacuum axioms

We list in the following the vacuum axioms, originally proposed in [19]. The present version
(including the numbering) is identical to that in [25], except for the fact that we are in a setting
without corners.

(V1) For each hypersurface Σ there is a distinguished state ψΣ,0 ∈ HΣ, called the vacuum state.

(V2) The vacuum state is compatible with the involution. That is, for any hypersurface Σ,
ψΣ,0 = ιΣ(ψΣ,0).

(V3) The vacuum state is compatible with decompositions. Suppose the hypersurface Σ decom-
poses into components Σ1 ∪ · · · ∪ Σn. Then ψΣ,0 = τΣ1,...,Σn;Σ(ψΣ1,0 ⊗ · · · ⊗ ψΣn,0).

(V5) The amplitude of the vacuum state is unity. That is, for any region M , ρM (ψ∂M,0) = 1.

As remarked in [19, 25] we can immediately verify that these axioms satisfy key properties
that are more conventionally associated with a vacuum. Firstly, a vacuum state is normalized.
This follows from combining axioms (V2), (V3), (V5) and (T3x). Secondly, the vacuum is stable
under evolution.

2The boundary Hilbert space in this case is C and the vacuum state there must correspond to the element
1 ∈ C. Note also that axiom (T5a) combined with the fact that disjoint unions of regions are admissible means
that we cannot make an “exception” for regions without boundary.
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Proposition 2.1. Let M be a region such that its boundary decomposes into a disjoint union
∂M = Σ ∪ Σ′. Assume moreover that there is a unitary operator U : HΣ → HΣ′ such that

ρM ◦ τΣ,Σ′;∂M (ψ ⊗ ιΣ′(ψ′)) = 〈ψ′, Uψ〉Σ′ ∀ψ ∈ HΣ, ψ
′ ∈ HΣ′ .

Then, UψΣ,0 = ψΣ′,0.

Proof. Since ψΣ,0 is normalized, so is UψΣ,0. But its inner product with the also normalized
state ψΣ′,0 is 1. So it must be identical to ψΣ′,0. �

Conversely, suppose that for each pair (Σ,Σ′) of connected admissible hypersurfaces (with
suitable orientations) there is a region M such that ∂M = Σ ∪ Σ′. Moreover, assume that the
amplitude for such a region takes the form of unitary evolution as in Proposition 2.1. Then,
given an association of a normalized state to each hypersurface such that these states are related
by evolution, these states will satisfy the vacuum axioms stated above. In fact, in this special
case the choice of a vacuum in the sense of these axioms is equivalent to the choice of one
normalized state on one hypersurface.

3 Ingredients

In the following we describe certain motivational and mathematical ingredients of the quantiza-
tion scheme to be considered subsequently.

3.1 Motivation from classical field theory

In this section we consider certain aspects of Lagrangian field theory. While the facts we present
are well known (see e.g. [33]), we recall them here from a particular perspective that provides
a key motivation for the further development in the subsequent parts of this paper.

Consider the following simple setting of a classical field theory. We suppose that the theory
is defined on a smooth spacetime manifold T of dimension d and determined by a first-order
Lagrangian density Λ(ϕ, ∂ϕ, x) with values in d-forms on T . Here x ∈ T denotes a point in
spacetime, ϕ a field configuration at a point and ∂ϕ the spacetime derivative at a point of
a field configuration. We shall assume that the configurations are sections of a trivial vector
bundle over T . We shall also assume in the following that all fields decay sufficiently rapidly at
infinity where required (i.e., where regions or hypersurfaces are non-compact).

Given a spacetime region M and a field configuration φ in M its action is given by

S(φ) =

∫
M

Λ(φ(·), ∂φ(·), ·).

Denote the space of field configurations in M by KM . The exterior derivative of the action yields
a one-form dS on KM . Let X ∈ KM but think of it as an element of the tangent space TφKM .
The usual variational calculation (replace φ by φ+ tX and keep only the first order in t) yields

dSφ(X) =

∫
∂M

Xa ∂µy
δΛ

δ ∂µϕa

∣∣∣∣
φ

+

∫
M
Xa

(
δΛ

δϕa
− ∂µ

δΛ

δ ∂µϕa

)∣∣∣∣
φ

. (3.1)

Equating the term in the brackets to zero yields the Euler–Lagrange equations (in their version
as d-forms). Supposing that X vanishes on the boundary ∂M , dSφ(X) = 0 if and only if φ
satisfies these equations. This is the usual variational principle.

We can also view dS as a 1-form on the space LM of solutions of the Euler–Lagrange equations
in M , in which case the bulk term in (3.1) vanishes. For this interpretation we also have to
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choose X to be a solution of the linearized Euler–Lagrange equations around φ, i.e., X ∈ TφLM .
Since we are dealing with a pure boundary term this motivates the definition of the 1-form

θφ(X) :=

∫
Σ
Xa ∂µy

δΛ

δ ∂µϕa

∣∣∣∣
φ

.

This can be defined for an arbitrary hypersurface Σ. Moreover, it is naturally defined on the
space of solutions of the Euler–Lagrange equations in a neighborhood of Σ, which we will denote
by LΣ. This 1-form is usually called the symplectic potential.

Taking the exterior derivative of the symplectic potential (viewed as a 1-form on LΣ) yields
the usual symplectic form on LΣ:

ωφ(X,Y ) = dθφ(X,Y ) =
1

2

∫
Σ

(
(XbY a − Y bXa) ∂µy

δ2Λ

δϕbδ ∂µϕa

∣∣∣∣
φ

+ (Y a∂νX
b −Xa∂νY

b) ∂µy
δ2Λ

δ ∂νϕbδ ∂µϕa

∣∣∣∣
φ

)
. (3.2)

We shall assume that ωφ is non-degenerate. Note that ω changes its sign if the orientation of Σ
is reversed.

Consider again a region M with boundary ∂M . We have a map rM : LM → L∂M by simply
forgetting how the solutions look like in the interior of M . For any φ ∈ LM this induces a map
(r∗M )φ : TφLM → TrM (φ)L∂M . It is then clear that for any X,Y ∈ TφLM we have

ωrM (φ)((r
∗
M )φ(X), (r∗M )φ(Y )) = ddSφ(X,Y ) = 0.

That is, (r∗M )φ(TφLM ) is an isotropic subspace of TrM (φ)L∂M .

The above is most often used in the context where T carries a Lorentzian metric and the
Euler–Lagrange equations are hyperbolic partial differential equations. The regionsM of interest
are then the ones bounded by pairs (Σ1,Σ2) of spacelike Cauchy hypersurfaces. Note that we
can naturally identify the solution spaces LT = LM = LΣ1 = LΣ2 by the Cauchy property. The
symplectic form associated with ∂M is then the sum of two components, ω∂M = ωΣ1 − ωΣ2 ,
corresponding to the connected components of ∂M . Here we have taken the same orientation
for Σ1 and Σ2, thus the minus sign coming from orientation reversal of Σ2 with respect to the
induced orientation as a boundary of M . One is then interested in global solutions, for which in
particular ω∂M = 0 holds, i.e., ωΣ1 = ωΣ2 . Thus, one obtains a symplectic form independent of
the choice of Cauchy hypersurface. This serves then as a good definition of a symplectic form
on the space of global solutions on T .

However, we do not want to specialize to this situation here, but rather insist in thinking of the
symplectic form as defined on the space of local solutions in a neighborhood of a hypersurface.
Moreover, we want to use the abovementioned example of pairs of Cauchy hypersurfaces to
motivate that the subspace (r∗M )φ(TφLM ) ⊆ TrM (φ)L∂M is in favorable cases not merely isotropic,
but even Lagrangian. Suppose the spaces of solutions in question were finite-dimensional. Then
we would have in the above example dimTφL∂M = dimTφLΣ1 + dimTφLΣ2 = 2 dimTφLM .
Thus, since TφLM is isotropic and has half the dimension of TφL∂M , it must be Lagrangian.

Above we have loosely talked about LΣ as the space of solutions of the Euler–Lagrange
equations in a neighborhood of the hypersurface Σ. A better definition would be to say that LΣ

is the space of germs of solutions near Σ. That is, we take the space of solutions in neighborhoods
with two solutions being equivalent if they coincide in some sub-neighborhood of Σ. It is clear
that for this to make sense one would usually require the hypersurfaces Σ to carry some additional
structure besides being submanifolds of codimension one.
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3.2 Elements of geometric quantization

Continuing the discussion of the previous section we shall consider initial steps in a geometric
quantization of the spaces LΣ of local solutions on hypersurfaces Σ. More specifically we shall
only consider the case of a holomorphic or Kähler quantization. Furthermore, we shall restrict
ourselves to the particularly simple case where the spaces LΣ are real vector spaces and can
be naturally identified with all their tangent spaces. For much more details about geometric
quantization, see [33].

We suppose that for a given hypersurface Σ we are given a real vector space LΣ of classical
solutions near Σ. This comes equipped with a non-degenerate symplectic form ωΣ. The ad-
ditional datum we need is a complex structure JΣ : LΣ → LΣ compatible with the symplectic
structure. That is, JΣ is a linear map satisfying J2

Σ = −idΣ and ωΣ(JΣ(·), JΣ(·)) = ωΣ(·, ·). We
then define the symmetric bilinear form gΣ : LΣ × LΣ → R by

gΣ(φ, η) := 2ωΣ(φ, JΣη) ∀φ, η ∈ LΣ. (3.3)

We shall assume that this form is positive definite. The question of how JΣ or equivalently gΣ

is obtained in practice is much less straightforward than that of the symplectic form ωΣ. See
for example [32] for a discussion of this point in the context of field theory in curved spacetime.

The next step is to complete LΣ to a real Hilbert space with the inner product gΣ. (We will
continue to write LΣ for this completion.) It is then true that the sesquilinear form

{φ, η}Σ := gΣ(φ, η) + 2iωΣ(φ, η) ∀φ, η ∈ LΣ (3.4)

makes LΣ into a complex Hilbert space, where multiplication with i is given by applying JΣ.

The state space HΣ associated with Σ is now constructed as follows: States are holomorphic
functions on LΣ and form a Hilbert space with the inner product

〈ψ′, ψ〉Σ :=

∫
LΣ

ψ(φ)ψ′(φ) exp

(
−1

2
gΣ(φ, φ)

)
dµ(φ). (3.5)

Here µ is a “translation-invariant measure” on LΣ. The exponential factor is what really comes
from the more detailed theory of geometric quantization on which we shall not elaborate here.
In fact, this formula works in the case were LΣ is finite-dimensional. In the infinite-dimensional
case a measure µ of this kind does not exist. However, there is no difficulty in making the
infinite-dimensional case work properly as we shall see below. The space HΣ obtained in this
way is nothing but the usual Fock space based on LΣ as the space of “one-particle states”, but
viewed as a space of holomorphic functions.

