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1 Introduction

It is fairly clear now that the theoretical high-energy physics (at least, its part represented
in the hep-th section of the Archive), being unfortunately deprived since a certain time of
the experimental feedback, is gradually transforming into a branch of pure mathematics. The
synthesis of these two sciences is fruitful for both of them: field theorists have absorbed and
use a lot of mathematical techniques and methods, but also many physical concepts turned out
to be very useful in treating pure mathematical problems. One can e.g. mention in this regard
the paper [1] where the methods of quantum field theory were used to derive topological knot
invariants.

Another distinguished example is the Atiyah–Singer theorem for the index of Dirac operator
which was first proven by pure mathematical methods [2] and then a physical, in many respects
more simple and clear proof of this theorem has been found [3]. This physical proof was based on
the isomorphism of the classical complexes (de Rham complex, Dolbeault complex, Hirzebruch
complex and Dirac complex) to certain supersymmetric quantum mechanical systems, with the
indices of all these complexes being mapped to the Witten indices [4] of the proper SQM systems.

The Atiyah–Singer theorem was not, however, proven in these papers in its whole generality.
Namely, the formula for the index of the Dolbeault operator was derived for Kähler manifolds
but not for a generic complex manifold. In the present paper, we fill this gap.

Before going into details, let us briefly outline the structure of the proof.

• At the first step, we write down, following [5], the SQM system whose supercharges may be
interpreted as exterior holomorphic derivative ∂ and its conjugate ∂† (see equations (3.1)
and (3.4) below).

• For Kähler manifolds, the functional integral for the index I = Tr
{

(−1)F e−βH
}

can be
reduced in the semiclassical limit β → 0 to the ordinary integral (4.3). In the Kähler case,
this coincides with the integral representation (4.4) used usually by mathematicians.

• For the manifolds that are not Kähler (such that the Kähler form ω is not closed), but
which satisfy the so called SKT condition, ∂∂̄ω = 0, the functional integral can as well be
reduced to the ordinary integral (4.3). (The integral representation (4.3) for the Dolbeault
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index of the SKT manifolds was derived earlier in [6] by purely mathematical methods.)
In this case, the integrands in (4.3) and (4.4) do not coincide. One can show, however,
that their difference is an exact form such that the integrals (4.3) and (4.4) are equal.

• For generic complex manifolds, a direct evaluation of the functional integral is difficult
by the reasons explained below. One can notice, however, that the Dolbeault complex is
equivalent to a Dirac complex involving extra torsions (in the Kähler case, the torsions
are absent). We show then that one can actually unwind these torsions by deforming
continuously the lagrangian in such a way that supersymmetry is kept at every value of the
deformation parameter. The index is not changed under such a deformation and coincides
thereby with the index of a certain torsionless Dirac operator. The functional integral
for the latter can be reduced to an ordinary integral (4.10) by standard methods. One
can proceed then as in the SKT case and observe that the integrands in equations (4.10)
and (4.4) differ by an exact form.

2 Dolbeault complex

We remind here some basic facts and definition of the complex differential geometry.

We precede it with the following remark. As was mentioned above, theoretical high energy
physics is merging now with mathematics, but at the moment this merge is far from being
complete. As a result, there exist now two different communities with mathematical and physical
backgrounds, studying in many cases very similar or just identical objects. Two communities use
two different languages, such that a mathematical paper is more often than not incomprehensible
to a physicist, and vice versa.

Speaking of this particular paper, it is written by a physicist and is addressed mainly to
physicists even though its subject is in fact pure mathematical. Thus, I will use whenever
possible the physical terminology even in the cases when a translation to mathematical language
exists (and is known to the author). For example, we will not talk about line bundles and by no
means about sheaves of germs, but only about Abelian gauge fields. In some cases, mathematical
translations will be given in footnotes.

A complex manifold is a 2n-dimensional manifold covered by overlapping regions U (a), with
every region being described by a set of complex coordinates zj , j = 1, . . . , n with the metric
having Hermitian form

gJK =

(
0 hjk̄
hkj̄ 0

)
. (2.1)

The reality of the metric implies (hjk̄)
? = hkj̄ such that ds2 = 2hjk̄dz

jdz̄k̄. The coordinates zj(a)

and zj(b) in the overlap U (a) ∩ U (b) are expressed into one another by holomorphic functions,
zj(a) = f j(ab)(zk(b)). The Dolbeault complex is a set of all purely holomorphic forms,

A(p) = Aj1...jpdz
j1 ∧ · · · ∧ dzjp . (2.2)

These forms should be regular on the manifold meaning that their norm is bounded∥∥A(p)
∥∥2

= Aj1...jpA
?
k̄1...k̄p

hk̄1j1 · · ·hk̄pjp <∞. (2.3)

Consider the operator of holomorphic exterior derivative, ∂A(p) = ∂kA
(p)dzk∧dzj1∧· · ·∧dzjp

and its conjugate ∂†. The operators ∂ and ∂† are nilpotent and can be interpreted as the
supercharges Q, Q̄. Their anticommutator {∂, ∂†} is called Dolbeault Laplacian and can be
associated with the Hamiltonian.
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A Kähler manifold is the manifold where the metric hjk̄ satisfies the condition ∂lhjk̄ = ∂jhlk̄
and can hence be derived from a Kähler potential, hjk̄ = ∂j∂k̄K. Alternatively, one can say that

the Kähler form ω = hjk̄dz
j ∧ dz̄k̄ is closed, ∂ω = ∂̄ω = 0. For Kähler manifolds, Dolbeault

Laplacian coincides with the conventional Laplace–Beltrami operator. In a generic case, it does
not.

