Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 8 (2012), 015, 44 pages      arXiv:1110.3020
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology”

Learning about Quantum Gravity with a Couple of Nodes

Enrique F. Borja a, b, Iñaki Garay a, c and Francesca Vidotto d, e
a) Institute for Theoretical Physics III, University of Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
b) Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Facultad de Física, Universidad de Valencia, Burjassot-46100, Valencia, Spain
c) Departamento de Física Teórica, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
d) Laboratoire de Physique Subatomique et de Cosmologie, 53 rue des Martyrs, 38026 Grenoble, France
e) Centre de Physique Théorique de Luminy, Case 907, 13288 Marseille, France

Received October 08, 2011, in final form March 12, 2012; Published online March 25, 2012

Loop Quantum Gravity provides a natural truncation of the infinite degrees of freedom of gravity, obtained by studying the theory on a given finite graph. We review this procedure and we present the construction of the canonical theory on a simple graph, formed by only two nodes. We review the U(N) framework, which provides a powerful tool for the canonical study of this model, and a formulation of the system based on spinors. We consider also the covariant theory, which permits to derive the model from a more complex formulation, paying special attention to the cosmological interpretation of the theory.

Key words: discrete gravity; canonical quantization; spinors; spinfoam; quantum cosmology.

pdf (1034 kb)   tex (637 kb)


  1. Ashtekar A., An introduction to loop quantum gravity through cosmology, Nuovo Cim. B 122 (2007), 135-155, gr-qc/0702030.
  2. Ashtekar A., Lectures on nonperturbative canonical gravity, Advanced Series in Astrophysics and Cosmology, Vol. 6, World Scientific Publishing Co. Inc., River Edge, NJ, 1991.
  3. Ashtekar A., New variables for classical and quantum gravity, Phys. Rev. Lett. 57 (1986), 2244-2247.
  4. Ashtekar A., Bojowald M., Lewandowski J., Mathematical structure of loop quantum cosmology, Adv. Theor. Math. Phys. 7 (2003), 233-268, gr-qc/0304074.
  5. Ashtekar A., Corichi A., Singh P., Robustness of key features of loop quantum cosmology, Phys. Rev. D 77 (2008), 024046, 17 pages, arXiv:0710.3565.
  6. Ashtekar A., Lewandowski J., Representation theory of analytic holonomy C*-algebras, in Knots and Quantum Gravity (Riverside, CA, 1993), Oxford Lecture Ser. Math. Appl., Vol. 1, Oxford Univ. Press, New York, 1994, 21-61, gr-qc/9311010.
  7. Ashtekar A., Lewandowski J., Marolf D., Mourão J., Thiemann T., Coherent state transforms for spaces of connections, J. Funct. Anal. 135 (1996), 519-551, gr-qc/9412014.
  8. Ashtekar A., Pawlowski T., Singh P., Quantum nature of the big bang, Phys. Rev. Lett. 96 (2006), 141301, 4 pages, gr-qc/0602086.
  9. Ashtekar A., Pawlowski T., Singh P., Quantum nature of the big bang: improved dynamics, Phys. Rev. D 74 (2006), 084003, 23 pages, gr-qc/0607039.
  10. Ashtekar A., Pawlowski T., Singh P., Vandersloot K., Loop quantum cosmology of k=1 FRW models, Phys. Rev. D 75 (2007), 024035, 26 pages, gr-qc/0612104.
  11. Ashtekar A., Rovelli C., Smolin L., Weaving a classical metric with quantum threads, Phys. Rev. Lett. 69 (1992), 237-240, hep-th/9203079.
  12. Ashtekar A., Singh P., Loop quantum cosmology: a status report, Classical Quantum Gravity 28 (2011), 213001, 122 pages, arXiv:1108.0893.
  13. Baez J.C., Spin networks in gauge theory, Adv. Math. 117 (1996), 253-272, gr-qc/9411007.
  14. Baez J.C., Spin networks in nonperturbative quantum gravity, in The Interface of Knots and Physics (San Francisco, CA, 1995), Proc. Sympos. Appl. Math., Vol. 51, Editor L.H. Kauffman, Amer. Math. Soc., Providence, RI, 1996, 167-203, gr-qc/9504036.
  15. Baez J.C., Krasnov K.V., Quantization of diffeomorphism-invariant theories with fermions, J. Math. Phys. 39 (1998), 1251-1271, hep-th/9703112.
  16. Bahr B., Dittrich B., (Broken) gauge symmetries and constraints in Regge calculus, Classical Quantum Gravity 26 (2009), 225011, 34 pages, arXiv:0905.1670.
  17. Bahr B., Dittrich B., Improved and perfect actions in discrete gravity, Phys. Rev. D 80 (2009), 124030, 15 pages, arXiv:0907.4323.
  18. Bahr B., Dittrich B., He S., Coarse graining free theories with gauge symmetries: the linearized case, New J. Phys. 13 (2011), 045009, 34 pages, arXiv:1011.3667.
  19. Bahr B., Dittrich B., Steinhaus S., Perfect discretization of reparametrization invariant path integrals, Phys. Rev. D 83 (2011), 105026, 19 pages, arXiv:1101.4775.
  20. Bahr B., Thiemann T., Gauge-invariant coherent states for loop quantum gravity. I. Abelian gauge groups, Classical Quantum Gravity 26 (2009), 045011, 22 pages, arXiv:0709.4619.
  21. Bahr B., Thiemann T., Gauge-invariant coherent states for loop quantum gravity. II. Non-Abelian gauge groups, Classical Quantum Gravity 26 (2009), 045012, 45 pages, arXiv:0709.4636.
  22. Barrett J.W., Dowdall R.J., Fairbairn W.J., Hellmann F., Pereira R., Lorentzian spin foam amplitudes: graphical calculus and asymptotics, Classical Quantum Gravity 27 (2010), 165009, 34 pages, arXiv:0907.2440.
  23. Battisti M.V., Marcianó A., Big bounce in dipole cosmology, Phys. Rev. D 82 (2010), 124060, 5 pages, arXiv:1010.1258.
  24. Battisti M.V., Marcianò A., Rovelli C., Triangulated loop quantum cosmology: Bianchi IX universe and inhomogeneous perturbations, Phys. Rev. D 81 (2010), 064019, 16 pages, arXiv:0911.2653.
  25. Bianchi E., Ding Y., Lorentzian spinfoam propagator, arXiv:1109.6538.
  26. Bianchi E., Dona' P., Speziale S., Polyhedra in loop quantum gravity, Phys. Rev. D 83 (2011), 044035, 17 pages, arXiv:1009.3402.
  27. Bianchi E., Han M., Magliaro E., Perini C., Rovelli C., Wieland W., Spinfoam fermions, arXiv:1012.4719.
  28. Bianchi E., Krajewski T., Rovelli C., Vidotto F., Cosmological constant in spinfoam cosmology, Phys. Rev. D 83 (2011), 104015, 4 pages, arXiv:1101.4049.
  29. Bianchi E., Magliaro E., Perini C., Coherent spin-networks, Phys. Rev. D 82 (2010), 024012, 7 pages, arXiv:0912.4054.
  30. Bianchi E., Magliaro E., Perini C., Spinfoams in the holomorphic representation, Phys. Rev. D 82 (2010), 124031, 10 pages, arXiv:1004.4550.
  31. Bianchi E., Rovelli C., Vidotto F., Towards spinfoam cosmology, Phys. Rev. D 82 (2010), 084035, 8 pages, arXiv:1003.3483.
  32. Borja E.F., Díaz-Polo J., Garay I., Livine E.R., Dynamics for a 2-vertex quantum gravity model, Classical Quantum Gravity 27 (2010), 235010, 34 pages, arXiv:1006.2451.
  33. Borja E.F., Díaz-Polo J., Garay I., Livine E.R., U(n) invariant dynamics for a simplified loop quantum gravity model, arXiv:1012.3832.
  34. Borja E.F., Freidel L., Garay I., Livine E.R., U(N) tools for loop quantum gravity: the return of the spinor, Classical Quantum Gravity 28 (2011), 055005, 28 pages, arXiv:1010.5451.
  35. Collins P.A., Williams R.M., Dynamics of the Friedmann universe using Regge calculus, Phys. Rev. D 7 (1973), 965-971.