3.3 Gaussian integration

In the following we shall consider the Fock space H generated by a separable Hilbert space L (or
rather its dual V ). In particular, we shall be interested in viewing H as a space of holomorphic
functions following Bargmann [2, 3]. To this end we construct a suitable measure on an extension
of L, via a projective limit based on measures on finite-dimensional vector spaces. We start with
some general considerations on projective limits of measure spaces, specializing step by step to
our case of interest. In particular, this will allow us to make rigorous heuristic expressions such
as (3.5).

Let {Lα}α∈A be a projective system of measure spaces with surjective projections denoted
by lα,β : Lα � Lβ. That is, each Lα comes equipped with a σ-algebra Mα and a measure να.
Moreover, the projections lα,β are measure inducing, i.e., if X ∈Mβ is measurable, then l−1

α,β(X)

is measurable and νβ(X) = να(l−1
α,β(X)). What we would like to consider now is the projective
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limit (L̂,M, ν) in the category of measure spaces. However, in general it seems unclear whether
this limit exists and how to construct it. Consider thus the limit merely in the category of sets
with algebras of subsets and finitely additive measures. The projective limit exist and consists
of the triple (L̂,N , ν) with the following properties: L̂ is the projective limit L̂ = lim←−L• in the

category of sets. N is the set of subsets of L̂ that arise as preimages of measurable sets under
the induced projections lα : L̂ → Lα. This is easily seen to be an algebra. It is then also clear
that ν is well defined and unique on N and is finitely additive. If ν is in fact σ-additive on N ,
then we can use Hahn’s theorem (see e.g. [15]) to extend ν to the σ-algebraM generated by N .
Then (L̂,M, ν) would be our desired projective limit. We shall assume this for now, but will
see explicitly below that this is satisfied for the spaces and measures of particular interest to
us. We let the σ-algebras Mα on Lα be completed with respect to the measures να and denote
by M∗ the completion of M with respect to the measure ν.

Dually, denote by M(Lα) the vector space of complex valued functions on Lα that are Mα-
measurable. Then, the projections lα,β induce injections mβ,α : M(Lβ) ↪→ M(Lα). Denoting

measurable functions on (L̂,M) byM(L̂) we have the injections mα :M(Lα) ↪→M(L̂) induced
by the projections lα. We can think of these injections as inclusions and write for the injective
limit lim−→M(L•) ⊆M(L̂). Similarly, for 1 ≤ p ≤ ∞ we consider the function spaces Lp(Lα, να)

forming an injective system. Then, for the injective limit we have lim−→L
p(L•, ν•) ⊆ Lp(L̂, ν).

Proposition 3.1. For 1 ≤ p <∞ the subspace lim−→L
p(L•, ν•) is dense in Lp(L̂, ν).

Proof. We know that the integrable simple functions are dense in Lp(L̂, ν). Furthermore, an
integrable simple functions is a finite linear combination of characteristic functions for sets
of finite measure. It is thus sufficient to show that a characteristic function for a set of finite
measure U ∈M∗ can be arbitrarily approximated by elements of lim−→L

p(L•, ν•). Let ε > 0. Using
Hahn’s Theorem we know that there is an element V ∈ N such that ν((U ∪ V ) \ (U ∩ V )) < ε.
But then, χV ∈ lim−→L

p(L•, ν•) and ‖χU − χV ‖p < ε1/p. �

We proceed to specialize to the case where the spaces Lα are finite-dimensional real or
complex vector spaces equipped with their standard topology. (We use in the following the
notation K to denote a field that may either be R or C.) More specifically, we start with a real
or complex vector space V and let {Vα}α∈A be the set of finite-dimensional subspaces of V .
This set forms an injective system with injections vβ,α : Vβ ↪→ Vα and vα : Vα ↪→ V given by
inclusions. We then define Lα to be the dual vector space of Vα yielding a projective system
as already described. It is easy to see that L̂ is the algebraic dual of V . Equip the spaces Lα
with the standard topology of finite-dimensional vector spaces. Then, L̂ can be seen as the
projective limit in the category of topological spaces and as such carries the initial topology.
Equivalently, this is the weak? topology or topology of pointwise convergence as a space of linear
functions on V . In particular, L̂ is in this way a complete locally convex Hausdorff topological
vector space. Moreover, we assume compatible measures να on the spaces Lα as described above
which are inner regular Borel measures and let the associated σ-algebrasMα be completed with
respect to the measures. In this setting ν is σ-additive on N as is shown in the following using
a result of Bochner, so that (L̂,M, ν) is a measure space.

Definition 3.2. A projective system {Yβ}β∈B with projections pβ,β′ satisfies the sequential
maximality condition iff for every sequence {βk}k∈N with βk+1 > βk and every sequence {yk}k∈N
with yk ∈ Yβk such that yk = pβk+1,βk(yk+1), there is an element y ∈ Y such that yk = pβk(y).

Lemma 3.3. The system {Lα}α∈A satisfies the sequential maximality condition.

Proof. Let {αk}k∈N with αk+1 > αk and let {xk}k∈N with xk ∈ Lαk be such that xk =
lαk+1,αk(xk+1). Consider the dual sequence {Vαk}k∈N and set W :=

⋃
k∈N Vαk . The sequence
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{xk}k∈N defines a linear map x : W → K as follows. Let a ∈ W . Then, there exists a smallest
n ∈ N such that a ∈ Vαn . Set x(a) := (xn, a)αn and note that x(a) = (xk, a)αk for all k ≥ n. It
is easy to see that this prescription does indeed define a linear map W → K. Equipping V for
example with the weak? topology with respect to L̂, we can apply the Hahn–Banach theorem
to extend x to a linear map V → K. Thus, x ∈ L and lαk(x) = xk, as required. �

Theorem 3.4 (Bochner [4, Theorem 5.1.1]). Let {Lα}α∈A be a projective system of Hausdorff
spaces with inner regular Borel measures. Assume furthermore, that the system satisfies the
sequential maximality condition. Then, the induced function ν : N → [0,∞] is σ-additive.

Adding another layer of structure we suppose that V is a real or complex separable Hilbert
space. Any subspace Vα inherits this structure and the injections vβ,α : Vβ ↪→ Vα as well as
vα : Vα ↪→ V become linear isometries. Moreover, by duality the spaces Lα also become Hilbert
spaces in this way and the projections lα,β : Lα � Lβ become partial linear isometries. Let L be
the topological dual of V and thus also a Hilbert space. It is then clear that there is a natural
inclusion i : L ↪→ L̂ which is continuous.

We use the inner products on the spaces Lα to define Gaussian measures να. In the case that
the vector spaces are complex we forget their complex structure for the moment and regard them
as real vector spaces. Note that a complex Hilbert space is canonically a real Hilbert space by
taking the real part of the inner product. We first recall some elementary facts about Gaussian
measures on finite-dimensional vector spaces. Let Q be a real positive definite symmetric n×n-
matrix. Let µ be the Lebesgue measure on Rn and νQ the Gaussian measure given by

dνQ(x) := exp

−∑
i,j

xiQi,jxj

√detQ

πn
dµ(x).

Then, νQ is an inner and outer regular Borel probability measure. For later use we also remark
the following lemmas.

Lemma 3.5. Let 1 denote the n× n unit matrix and r > 0. Then,

ν1(Br(0)) =


e−r

2
∞∑

k=n/2

1

k!
r2k if n is even,

e−r
2

∞∑
k=(n+1)/2

1

Γ(k + 1/2)
r2k−1 if n is odd.

(3.6)

Lemma 3.6. Suppose f is a polynomial on Rn with complex coefficients,

f(x) =
∑
k

fkx
k1
1 · · ·x

kn
n ,

where k is a multi-index k = (k1, . . . , kn). Then, we have a version of Wick’s theorem:∫
Rn
f(x) dνQ(x) =

∞∑
m=0

1

m!4m

∑
j1,...,jm

∑
l1,...,lm

([l] + [j])!
(
Q−1

)
l1,j1
· · ·
(
Q−1

)
lm,jm

f[l]+[j].

Here, the sums run over j1, . . . , jm, l1, . . . , lm ∈ {1, . . . , n}. The expressions [j] and [l] are multi-
indices defined as follows. [j] = ([j]1, . . . , [j]n) where [j]i is the number of the indices j1, . . . , jm
that take the value i. That is, [j]i := |{a ∈ {1, . . . ,m}|ja = i}|. Also k! := k1! · · · kn! for
a multi-index.
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We proceed to assign measures να to the spaces Lα. Given a basis {η1, . . . , ηn} of Lα as
a real Hilbert space define the positive definite symmetric matrix (Qα)i,j := (ηi, ηj)R,Lα and

the vector space isomorphism Rn → Lα given by η : (x1, . . . , xn) 7→
n∑
i=1

xiηi. Now set να(B) :=

νQα(η−1(B)) for B a Borel set in Lα. Notice that if {ξ1, . . . , ξn} is the dual basis of Vα, then
(Q−1

α )i,j = (ξi, ξj)R,Vα .
We have to show that this definition is compatible with the projections lα,β. Thus, let

α, β ∈ A such that Vβ ⊆ Vα and choose a basis {ξ1, . . . , ξn} of Vα such that {ξ1, . . . , ξk} is a basis
of Vβ. We notice that (Q−1

α )i,j = (Q−1
β )i,j for all i, j ∈ {1, . . . , k}. Let f be a polynomial on Lβ.

Then, with Lemma 3.6 we see that
∫
Lα
f ◦ lα,β dνα =

∫
Lβ
f dνβ. Since polynomials are dense

in L1(Rk, νQβ ), the same holds if we replace f with any characteristic function of a Borel set,
implying the compatibility of the measures.

In case the vector spaces are really complex vector spaces we can alternatively use the complex
inner product to define positive definite Hermitian matrices (Qα)i,j := (ηi, ηj)Lα . A positive
definite Hermitian matrix defines a measure on Cn via

dνQ(x) := exp

−∑
i,j

xiQi,jxj

 detQ

πn
dµ(x). (3.7)

However, these measures are identical to those obtained by forgetting the complex structure as
described above. This is easily seen to be due to the fact that the measures only depend on the
quadratic form induced by the inner product which is the same in both cases.