Note also that, in the Kähler case, the “small” Dolbeault complex just described can be
enlarged. The “large” Dolbeault complex involves all forms (not necessarily holomorphic) and,
on top of ∂ and ∂†, also antiholomorphic exterior derivative ∂̄ and its conjugate ∂̄†. The SQM
systems isomorphic to large Dolbeault complexes enjoy extended supersymmetry. They will not
interest us in this paper.

Complex manifolds can be described using real notations if introducing the so called complex
structure matrix I N

M , M ≡ {m, m̄}. It represents a tensor satisfying the conditions

I N
M I P

N = −δPM , I P
M gPN + I P

N gPM ≡ IMN + INM = 0, (2.4)

where gMN is the metric. Once complex coordinates zj , z̄j̄ and the Hermitian metric hjk̄ are
defined, the complex structure matrix has only nonzero components with both holomorphic or
both antiholomorphic indices, I N

M = {iδnm,−iδn̄m̄}.2
Consider the standard Christoffel symbols

ΓPMN =
1

2
gPQ (∂MgPN + ∂NgPM − ∂QgMN ) (2.5)

and the corresponding covariant derivative operator ∇M . Nonvanishing components of ΓPMN for
the Hermitian metric (2.1) are

Γpmn =
(
Γp̄m̄n̄

)?
=
hq̄p

2
(∂mhnq̄ + ∂nhmq̄) ,

Γp̄nm̄ = Γp̄m̄n = (Γpmn̄)? = (Γpn̄m)? =
hp̄q

2
(∂nhqm̄ − ∂qhnm̄).

If the metric is Kähler, the components of mixed holomorphicity vanish and only the com-
ponents Γpmn and Γp̄m̄n̄ survive. This implies that the complex structure tensor is covariantly
constant, ∇P I N

M = 0. (The condition ∇P gMN = 0 is also, of course, satisfied.)
Introduce the vielbeins eAM , eMA (such that eAMe

M
B = δAB and eAMe

A
N = gMN ) and consider the

spin connection

Ω B
M,A = eAN

(
∂Me

BN + ΓNMKe
BK
)

(2.6)

and the corresponding 1-form Ω B
A = Ω B

M,A dxM . It satisfies the standard Maurer–Cartan
structure equation

deA + Ω B
A ∧ eB = 0.

For Kähler metrics, the only nonvanishing components of Ω B
A are Ω b

a and Ω b̄
ā . The same

concerns the curvature matrix (whose elements represent 2-forms)

R B
A = dΩ B

A + Ω C
A ∧ Ω B

C ,

2The inverse problem: to find complex coordinates once the complex structure matrix is given is nontrivial
and does not always have a solution. The manifolds that are not complex but where the matrix I N

M with the
properties (2.4) exists are called almost complex manifolds. For such manifolds, one cannot define a nilpotent
holomorphic exterior derivative operator (there is no supersymmetry) and hence one cannot define Dolbeault
complex and its index.
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where the mixed components R b̄
a and R b

ā vanish. This means that the holomorphic tangent
vectors stay holomorphic after a parallel transport along a closed contour: the holonomy group
is U(n).

If the manifold is not Kähler, ∇I 6= 0, the mixed components in Ω B
A and R B

A survive, and
the holonomy group is SO(2n) as for a generic 2n-dimensional manifold. An important remark
is, however, that one can make I covariantly constant and reduce the holonomy group to U(n)
if allowing for nonzero torsions.

Consider an affine connection

γPMN = ΓPMN +KP
MN ,

where ΓPMN is written in (2.5) and KP
MN is a tensor (its tensor nature will be important for

us in the following) called contorsion tensor. For the metric to be still covariantly constant,
KQ,MN = gPQK

P
MN should satisfy the condition KQ,MN = −KN,MQ. This implies a nonzero

torsion

TPMN = γPMN − γPNM = KP
MN −KP

NM 6= 0.

Let us impose an additional requirement for the tensor CQMN = gPQT
P
MN to be totally anti-

symmetric. Then, for a complex manifold, there is a unique affine connection

Γ̂PMN = ΓPMN +
1

2
gPQCQMN (2.7)

satisfying ∇̂g = ∇̂I = 0.3 The components of CQMN are expressed through the metric as

Cjkl̄ = −Cjl̄k = