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Abstract. We develop the theory of CKP hierarchy introduced in the papers of Kyoto
school [Date E., Jimbo M., Kashiwara M., Miwa T., J. Phys. Soc. Japan 50 (1981), 3806–
3812] (see also [Kac V.G., van de Leur J.W., Adv. Ser. Math. Phys., Vol. 7, World Sci.
Publ., Teaneck, NJ, 1989, 369–406]). We present appropriate bosonization formulae. We
show that in the context of the CKP theory certain orthogonal polynomials appear. These
polynomials are polynomial both in even and odd (in Grassmannian sense) variables.
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1 Introduction

In this paper we develop the ideas of Date, Jimbo, Kashiwara and Miwa [2, 3]. In [3] it was
pointed out that the tau function of the CKP hierarchy may be presented as the vacuum expec-
tation value of bosonic fields φn which act in a bosonic Fock space, denoted by F in the present
paper. As it was shown in [3] the higher CKP flows are induced by the action of bosonic current
algebra operators Jn, n > 0. We shall show that in contrast to the familiar fermionic approach
the action of the currents J−n on the vacuum state does not generate the whole Fock space F
where the original bosonic operators φn act. To generate the whole Fock space we need to add
an additional fermionic field which is a sort of super-counterpart to the bosonic current. This
problem is studied in Section 2. In Subsection 2.1 we introduce Fermi operators whose action
on the vacuum vector complete the action of the current algebra Jn to obtain the whole Fock
space F . A bosonization formula which expresses the original bosonic field φ(z) in terms of the
current algebra Jn and of the fermion field θ(z) is suggested (2.11). (As a byproduct of this re-
lation we obtain an equality (2.29) which relates Pfaffian and Hafnian expressions which earlier
appeared in a quite different context [7].) Here we show that this fermionic field is a super-
partner of currents and it naturally creates a dependence of CKP tau function on auxiliary odd
Grassmannian parameters. Though we present a bilinear equations written in terms of super
vertex operator we do not construct Lax equations with respect to odd parameters. In Section 4
we introduce new orthogonal polynomials in many variables, Cλ(t), which appear as a result of
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the ‘bosonization’ of the basis Fock vectors of F , see (4.4). These polynomials depend both on
CKP higher times tn (n odd) and the above-mentioned Grassmannian odd parameters. In cer-
tain sense these polynomials play a role similar to the role of the Schur functions in the theory of
KP [16] and TL [17], and the role of the projective Schur functions in the theory of BKP [12, 19],
namely, CKP tau function may be presented as a series in these polynomials over partitions (see
Subsection 4.6). However in contrast to the KP and BKP cases these polynomials are not CKP
tau functions themselves. At the end some combinatorial properties of Cλ are discussed.

2 CKP bosonic tau function

In this section we follow a suggestion in [3] and describe a CKP hierarchy of PDEs starting from
a collection of free bosons. This imitates their approach in the BKP case, where one starts with
neutral fermions. However, this hierarchy, although related to Lie algebra c∞, differs from the
usual CKP hierarchy, for which one takes a reduction of the KP hierarchy by assuming that the
Lax operator satisfies L∗ = −L; such Lax operators come from certain KP tau functions, which
are fixed by some involution and where one puts the even times to zero, see e.g., [3] or [1] for
more details. The hierarchy described in this paper is different and is not related to the usual
CKP which comes from a reduction of KP. In the latter case one has a realization of c∞, for
which the level is positive. Our construction realizes c∞ with a negative level.

2.1 Bose–Fermi correspondence in the CKP case

We follow a suggestion of Date, Jimbo, Kashiwara and Miwa in their paper [3] and introduce
free bosons, but for convenience of notation we shift the index by 1

2 . So φi with i ∈ 1
2 +Z satisfy

commutation relations:

φiφj − φjφi = (−)j−
1
2 δi,−j . (2.1)

The Fock space F , respectively F ∗, is defined by

φj |0〉 = 0 if j < 0, resp. 〈0|φj = 0 if j > 0, (2.2)

so that F has as basis the vectors

(φj1)m1(φj2)m2 · · · (φjn−1)mn−1(φjn)mn |0〉 (2.3)

with j1 > j2 > · · · > jn−1 > jn > 0 and mi positive integers. Defining

deg |0〉 = 0, deg φj = j,

we have a direct sum decomposition of F :

F =
⊕
k∈ 1

2
Z

Fk with Fk = {f ∈ F | deg f = k}.

It is straightforward to check that the dimension of Fk is given by the partition of k into positive
elements of 1

2 + Z. Define the formal character as

dimq F =
∑
k∈ 1

2
Z

dimFk q
k.

Then

dimq F =
∏

0<k∈ 1
2

+Z

1

1− qk
. (2.4)
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Writing

φ(z) =
∑

j∈ 1
2

+Z

φjz
j− 1

2 ,

we denote

H(z) :=
∑

n∈1+2Z
Jnz

−n−1 := −1

2
:φ(−z)φ(z):, (2.5)

where the normal ordering is defined by

:φiφj : =

{
φiφj if i ≥ j,
φjφi if j > i.

(2.6)

In other words Jn = 0 for n even and

Jn =
1

2

∑
j∈ 1

2
+Z

(−)j+
1
2φjφ−j−n for n odd;

one has the following familiar commutation relations

[Jn, Jm] = −n
2
δm,−n. (2.7)

The elements :φiφj : form a representation of the Lie algebra c∞, see e.g. [9]. However, we
want to stress that its level (the value of its central element) is negative. Note also that in the
commutation relations (2.7) we have the factor −n

2 instead of the usual n
2 .

It is clear that

Jn|0〉 = 〈0|J−n = 0 for n > 0.

By a similar argument as before, again since these are bosons, we can apply an element J−n
infinitely many times to |0〉. Since the degree of Jn is −n we obtain that the action of this
Heisenberg algebra on the vacuum vector produces in the dimq F the partition function of
partitions in only odd numbers:∏

0<k∈1+2Z

1

1− qk
.

Now we calculate, using (2.4),( ∏
0<k∈1+2Z

1

1− qk

)−1

dimq F =
∏

0<k∈ 1
2

+Z

1− q2k

1− qk
=

∏
0<k∈ 1

2
+Z

(
1 + qk

)
. (2.8)

This part should be explained by something else and we expect it to be fermions, at least
anticommuting variables. The factor 1 + qk is related to a fermion of degree k. This is how we
get these elements and calculate their commutation relations.

We first calculate

[Jn, φ(z)] =
1

2

∑
j,k∈ 1

2
+Z

(−)j+
1
2 [φjφ−j−n, φk]z

k− 1
2
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=
1

2

∑
j,k∈ 1

2
+Z

(−)j+
1
2 ([φj , φk]φ−j−n + φj [φ−j−n, φk]) z

k− 1
2

=
1

2

∑
j,k∈ 1

2
+Z

(−)j+
1
2 (−)k−

1
2 (δj,−kφ−j−n + δj+n,kφj) z

k− 1
2

=
1

2

∑
k∈ 1

2
+Z

2φk−nz
k− 1

2 = znφ(z). (2.9)

Now, using (2.7) we see that[
Jn, e

2
m
Jmz−m

]
= δn,−mz

ne
2
m
Jmz−m . (2.10)

Hence setting

θ(z) := V−(z)−1φ(z)V+(z)−1, (2.11)

where

V±(z) = exp
∑

±k>0, odd

2

k
Jkz
−k, (2.12)

we have, from (2.9) and (2.10),

[Jn, θ(z)] = 0. (2.13)

2.2 Commutation relations of the θ(z)’s

We now want to calculate the commutation relations of these θ(z)’s given in (2.11). For this we
first rewrite the commutation relations (2.1) as follows:

φ(z)φ(y)− φ(y)φ(z) = δ(z − (−y)) ,

where

δ(z − y) = z−1
∑
k∈Z

(
z

y

)k
.

Note also that

φ(−z)φ(y) = :φ(−z)φ(y):− 1

z

1

1− y
z

.

We first show the following identities

V+(−z)−1V−(y)−1 =
1− y

z

1 + y
z

V−(y)−1V+(−z)−1,

φ(−z)V−(y)−1 =
1 + y

z

1− y
z

V−(y)−1φ(−z),

V+(−z)−1φ(y) =
1 + y

z

1− y
z

φ(y)V+(−z)−1. (2.14)

Introduce

V (t) = exp
∑

k>0, odd

tkJk.
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Then

V+(z) = V

(
2

1
z−1,

2

3
z−3,

2

5
z−5, . . .

)
. (2.15)

The first equation of (2.14) is obtained in the following way. First using (2.7) one has

V (t)V−(y) = exp

 ∑
k>0, odd

tkJk,−
∑

`>0, odd

2

`
y`J−`

V−(y)V (t)

= exp

 ∑
k>0, odd

tky
k

V−(y)V (t).