Note that L is dense in L̂, but has measure zero, as the following Proposition shows. In
particular, we cannot simply forget about L̂ and restrict to L. This is not surprising since it
is well known that there does not exist a Gaussian measure on an infinite-dimensional Hilbert
space [30].

Proposition 3.7. Let V be an infinite-dimensional separable Hilbert space. Then, L ∈M∗ and
ν(L) = 0.

Proof. Given an ON-basis {ξi}i∈N of V (as a real or complex Hilbert space) we consider the
sequence {αn}n∈N where αn ∈ A such that Vαn is generated by {ξ1, . . . , ξn}. Now fix r > 0 and
let Br,n be the open ball of radius r around 0 in the Hilbert space Lαn . Denote the preimage
l−1
αn (Br,n) in L also by Br,n. Observe that for m ≥ n we have Br,m ⊂ Br,n in L. Thus, we obtain

a decreasing sequence {Br,n}n∈N of measurable subsets of L. Their intersection B′r :=
⋂
n∈NBr,n

is thus also a measurable set in L and we have

ν(B′r) = lim
n→∞

ν(Br,n).

However, recalling formula (3.6) we see that the volumes of the balls tend to zero as n tends
to infinity, so ν(B′r) = 0. (In the complex case n in formula (3.6) is to be replaced with 2n.)
Now define Br ⊂ L as the open ball with radius r in the Hilbert space L. Then, Br ⊆ B′r. In
particular, Br is measurable (with respect to M∗) and ν(Br) = 0. Now consider the countable
union

⋃
l∈NBl of balls with integer radius, filling out L completely. Since each has measure zero,

the measure of their union, that is L, is zero as well. �

Note that elements of lim−→M(L•) can be uniquely represented as functions on L. To see this
consider the following Lemma.

Lemma 3.8. For any α ∈ A there is a unique isometric injection iα : Lα ↪→ L such that
lα ◦ i ◦ iα = idLα.
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Proof. Given α ∈ A let C be the subspace of L such that (c, v) = 0 for all c ∈ C and v ∈ Vα.
It is now easy to see that Lα can be identified with C⊥ as spaces of linear functions on Vα. The
identity lα ◦ i ◦ iα = idLα is then also clear as well as the fact that iα is isometric. �

Recall that any element of lim−→M(L•) arises as a (measurable) function f : Lα → C. Then,
the induced function f ◦ lα ◦ i : L → C uniquely determines f by the above Lemma. Applying
this to lim−→L

p(L•, ν•) suggests together with Proposition 3.1 that for certain Lp-functions that
“behave nicely” under approximation, their restriction to L is already sufficient to determine
them completely. We shall see in the next section that this is indeed true for holomorphic
L2-functions.

Definition 3.9. Let f : L → C. If there exists a closed subspace C ⊆ L of finite codimension
such that f(x+ c) = f(x) for all x ∈ L and c ∈ C, then we call f almost translation invariant.

Proposition 3.10. Let f : L → C be almost translation invariant with respect to the closed
subspace C ⊆ L of finite codimension. Set α ∈ A such that C = ker(lα ◦ i) and define f̂ : L̂→ C
by f̂ := f ◦ iα ◦ lα. Let {η1, . . . , ηn} be a basis of C⊥ ⊆ L and define the n × n matrix Qi,j :=

(ηi, ηj)L. Furthermore define f̃ : Kn → C by f̃(x) := f
( n∑
i=1

xiηi
)
. If for p ∈ [1,∞] we have

f̃ ∈ Lp(Kn, νQ) then we also have f̂ ∈ Lp(L̂, ν) and ‖f̃‖p = ‖f‖p. Moreover, if f̃ ∈ L1(Kn, νQ)
we have∫

L̂
f̂ dν =

∫
Kn
f̃ dνQ.

Proof. This follows from our above prescription for the measures να combined with Lemma 3.8
and the above discussion. �

Note that in the above proposition we have not explicitly mentioned whether L is a real or
a complex Hilbert space. Indeed, if L is a complex Hilbert space the Proposition is valid both
for L as a complex Hilbert space and as a real Hilbert space with the induced inner product.

Proposition 3.11. Let x ∈ L and 1 ≤ p <∞. Then the map f 7→ fx, where

fx(z) := f(z + x) exp

(
−1

p
<(2z + x, x)L

)
is an isometric isomorphism Lp(L̂, ν) → Lp(L̂, ν). Moreover, in the case p = 1 this preserves
the integral and in the case p = 2 the inner product.

Proof. For the dense subspace lim−→L
p(L•, ν•) this follows using translation invariance of the

Lebesgue measure. Given a Cauchy sequence {fn}n∈N in lim−→L
p(L•, ν•) that converges to some

f ∈ Lp(L̂, ν) we observe that it has a subsequence that converges pointwise almost everywhere
to f . Then, the corresponding subsequence of {(fn)x}n∈N converges pointwise almost everywhere
to fx. Hence ‖f‖p = ‖fx‖p and

∫
f =

∫
fx if p = 1. �

3.4 Holomorphic functions and coherent states

Assume in this section that L is a complex Hilbert space. The space L2(L̂, ν) carries the usual
(non-definite) inner product

〈f, g〉 :=

∫
L̂
f(x)g(x) dν(x), (3.8)
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making it complete. We shall be interested particularly in the subspace of this space of holo-
morphic functions. This will make precise the formula (3.5) and its setting.

Consider first the finite-dimensional setting of Cn with a positive definite inner product (·, ·)Q
given by a positive definite Hermitian n × n matrix Q via (x, y)Q :=

∑
i,j xiQi,jyj . Equip Cn

with the probability measure νQ as described in (3.7). Let H2(Cn, νQ) ⊆ L2(Cn, νQ) denote
the Hilbert space of square integrable holomorphic functions on Cn with respect to νQ. This is
a reproducing kernel Hilbert space, i.e., it is a Hilbert space of functions on which the evaluation
f 7→ f(x) is continuous. We recall some well known facts about this space [2]. By the Riesz
representation theorem, there is for each x ∈ Cn a unique element Kx of the Hilbert space that
realizes this evaluation. That is

〈Kx, f〉 = f(x) ∀x ∈ Cn, ∀ f ∈ H2
(
Cn, νQ

)
. (3.9)

Indeed, as is easily verified,

Kx(z) = exp ((x, z)Q) ∀x, z ∈ Cn.

In particular, we have

〈Kx,Ky〉 = Ky(x) = exp ((y, x)Q) ∀x, y ∈ Cn.

We also have the completeness relation

〈f, g〉 =

∫
〈f,Kz〉〈Kz, g〉dνQ(z) ∀ f, g ∈ H2

(
Cn, νQ

)
.

Proposition 3.12. The vector space of finite linear combinations of evaluations {Kx}x∈Cn is
dense in H2(Cn, νQ).

Proof. Let C be the closure of the subspace generated by {Kx}x∈Cn and C⊥ its orthogonal
complement. Let f ∈ C⊥. Then, f(x) = 〈Kx, f〉 = 0 for all x ∈ Cn, i.e., f = 0. Hence,
C⊥ = {0} and C = H2(Cn, νQ). �

For α ∈ A let H2(Lα, να) ⊆ L2(Lα, να) denote the Hilbert space of square integrable holo-
morphic functions on Lα. Then, lim−→H2(L•, ν•) ⊆ lim−→L

2(L•, ν•) is a (definite) inner product

space in the obvious way. Note that all elements of lim−→H2(L•, ν•) have unique representations
as functions on L since they are almost translation invariant. We shall now be interested in the
Hilbert space H2(L̂, ν), defined as the completion of lim−→H2(L•, ν•). Any element of H2(L̂, ν) can

be represented concretely as an element of L2(L̂, ν). Moreover, as we shall see, it has a unique
representation as a holomorphic function on L.

Definition 3.13. We say that a function f : L→ C is holomorphic iff f is continuous, bounded
on every ball and holomorphic (in the usual sense) at every point in every direction. We denote
the space of holomorphic functions on L by H(L). We equip it with the topology of uniform
convergence on balls.

Note that H(L) is a locally convex, metrizable and complete topological vector space.
Consider the family of functions {Kx}x∈L with Kx : L̂ → C given by z 7→ exp((x, z)L) for

all z ∈ L̂. Here as in the following we shall use the notation (·, ·)L to not only denote the
complex inner product in L, but also its canonical extensions to sesquilinear maps L̂ × L → C
and L× L̂ → C. As we shall see these functions generalize the evaluation functions considered
above and we will call them coherent states in accordance with the language of quantum theory.

Proposition 3.14. The functions Kx have the following properties:
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1. Kx ∈ lim−→H2(L•, ν•) for all x ∈ L.

2. 〈Kx, f〉 = f(x) for all f ∈ lim−→H2(L•, ν•) and x ∈ L.

3. 〈Kx,Ky〉 = exp ((y, x)L) for all x, y ∈ L.

4. ‖Kx‖2 = exp
(

1
2‖x‖

2
2

)
for all x ∈ L.

Proof. 1. Kx restricted to L is translation invariant with respect to the orthogonal com-
plement in L of the 1-dimensional (or 0-dimensional) subspace generated by x. 2. Given
f ∈ lim−→H2(L•, ν•) there exist α, β ∈ A such that Kx ∈ H2(Lα, να) and f ∈ H2(Lβ, νβ). More-
over, there is a γ ∈ A such that there are injections lγ,β : Lγ → Lβ and lγ,α : Lγ → Lα with
α as above. We can thus view f and Kx both as elements of H2(Lγ , νγ). In particular Kx is
then an evaluation on a finite-dimensional complex vector spaces as described above and we can
apply (3.9). 3. This arises as a simple consequence of 2. 4. This is in turn a simple consequence
of 3. �

Proposition 3.15. The vector space of finite linear combinations of coherent states is dense in
H2(L̂, ν).

Proof. Recall that every element of lim−→H2(L•, ν•) can be represented as an element of

H2(Lα, να) for some α. Combining this with Proposition 3.12 yields denseness in lim−→H2(L•, ν•).

But since lim−→H2(L•, ν•) is dense in H2(L̂, ν) by definition, the statement follows. �

Lemma 3.16. Let f ∈ lim−→H2(L•, ν•) and r > 0. Then,

sup
x∈Br(0)

|f(x)| ≤ exp

(
1

2
r2

)
‖f‖2. (3.10)

In particular, the natural continuous linear map lim−→H2(L•, ν•) ↪→ H(L) is injective.