  36. Conrady F., Freidel L., Quantum geometry from phase space reduction, J. Math. Phys. 50 (2009), 123510, 29 pages, arXiv:0902.0351.
  37. Corichi A., Singh P., Is loop quantization in cosmology unique?, Phys. Rev. D 78 (2008), 024034, 13 pages, arXiv:0805.0136.
  38. Dittrich B., Partial and complete observables for canonical general relativity, Classical Quantum Gravity 23 (2006), 6155-6184, gr-qc/0507106.
  39. Dittrich B., Partial and complete observables for Hamiltonian constrained systems, Gen. Relativity Gravitation 39 (2007), 1891-1927, gr-qc/0411013.
  40. Dittrich B., Tambornino J., Gauge-invariant perturbations around symmetry-reduced sectors of general relativity: applications to cosmology, Classical Quantum Gravity 24 (2007), 4543-4585, gr-qc/0702093.
  41. Domagala M., Giesel K., Kaminski W., Lewandowski J., Gravity quantized: loop quantum gravity with a scalar field, Phys. Rev. D 82 (2010), 104038, 13 pages, arXiv:1009.2445.
  42. Dupuis M., Livine E.R., Revisiting the simplicity constraints and coherent intertwiners, Classical Quantum Gravity 28 (2011), 085001, 36 pages, arXiv:1006.5666.
  43. Dürr S., Fodor Z., Frison J., Hoelbling C., Hoffmann R., Katz S.D., Krieg S., Kurth T., Lellouch L., Lippert T., Szabo K.K., Vulvert G., Ab initio determination of light hadron masses, Science 322 (2008), 1224-1227, arXiv:0906.3599.
  44. Engle J., Livine E., Pereira R., Rovelli C., LQG vertex with finite Immirzi parameter, Nuclear Phys. B 799 (2008), 136-149, arXiv:0711.0146.
  45. Engle J., Pereira R., Regularization and finiteness of the Lorentzian loop quantum gravity vertices, Phys. Rev. D 79 (2009), 084034, 10 pages, arXiv:0805.4696.
  46. Engle J., Pereira R., Rovelli C., Flipped spinfoam vertex and loop gravity, Nuclear Phys. B 798 (2008), 251-290, arXiv:0708.1236.
  47. Engle J., Pereira R., Rovelli C., Loop-quantum-gravity vertex amplitude, Phys. Rev. Lett. 99 (2007), 161301, 4 pages, arXiv:0705.2388.
  48. Fleischhack C., Irreducibility of the Weyl algebra in loop quantum gravity, Phys. Rev. Lett. 97 (2006), 061302, 4 pages.
  49. Flori C., Semiclassical analysis of the loop quantum gravity volume operator: area coherent states, arXiv:0904.1303.
  50. Flori C., Thiemann T., Semiclassical analysis of the loop quantum gravity volume operator. I. Flux coherent states, arXiv:0812.1537.
  51. Freidel L., Krasnov K., A new spin foam model for 4D gravity, Classical Quantum Gravity 25 (2008), 125018, 36 pages, arXiv:0708.1595.
  52. Freidel L., Krasnov K., Livine E.R., Holomorphic factorization for a quantum tetrahedron, Comm. Math. Phys. 297 (2010), 45-93, arXiv:0905.3627.
  53. Freidel L., Livine E.R., The fine structure of SU(2) intertwiners from U(N) representations, J. Math. Phys. 51 (2010), 082502, 19 pages, arXiv:0911.3553.
  54. Freidel L., Livine E.R., U(N) coherent states for loop quantum gravity, J. Math. Phys. 52 (2011), 052502, 21 pages, arXiv:1005.2090.
  55. Freidel L., Speziale S., Twisted geometries: a geometric parametrization of SU(2) phase space, Phys. Rev. D 82 (2010), 084040, 16 pages, arXiv:1001.2748.
  56. Freidel L., Speziale S., Twistors to twisted geometries, Phys. Rev. D 82 (2010), 084041, 5 pages, arXiv:1006.0199.
  57. Girelli F., Livine E.R., Reconstructing quantum geometry from quantum information: spin networks as harmonic oscillators, Classical Quantum Gravity 22 (2005), 3295-3313, gr-qc/0501075.