Combining this with (2.15) one obtains

V+(−z)−1V−(y)−1 = exp

− ∑
k>0, odd

2

k

(y
z

)kV−(y)−1V+(−z)−1

=
1− y

z

1 + y
z

V−(y)−1V+(−z)−1.

Using φ(−z)Jn = (Jn−(−z)n)φ(−z), see (2.9), we obtain the second relation in (2.14) as follows:

φ(−z)V−(y)−1 = φ(−z) exp

 ∑
k>0, odd

2

k
J−ky

k

 = exp

 ∑
k>0, odd

2

k
(J−k + z−k)yk

φ(−z)

= V−(y)−1 exp

 ∑
k>0, odd

2

k

(y
z

)kφ(−z) =
1 + y

z

1− y
z

V−(y)−1φ(−z).

The third formula is proved in a similar way.

We will also use the following identities which can be found in V. Kac’s book [8]:

(z − y)∂yδ(z − y) = δ(z − y),

(z − y)k+1∂ky δ(z − y) = 0,

δ(z − y)a(z) = δ(z − y)a(y),

∂yδ(z − y)a(z) = ∂yδ(z − y) (a(y) + (z − y)∂ya(y)) .

We now calculate

θ(−z)θ(y) = V−(−z)−1φ(−z)V+(−z)−1V−(y)−1φ(y)V+(y)−1

=
1− y

z

1 + y
z

V−(−z)−1φ(−z)V−(y)−1V+(−z)−1φ(y)V+(y)−1

= V−(−z)−1V−(y)−1φ(−z)V+(−z)−1φ(y)V+(y)−1

=
1 + y

z

1− y
z

V−(−z)−1V−(y)−1φ(−z)φ(y)V+(−z)−1V+(y)−1

=
1 + y

z

1− y
z

V−(−z)−1V−(y)−1

(
:φ(−z)φ(y):− 1

z

1

1− y
z

)
V+(−z)−1V+(y)−1.
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Now replacing z and y by −y and −z respectively, gives

θ(y)θ(−z) =
1 + z

y

1− z
y

V−(−z)−1V−(y)−1

(
:φ(−z)φ(y): +

1

y

1

1− z
y

)
V+(−z)−1V+(y)−1

and thus

θ(−z)θ(y) + θ(y)θ(−z) = 2zδ(z − y)V−(−z)−1V−(y)−1:φ(−z)φ(y):V+(−z)−1V+(y)−1

+

(
1

y

1 + z
y

(1− z
y )2
− 1

z

1 + y
z

(1− y
z )2

)
V−(−z)−1V−(y)−1V+(−z)−1V+(y)−1

= 4yH(y)δ(z − y)− ∂yδ(z − y)(y + z)V−(−z)−1V−(y)−1V+(−z)−1V+(y)−1

= 4yH(y)δ(z − y)− 2y∂yδ(z − y)− (z − y)∂yδ(z − y)

×
(
1 + 2y∂y

(
V−(−y)−1

)
V−(y)−1 + 2y∂y

(
V+(−y)−1

)
V+(y)−1

)
= 4yH(y)δ(z − y)− 2y∂yδ(z − y)− δ(z − y) (1 + 4yH(y))

= −2y∂yδ(z − y)− δ(z − y) = −Dyδ(z − y), (2.16)

where H(y) is as in (2.5) (not the one in (2.28)), and Dy = y∂y + ∂yy is the Euler operator.
Now write

θ(z) = 2
∑
i∈ 1

2
+Z

Jiz
−i− 1

2 . (2.17)

Note that there is no conflict with the J ’s defined in (2.5), since here the J ’s have indices in
1
2 + Z. It is clear that the above commutation relation (2.16) in modes gives

JjJk + JkJj = (−)j−
1
2
j

2
δj,−k, j, k ∈ 1

2
+ Z

(compare with (2.7)). From (2.13) we also have

[Jn, Jm] = 0, n ∈ 1 + 2Z, m ∈ 1

2
+ Z.

Thus we can combine the (anti)commutation relations of all J ’s as follows:

[Ji, Jj ]s =
j

2
(−1)[j− 1

2
]δi,−j , (2.18)

where the notation [ , ]s serves for the supercommutator while [i] denotes the integer part of
a real number i. As we see, deg Ji = −i and that

Jk|0〉 = 〈0|J−k = 0, J−k|0〉 6= 0 6= 〈0|Jk for k > 0.

2.3 Even and odd times

Since the elements J−k with k ∈ 1
2 + Z anticommute among themselves, they can only appear

once in

J−knJ−kn−1 · · · J−k3J−k2J−k1 |0〉.

Such a J−k explains the factor 1 + qk in the q-dimension formula (2.8). One can identify
the Jn’s, for n < 0 with even and odd times, i.e., with commuting variables tj , 0 < j ∈ 1 + 2Z,
and Grassmann variables t j

2
, 0 < j ∈ 1 + 2Z, and identify Fock space F with the space

C
[
t2j−1, t 2j−1

2
; j = 1, 2, . . .

]
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(or some completion of it, since we take exponentials), where one has

titj − (−)4ijtjti = 0,

in particular, t2j = 0 for j ∈ 1
2 + Z . We will write t =

(
t1, t 1

2
; t3, t 3

2
; t5, t 5

2
; . . .

)
and use t =

(t1, t3, t5, . . . ) and todd =
(
t 1
2
, t 3

2
; , t 5

2
, . . .

)
.

Let σ be this isomorphism, sending F to C[t2j−1, t 2j−1
2

; j = 1, 2, . . .]. Then

σJ−jσ
−1 = (−)[ 1

2
−j] j

2
tj and σJjσ

−1 =
∂

∂tj
, j > 0 , (2.19)

give the field exactly in commuting and anticommuting variables tk.
Now using the free boson-(boson+fermion) correspondence, i.e., using the vertex operator

expressions for the fields

σφ(z)σ−1 = exp

 ∑
0<k∈Z
k: odd

tkz
k

 exp

 ∑
0<k∈Z
k: odd

2

k

∂

∂tk
z−k


×
∑

0<j∈Z

(
(2j − 1)t 2j−1

2
(−z)j−1 + 2

∂

∂t 2j−1
2

z−j

)
(2.20)

(where we used (2.12), (2.11), (2.17) and (2.19)), in the following subsections we shall express
the bilinear identity as a hierarchy of differential equations. A similar expression for (2.20) was
also found in [9].

2.4 The CKP bilinear equation

Following [3] we define the operator

S =
∑

k∈ 1
2

+Z

(−)k+ 1
2φk ⊗ φ−k ≡

∮
φ(z)⊗ φ(−z) dz

2πi
,

that S commutes with the action of :φiφj : on the tensor product F ⊗F of the Fock space F and

S(|0〉 ⊗ |0〉) =
∑

k∈ 1
2

+Z

(−)k+ 1
2φk|0〉 ⊗ φ−k|0〉 = 0.

The CKP Hirota equation is [3]:∮
φ(z)g|0〉 ⊗ φ(−z)g|0〉 dz = 0, (2.21)

where g is for instance given by (see [3]):

g = exp

(
−
∑
m,n

cnm:φn+ 1
2
φm+ 1

2
:

)
. (2.22)

We rewrite (2.21) as

Resz φ(z)g|0〉 ⊗ φ(−z)g|0〉 = 0. (2.23)

We could now use the isomorphism σ to define this hierarchy in terms of the times t. However
we will not do that yet, but concentrate first in the next subsection on the form of σ(g|0〉).
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2.5 The CKP tau function

Now let ODPev be the set of all partitions in an even number of odd parts, where a part may
appear at most once. We call them “Odd Partitions of even length with Distinct parts” (ODPev);
later on we also need “Odd Partitions of odd length with Distinct parts” (ODPodd), their union
ODP = ODPev ∪ODPodd, and the partition 0. Hence for 0 6= α ∈ ODPev one has

α = (α1, α2, . . . , α2k),

where all αi ∈ 1 + 2Z≥0, and we assume

α1 > α2 > · · · > α2k.

Introduce for such partition 0 6= α ∈ ODPev

ξα = tα1
2
tα2

2
· · · tα2k

2
, and ξ0 = 1.

Then we can rewrite g|0〉 as

σ(g|0〉) = τ(t) =
∑

α∈ODPev

τα(t)ξα.

Note that α ∈ ODPev otherwise 〈0|g|0〉 = 0. We also rewrite (2.23) as

Resz
∑

α,β∈ODPev

σφ(z)σ−1τα(t)ξα ⊗ σφ(−z)σ−1τβ(t)ξβ = 0.

It is clear that we can also write

σ(φ(z0)φ(z1) · · ·φ(zk)|0〉) = f(t) =
∑

α∈ODP, `(α)≤k+1

fα(t)ξα. (2.24)

Now let

α = (α1, α2, . . . , αn), αi > αi+1.

Then clearly

fα(t) =
∂

∂tαn
2

∂

∂tαn−1
2

· · · ∂

∂tα1
2

σ(φ(z0)φ(z1) · · ·φ(zk)|0〉)
∣∣∣∣
todd=0

.