Proof. By the Cauchy–Schwarz inequality we have

|f(x)| = |〈Kx, f〉| ≤ ‖Kx‖2‖f‖2 ∀x ∈ L, ∀ f ∈ lim−→H2(L•, ν•)

But ‖Kx‖2 = exp(1
2‖x‖

2
2) according to Proposition 3.14.4. This yields (3.10). Notice that each

element of lim−→H2(L•, ν•) is continuous, bounded in any ball and holomorphic at every point in

every direction. Hence there is an injective linear map lim−→H2(L•, ν•) ↪→ H(L) in the obvious
way. Its continuity follows precisely from (3.10) since it shows that the composition of this map
with every seminorm defining the topology of H(L) is continuous. �

Lemma 3.17. Let {fk}k∈N be a sequence in lim−→H2(L•, ν•) converging to f ∈ H2(L̂, ν). Suppose
that {fk(x)}k∈N converges to zero for all x ∈ L. Then, f = 0.

Proof. For all x ∈ L observe

〈Kx, f〉 = lim
k→∞
〈Kx, fk〉 = lim

k→∞
fk(x) = 0.

But recall that the coherent states are dense according to Proposition 3.15. So f = 0. �

Theorem 3.18. There is a natural injective continuous linear map H2(L̂, ν) ↪→ H(L).

Proof. The map is the one given by Lemma 3.16 on lim−→H2(L•, ν•). Since H(L) is complete,

its extension to a linear map H2(L̂, ν)→ H(L) is immediate. It remains to verify its injectivity.
Let f ∈ H2(L̂, ν) such that its image in H(L) is zero. Consider a sequence {fk}k∈N of elements
of lim−→H2(L•, ν•) that converge to f . Then, the image of the sequence converges to zero in H(L).
In, particular {fk(x)}k∈N converges to zero for every x ∈ L. But by Lemma 3.17 this implies
that f = 0. �



Holomorphic Quantization of Linear Field Theory in the General Boundary Formulation 15

Proposition 3.19. Let x ∈ L. Then, 〈Kx, f〉 = f(x) for all f ∈ H2(L̂, ν) viewed as elements
of H(L). In the same sense, the completeness relation holds

〈f, g〉 =

∫
L̂
〈f,Kx〉〈Kx, g〉dν(x) ∀ f, g ∈ H2

(
L̂, ν

)
.

Proof. Combine Proposition 3.14 with Theorem 3.18, the denseness of lim−→H2(L•, ν•) in H(L)
and the fact that evaluation is continuous on H(L). The completeness relation is then also
obvious. �

This proposition means in particular that we may view H2(L̂, ν) as a reproducing kernel
Hilbert space of functions on L.

Proposition 3.20. The Hilbert space H2(L̂, ν) is separable.

Proof. Since L is separable, there is a countable dense subset D ⊆ L. Since the subspace of
linear combinations of coherent states is dense in H2(L̂, ν) by Proposition 3.15 it is sufficient to
show that any multiple λKx of a coherent state can be arbitrarily approximated by a multiple
of a coherent state of the form qKp, where p ∈ D and q ∈ Q ⊕ iQ. This is easy to verify by
explicit calculation. �

4 Quantization

4.1 Classical data

We assume the classical theory is provided in the following form.

(C1) Associated to each hypersurface Σ is a complex separable Hilbert space LΣ (thought of
as the space of solutions near Σ) with inner product denoted by {·, ·}Σ. We also define
gΣ(·, ·) := <{·, ·}Σ and ωΣ(·, ·) := 1

2={·, ·}Σ and denote by JΣ : LΣ → LΣ the scalar
multiplication with i in LΣ.

(C2) Associated to each hypersurface Σ there is a conjugate linear involution LΣ → LΣ under
which the inner product is complex conjugated. We will not write this map explicitly, but
rather think of LΣ as identified with LΣ. Then, {φ′, φ}Σ = {φ′, φ}Σ for all φ, φ′ ∈ LΣ.

(C3) Suppose the hypersurface Σ decomposes into a disjoint union of hypersurfaces Σ = Σ1 ∪ · · ·
· · · ∪ Σn. Then, there is an isometric isomorphism of complex Hilbert spaces LΣ1 ⊕ · · ·
· · · ⊕ LΣn → LΣ. We will not write this map explicitly, but rather think of it as an iden-
tification.

(C4) Associated to each region M is a real vector space LM (thought of as the space of solutions
in M).

(C5) Associated to each region M there is a linear map of real vector spaces rM : LM → L∂M .
The image LM̃ of rM is a real closed subspace of L∂M . Furthermore it is Lagrangian with
respect to the symplectic form ω∂M .

(C6) Let M1 and M2 be regions and M := M1 ∪ M2 be their disjoint union. Then LM =
LM1 ⊕ LM2 . Moreover, rM = rM1 + rM2 .

(C7) Let M be a region with its boundary decomposing as a disjoint union ∂M = Σ1 ∪Σ ∪Σ′,
where Σ′ is a copy of Σ. Let M1 denote the gluing of M to itself along Σ, Σ′ and
suppose that M1 is a region. Note ∂M1 = Σ1. Then, there is an injective linear map
rM ;Σ,Σ′ : LM1 ↪→ LM such that

LM1 ↪→ LM ⇒ LΣ
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is an exact sequence. Here the arrows on the right hand side are compositions of the
map rM with the orthogonal projections of L∂M to LΣ and LΣ′ respectively (the latter
identified with LΣ). Moreover, the following diagram commutes, where the bottom arrow
is the orthogonal projection

LM1

r
M ;Σ,Σ′ //

rM1

��

LM

rM

��
L∂M1 L∂Moo

We add the following observations: gΣ is a real positive definite symmetric bilinear form
making LΣ into a real Hilbert space. ωΣ is a real anti-symmetric non-degenerate bilinear form
making LΣ into a symplectic vector space. Also

gΣ = gΣ, JΣ = −JΣ, ωΣ = −ωΣ.

Moreover, for all φ, φ′ ∈ LΣ

gΣ(φ, φ′) = 2ωΣ(φ, JΣφ
′), {φ, φ′}Σ = gΣ(φ, φ′) + 2iωΣ(φ, φ′),

gΣ(φ, φ′) = gΣ(JΣφ, JΣφ
′), ωΣ(φ, φ′) = ωΣ(JΣφ, JΣφ

′).

Lemma 4.1. Let M be a region. Then, L∂M understood as a real Hilbert space decomposes into
an orthogonal direct sum L∂M = LM̃ ⊕ J∂MLM̃ .

Proof. Let φ, φ′ ∈ LM̃ . Then, g∂M (φ, J∂Mφ
′) = −2ω∂M (φ, φ′) = 0, since LM̃ is isotropic

in L∂M . Thus, LM̃ and J∂MLM̃ are orthogonal in L∂M . Now suppose that φ ∈ L∂M is in the
orthogonal complement of LM̃ . That is g∂M (φ′, φ) = 2ω∂M (φ′, J∂Mφ) = 0 for all φ′ ∈ LM̃ .
But since LM̃ is coisotropic in L∂M we must have J∂Mφ ∈ LM̃ , i.e., φ ∈ J∂MLM̃ . Hence,
L∂M = LM̃ + J∂MLM̃ . �

This means in particular, that we may view L∂M as the complexification of the real Hilbert
space LM̃ .

4.2 State spaces

To each hypersurface Σ we associate a Hilbert space HΣ as follows. We consider the inner
product (·, ·) := 1

2{·, ·}Σ on LΣ. According to Section 3.3 this yields a σ-algebra M∗Σ and

a Gaussian measure νΣ on L̂Σ. We define HΣ := H2(L̂Σ, νΣ) as described in Section 3.4 as
the space of square-integrable holomorphic functions on L̂Σ with inner product (3.8). When
convenient, we also make use of the fact that, according to Theorem 3.18, we may view HΣ as
a subspace of H(LΣ). In particular, this implies that an element of HΣ is completely determined
by its values on LΣ.

Note that a function that is holomorphic on LΣ is anti-holomorphic on LΣ and vice-versa.
In particular, complex conjugation defines a conjugate linear isomorphism ιΣ : HΣ → HΣ. It is
also clear that for disjoint unions of hypersurfaces we get HΣ1∪Σ2 = HΣ1⊗̂HΣ2 , where the tensor
product is the (completed) tensor product of Hilbert spaces. Thus, we have satisfied axioms
(T1), (T1b), (T2), (T2b).

Following Section 3.4 we consider coherent states in HΣ. The coherent state corresponding
to an element ξ ∈ LΣ is the holomorphic function

Kξ(φ) := exp

(
1

2
{ξ, φ}Σ

)
∀φ ∈ L̂Σ.
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Here, analogous to the corresponding context of Section 3.4, we denote by {·, ·}Σ not only the
inner product on LΣ, but also its extensions to sesquilinear maps LΣ× L̂Σ and L̂Σ×LΣ. Recall
key properties of coherent states, due to Propositions 3.14 and 3.19,

〈Kξ, ψ〉Σ = ψ(ξ) ∀ ξ ∈ LΣ, ∀ψ ∈ HΣ,

〈Kξ,Kξ′〉Σ = exp

(
1

2
{ξ′, ξ}Σ

)
∀ ξ, ξ′ ∈ LΣ,

‖Kξ‖2 = exp

(
1

4
‖ξ‖2Σ,2

)
∀ ξ ∈ LΣ,

〈ψ, η〉Σ =

∫
L̂Σ

〈ψ,Kξ〉Σ〈Kξ, η〉Σ dνΣ(ξ) ∀ψ, η ∈ HΣ. (4.1)

An important variant of the coherent states are their normalized versions, for ξ ∈ LΣ

K̃ξ := CξKξ, with Cξ := exp

(
−1

4
{ξ, ξ}Σ

)
. (4.2)

When it is useful, we also indicate explicitly on which hypersurface a coherent state lives, e.g., we
write KΣ,ξ to indicated this. Coherent states are compatible with the involutions ιΣ : HΣ → HΣ

in the obvious way

KΣ,ξ = ιΣ(KΣ,ξ), K̃Σ,ξ = ιΣ(K̃Σ,ξ).