  58. Han M., Rovelli C., Spinfoam fermions: PCT symmetry, Dirac determinant, and correlation functions, arXiv:1101.3264.
  59. Hartle J.B., Hawking S.W., Wave function of the universe, Phys. Rev. D 28 (1983), 2960-2975.
  60. Hellmann F., Expansions in spin foam cosmology, Phys. Rev. D 84 (2011), 103516, 9 pages, arXiv:1105.1334.
  61. Hu B.L., Regge T., Perturbations on the mixmaster universe, Phys. Rev. Lett. 29 (1972), 1616-1620.
  62. Iwasaki J., Rovelli C., Gravitons as embroidery on the weave, Internat. J. Modern Phys. D 1 (1992), 533-557.
  63. Kaminski W., Kisielowski M., Lewandowski J., Spin-foams for all loop quantum gravity, Classical Quantum Gravity 27 (2010), 095006, 24 pages, arXiv:0909.0939.
  64. Kaminski W., Lewandowski J., Pawowski T., Physical time and other conceptual issues of quantum gravity on the example of loop quantum cosmology, Classical Quantum Gravity 26 (2009), 035012, 20 pages, arXiv:0809.2590.
  65. Kisielowski M., Lewandowski J., Puchta J., Feynman diagrammatic approach to spin foams, arXiv:1107.5185.
  66. Krajewski T., Magnen J., Rivasseau V., Tanasa A., Vitale P., Quantum corrections in the group field theory formulation of the Engle-Pereira-Rovelli-Livine and Freidel-Krasnov models, Phys. Rev. D 82 (2010), 124069, 20 pages, arXiv:1007.3150.
  67. Lewandowski J., Okoów A., Sahlmann H., Thiemann T., Uniqueness of diffeomorphism invariant states on holonomy-flux algebras, Comm. Math. Phys. 267 (2006), 703-733, gr-qc/0504147.
  68. Livine E.R., Martín-Benito M., Classical setting and effective dynamics for spinfoam cosmology, arXiv:1111.2867.
  69. Livine E.R., Speziale S., New spinfoam vertex for quantum gravity, Phys. Rev. D 76 (2007), 084028, 14 pages, arXiv:0705.0674.
  70. Livine E.R., Tambornino J., Spinor representation for loop quantum gravity, J. Math. Phys. 53 (2012), 012503, 33 pages, arXiv:1105.3385.
  71. Magliaro E., Marcianó A., Perini C., Coherent states for FLRW space-times in loop quantum gravity, Phys. Rev. D 83 (2011), 044029, 9 pages, arXiv:1011.5676.
  72. Magliaro E., Perini C., Local spin foams, arXiv:1010.5227.
  73. Magliaro E., Perini C., Regge gravity from spinfoams, arXiv:1105.0216.
  74. Morales-Técotl H.A., Rovelli C., Fermions in quantum gravity, Phys. Rev. Lett. 72 (1994), 3642-3645, gr-qc/9401011.
  75. Morales-Técotl H.A., Rovelli C., Loop space representation of quantum fermions and gravity, Nuclear Phys. B 451 (1995), 325-361.
  76. Penrose R., Applications of negative dimensional tensors, in Combinatorial Mathematics and its Applications (Oxford, 1969), Academic Press, London, 1971, 221-244.
  77. Pereira R., Lorentzian loop quantum gravity vertex amplitude, Classical Quantum Gravity 25 (2008), 085013, 8 pages, arXiv:0710.5043.
  78. Perinia C., Rovellia C., Speziale S., Self-energy and vertex radiative corrections in LQG, Phys. Lett. B 682 (2009), 78-84, arXiv:0810.1714.
  79. Regge T., General relativity without coordinates, Nuovo Cim. 19 (1961), 558-571.
  80. Röken C., Private communication, 2012.
  81. Rovelli C., A new look at loop quantum gravity, Classical Quantum Gravity 28 (2011), 114005, 24 pages, arXiv:1004.1780.
  82. Rovelli C., Discretizing parametrized systems: the magic of Ditt-invariance, arXiv:1107.2310.
  83. Rovelli C., On the structure of a background independent quantum theory: Hamilton function, transition amplitudes, classical limit and continuous limit, arXiv:1108.0832.