Now substitute the vertex operator expression for the fields σφ(zj)σ
−1. We thus obtain (assu-

ming |zi| > |zj | if i < j):

σ(φ(z0)φ(z1) · · ·φ(zk)|0〉) =

 ∏
0≤i<j≤k

zi + zj
zi − zj

 e

k∑
m=0

ϕ(t,zm)
σ(θ(z0) · · · θ(zk)|0〉),

where

ϕ(t, z) =
∑

0<k∈Z, odd

tkz
k. (2.25)

Then setting Π(z) :=
∏

−1≤i<j≤k

zi+zj
zi−zj we have

fα(t) = Π(z)e

k∑
m=0

ϕ(t,zm) ∂

∂tαn
2

∂

∂tαn−1
2

· · · ∂

∂tα1
2

σ (θ(z0) · · · θ(zk)|0〉)
∣∣∣
todd=0
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= Π(z)e

k∑
m=0

ϕ(t,zm)
σ
(
Jαn

2
Jαn−1

2
· · · Jα1

2
θ(z0) · · · θ(zk)|0〉

)∣∣∣
todd=0

= Π(z)e

k∑
m=0

ϕ(t,zm)
〈0|Jαn

2
Jαn−1

2
· · · Jα1

2
θ(z0) · · · θ(zk)|0〉 (2.26)

=
Π(z)

2n
e

k∑
m=0

ϕ(t,zm)
Resz−n · · ·Resz−1 z

αn
2
− 1

2
−n · · · z

α1
2
− 1

2
−1 〈0|θ(z−n)θ(z−n+1) · · · θ(zk)|0〉

=
Π(z)

2n
e

k∑
m=0

ϕ(t,zm)
Resz−n · · ·Resz−1 z

αn
2
− 1

2
−n · · · z

α1
2
− 1

2
−1 Pf

((
zi − zj

(zi + zj)2

)
−n≤i,j≤k

)
,

where Pf stands for the Pfaffian. The last equality follows from Wick’s theorem and from

〈0|θ(y)θ(z)|0〉 =
y − z

(y + z)2 .

Define

Γ(t) := eJ(t), J(t) =
∑

0<i∈1+2Z
tiJi +

∑
0<i∈ 1

2
+Z

tiJi, (2.27)

where deg ti = i, deg J(t) = 0. We write

Γ(t) = eH(t)eχ(todd), where H(t) :=
∑

0<i∈1+2Z
tiJi, χ(todd) :=

∑
0<i∈ 1

2
+Z

tiJi. (2.28)

We will now show that f(t) is equal to

〈0|Γ(t)φ(z0)φ(z1) · · ·φ(zk)|0〉.

Using eH(t)φ(z)e−H(t) = eϕ(t,z) and eχ(todd)φ(z)e−χ(todd) = φ(z) + Ξ(z), where

Ξ(z) = V−(z)ξ(z)V+(z), ξ(z) =
∑

0<k∈ 1
2

+Z

ktk(−z)k−
1
2 ,

we see that

∂

∂tαn
2

∂

∂tαn−1
2

· · · ∂

∂tα1
2

〈0|eH(t)eχ(todd)φ(z0)φ(z1) · · ·φ(zk)|0〉
∣∣∣∣
todd=0

= 〈0|eH(t)Jαn
2
Jαn−1

2
· · · Jα1

2
eχ(todd)φ(z0)φ(z1) · · ·φ(zk)|0〉

∣∣
todd=0

= 〈0|Jαn
2
Jαn−1

2
· · · Jα1

2
eH(t)eχ(todd)φ(z0)φ(z1) · · ·φ(zk)|0〉

∣∣
todd=0

= e

k∑
m=0

ϕ(t,zm)
〈0|Jαn

2
Jαn−1

2
· · · Jα1

2
(φ(z0) + Ξ(z0))

× (φ(z1) + Ξ(z1)) · · · (φ(zk) + Ξ(zk)) |0〉
∣∣
todd=0

= e

k∑
m=0

ϕ(t,zm)
〈0|Jαn

2
Jαn−1

2
· · · Jα1

2
φ(z0)φ(z1) · · ·φ(zk)|0〉

= e

k∑
m=0

ϕ(t,zm)
〈0|Jαn

2
Jαn−1

2
· · · Jα1

2
θ(z0)θ(z1) · · · θ(zk)

× V−(z0)V+(z0)V−(z1)V+(z1) · · ·V−(zk)V+(zk)|0〉
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=

 ∏
0≤i<j≤k

zi + zj
zi − zj

 e

k∑
m=0

ϕ(t,zm)
〈0|Jαn

2
Jαn−1

2
· · · Jα1

2
θ(z0)θ(z1) · · · θ(zk)|0〉 = fα(t).

Note that from this for k odd, due to Wick’s rule for bosons we also have

f0(t) = e

k∑
m=0

ϕ(t,zm)
〈0|φ(z0)φ(z1) · · ·φ(zk)|0〉 = e

k∑
m=0

ϕ(t,zm)
Hf
(

(〈φ(zi)φ(zj)〉)0≤i,j≤k

)
= e

k∑
m=0

ϕ(t,zm)
Hf

((
1

zi + zj

)
0≤i,j≤k

)
,

where Hf stands for the Hafnian. The Hafnian of a symmetric matrix A of even order is defined
as follows

Hf(A) :=
∑
σ

Aσ(1),σ(2)Aσ(3),σ(4) · · ·Aσ(2k−1),σ(2k),

where the sum runs over all permutations σ of {1, . . . , 2k} satisfying

σ(2i− 1) < σ(2i), σ(1) < σ(3) < · · · < σ(2k − 1).

As one can see the Hafnian contains 1 · 3 · 5 · · · · · (2k − 1) =: (2k − 1)!! terms.

Remark 1. Comparing this with f0 in (2.26), we have a new proof for the identity

Pf

( zi − zj
(zi + zj)

2

)
1≤i,j≤2k

 =
∏

1≤i<j≤2k

zi − zj
zi + zj

Hf

((
1

zi + zj

)
1≤i,j≤2k

)
(2.29)

of [7].

Since g|0〉, where g is given by (2.22), is a possibly infinite linear combination of

φj1φj2 · · ·φj2k |0〉,

which can be obtained by taking residues of the expression in (2.24), one deduces that

σ(g|0〉) = τ(t) = 〈0|eH(t)eχ(todd)g|0〉 =
∑
α

τα(t)ξα (2.30)

and

τα(t) = 〈α|eH(t)g|0〉, (2.31)

where

〈α| = 〈0|Jαn
2
Jαn−1

2
· · · Jα1

2
. (2.32)

2.6 A CKP wave function

Now we want to study φ(z)g|0〉. Consider the expression

σ(φ(z)g|0〉) = σφ(z)σ−1σ(g|0〉) = σφ(z)σ−1τ(t)

= eϕ(t,z)
∑

0<j∈Z

(
(2j − 1)t 2j−1

2
(−z)j−1 + 2

∂

∂t 2j−1
2

z−j

)
×
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× exp

 ∑
0<k∈Z, odd

2

k

∂

∂tk
z−k

 τ(t),

where (2.20) was used.
Clearly, one also has

σ(φ(z)g|0〉) = 〈0|eH(t)eχ(todd)φ(z)g|0〉. (2.33)

We now write σ(φ(z)g|0〉) as

σ(φ(z)g|0〉) =
∑

α∈ODPodd

gα(t, z)ξα.

Now substitute this in (2.23), omitting the tensor symbol and writing sj for tj in the right-hand
side of the tensor product, we obtain, that for every α, β ∈ ODPodd the coefficient of ξαηβ is
equal to

Resz gα(t, z)gβ(s,−z) = 0. (2.34)

Now we want to express gα(t, z) in terms of the τβ(t)’s.
It will be convenient to introduce some more notation here. Let

α = (α1, α2, . . . , αk) ∈ ODP,

where all αi ∈ 1 + 2Z≥0, and we assume

α1 > α2 > · · · > αk.

Now let ν ∈ 1 + 2Z≥0, ν 6∈ α, i.e.,

ν 6∈ {α1, α2, . . . , αk},

and

αi > ν > αi+1,

then we define an “addition” as follows

α ∪ ν := (α1, α2, . . . , αi, ν, αi+1, . . . , αk).

Note that the notation α+ β was used differently in [11] where it was defined as (α1 + β1, α2 +
β2, . . . ).

In a similar way the subtraction α\αi for αi ∈ α is defined by

α\αi = (α1, α2, . . . , αi−1, αi+1, . . . , αk).