The coherent states are also compatible with decompositions of hypersurfaces in a simple way.
Namely, for (ξ, ξ′) ∈ LΣ1 × LΣ2 we have

K(ξ,ξ′) = Kξ ⊗Kξ′ ,

and analogously for the normalized coherent states

K̃(ξ,ξ′) = K̃ξ ⊗ K̃ξ′ and C(ξ,ξ′) = CξCξ′ . (4.3)

4.3 Amplitudes

Let M be a region. Consider the Gaussian probability measure νM̃ on L̂M̃ ⊆ L̂∂M determined
by the real inner product (·, ·) = 1

4g∂M (·, ·) restricted to LM̃ , according to Section 3.3. Let

ψ ∈ H∂M and define ψ̃ : L̂M̃ → C by ψ̃ := ψ ◦ r̂M̃ , where we think of ψ as an element of

L2(L̂∂M , ν∂M ) and r̂M̃ is the continuous extension of rM̃ . If ψ̃ ∈ L1(L̂M̃ , νM̃ ) we define

ρM (ψ) :=

∫
L̂M̃

ψ̃(φ) dνM̃ (φ). (4.4)

As we shall see in a moment there is at least a dense subspace of elements of H∂M which yield
integrable functions in this sense, namely the linear combinations of coherent states. Thus, we
satisfy axiom (T4). It is also clear that formula (4.4) automatically satisfies axiom (T5a) since
the measure for a disjoint union of regions is the product measure. To simplify notation we shall
in the following not write explicitly a map τ , when composed with ρ.

Remarkably, knowing the decomposition of the boundary solution space it is possible to give
an explicit formula for the evaluation of a coherent state with the amplitude map.

Proposition 4.2. Let ξ ∈ L∂M . Let ξ = ξR + J∂Mξ
I be the decomposition of ξ with respect to

the orthogonal direct sum L∂M = LM̃ ⊕ J∂MLM̃ according to Lemma 4.1. Then,

ρM (Kξ) = exp

(
1

4
g∂M (ξR, ξR)− 1

4
g∂M (ξI, ξI)− i

2
g∂M (ξR, ξI)

)
. (4.5)
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Proof. For φ ∈ L̂M̃ we can rewrite the coherent state function as follows

Kξ(φ) = exp

(
1

2
{ξR + J∂Mξ

I, φ}∂M
)

= exp

(
1

2
{ξR, φ}Σ −

i

2
{ξI, φ}∂M

)
= exp

(
1

2
g∂M (ξR, φ)− i

2
g∂M (ξI, φ)

)
. (4.6)

Here we have used the fact that ω∂M vanishes on LM̃ since LM̃ is an isotropic subspace of L∂M .
We see that Kξ is an almost translation invariant function on LM̃ . Indeed, it is translation
invariant with respect to the subspace of L∂M given by the orthogonal complement of the at
most two-dimensional space spanned by ξR and ξI. We can thus apply Proposition 3.10 to
evaluate the integral (4.4) as a simple two-dimensional Gaussian integral. This yields the stated
result.

Nevertheless, let us remark that the calculation can be simplified even more. Suppose we
replace the factor i in the second summand of the exponent in (4.6) by a complex parame-
ter z. Then, clearly, the expression is holomorphic in z. Moreover, the integral (4.4) will also
be holomorphic in z. This can be easily seen by recalling that a function is holomorphic in z
near a point p if and only if any complex integral along a closed loop in a small neighborhood
of p vanishes. Now, Fubini’s theorem applies here and we can interchange the integrals. Now
recall that an entire holomorphic (as in this case) is completely determined by its values on R.
It is therefore sufficient to perform the integral (4.4) merely for z ∈ R. But then, the integrand
is almost translation invariant with respect to the subspace of L∂M given by the orthogonal
complement of the at most one-dimensional space spanned by ξR − zξI. Its calculation requires
the evaluation merely of a one-dimensional Gaussian integral. Indeed, the result is

exp

(
1

4
g∂M (ξR − zξI, ξR − zξI)

)
,

leading to (4.5). �

This result has a simple, but compelling physical interpretation. To see this more clearly, we
use normalized states. For a normalized coherent state equation (4.5) becomes

ρM (K̃ξ) = exp

(
−1

2
g∂M

(
ξI, ξI

)
− i

2
g∂M

(
ξR, ξI

))
. (4.7)

If we think in classical terms, the component ξR of the boundary solution ξ can be continued con-
sistently to the interior and is hence classically allowed. The component ξI does not posses such
a continuation and is hence classically forbidden. This is reflected precisely in equation (4.7). If
the classically forbidden component is not present, the amplitude is simply equal to 1. On the
other hand, the presence of a classically forbidden component leads to an exponential suppres-
sion, governed precisely by the “size” of this component (measured in terms of the metric g∂M ).
There appears also a phase depending on the “mixing” of the components, if both are present.

We now turn to the context of axiom (T3x). Let Σ be a hypersurface. Then Σ defines an
empty region Σ̂ with boundary ∂Σ̂ = Σ ∪ Σ′. Here, Σ′ denotes a second copy of Σ. We have
then, L∂Σ̂ = LΣ × LΣ′ and H∂Σ̂ = HΣ⊗̂HΣ′ . Moreover,

ω∂Σ̂ = ωΣ + ωΣ′ = ωΣ′ − ωΣ, J∂Σ̂ = JΣ + JΣ′ = JΣ′ − JΣ,

g∂Σ̂ = gΣ + gΣ′ = gΣ + gΣ′ ,

{·, ·}∂Σ̂ = {·, ·}Σ + {·, ·}Σ′ = {·, ·}Σ + {·, ·}Σ′ .

The subspace L ˜̂
Σ
⊆ L∂Σ̂ is precisely the space of pairs (φ, φ) while the subspace J∂Σ̂L ˜̂

Σ
⊆ L∂Σ̂

is the space of pairs (φ,−φ). In particular, we have a linear bijection of real vector spaces
LΣ → L ˜̂

Σ
given by φ 7→ (φ, φ). The following proposition shows that axiom (T3x) is satisfied.
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Proposition 4.3. We have HΣ ⊗HΣ′ ⊆ H◦∂Σ̂
. Moreover, for ψ,ψ′ ∈ HΣ we have

ρΣ̂(ιΣ(ψ)⊗ ψ′) = 〈ψ,ψ′〉Σ. (4.8)

Proof. Under the bijection φ 7→ (φ, φ) the quadratic forms determined by 1
2{·, ·}Σ on LΣ and

by 1
4g∂Σ̂ on L ˜̂

Σ
⊆ L∂Σ̂ become identical

1

4
g∂Σ̂(φ, φ) =

1

4
gΣ(φ, φ) +

1

4
gΣ′(φ, φ) =

1

2
gΣ(φ, φ) =

1

2
{φ, φ}Σ.

This implies the equality of the measures νΣ and ν ˜̂
Σ

under this identification. This in turn

implies the equality for all ψ,ψ′ ∈ HΣ∫
L̂ ˜̂

Σ

ψ(φ)ψ′(φ) dν ˜̂
Σ

(φ) =

∫
L̂Σ

ψ(φ)ψ′(φ) dνΣ(φ) = 〈ψ,ψ′〉Σ. (4.9)

Finally notice that by definition of the amplitude map

ρΣ̂(ιΣ(ψ)⊗ ψ′) =

∫
L̂ ˜̂

Σ

ψ(φ)ψ′(φ) dν ˜̂
Σ

(φ)

if the integrand is integrable. But this is precisely ensured by (4.9). Hence, HΣ ⊗HΣ′ ⊆ H◦∂Σ̂
and equation (4.8) is valid for all ψ,ψ′ ∈ HΣ. �

4.4 Gluing

We proceed in this section to demonstrate the validity of the gluing axiom (T5b). In order to
do this we will need to introduce an additional assumption. First, however, we shall modify
the appearance of the axiom to a more convenient form. For a hypersurface Σ we can write
the completeness relation in the Hilbert space HΣ either with an orthonormal basis, or with
coherent states as in Proposition 3.19. Implicit in axiom (T5b) as written in Section 2.2 is the
first form with an orthonormal basis. We shall prefer here the second form and shall require
instead of equation (2.1), for all ψ ∈ H◦Σ1

ρM1(ψ) · c(M ; Σ,Σ′) =

∫
L̂Σ

ρM (ψ ⊗Kξ ⊗ ιΣ(Kξ)) dνΣ(ξ). (4.10)

Recall that here M is a region with its boundary decomposing as a disjoint union ∂M =
Σ1 ∪ Σ ∪ Σ′, where Σ′ is a copy of Σ. M1 denotes the gluing of M with itself along Σ, Σ′ and
we suppose that M1 is an admissible region. We note ∂M1 = Σ1. Then, we need (4.10) to be
satisfied. However, taking merely the geometric setting of Section 2.1 and the classical axioms
of Section 4.1 is not sufficient to ensure this3.

Definition 4.4. We say that the gluing data satisfy the integrability condition if the function

ξ 7→ ρM (K0 ⊗Kξ ⊗ ιΣ(Kξ))

is integrable with respect to (L̂Σ, νΣ) and its integral is different from zero.

We shall introduce the additional assumption that the integrability condition is satisfied for
any gluing yielding an admissible region. Then, all axioms are indeed satisfied as the following
theorem shows.

3One can construct counter-examples along the lines of simple topological quantum field theories where gluing
a cylinder to itself yields a torus and associated to it the dimension of the vector space associated with one
boundary component. If the dimension of the vector space is infinite, this becomes ill defined.
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Theorem 4.5. If the integrability condition is satisfied, then axiom (T5b) holds. Moreover,

c(M ; Σ,Σ′) =

∫
L̂Σ

ρM (K0 ⊗Kξ ⊗ ιΣ(Kξ)) dνΣ(ξ).