  84. Rovelli C., Partial observables, Phys. Rev. D 65 (2002), 124013, 8 pages, gr-qc/0110035.
  85. Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004.
  86. Rovelli C., Quantum reference systems, Classical Quantum Gravity 8 (1991), 317-331.
  87. Rovelli C., Simple model for quantum general relativity from loop quantum gravity, J. Phys. Conf. Ser. 314 (2011), 012006, 12 pages, arXiv:1010.1939.
  88. Rovelli C., What is observable in classical and quantum gravity?, Classical Quantum Gravity 8 (1991), 297-316.
  89. Rovelli C., Zakopane lectures on loop gravity, arXiv:1102.3660.
  90. Rovelli C., Smolin L., Knot theory and quantum gravity, Phys. Rev. Lett. 61 (1988), 1155-1158.
  91. Rovelli C., Smolin L., Loop space representation of quantum general relativity, Nuclear Phys. B 331 (1990), 80-152.
  92. Rovelli C., Smolin L., Spin networks and quantum gravity, Phys. Rev. D 52 (1995), 5743-5759, gr-qc/9505006.
  93. Rovelli C., Smolin L., The physical Hamiltonian in nonperturbative quantum gravity, Phys. Rev. Lett. 72 (1994), 446-449, gr-qc/9308002.
  94. Rovelli C., Speziale S., Geometry of loop quantum gravity on a graph, Phys. Rev. D 82 (2010), 044018, 6 pages, arXiv:1005.2927.
  95. Rovelli C., Speziale S., Lorentz covariance of loop quantum gravity, Phys. Rev. D 83 (2011), 104029, 6 pages, arXiv:1012.1739.
  96. Rovelli C., Vidotto F., Stepping out of homogeneity in loop quantum cosmology, Classical Quantum Gravity 25 (2008), 225024, 16 pages, arXiv:0805.4585.
  97. Sahlmann H., Thiemann T., Winkler O., Coherent states for canonical quantum general relativity and the infinite tensor product extension, Nuclear Phys. B 606 (2001), 401-440, gr-qc/0102038.
  98. Thiemann T., Complexifier coherent states for quantum general relativity, Classical Quantum Gravity 23 (2006), 2063-2117, gr-qc/0206037.
  99. Thiemann T., Gauge field theory coherent states (GCS). I. General properties, Classical Quantum Gravity 18 (2001), 2025-2064, hep-th/0005233.
  100. Thiemann T., Introduction to modern canonical quantum general relativity, gr-qc/0110034.
  101. Thiemann T., Lectures on loop quantum gravity, in Quantum gravity, Lecture Notes in Phys., Vol. 631, Springer, Berlin, 2003, 41-135, gr-qc/0210094.
  102. Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007.
  103. Thiemann T., Quantum spin dynamics (QSD), Classical Quantum Gravity 15 (1998), 839-873, gr-qc/9606089.
  104. Thiemann T., Winkler O., Gauge field theory coherent states (GCS). II. Peakedness properties, Classical Quantum Gravity 18 (2001), 2561-2636, hep-th/0005237.
  105. Thiemann T., Winkler O., Gauge field theory coherent states (GCS). III. Ehrenfest theorems, Classical Quantum Gravity 18 (2001), 4629-4681, hep-th/0005234.
  106. Thiemann T., Winkler O., Gauge field theory coherent states (GCS). IV. Infinite tensor product and thermodynamical limit, Classical Quantum Gravity 18 (2001), 4997-5053, hep-th/0005235.
  107. Vidotto F., Many-node/many-link spinfoam: the homogeneous and isotropic case, Classical Quantum Gravity 28 (2011), 245005, 11 pages, arXiv:1107.2633.
  108. Vidotto F., Spinfoam cosmology, J. Phys. Conf. Ser. 314 (2011), 012049, 4 pages, arXiv:1011.4705.
  109. Wilson-Ewing E., Loop quantum cosmology of Bianchi type IX models, Phys. Rev. D 82 (2010), 043508, 13 pages, arXiv:1005.5565.

Previous article  Next article   Contents of Volume 8 (2012)