Then for

α = (α1, α2, . . . , αk) ∈ ODPodd,

hence k odd, we find

gα(t, z) = eϕ(t,z) exp

 ∑
0<j∈Z, odd

2

j

∂

∂tj
z−j

×
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×

 k∑
i=1

(−)i−1αiτα\αi(t)(−z)
αi−1

2 + 2
∑

ν∈1+2Z≥0, ν 6∈α
s(ν, α) τα∪ν(t)z−

ν+1
2

 , (2.35)

where

s(ν, α) = (−1)|{αi∈α|αi>ν}|.

In particular for α = (1) = 1 we find

g1(t, z) = eϕ(t,z) exp

 ∑
0<j∈Z, odd

2

j

∂

∂tj
z−j

τ0(t) + 2
∑

ν∈1+2Z, ν>1

τ(ν,1)(t)z
− ν+1

2

 ,

We now want to calculate gα(t, z) as some expectation value. Using (2.33), we have

gα(t, z) =
∂

∂tαn
2

∂

∂tαn−1
2

· · · ∂

∂tα1
2

〈0|eH(t)eχ(todd)φ(z)g|0〉
∣∣∣∣
todd=0

=
1

2n
〈0|θαn

2
θαn−1

2
· · · θα1

2
eH(t)φ(z)g|0〉 = 〈α|eH(t)φ(z)g|0〉. (2.36)

where we have used (2.32).

Now concentrating on (2.35) and divide this by (−)
α1−1

2 α1τα\α1
(t), this gives

wα(t, z) = ŵα(t, z)z
α1−1

2 eϕ(t,z), where

ŵα(t, z) = (−z)−
α1−1

2
gα(t, z)e−ϕ(t,z)

α1τα\α1
(t)

= 1 +O
(
z−1
)
, (2.37)

which we call the wave function corresponding to α ∈ ODP. Now using (2.31) and (2.36), one
also has

wα(t, z) =
(−)

α1−1
2

α1

〈α|eH(t)φ(z)g|0〉
〈α\α1|g|0〉

.

2.7 A bilinear identity for the wave function and a Lax equation

Using the definition of the wave function (2.37) we can rewrite (2.34) into a bilinear identity for
these wave functions:

Resz wα(t, z)wβ(s,−z)

= Resz ŵα(t, z)ŵβ(s,−z)eϕ(t,z)−ϕ(s,z)z
α1+β1−2

2 = 0, α, β ∈ ODPodd. (2.38)

Let us take α = β and α1 = β1 = n, n odd. Then equation (2.38) takes the form

Resz ŵα(t, z)ŵα(s,−z)eϕ(t,z)−ϕ(s,z)zn−1 = 0, α1 = β1 = n, n odd,

which coincides with equations (5) and (12)n (n odd) of [3] where w(x, k) should be compared
with our eϕ(t,z)wα(t, z).

Now write for α = (1) = 1

w(t, z) = w1(t, z), and ŵ(t, z) = ŵ1(t, z)
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then we can see this as the Date, Jimbo, Kashiwara, Miwa CKP wave function as in [3], since
in particular

Resz ŵ(t, z)ŵ(s,−z)eϕ(t,z)−ϕ(s,z) = 0. (2.39)

We can rewrite the wave functions as follows

wα(t, z) = ŵα(t, ∂)∂
α1−1

2 eϕ(t,z),

where ∂ = ∂
∂x = ∂

∂t1
. Then ŵα(t, ∂) is a pseudo differential operator of order 0. Note that

wα(t,−z) = ŵα(t, ∂)∂
α1−1

2 e−ϕ(t,z).

Now we use the following known lemma (see, e.g., [10]):

Lemma 1. For pseudodifferential operators P (t, ∂) and Q(t, ∂) we have

Resz

P (t, ∂) · exp

 ∑
0<j∈Z, odd

tjz
j

Q(t, ∂) · exp

− ∑
0<j∈Z, odd

tjz
j


= Res∂ P (t, ∂) ·Q(t, ∂)∗ = 0.

where the conjugation and Res∂ are defined on monomials respectively as
(
a(x)∂k

)∗
= (−∂)ka(x)

and Res∂ a(x)∂k = a(x)δk,−1.

Taking P = ŵ and Q = ∂nŵ, n = 0, 1, 2, . . . , by (2.39) we obtain that(
ŵα(t, ∂)∂

α1+β1−2
2 ŵβ(t, ∂)∗

)
−

= 0. (2.40)

Now we take α = β = (1) = 1. Then, since ŵ(t, ∂) = 1 +
∞∑
k=1

wk(t)∂
−k, one obtains that

ŵ(t, ∂)∗ = ŵ(t, ∂)−1. (2.41)

Start again with (2.39) and differentiate this equation in tk for k odd; then one gets

Resz

(
∂ŵ(t, z)

∂tk
+ ŵ(t, z)zk

)
exp

 ∑
0<j∈Z, odd

tjz
j

w(s,−z) = 0.

Again using the fundamental Lemma and (2.41), we deduce((
∂ŵ(t, ∂)

∂tk
+ ŵ(t, ∂)∂k

)
W (t, ∂)−1

)
−

= 0,

which gives the Sato–Wilson equation:

∂ŵ(t, ∂)

∂tk
= −

(
ŵ(t, ∂)∂kŵ(t, ∂)−1

)
−
ŵ(t, ∂).

This is equivalent to the following equation for the wave function

∂w(t, z)

∂tk
=
(
ŵ(t, ∂)∂kŵ(t, ∂)−1

)
+
w(t, z).

Introducing the Lax operator

L(t, ∂) = ŵ(t, ∂)∂ŵ(t, ∂)−1 = ∂ +
∞∑
k=1

uk(t)∂
−k,

then (2.41) induces L∗ = −L and from the Sato–Wilson equation one derives the following CKP
Lax equation:

∂L(t, ∂)

∂tk
=
[(
L(t, ∂)k

)
+
, L(t, ∂)

]
.
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3 Bilinear identity in super notations

In the previous section we obtained a wave function. In this section our approach will be slightly
different. We want to superize, i.e., obtain a supersymmetric wave function that also include
the Grassmannian times ti with i ∈ 1

2 + Z and the corresponding bilinear equation for this
super wave function (3.11). Let us point out that in this way we shall re-write results of the
previous section using super notations. We regard this an important step, which might be very
fundamental for the further development of the theory. However, unfortunately we were not
able to obtain Lax equations with respect to odd Grassmannian times in this setting.

3.1 Super vertex operator

Recall the super commutation relations (2.18) and the super times (2.18) and the definition
of Γ(t) in (2.27). It is convenient to introduce an auxiliary parameter ζ, which is a Grassmannian
variable, an odd counterpart to z: ζ2 = 0, zζ = ζz, deg z = 2 deg ζ = −1.

Introduce the following “superfermionic” fields

Φ(z, ζ) := 2
∑
n∈Z

ζ
z−2n−1

2n+ 1
J2n+1 − 2

∑
0 6=n∈Z

z−n

n
Jn+ 1

2
+ 2J 1

2
log z,

Θ(z, ζ) :=

(
∂

∂ζ
+ ζ

∂

∂z

)
Φ(z, ζ).

Here ∂
∂ζ + ζ ∂

∂z is a superderivative which will be denoted by Dz,ζ , D
2
z,ζ = ∂

∂z . As we see

deg Φ = −1
2 while deg Θ = 0.

Let :eΘ(z,ζ): denote eΘ−(z,ζ)eΘ+(z,ζ) where Θ± denotes the splitting of Θ in series in respec-
tively positive/negative powers of z−1. One can verify

:eΘ(z1,ζ1): :eΘ(z2,ζ2): = eΘ−(z1,ζ1)+Θ−(z2,ζ2)eΘ+(z1,ζ1)+Θ+(z2,ζ2)

(
z1 + z2

z1 − z2
+

ζ1ζ2

z1 + z2

)
.

It follows from ζ2 = 0 that

:eΘ(z,ζ): = V−(z)V+(z) + ζφ(z). (3.1)

Then

φ(z) =
∂

∂ζ
:eΘ(z,ζ):

=
∂

∂ζ

e ∑
0>n∈Z

(
2z−2n−1

2n+1
J2n+1+2ζz−1−nJ

n+1
2

)
· e

∑
0≤n∈Z

(
2z−2n−1

2n+1
J2n+1+2ζz−n−1J

n+1
2

) . (3.2)

Using the isomorphism σ, see (2.19), we can express

σΘ−(z, ζ)σ−1 =
∑

0<i∈1+2Z
ziti + ζ

∑
0<i∈ 1

2
+Z

i(−z)i−
1
2 ti =: ϕ(t, z, ζ), (3.3)

and

σΘ+(z, ζ)σ−1 = 2
∑

0<n∈Z

z1−2n

2n− 1

∂

∂t2n−1
+ 2ζ

∑
0<n∈Z

z−n
∂

∂tn− 1
2

.
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Now

σφ(z)σ−1 =
∂

∂ζ
Υ(t, z, ζ), (3.4)

where

Υ(t, z, ζ) := eϕ(t,z,ζ)Υ+(z, ζ),

Υ+(z, ζ) = exp

2
∑

0<i∈1+2Z

z−i

i

∂

∂ti
+ 2ζ

∑
0<i∈ 1

2
+Z

z−i−
1
2
∂

∂ti

 . (3.5)

3.2 Tau function and super wave function

Recall (2.30), (2.31) the tau function as a function of a collection of both even and odd time
variables as follows

τ(t) := 〈0|Γ(t)g |0〉 =
∑
α

τα(t)ξα. (3.6)

As we can see

τ(t) = τCKP(t) + · · · = τ0(t) + · · · ,

where the dots mean terms vanishing when we substitute t 1
2

= t 3
2

= · · · = 0. We put

W (t, z, ζ) :=
1

τ(t)
〈0|Γ(t) :eΘ(z,ζ): g |0〉 (3.7)

to be the wave function.