Proof. Since the space of linear combinations of coherent states is dense in H◦∂M1
it is sufficient

to demonstrate the axiom for coherent states. Thus, we have to show for all φ ∈ LΣ1

ρM1(Kφ) · c(M ; Σ,Σ′) =

∫
L̂Σ

ρM (Kφ ⊗Kξ ⊗ ιΣ(Kξ)) dνΣ(ξ). (4.11)

We first restrict the proof to the special case φ ∈ LM̃1
. Then, by (C7) there is φ̃ ∈ LM̃ such

that φ̃1 = φ (with the obvious notation). Moreover, also due to (C7) we have φ̃Σ = φ̃Σ′ .
We start by reformulating the integrand of (4.11). We perform a substitution using Propo-

sition 3.11 with x = φ̃, use the fact that LM̃ is Lagrangian in L∂M , and make use of various
identities relating inner products, symplectic forms etc. that follow straightforwardly from the
axioms for the classical data to obtain

ρM (Kφ ⊗Kξ ⊗ ιΣ(Kξ)) =

∫
L̂M̃

Kφ(η1)Kξ(ηΣ)Kξ(ηΣ′) dνM̃ (η)

=

∫
L̂M̃

exp

(
1

2
{φ, η1}1 +

1

2
{ξ, ηΣ}Σ +

1

2
{ξ, ηΣ′}Σ′

)
dνM̃ (η)

=

∫
L̂M̃

exp

(
1

2
{φ, η1 + φ̃1}1 +

1

2
{ξ, ηΣ + φ̃Σ}Σ +

1

2
{ξ, ηΣ′ + φ̃Σ′}Σ′

− 1

4
g∂M (φ̃+ 2η, φ̃)

)
dνM̃ (η)

=

∫
L̂M̃

exp

(
1

2
{φ, η1 + φ̃1}1 +

1

2
{ξ, ηΣ + φ̃Σ}Σ +

1

2
{ξ, ηΣ′ + φ̃Σ′}Σ′

− 1

4
{φ̃, φ̃+ 2η}∂M

)
dνM̃ (η)

=

∫
L̂M̃

exp

(
1

4
{φ, φ}1 +

1

2
{ξ − φ̃Σ, ηΣ}Σ +

1

2
{ξ − φ̃Σ′ , ηΣ′}Σ′

+
1

4
{2ξ − φ̃Σ, φ̃Σ}Σ +

1

4
{2ξ − φ̃Σ′ , φ̃Σ′}Σ′

)
dνM̃ (η)

= exp

(
1

4
{φ, φ}1 +

1

4
{2ξ − φ̃Σ, φ̃Σ}Σ +

1

4
{2ξ − φ̃Σ′ , φ̃Σ′}Σ′

)
×
∫
L̂M̃

exp

(
1

2
{ξ − φ̃Σ, ηΣ}Σ +

1

2
{ξ − φ̃Σ′ , ηΣ′}Σ′

)
dνM̃ (η)

= exp

(
1

4
{φ, φ}1 +

1

2
gΣ(2ξ − φ̃Σ, φ̃Σ)

)
×
∫
L̂M̃

exp

(
1

2
gΣ(ξ − φ̃Σ, ηΣ + ηΣ′) + iωΣ(ξ − φ̃Σ, ηΣ − ηΣ′)

)
dνM̃ (η).

We now integrate the expression over ξ ∈ L̂Σ and use Proposition 3.11 with x = −φ̃ to obtain∫
L̂Σ

(
exp

(
1

4
{φ, φ}1 −

1

2
gΣ(2ξ − φ̃Σ,−φ̃Σ)

)
×
∫
L̂M̃

exp

(
1

2
gΣ(ξ − φ̃Σ, ηΣ + ηΣ′) + iωΣ(ξ − φ̃Σ, ηΣ − ηΣ′)

)
dνM̃ (η)

)
dνΣ(ξ)
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=

∫
L̂Σ

(
exp

(
1

4
{φ, φ}1

)∫
L̂M̃

exp

(
1

2
gΣ(ξ, ηΣ + ηΣ′) + iωΣ(ξ, ηΣ − ηΣ′)

)
dνM̃ (η)

)
dνΣ(ξ)

= exp

(
1

4
{φ, φ}1

)∫
L̂Σ

ρM (K0 ⊗Kξ ⊗ ιΣ(Kξ)) dνΣ(ξ) = ρM1(Kφ) · c(M ; Σ,Σ′).

For the case of general φ ∈ LΣ1 consider the canonical decomposition φ = φR + JΣ1φ
I, where

φR, φI ∈ LM̃1
. Write

Kφ(η1) = exp

(
1

2
{φR + JΣ1φ

I, η1}1
)

= exp

(
1

2
{φR, η1}1 −

i

2
{φI, η1}1

)
Then, replace i in the second summand of the exponential by a complex parameter z. Observe
that we obtain a holomorphic function of z and that the integrations to be performed preserve
the holomorphicity as in the proof of Proposition 4.2. Hence, it is sufficient to perform the
calculation for z ∈ R to determine the function completely. But this is precisely the calculation
performed above with φ replaced by φR − zφI ∈ LM̃1

. This completes the proof. �

4.5 Evolution picture

In this section we consider what our quantization scheme implies in an “evolution picture”.
That is, we consider situations with regions were there is a one-to-one correspondence between
classical solutions on one boundary component and those on another boundary component. This
is useful in particular for comparison with other quantization schemes where (time-)evolution
plays a distinguished role.

Let M be a region such that its boundary decomposes as a disjoint union of two components
∂M = Σ1 ∪ Σ2. Assume moreover, that the linear maps r1 : LM̃ → LΣ1 and r2 : LM̃ → LΣ2

given by rM ;Σ1,Σ2
composed with orthogonal projections are homeomorphisms. We denote the

composition by T := r2 ◦ r−1
1 : LΣ1 → LΣ2 . As explained in Section 3.1 we have

ωΣ2(Tφ, Tφ′) = ωΣ1(φ, φ′) ∀φ, φ′ ∈ LΣ1 (4.12)

due to axiom (C5). However, we do not necessarily have

JΣ2 ◦ T = T ◦ JΣ1 . (4.13)

But if (and only if) this is true, T is unitary and we obtain a particularly “nice” evolution
picture.

Proposition 4.6. There is a linear map U : HΣ1 → HΣ2 such that

ρM (ψ1 ⊗ ιΣ2(ψ2)) = 〈ψ2, Uψ1〉Σ2 ∀ψ1, ψ2 ∈ HΣ2 . (4.14)

In particular, U is given by

(Uψ)(φ) = ρM
(
ψ ⊗KΣ2,φ

)
∀ψ ∈ HΣ1 , ∀φ ∈ LΣ2 . (4.15)

Moreover, if T is unitary then U is unitary and we have

(Uψ)(φ) = ψ
(
T−1φ

)
∀ψ ∈ HΣ1 , ∀φ ∈ LΣ2 ,

UKΣ1,ξ = KΣ2,T ξ ∀ ξ ∈ LΣ1 .
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Proof. Suppose we take (4.15) as a definition. It is then straightforward to verify (4.14) using
the formula (4.4) for the amplitude, the completeness relation (4.1) and further properties of
coherent states:

〈ψ2, Uψ1〉Σ2 =

∫
L̂Σ2

ψ2(φ) ρM
(
ψ1 ⊗KΣ2,φ

)
dνΣ2(φ)

=

∫
L̂Σ2

ψ2(φ)

(∫
L̂M̃

ψ1(η)KΣ2,φ
(η) dνM̃ (η)

)
dνΣ2(φ)

=

∫
L̂M̃

ψ1(η)

(∫
L̂Σ2

ψ2(φ)KΣ2,η(φ) dνΣ2(φ)

)
dνM̃ (η)

=

∫
L̂M̃

ψ1(η)ψ2(η) dνM̃ (η) = ρM (ψ1 ⊗ ιΣ2(ψ2))

We proceed to consider the special case that T is unitary. Then, we have an identification
of the real vector spaces LM̃ and LΣ1 such that νM̃ = νΣ1 as in the proof of Proposition 4.3.
Explicitly, we have

ρM
(
ψ ⊗KΣ2,φ

)
=

∫
L̂M̃

ψ(η1)KΣ2,φ
(η2) dνM̃ (η) =

∫
L̂M̃

ψ(η1) exp

(
1

2
{φ, η2}Σ2

)
dνM̃ (η)

=

∫
L̂M̃

ψ(η1)exp

(
1

2

{
T−1φ, T−1η2

}
Σ1

)
dνM̃ (η)

=

∫
L̂M̃

ψ(η1)KΣ1,T−1φ(η1) dνM̃ (η)

=

∫
L̂Σ1

ψ(η)KΣ1,T−1φ(η) dνΣ1(η) = 〈KΣ1,T−1φ, ψ〉Σ1 = ψ
(
T−1φ

)
.

Here, we have used the notation η1 and η2 to specify explicitly that we refer to the solutions
induced on the hypersurfaces Σ1 and Σ2 respectively. The explicit expression for the evolved
coherent state is an easy calculation. �

Consider the following particular physical application of this statement. Suppose we are in
a setting where the spaces of solutions LΣ1 , LΣ2 for any pair (Σ1,Σ2) of connected admissible
hypersurfaces can be related by linear homeomorphisms TΣ1,Σ2 : LΣ1 → LΣ2 as described above,
either directly or indirectly. By directly, we mean that there is a region with boundary the
disjoint union Σ1 ∪ Σ2. By indirect we mean that there is a third hypersurface Σ3, such that
both LΣ1 and LΣ2 can be directly related to LΣ3 . Note that uniqueness of the maps TΣ1,Σ2

is ensured by the axioms (C1)–(C7). The most important example for such a setting would
be that of Cauchy hypersurfaces in a globally hyperbolic spacetime. As observed above, we
have compatibility of the symplectic forms as written in equation (4.12). To define a complete
quantization it now suffices to pick a compatible complex structure JΣ0 on one particular admis-
sible hypersurface Σ0. This can then be transported with the maps T to any other admissible
hypersurface via equation (4.13). Clearly, by Proposition 4.6 we obtain a quantization where
evolution UΣ1,Σ2 : HΣ1 → HΣ2 from any admissible hypersurface Σ1 to any other admissible
hypersurface Σ2 is unitary. Note that this is in agreement with recent results in [7], where
a Schrödinger–Feynman quantization was used instead.

4.6 Vacuum

The quantization construction described above yields a natural vacuum in the sense of the axioms
of Section 2.3. Indeed, it is immediate to verify that defining the vacuum state ψΣ,0 for every
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hypersurface Σ to be the constant function with value 1 satisfies all the axioms. Alternatively,
we can view this as the coherent state K0 associated to the element 0 ∈ LΣ.

There is a potentially larger class of vacua that also quite naturally arises from our quantiza-
tion construction. To this end suppose that all regions and hypersurfaces arise as submanifolds
of a fixed manifold B (possibly with additional structure) of dimension d. (This setting was
termed a global background in [19].) Suppose now that there exists a solution φ of the classical
field equations in all of B. This induces a particular local solution in any region and on any hy-
persurface. The normalized coherent states associated with these solutions then form a vacuum
in the sense of the axioms. We may formalize this as follows.

Definition 4.7. Let {φΣ} be an assignment of an element φΣ ∈ LΣ to every hypersurface Σ.
Then we call this assignment a global solution iff it satisfies the following properties:

1. Let Σ be a hypersurface. Then, φΣ = φΣ.

2. Suppose the hypersurface Σ decomposes into a disjoint union of hypersurfaces Σ = Σ1 ∪
· · · ∪ Σn. Then, φΣ = (φΣ1 , . . . , φΣn).

3. Let M be a region. Then, φ∂M ∈ LM̃ .

Note that we have not explicitly fixed any solutions in the spaces LM for regions M as this
is not necessary for our present purposes. Of course, the last condition in the definition implies
that the selected solution in the boundary of a region comes from a solution in the interior.
Note also that we do not need to explicitly require a global background. In particular, we see
that selecting the trivial solution on each hypersurface also satisfies the definition of a global
solution.

Proposition 4.8. Every global solution gives rise to a vacuum. In particular, if {φΣ} defines
a global solution, the associated vacuum state ψΣ,0 for the hypersurface Σ is the normalized
coherent state K̃φΣ

.

Proof. (V1) is clear. Condition 1 of Definition 4.7 together with axiom (C2) and the explicit
form (4.2) of the normalized coherent state ensures (V2). Condition 2 of Definition 4.7 together
with axiom (C3) and the decomposition property (4.3) of coherent states yields (V3). Finally
combining condition 3 of Definition 4.7, Proposition 4.2 and (4.2) yields (V5). �

5 Klein–Gordon theory in special geometries

In this section we consider the Klein–Gordon theory and its quantization in Minkowski space
for certain special families of hypersurfaces and regions. This serves partly for comparison
with previous results [8, 9, 20, 23], where a quantization scheme based on the Schrödinger
representation and the Feynman path integral was used. However, we are also able to extend
these results in a certain direction. In particular, we show how classical solutions that have
exponential behavior in spatial directions can be quantized on certain timelike hypersurfaces.
These evanescent waves are “invisible” in many traditional quantization schemes as they do not
yield well behaved global solutions.

The hypersurfaces we consider are essentially of three types: 1. Equal-time hyperplanes,
2. Timelike hyperplanes along the temporal axis, 3. Timelike hypercylinders. The first geometry
represents the most simple “standard case” of what one would usually consider in various well-
known quantization schemes. A quantization on the second geometry was first considered in [23]
and on the third geometry in [20]. We use coordinates (t, x1, x2, x3) on Minkowski space.
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5.1 Equal-time hyperplanes

We consider the following geometrical setting: Admissible hypersurfaces are all oriented equal-
time hyperplanes and their finite disjoint unions. Admissible regular regions are all finite closed
time-intervals extended over all of space and their finite disjoint unions.

We parametrize global solutions of the Klein–Gordon equation in the usual way via plane
waves

φ(t, x) =

∫
d3k

(2π)32E

(
φ(k)e−i(Et−kx) + φ(k)ei(Et−kx)

)
, (5.1)

where φ : R3 → C is a complex function on momentum space of a type to be determined below
and E :=

√
k2 +m2. Due to the usual Cauchy property we can use this also to parametrize the

space of solutions Lt in a neighborhood of an equal-time hypersurface Σt. The (negative of the)
symplectic form (3.2) on Lt is4

ωt(φ1, φ2) =
1

2

∫
d3x (φ2(t, x)∂0φ1(t, x)− φ1(t, x)∂0φ2(t, x))

=
i

2

∫
d3k

(2π)32E

(
φ2(k)φ1(k)− φ1(k)φ2(k)

)
.

In agreement with [8, 9, 20, 23] we chose the orientation of Σt here as the past boundary of
a region that lies in the future. According to Section 3.2 we need to find a suitable complex
structure on Lt. The standard one is

(J(φ))(k) = −iφ(k).

This complex structure is automatically compatible with time-evolution in the sense of (4.13),
since we use a parametrization in terms of global solutions. Thus, we have unitary evolution in
time according to Proposition 4.6.

The induced metric (3.3) is

gt(φ1, φ2) =

∫
d3k

(2π)32E

(
φ1(k)φ2(k) + φ2(k)φ1(k)

)
.

This leads to the standard complex inner product (3.4) on Lt

{φ1, φ2}t = 2

∫
d3k

(2π)32E
φ1(k)φ2(k).

This also fixes the space Lt precisely as the space of (equivalence classes of) square-integrable
complex functions φ : R3 → C with the inner product written above. The quantization thus
obtained with the unitary time evolution operator U given by Proposition 4.6 is equivalent to
the usual well-known quantization of Klein–Gordon theory.

The normalized coherent state K̃t,η takes in the Schrödinger representation the form

K̃t,η(ϕ) = Cη exp

(∫
d3x d3k

(2π)3
η(k)e−i(Et−kx)ϕ(x)

)
ψ0(ϕ),

see equation (2) of [8] and equation (26) of [9].
We also note that the complex solution η̂ of the Klein–Gordon equation appearing in equa-

tion (6) of [8] and equation (39) of [9] and determined by solutions η1 ∈ Lt1 and η2 ∈ Lt2 is
simply η̂ = ηR − iηI where we decompose (η1, η2) ∈ L∂[t1,t2] (with the obvious notation) as in

Lemma 4.1, (η1, η2) = ηR + J∂[t1,t2]η
I.

4It seems that to obtain results in agreement with [8, 9, 20, 23] one should chose minus the symplectic form
rather than the symplectic form itself. Changing simultaneously the sign of the complex structure, this leaves
the axioms of Section 4.1 invariant and therefore may be considered merely a choice of convention for our present
purposes.
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5.2 Timelike hyperplanes

We consider the following geometrical setting: Admissible hypersurfaces are all oriented hyper-
planes perpendicular to the x1-axis and their finite disjoint unions. Admissible regular regions
are all finite closed intervals on the x1-axis extended in the other coordinate directions and their
finite disjoint unions.

A solution of the Klein–Gordon equation that is well behaved near a constant x1 hypersurface
may be parametrized via a complex function η : R× R2 → C as

η(t, x1, x̃) =

∫
dE d2k̃

(2π)32k1

(
η(E, k̃)f(E, k̃, x1)e−i(Et−k̃x̃) + η(E, k̃) f(E, k̃, x1)ei(Et−k̃x̃)

)
,

where x̃ := (x2, x3), k̃ := (k2, k3), k1 :=
√
|E2 − k̃2 −m2| and

f(E, k̃, x1) :=

{
eik1x1 = cos(k1x1) + i sin(k1x1) if E2 − k̃2 −m2 > 0,

cosh(k1x1) + i sinh(k1x1) if E2 − k̃2 −m2 < 0.

In contrast to the case of spacelike hypersurfaces the solutions now fall into two classes, de-
pending on whether E2 is larger or smaller than k̃2 + m2. That is, they can be distinguished
by whether the “missing” momentum-squared in the x1-direction, E2 − k̃2 − m2, is positive
or negative. In the first case we obtain the usual plane waves that yield well behaved global
solutions of the form (5.1). But there are additional solutions corresponding to the second case
that are well behaved near the hypersurface, but not globally. These are evanescent waves that
behave exponentially in the x1-direction. In [20, 23] these were termed (somewhat unfortunately
as it turned out) “unphysical solutions” and excluded from the quantization. This exclusion is
consistent in a free theory since different frequencies decouple there. However, these solutions
are perfectly legitimate in the description of local physics. For example, a source outside of the
modeled spacetime region will generically generate evanescent waves inside the region (where
the theory is source-free by assumption) in addition to propagating ones. In electromagnetism,
evanescent waves occur in the near field of a source.

The (negative of the) symplectic structure (3.2) on the space of solutions Lx1 associated to
the hyperplane at x1 (as in [20, 23] with orientation as a boundary of a region with larger values
of x1) is5

ωx1(η1, η2) =
1

2

∫
dtd2x̃ (η1(t, x1, x̃)∂1η2(t, x1, x̃)− η2(t, x1, x̃)∂1η1(t, x1, x̃))

=
i

2

∫
dE d2k̃

(2π)32k1

(
η2(E, k̃)η1(E, k̃)− η2(E, k̃)η1(E, k̃)

)
.

A compatible complex structure is

(J(η))(E, k̃) = −iη(E, k̃).

As in the spacelike case this is automatically compatible with evolution in the sense of (4.13),
now of course in the spatial x1-direction. Thus “evolution” in this direction is unitary in the
quantum theory, by Proposition 4.6.

The resulting metric (3.3) is

gx1(η1, η2) =

∫
dE d2k̃

(2π)32k1

(
η1(E, k̃)η2(E, k̃) + η2(E, k̃)η1(E, k̃)

)
.

5See footnote 4.
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The complex inner product (3.4) is then given by

{η1, η2}x1 = 2

∫
dE d2k̃

(2π)32k1
η1(E, k̃)η2(E, k̃).

The space Lx1 is thus precisely the space of (equivalence classes of) complex valued square-
integrable functions R× R2 → C with the above inner product.

We can split this space into an orthogonal direct sum Lx1 = Lp
x1 ⊕ Le

x1
, where the first

summand comprises those functions η ∈ Lx1 such that η(E, k̃) = 0 if E2 − k̃2 < m2 and the
second summand comprises those functions η ∈ Lx1 such that η(E, k̃) = 0 if E2− k̃2 > m2. The
elements of Lp

x1 are then precisely the propagating waves, i.e., those solutions that are globally
well behaved. The elements of Le

x1
on the other hand are precisely the evanescent waves that

behave exponentially in the x1-direction. The orthogonality of the decomposition implies that we
obtain a decomposition of the measure on L̂x1 as a product of the measures on the subspaces L̂p

x1

and L̂e
x1

. This in turn implies that the respective Hilbert space of square-integrable holomorphic
functions decomposes as Hx1 = Hp

x1⊗̂He
x1

. On the other hand, Hp
x1 and He

x1
can also be realized

as subspaces of Hx1 , namely by restricting to those holomorphic functions that are invariant
under translations in Le or in Lp respectively. It is clear, moreover, that the unitary operator U
associated to evolution in x1-direction by Proposition 4.6 preserves these subspaces. We also
note that all coherent states associated to elements of Lp

x1 are contained in Hp
x1 while those

associated to elements of Le
x1

are contained in He
x1

.

The quantization obtained in [20, 23] can be seen to be equivalent to the restriction of the
quantization obtained here to the subspaces Hp

x1 corresponding to propagating waves only.

5.3 The hypercylinder

We consider the following geometrical setting: Admissible hypersurfaces are hypercylinders of
the form R × S2

R and their finite disjoint unions, where S2
R denotes the two-sphere in space of

radius R, centered at the origin. Admissible regions are all solid hypercylinders of the form
R × B̄3

R, where B̄3
R is the closed solid ball of radius R in space centered at the origin. Also

admissible are solid hypercylinders with a smaller solid hypercylinder removed. Finite disjoint
unions of such regions are also admissible.