From (3.4) we can write

W (t, z, ζ) :=
Υ(t, z, ζ)τ(t)

τ(t)
= eϕ(t,z,ζ)

(
1 +O

(
1

z

))
, (3.8)

where ϕ(t, z, ζ) was defined in (3.3). Let us mark that if todd = 0 then ϕ(t, z, ζ) coincides with
ϕ(t, z, ζ) defined in (2.25).

Note that since φ(z) = ∂
∂ζ :eΘ(z,ζ): it follows from (2.35) and (2.36) that for α = (α1, . . . , αn)

gα(t, z) =

(
∂

∂ζ

∂

∂tαn
2

· · · ∂

∂tα1
2

Υ(t, ζ, z)τ(t)

)∣∣∣∣
todd=0

,

where we remind that in our notations: t = (t1, t3, t5, . . . ) and t =
(
t1, t 1

2
; t3, t 3

2
; t5, t 5

2
; . . .

)
.

3.3 Super Miwa variables

Denote z = (z1, ζ1; . . . ; zk, ζk), where ζi are Grassmannian odd and zi are Grassmannian even

variables, ζ2
i = 0, and deg zi = −1, deg ζi = −1

2 . Let [z] :=
(
t1, t 1

2
; t3, t 3

2
; t5, t 5

2
; . . .

)
, where

t2n+1 =
2

(2n+ 1)

k∑
i=1

1

z2n+1
i

, tn+ 1
2

= 2
k∑
i=1

ζi
zni
. (3.9)
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For k = 1 we shall write [z] as [z, ζ]. Then

W (t, z, ζ) := eϕ(t,z,ζ) τ(t− [z, ζ])

τ(t)
.

In general

〈0|Γ (t− [z]) = D(z)−1 〈0|
k∏
i=1

:eΘ(zi,ζi): Γ(t),

where

D(z) = Dk(z) := 〈0| :eΘ(z1,ζ1): · · · :eΘ(zk,ζk): |0〉,

which is antisymmetric function with respect to the permutation of pairs (zi, ζi). For instance

D2(z) =
z1 + z2

z1 − z2
+

ζ1ζ2

z1 + z2
.

We have

Dk(z)−1 =

(∏
a<b

za − zb
za + zb

)
[k/2]∑
n=0

(−1)n
∑

α∈ODPev
`(α)=2n

ζα Pf

[
zαi − zαj

(zαi + zαj )
2

]
. (3.10)

3.4 Bilinear identity for the super wave function W

The bilinear equation (2.34),

Resz gα(t′, z)gβ(t,−z) = 0,

may be written in superized form

Berz,ζ

((
∂

∂ζ
W (t′, z, ζ)

)
W (t,−z,∓ζ)

)
= 0, (3.11)

where Berz,ζ f(z, ζ) := Resz
∂f(z,ζ)
∂ζ . The validity of (3.11) follows directly from (2.23), (3.7),

(3.2) and the definition of the Berezinian Ber.

3.5 Bilinear identity as identities for super PDOs

Let us re-write super-bilinear identities (3.11) in form of identities for (super version of) pseudo-
differential operators (PDO). We will do it in a way similar to the KP case where PDO operators
naturally appear in the framework of KP bilinear identity [4].

Now notice that (3.8) yields

W (t, z, ζ) =: Ŵ (t, z, ζ)eϕ(t,z,ζ) =:
(
Ŵ (0)(t, z) + ζŴ (1)(t, z)

)
eϕ(t,z,ζ), (3.12)

where (3.5) provides

Ŵ (1)(t, z) =
∑
n>0

Ŵ (1)
n (t)z−n = O

(
1

z

)
, Ŵ (0)(t, z) =

∑
n≥0

Ŵ (0)
n (t)z−n = 1 +O

(
1

z

)
.
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For a simplification we shall denote x = t1 and ξ = 1
2 t 12

, thus ϕ(t, z, ζ) = zx+ ζξ + · · · , and

we have

∂xe
ϕ(t,z,ζ) = zeϕ(t,z,ζ), ∂ξe

ϕ(t,z,ζ) = −ζeϕ(t,z,ζ).

Let D := Dx,ξ = ∂ξ + ξ∂x, D2 = ∂x. Then ∂ξ = D − ξD2. Below we consider the action of odd
negative powers of D on the exponentials ezx+ζξ, provided we define ∂nezx := znezx, n ∈ Z. To
do this we write D1−2n = D∂−n. In such a way we write

D2n · eϕ(t,z,ζ) = zneϕ(t,z,ζ), D2n+1 · eϕ(t,z,ζ) = zn
(
−ζ + ξD2

)
eϕ(t,z,ζ), n ∈ Z; (3.13)

in particular

ζeϕ(t,z,ζ) = −
(
D − ξD2

)
· eϕ(t,z,ζ). (3.14)

Let us introduce

K(t, D) :=
∑
n≥0

Kn(t)D−n := Ŵ (0)(t, ∂)− Ŵ (1)(t, ∂)
∂

∂ξ

= Ŵ (0)(t, D2)− Ŵ (1)(t, D2)
(
D − ξD2

)
= 1 + Ŵ

(1)
1 (t)ξ +

∑
n≥1

(
Ŵ (0)
n (t) + Ŵ

(1)
n+1(t)ξ

)
D−2n −

∑
n≥1

Ŵ (1)
n (t)D1−2n, (3.15)

where negative powers of D are to be understood in the sense of (3.13).
From (3.14), (3.15) and (3.12) it follows that

W (t, z, ζ) = K(t, D) · eϕ(t,z,ζ).

In the Lemma below star means the conjugation in the algebra of super PDOs with properties
(ab)∗ = ±b∗a∗, where − is taken iff both a and b are odd. We have (∂x)∗ = −∂x, (∂ξ)

∗ = −∂ξ.
For instance D∗ = −∂ξ + (−∂x)ξ = −D,

(
D2
)∗

= −D∗D∗ = −∂, (ξζ)∗ = −ζξ = ξζ, and

(aDn)∗ = (−1)[n/2]Dna if a is odd.
We define ResD

∑
n∈Z

fn(x, ξ)Dn := f−1(x, ξ). Notice that

ResD f(x, ξ)D−1g(x, ξ) = ±ResD f(x, ξ)g(x, ξ)D−1, (3.16)

where + and − are taken if g is respectively even and odd.

Lemma 2. Let P (D) =
∑

n Pn(x, ξ)Dn be an odd and Q(D) =
∑

nQn(x, ξ)Dn an even PDO.
Then

Berz,ζ
(
P (D) · ezx+ζξ

)(
Q(D) · e−zx−ζξ

)
= ResD P (D) (Q(D))∗ , (3.17)

Berz,ζ
(
P (D) · ezx+ζξ

)(
Q(D) · e−zx+ζξ

)
= ResD P (D) (Q(−D))∗ . (3.18)

Proof. Let

P (D) =
∑
n∈Z

(
P (0)
n D2n + P (1)

n D2nD−1
)
, Q(D) =

∑
n∈Z

(
Q(0)
n D2n +Q(1)

n D2nD−1
)
,

where P
(0)
n , Q

(1)
n are odd and P

(1)
n , Q

(0)
n are even. Then

(Q(D))∗ =
∑
n∈Z

(
(−1)nD2nQ(0)

n − (−1)nD−1D2nQ(1)
n

)
,

where we used (D∗)2n = (−1)nD2n,
(
D−1

)∗
=
(
D−2D

)∗
= (D)−1.
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Using (3.16), we find that the right-hand side of (3.17) is equal to∑
n∈Z

(−1)n
(
P (1)
n Q

(0)
−n + P (0)

n Q
(1)
−n

)
. (3.19)

Next consider the left-hand side of (3.17). We have

P (D) · ezx+ζξ =
∑
n∈Z

(
P (0)
n zn + P (1)

n zn−1 (ζ + zξ)
)
ezx+ζξ,

Q(D) · e−zx−ζξ =
∑
n∈Z

(
Q(0)
n (−z)n −Q(1)

n (−z)n−1 (ζ + zξ)
)
e−zx−ζξ.

The evaluation of the Ber of the product of these two results in (3.19).
A similar calculation yields (3.18). �

We re-write (3.11) as

Berz,ζ

(
K(t′, D) · ∂

∂ζ
eϕ(t′,z,ζ)

)(
K(t, D) · eϕ(t,−z,∓ζ)

)
= 0.

Taking into account

∂

∂ζ
eϕ(t,z,ζ) = −

∑
n≥0

(
(−1)n

(
n+

1

2

)
tn+ 1

2
∂n
)
· eϕ(t,z,ζ),

where ∂ := ∂
∂t1

= D2, and ϕ(t, z, ζ) is as in (3.3), we obtain

ResD

(
K(t′, D) ·

∑
n≥0

(−1)n
(
n+

1

2

)
t′
n+ 1

2

D2n


× e
±(D−ξD2)

∑
n≥0

(n+ 1
2

)t
n+1

2
D2n

·K∗(t,±D)

)
= 0,

which results inK(t, D) ·

∑
n≥0

(−1)n
(
n+

1

2

)
tn+ 1

2
D2n

 e
±(D−ξD2)

∑
n≥0

(n+ 1
2

)t
n+1

2
D2n

·K∗(t,±D)


−

= 0,

where the subscript − means the taking of projection on series with negative powers. Thus

L± := K(t, D) ·

∑
n≥0

(−1)n
(
n+

1

2

)
tn+ 1

2
D2n

 e
±(D−ξD2)

∑
n≥0

(n+ 1
2

)t
n+1

2
D2n

·K∗(t,±D)

are differential operators. These equations are basically equivalent to the set of equations (2.40).

4 Related symmetric functions

In this section we want to introduce polynomial functions, Cλ, related to the basis vectors |λ〉
of the bosonic Fock space F as the image of the mapping σ described in the Subsection 2.3.
These are polynomials in Grassmannian even and odd variables t. In super Miwa variables zi,
ζi, i = 1, . . . , k these functions are symmetric with respect to the action of the permutation
group Sk on the set of pairs (zi, ζi), and polynomial with respect to variables ζi and xi := z−1

i .
These polynomials may be considered as analogues of the celebrated Schur (and projective

Schur) functions which are related to Fock space of charged (resp. neutral) fermions. The
theoretic field construction of new functions allows to derive certain properties which are similar
to the properties of the Schur and the projective Schur functions.
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4.1 Polynomials Cλ

Let us introduce suitable notations for the basis of bosonic Fock vectors in F (see (2.3)) and
in F ∗ labeled by partitions whose parts are odd numbers

|λ〉 :=
1

dλ
φλ1

2

· · ·φλk
2

|0〉, 〈λ| := 1

dλ
〈0|φ−λk

2

· · ·φ−λ1
2

, (4.1)

where λ = (λ1, λ2, . . . , λk) is a set of odd numbers and λ1 ≥ λ2 ≥ · · · ≥ λk > 0, `(λ) := k =
1, 2, . . . . The set of partitions with odd parts will be denoted by OP.

Note that the above vectors 〈λ| differ from the vector 〈α| as defined in (2.32), that is the
reason why we write λ here to avoid this confusion.

In this section we shall use, besides the parts λi of partitions λ, also the variables ni =
0, 1, 2, . . . related to odd numbers λi as follows

λi =: 2ni + 1. (4.2)

The sum |λ| := λ1 + · · · + λk is called the weight of the partition λ. Here the factor dλ for
λ ∈ OP is defined by

(dλ)2 := (−1)

k∑
i=1

ni ∏
i=1,2,3,...

m2i−1! =
∏

i=1,2,3,...

m2i−1!(−1)m4i−1 = (−1)
1
2

(|λ|−`(λ))
∏

i=1,3,5,...

mi!,

where mi = mi(λ) is the number of parts of λ equal to i (or, the same, the multiplicity of i).
(Then we can denote the partition by its frequency notation λ = (1m13m35m5 · · · )). For instance
d(1n3m5k) = n!m!(−1)mk!.

From (2.1),

φ− 1
2
λi
φ 1

2
λj
− φ 1

2
λj
φ− 1

2
λi

= (−)njδλi,λj ,

we see that, for partitions λ and µ, we have the ortho-normality condition

〈λ |µ〉 = δµ,λ, λ, µ ∈ OP. (4.3)

Let us introduce the following functions

Cλ(t) := σ (|λ〉) := 〈0|Γ(t)|λ〉, λ ∈ OP. (4.4)

These functions are weighted polynomials of weight 1
2 |λ| in the variables t := (t1, t 1

2
; t3, t 3

2
; . . . )

where deg tj := j. For example

C(1) = t 1
2
, C(12) =

t1√
2
.

We evaluate Cλ in case all (Grassmannian) odd variables vanish: tn+ 1
2

= 0, n = 0, 1, 2, . . . .

(Recall that in this case we denote t as t = (t1, t3, . . . ).)

Remark 2. Weighted polynomial functions are often presented as symmetric functions of some
variables x1, . . . , xN , where the number of variables may be irrelevant. In our case we put

tn =
1

n

N∑
i=1

(xni − (−xi)n) , n = 1, 2, 3, . . . , (4.5)
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where all even-labeled tn vanish. For n odd we write

tn =
2

n

N∑
i=1

xni , n = 1, 3, . . . ,

where xi = 1
zi

, i = 1, . . . , N . Below by polynomial functions in Miwa variables we mean

polynomial functions in the variables xi = 1
zi

.

Then Cλ(t) vanishes if `(λ) is odd1. If `(λ) is even, then by Wick’s theorem

Cλ(t) = Hf
[
C(λi,λj)(t)

]
, λ ∈ OPe,

where OPe is the set of all partitions with even number of odd parts, and as we shall see

C(λi,λj)(t) =
1

d(λi|λj)
s(ni|nj)(t), (4.6)

where sλ is the Schur function, and (n|m) is a one-hook partition in the Frobenius notations,
see [11]. Indeed, first, from

[J2n−1, φi] = φi−2n+1

(cf. (2.9)) it follows

φi(t) := Γ(t)φiΓ(t)−1 =
∞∑
n=0

hn(t)φi−n,

where hn are complete symmetric functions [11]. Now from (2.1), (2.2) we obtain

〈0|φn1+ 1
2
(t)φn2+ 1

2
(t)|0〉 =

λ1∑
n=0

(−1)n2−nhn(t)hn1+n2+1−n(t),

while Schur function evaluated on a one-hook partition is (see Chapter I, § 3, Example 9 in [11])

s(n1|n2)(t) = hn1+1(t)en2(t)− hn1+2(t)en2−1(t) + · · ·+ (−)n2hn1+n2+1(t),

where en are elementary symmetric functions. Then taking into account that for t = (t1, t3, . . . )
of form (4.5) we get the equality hm(t) ≡ em(t), we obtain (4.6).

Thus we get

Cλ(t) =


1

dλ
Hf
[
s(ni|nj)(t)

]
if `(λ) even,

0 if `(λ) odd.
(4.7)

It follows from (4.7) and from sλ(−t) = (−1)|λ|sλtr(t) that

Cλ(−t) = (−1)
1
2

(|λ|+`(λ))Cλ(t). (4.8)

Next, if all Grassmannian odd variables except t 1
2

vanish, we obtain

Cλ(t) =


1

dλ
Hf
[
s(ni|nj)(t)

]
if `(λ) even,

t 1
2

1

dλ
Hf
[
S̃
]

if `(λ) = 2n− 1 odd,

1We need to make difference between odd numbers and odd numbers in the Grassmannian sense. In the last
case we shall necessarily say Grassmannian odd number.
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where S̃ is 2n× 2n symmetric matrix

S̃ij = S̃ji :=

{
s(ni|nj)(t) if 1 ≤ i < j ≤ 2n− 1,

s(ni)(t) if 1 ≤ i < j = 2n.

Recall that t = (t1, t3, t5, . . . ) and that λi are related to ni via (4.2).
In general case, where the odd Grassmannian variables do not vanish, we can see that Cλ

is of even Grassmannian parity in case `(λ) is even, and it is of odd Grassmannian parity in
case `(λ) is odd. We can write

Cλ(t) =


1

dλ
Hf
[
s(ni|nj)(t)

]
+ Ce if `(λ) even,

t 1
2

1

dλ
Hf
[
S̃
]

+ Co if `(λ) = 2n− 1 odd,

where Ce and Co are polynomials in odd Grassmannian variables of the order `(λ), Ce starts with
quadratic terms, while Co starts with cubic ones. This follows from the consideration of (2.24)
in Subsection 2.1.

4.2 Orthogonality

One can verify the equality, using (2.27)

〈0|Γ(t)|λ〉 = 〈λ| Γ̄(−t)|0〉, (4.9)

where

Γ̄(t) := eJ̄(t), J̄(t) =
∑

0<i∈1+2Z
tiJ−i +

∑
0<i∈ 1

2
+Z

tiJ−i (4.10)

(keep the order in the products of Grassmannian odd variables, which we label by semi-integer
subscripts).