We use a cartesian time coordinate t and spherical coordinates (r, φ, θ) in space. We also
denote the angular coordinates (φ, θ) collectively by Ω. dΩ denotes the standard measure on
the 2-sphere of unit radius. We may parametrize a solution of the Klein–Gordon equation in the
neighborhood of a hypercylinder of radius R via functions ξ : R × I → C, where I = {(l,m) :
l ∈ N0,m ∈ {−l,−l + 1, . . . , l}}, as follows

ξ(t, r,Ω) =

∫ ∞
−∞

dE
p

4π

∑
l,m

(
ξl,m(E)dl(E, r)e

−iEtY m
l (Ω) + ξl,m(E) dl(E, r)e

iEtY −ml (Ω)
)
.

Here Y m
l denote the spherical harmonics and p :=

√
|E2 −m2|. We also set

dl(E, r) :=

{
jl(pr) + inl(pr) if E2 > m2,

i−ljl(ipr)− ilnl(ipr) if E2 < m2,

where jl and nl are the spherical Bessel functions of the first and second kind respectively. Note
that the real parts of the functions dl are chosen to yield solutions that continue to all of the
interior of the solid hypercylinder. The modes with E2 > m2 are propagating waves, while the
modes with E2 < m2 are evanescent waves.
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The (negative of the) symplectic structure (3.2) on the space of solutions LR associated to the
hypercylinder of radius R, oriented as the boundary of the corresponding solid hypercylinder,
is6

ωR(η, ξ) =
R2

2

∫
dt dΩ (ξ(t, R,Ω)∂rη(t, R,Ω)− η(t, R,Ω)∂rξ(t, R,Ω))

=

∫ ∞
−∞

dE
ip

8π

∑
l,m

(
ηl,m(E)ξl,m(E)− ηl,m(E)ξl,m(E)

)
.

We consider the following complex structure on the space of these solutions

(J(ξ))l,m(E) = iξl,m(E).

Due to our choice of parametrization in terms of solutions that extend over all of Minkowski
space except for the time axis this is automatically compatible with radial evolution in the
sense of (4.13). Thus, we obtain unitary radial evolution in the quantum theory according to
Proposition 4.6.

The metric (3.3) is

gR(η, ξ) =

∫ ∞
−∞

dE
p

4π

∑
l,m

(
ηl,m(E)ξl,m(E) + ηl,m(E)ξl,m(E)

)
.

The inner product (3.4) between solutions is

{η, ξ}R =

∫ ∞
−∞

dE
p

2π

∑
l,m

ηl,m(E)ξl,m(E).

Thus, the space LR is the Hilbert space of (equivalence classes of) square-integrable functions
R× I → C with this inner product.

Analogous to the previous Section 5.2 we can decompose LR into an orthogonal direct sum
LR = Lp

R ⊕ Le
R, corresponding to radially propagating waves (with E2 > m2) and evanescent

waves (with E2 < m2). Correspondingly we obtain subspaces Hp
R and He

R of HR such that
HR = Hp

R⊗̂He
R. Also, radial evolution preserves these subspaces and coherent states behave as

expected with respect to the decomposition.
The quantization obtained in [8, 9, 20] is equivalent to the quantization obtained here, when

restricted to the subspaces Hp
R. In particular, the normalized coherent state K̃R,ξ for ξ ∈ Lp

R

takes in the Schrödinger representation the form

K̃R,ξ(ϕ) = CR,ξ exp

∫ dt dΩ dE

2π

∑
l,m

ξl,m(E)

dl(E,R)
eiEtY −ml (Ω)ϕ(t,Ω)

ψR,0(ϕ),

which is equation (10) of [8] and equation (104) of [9], adapted to our present conventions.
Observe in particular, that there is a relative complex conjugation of ξl,m(E). That is, the

state K̃R,ξ is the state ψR,ξ′ in the conventions of [8, 9], where ξ′l,m(E) = ξl,m(E).
Note that in [8, 9] interactions were included leading to a mixing of modes. It was thus

necessary to extend (the configuration version of) the space Lp
R to LR. In particular, the vacuum

was extended to a function on the configuration space corresponding to all of LR. However,
since the occurring evanescent waves decay exponentially with the radius it was not necessary
to include quantizations of them in the asymptotic state space at large radius considered in the
S-matrix picture developed in [8, 9].

6See footnote 4.
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As a concrete example of how the quantization works out and reproduces corresponding
results of [20] and [8, 9] we consider a solid hypercylinder of radius R. The space LR of solutions
on the boundary decomposes as LR = LR̃⊕JRLR̃ due to Lemma 4.1. For an element ξl,m(E) =
ξR
l,m(E) + JRξ

I
l,m(E) this takes the form

ξR
l,m(E) :=

1

2

(
ξl,m(E) + ξl,−m(−E)

)
,

ξI
l,m(E) := − i

2

(
ξl,m(E)− ξl,−m(−E)

)
.

The decomposition satisfies

ξR
l,m(E) = ξR

l,−m(−E), ξI
l,m(E) = ξI

l,−m(−E).

The amplitude of a normalized coherent state K̃R,ξ is then in accordance with equation (4.7)

ρ
(
K̃R,ξ

)
= exp

(
−1

2
{ξI, ξI}R −

i

2
{ξR, ξI}R

)
,

where both inner products appearing in the exponent are real. This is easily verified to coincide
with equation (12) of [8] and equation (106) of [9], up to the abovementioned difference of
conventions. We also note that in this context the complex classical solution ξ̂ appearing in
equation (14) of [8] and equation (124) of [9] is given by ξ̂ = ξR − iξI.

6 Discussion and outlook

We start by commenting on some of the distinctive aspects of the results obtained. One per-
meating feature of the quantization scheme presented here is its manifest locality. This extends
in particular to the spaces of classical solutions used as ingredients of the quantization. It is
essential that we do not constrain ourselves to “global” solutions, for several reasons. The more
obvious one is that in the absence of a global background (in the terminology of [19]), we do
not even know what global solutions should be. Even more important, however, is the interplay
between solutions in the interior of a region and on its boundary encoded in axiom (C5). This
means that there is essentially a 2 : 1 correspondence between classical solutions on the bound-
ary and in the interior. As explained in Section 3.1, far from being surprising, this is to be
expected. This ingredient plays an absolutely crucial role in the quantization scheme and is key
to making axioms (T3x) and (T5b) work. Moreover, it is less related to a particular quantization
scheme than to the GBF as such, as indicated by similar considerations in the quantization on
the hypercylinder in [20], where the quite different Schrödinger–Feynman quantization scheme
was used.

Another feature of the present quantization scheme that merits some remarks is the fact that
amplitudes are defined through an integral (equation (4.4)). This integral is quite different
from the Feynman path integral though, in two respects. Firstly, it is an integral over classical
solutions only rather than over general field configurations. However, in the case of a free
theory the Feynman path integral can also be converted to an integral over classical solutions,
a fact that has been extensively used for example in [7, 8, 9, 20, 23]. The second difference
is more decisive: The integral (4.4) is a proper Gaussian integral, where the exponential has
a real negative definite argument, rather than an imaginary argument as for the Feynman path
integral. Note that this fact has nothing to do here with any spacetime metric or its signature.

We turn to a discussion of some directions for future development. An important limitation
of the quantization scheme presented here is its restriction to linear field theories. On the
other hand, there exists a considerable body of knowledge on the geometric quantization of
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non-linear theories [33], although much of it is restricted to mechanical systems that are not
field theories. Nevertheless, it is probably not too difficult to transfer some of this to the
quantization on hypersurfaces in the present context. What is less clear, however, is how to
generalize appropriately the amplitude map (4.4). It is probable that an integral over classical
solutions will not do in this case. Perhaps a “mixed” quantization, where some aspects of the
Feynman path integral are taken over might be envisaged. To this end it would certainly be
desirable to develop a detailed understanding of the relation to other quantization schemes, such
as the Schrödinger–Feynman one.

Another “defect” of the present quantization scheme is its failure to include corners, i.e.,
hypersurfaces with boundaries. The fact that the axioms of Section 2 differ little from those
presented in [25] makes this perhaps surprising. Indeed, no drastic changes might seem to be
necessary for the implementation of corners in the present scheme. However, there are some
subtle difficulties, which suggest that the form that corners were implemented in the axioms
in [25] might need to be generalized. In particular, it might be that the state spaces associated
to hypersurfaces with boundaries should not in general be required to be complex Hilbert spaces.
Notice that this would not be in conflict with the probability interpretation of the GBF [19, 21].
The latter only applies to hypersurfaces that are boundaries and are hence closed. This makes
us free to contemplate associating weaker structures to hypersurfaces with boundaries.

One type of object that plays a central role in many quantization schemes, but that we have
not mentioned at all so far are observables. This is partly justified by the fact that one role
that observables traditionally play, namely to provide a description of time-evolution, is now
served by the amplitude maps. However, observables also play other important roles such as
describing particular measurement operations. Although little has been written so far about
observables in the GBF, the concepts of observable and expectation value fit naturally into the
framework [18]. In the present quantization scheme, there is even a natural way to quantize
classical observables. Suppose we have a classical observable given by a function f on the space
of solutions LM in a spacetime region M . Assuming that rM : LM → L∂M is injective, we can
view f as a function on LM̃ = rM (LM ). A quantum observable corresponding to f can then be

given by the map ρfM : H◦∂M → C obtained by inserting f into the integral (4.4). This amounts
to a kind of Berezin–Toeplitz quantization of the observable. While this quantization leads
to the expected commutation relations between linear observables in some simple examples it
might not be suitable for more complicated observables. In any case these are just some initial
remarks and it is clearly necessary to develop the concept of observable in much more depth.

Another subject we have not mentioned here at all is that of symmetries. Due to the functorial
nature of the assignment of algebraic to geometric data it is quite natural to consider actions of
local spacetime symmetry groups on state spaces and amplitudes [19]. Supposing we are given
such actions on the local classical spaces of solutions, the present quantization scheme seems
particularly amenable to transfer these to actions on the corresponding quantum objects.

Finally, let us mention a point that is perhaps more of interest from the point of view of
topological quantum field theory (TQFT) rather than for the realization of physical theories.
As mentioned previously, the integration of the gluing anomaly factor into the axiom (T5b)
allows for example to admit regions with non-trivial topology, but without boundaries in the
case of certain simple TQFTs with finite-dimensional state spaces. In the infinite-dimensional
case the gluing anomaly factor would generically become infinite in such cases. One could now
envision some kind of renormalization of this factor. That is, suppose we can “regularize” the
theory such that the anomaly factor becomes finite depending on some kind of “cut-off”. If the
anomaly factor diverges under removal of the “cut-off” in a way that is controlled and compatible
with the composition of gluings, this could serve as the definition of a “renormalized” theory.
In this theory more regions would be admissible than in the original one and the anomaly would
contain more data, encoding the precise way in which the anomaly factor diverges.
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