Thanks to (4.3) we can write

〈0|Γ(t) = 〈0|+
∑
λ∈OP

Cλ(t)〈λ|. (4.11)

On the other hand due to (4.9)

Γ̄(t) |0〉 = |0〉+
∑
λ∈OP

|λ〉Cλ(−t)

and to (2.18) we obtain

〈0|Γ(t)Γ̄(t̄) |0〉 = e
− 1

2

∑
n=1,3,5,...

ntn t̄n− 1
2

∑
m=0,1,2,...

(−1)m(m+ 1
2

)t
m+1

2
t̄
m+1

2 ,

where t and t̄ are two independent sets of variables:

t =
(
t1, t 1

2
; t3, t 3

2
; t5, t 5

2
; . . .

)
, t̄ =

(
t̄1, t̄ 1

2
; t̄3, t̄ 3

2
; t̄5, t̄ 5

2
; . . .

)
.

On the other hand, due to (2.27), (4.10) and (4.3) we obtain the following analogue of Cauchy–
Littlewood identity:

e
− 1

2

∑
n=1,3,5,...

ntn t̄n− 1
2

∑
m=1,2,3,...

(−1)m(m+ 1
2

)t
m+1

2
t̄
m+1

2 =
∑
λ∈OP

Cλ(t)Cλ(−t̄). (4.12)
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From the last equality we obtain

Γ(t) = 1 +
∑
λ∈OP

Cλ(t)Cλ(J), Γ̄(t) = 1 +
∑
λ∈OP

Cλ(J̄)Cλ(−t̄),

where

J :=

(
2J1, 4J 1

2
;
2

3
J3,−

4

3
J 3

2
;
2

5
J5,

4

5
J 5

2
;
2

7
J7,−

4

7
J 7

2
; . . .

)
,

J̄ :=

(
−2J−1,−4J− 1

2
;−2

3
J−3,

4

3
J− 3

2
;−2

5
J−5,−

4

5
J− 5

2
;−2

7
J−7,

4

7
J− 7

2
; . . .

)
and therefore

|λ〉 = Cλ(J̄) |0〉, 〈λ| = 〈0|Cλ(J). (4.13)

Let f(t) and g(t) be series in the variables {ti}. We introduce the following scalar product

〈f, g〉 := 〈0| f(J)g(J̄) |0〉. (4.14)

In particular due to (2.18)

〈ti, tj〉 = 〈0|JiJ−j |0〉 = − j
2

(−1)[−j− 1
2

]δi,j ,

where [a] denotes the integer part of a (i.e., a = [a] + ε where 0 ≤ ε ≤ 1 for a < 0).
It follows from (4.13) and (4.3) that the polynomials form an orthonormal basis in the scalar

product (4.14):

〈Cλ,Cµ〉 = 〈0|Cλ(J)Cµ(J̄) |0〉 = δλ,µ.

4.3 Polynomials Cλ in super Miwa variables

If we want to rewrite polynomials as symmetric functions symmetric with respect to the action
of symmetric group on pairs (zi, ζi) of super Miwa variables z = (z1, ζ1, . . . , zk, ζk) (3.9), we
present Cλ as

Cλ(z) := Cλ(−[z]) = 〈0| :eΘ(z1,ζ1): · · · :eΘ(zk,ζk): |λ〉D(z)−1

in terms of super vertex operators (3.1). Here

D(z) = Dk(z) := 〈0| :eΘ(z1,ζ1): · · · :eΘ(zk,ζk): |0〉

is antisymmetric function with respect to the permutation of pairs (zi, ζi), D(z)−1, see (3.10).
Let us note that if `(λ) > k the polynomial Cλ does not depend on the odd Grassmannian
variables ζi, and vanish for `(λ) odd. Example. For k = 1 we obtain

Cλ(z, ζ) =


2

dλ
z−

1
2
|λ|(2`(λ)− 1)!! if `(λ) even,

ζ

dλ
z−

1
2
|λ|− 1

2 if `(λ) = 1,

0 if `(λ) > 1, odd,

(4.15)

where we use the formula s(n|m)(x) = 2xn+m+1.
In Miwa variables the Cauchy–Littlewood identity (4.12) is written as

∑
λ∈OP

Cλ(z)Cλ(−z̄) =
∏
i,j

1− ziz̄j
1 + ziz̄j

(
1− ζiζ̄j

1− ziz̄j
(1 + ziz̄j)

2

)
.
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Proof. Using (3.9), namely

t2n+1 =
2

(2n+ 1)

k∑
i=1

1

z2n+1
i

, tm+ 1
2

= 2
k∑
i=1

ζi
zmi

we obtain

e
− 1

2

∑
m=1,2,3,...

(−1)m(m+ 1
2

)t
m+1

2
t̄
m+1

2 =
∏
i,j

1− 2ζiζ̄j
∑

m=1,2,3,...

(−1)m
(
m+

1

2

)
z−mi z̄−mj


=
∏
i,j

1 + 2ζiζ̄jDzi

∑
m=1,2,3,...

(−1)mz−mi z̄−mj


=
∏
i,j

(
1 + 2ζiζ̄jDzi

(
− 1

ziz̄j

1

1 + z−1
i z̄−1

j

))

=
∏
i,j

(
1− 2ζiζ̄jDzi

(
1

1 + ziz̄j

))
=
∏
i,j

(
1− ζiζ̄j

1− ziz̄j
(1 + ziz̄j)

2

)
,

where Dz = 1
2(z∂z + ∂zz) is the Euler operator. �

4.4 Combinatorial meaning of Cλ(t) = Cλ(1, 0, 0, . . . )

Each partition with odd parts may be presented as λ = (1m13m35m5 · · · ) where mi is the
multiplicity of the number i (that means that the partition λ contains the part equal to i mi

times). The length `(λ) of the partition λ is equal to
∑

i=1,3,5,...
mi, the weight is |λ| =

∑
i=1,3,5,...

imi.

Let us visualize this, in a similar way as in the papers [5, 18], as the one-dimensional semi-
infinite lattice of cites (baskets) in our case numbered by odd positive integers. A basket
number i (i = 1, 3, 5, . . . ) contains mi identical balls (and therefore the multiplicity mi may
be also called the occupation number). Nonequivalent distributions of balls is in one-to-one
correspondence with partitions from the set OP. (The length of a partition is equal to the
number of balls, the ratio of the weight of the partition and the length of the partition may be
considered as the location of the mass center of the balls).

Let us consider the following discrete time random process describing the creation of λ ∈ OP
or, the same, of ball configurations. It starts with a given partition, say, µ. (The case where
µ = 0 describes the configuration where all baskets are empty at time t = 0). At each discrete
time instant t = 1, 2, 3, . . . one of the following two possible events occurs with equal probability
(A) either two balls are created in the leftmost basket (basket number 1), or (B) a ball chosen
at random in any of baskets, say, in basket number i, is moved to the nearest basket to the right
(to the basket number i+2). It is clear that at each time step the weight of the related partition
increases: |λ| → |λ|+ 2, thus |λ| = 2t. A problem is to find a number of ways to create a given
distribution λ of the balls in baskets along the process described above in t = 1

2 |λ| steps. We
denote this number Nµ→λ.

Then we state that

Cλ(1, 0, 0, 0, . . . ) =

(
1

2

) 1
2
`(λ) 1(

1
2 |λ|

)
!

1

dλ
N0→λ

The proof follows from

eJ−1 |0〉 = |0〉+
∑
λ∈OPe

|λ〉Cλ(−1, 0, 0, 0, . . . ) =
∑

t=0,1,2,...

1

t!
(J−1)t |0〉
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and from the detailed consideration of the action of

J−1 = −1

2
φ2

1
2

+ φ− 1
2
φ 3

2
− φ− 3

2
φ 5

2
+ · · ·

on basis Fock vectors (4.1) (see Appendix B), and from (4.8).
Now we write down the following formula for Cλ(1, 0, 0, . . . ) obtained from (4.7):

Cλ(1, 0, 0, . . . ) =
1

dλ

∏
i

1

ni!nj !
Hf

[
1

ni + nj + 1

]
,

where ni and λi are related by (4.2), which yields

N0→λ = 2
1
2
`(λ)

(
1

2
|λ|
)

!

 ∏
i=1,3,5,...

1

mi!

Hf

[
1

ni!nj !(ni + nj + 1)

]
,

where we recall that mi and ni we defined above: λ = (1m13m35m5 · · · ) and λ = (λ1, . . . , λ2k)
where `(λ) = 2k is the length of the partition, λi = 2ni + 1.

For instance, take λ = (12k). Obviously there is only one way to create this configuration,
N0→(12k) = 1. Indeed `(λ) = |λ| = 2k, ni = 0, i = 1, . . . , 2k, and we obtain well-known identity

1 = N0→(12k) = 2kk!
1

(2k)!
(2k − 1)!!.

At last let us mention that Cλ(t) where ti = 0 except i = 1
2 , 1 may be related to the numbers

N(1)→λ, where λ ∈ OPo.

4.5 Polynomials Cλ/µ

We define skew polynomials Cλ/µ(t) as follows (cf. (2.27) and (4.10)):

Cλ/µ(t) := 〈µ|Γ(t)|λ〉 = 〈λ|Γ̄(−t)|µ〉.

From this definition Cλ/µ vanishes unless µ ⊆ λ. The same may be written as

Γ(t) =
∑
λ,µ

Cλ/µ(t) |µ〉〈λ|, Γ̄(t) =
∑
λ,µ

Cλ/µ(−t) |λ〉〈µ|.

If t = t′+ t′′ then Γ(t) = Γ(t′)Γ(t′′) by inserting the unity operator
∑
λ∈P
|λ〉〈λ| between Γ(t′)

and Γ(t′′) we obtain

Cλ(t) =
∑
µ

Cλ/µ(t′)Cµ(t′′).

This property is quite similar to the property of the Schur functions (see (5.9) in I of [11]).
One may relate Cλ/µ to the numbers Nµ→λ described in the previous subsection.

4.6 CKP tau function and polynomials Cλ

First of all we note that Cλ(t) is not a solution of the Hirota bilinear equations, and, therefore
is not a CKP tau function. However, due to (4.11) CKP tau functions (3.6) are series in Cλ(t)
as follows

τ(t) =
∑
λ∈OP

gλCλ(t),

where

gλ = 〈λ| g |0〉.
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Example 1. Take g = exp
∑
i>0

e−2Uiφ2
i . Then

τ(t) =
∑
λ

e−UλCλ(t)dλ
∏

i=1,3,5,...

1

ki!
, (4.16)

where the sum ranges over all λ ∈ OP whose parts have even multiplicities, mi =: 2ki, i.e., of
the form λ =

(
12k132k352k5 · · ·

)
. The numbers Uλ are defined as

Uλ :=

k∑
i=1

U 1
2
λi
. (4.17)

The right-hand side of (4.16) may be compared to sums over partitions in [6] and in [14]
dealing with tau functions of neutral and charged BKP hierarchies, respectively.

Example 2. Given a symmetric matrix A and a partition λ introduce numbers Aλ according
to the formula

e

∑
n,m>0

xnAnmxm
=
∑
λ∈Pev

Aλxλ,

where λ = (λ1, . . . , λk) is a partition, and xλ = xλ1 · · ·xλk , and where Pev is a set of all partitions
with even number of parts.

Then taking

e

∑
n,m>0

φn
2
Anmφm

2
,

which is an exponential of a quadratic form of creation operators, we obtain

τ(t) = 〈0|Γ(t)g |0〉 =
∑
λ∈Pev

AλCλ(t).

Next we may write the CKP tau function as a double series over partitions

τ(t, t̄) =
∑

λ,µ∈OP

gλ,µCλ(t)Cµ(t̄),

where

gλ,µ = 〈λ| g |µ〉.

Example 3.

τ(t, U, t̄) = 〈0|Γ(t)T(U)Γ̄(t̄) |0〉 = 1 +
∑
λ∈OP

e−UλCλ(t)Cλ(−t̄),

where U =
(
U 1

2
, U 3

2
, U 5

2
, . . .

)
is a set of constants, and

T(U) := exp
∑

0<i∈ 1
2

+Z

(−1)i+
1
2Uiϕiϕ−i,

where the numbers Uλ are defined by (4.17).
This example may be compared with the results of [15] and [13] devoted to TL and neutral

BKP hypergeometric tau functions.
We can specify t̄ in such a way that t̄i = 2

i z
i, i = 1, 3, 5, . . . , and use (4.15). We thus obtain

τ(t, U, t̄(z)) = 1 +
∑

λ∈OPev

fλe
−UλCλ(t), fλ := (−1)

1
2

(|λ|+`(λ)) 2

dλ
z

1
2
|λ|(2`(λ)− 1)!!.
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A Examples of CKP tau functions

(I) One-soliton tau function is

〈0|Γ(t)e
a
2
φ(p)φ(q) |0〉 =

(
1− a

p+ q
e
∑

(pn+qn)tn

)− 1
2

.

(II) Another example is as follows

〈0|Γ(t)e
aφ21

2 |0〉 = (1− at1)−
1
2 ,

which may be also viewed as a solution of a heat equation

∂f(z 1
2
, t1)

∂t1
=
∂2f(z 1

2
, t1)

∂z2
1
2

, f(z 1
2
, 0) = exp az2

1
2

,

which is

f(z 1
2
, t1) = exp t1∂

2
1
2

· exp az2
1
2

=
1√

1− at1
exp

az2
1
2

1− at1

in the origin.

B A realization of the algebra of free bosons (2.1)–(2.3)

The simplest way to understand the action of J−1 on a basis Fock vector may be as follows.
Consider the realization of free boson algebra (2.1) via differentiation operators in auxiliary
variables zi:

φm+ 1
2

= zm+ 1
2
, φ−m− 1

2
= (−)m∂m+ 1

2
, m ≥ 0,

while the Fock space F may be viewed as polynomial functions in the auxiliary variables zi

|(1m13m35m5 · · · )〉 dλ = zm1
1
2

zm3
3
2

zm5
5
2

· · · .

The action of J−1 on a basis Fock vector yields the following(
−1

2
z2

1
2

+ z 3
2
∂ 1

2
+ z 5

2
∂ 3

2
+ · · ·

)
zm1

1
2

zm3
3
2

zm5
5
2

· · ·

= −1

2
zm1+2

1
2

zm3
3
2

zm5
5
2

· · ·+m1z
m1−1
1
2

zm3+1
3
2

zm5
5
2

· · ·+m3z
m1
1
2

zm3−1
3
2

zm5+1
5
2

· · ·+ · · · .

As we see the action of J−1 on a basis vector results in linear combination of basis vectors. The
first term in the right-hand side of the last equality may be related to the event (A) (creation of
a pair of balls in the basket 1. This event is accomplished by the multiplication by the factor −1

2 .

Thus we get the general prefactor (−1)`(λ) for all configurations with `(λ) number of the balls.
Other terms in the right-hand side may be related to the event (B) where a chosen ball is moved
to the right neighbor basket, each possibility has the weight 1. The factors mi describe the fact
that we can chose any of mi balls in the basket i to move them to the right.
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C Bosonic KP tau function

Here we shall briefly describe a bosonic KP tau function and its symplectic reduction to the
bosonic CKP tau function.

Consider the following bosonic operators

[pi, qj ] = δi,j , i, j ∈ 1

2
+ Z.

The right and left Fock spaces will be defined via

pi|0〉 = q−i|0〉 = 0 = 〈0|qi = 〈0|p−i, i < 0.

Let us define the expression piqj − 〈0|piqj |0〉 by Eij = :piqj :. These Eij may be considered
as generators of gl(∞) algebra with a negative level.

Let us notice that for

g := exp
∑

i,j∈ 1
2

+Z

Aij :piqj : (C.1)

we have∑
i∈ 1

2
+Z

gpi ⊗ gqi =
∑
i∈ 1

2
+Z

pig ⊗ qig.

Bosonic KP tau function may be defined as

τKP (t) := 〈0|Γ(t)g|0〉, Γ(t) := exp

∞∑
n=1

tn
∑
k∈Z

pkqk+n,

where t = (t1, t2, . . . ) is a set of higher times. This tau function may be considered as a particular
case of a supersymmetric KP tau function [9].

If we ask g of (C.1) to be invariant under Sp(∞) group then g may be expressed in terms of
the so-called symplectic bosons.

Symplectic bosons. Now between the bosons

φi =
1√
2

(
pi − (−1)i+

1
2 q−i−1

)
, φ̂i =

1√
2

(
pi + (−1)i+

1
2 q−i−1

)
there are the following relations, cf. (2.1), (2.2):

[φi, φj ] = [φ̂j , φ̂i] = (−)j−
1
2 δi,−j and [φi, φ̂j ] = 0.

It is known (see [9]) that quadratic expressions Zij = :φiφj : ordered via (2.6) may be consid-
ered as a realization for the generators of the c∞ algebra with a negative level (this fact may be
verified with the help of (2.1) and (2.6)). The same is true for Ẑij = :φ̂iφ̂j :.

It is straightforward to show that if g of (C.1) is invariant under the Sp(∞) group then

g = g1ĝ1, where g1 = exp
( ∑
i,j∈ 1

2
+Z
Aij :φiφj :

)
and ĝ1 = exp

( ∑
i,j∈ 1

2
+Z
Aij :φ̂iφ̂j :

)
; then, if all

t2n−1 = 0, the KP bosonic tau function may be factorized: τKP =
(
τCKP

)−2
, where τCKP is of

form (2.31), α = 0 (see also (3.6)).
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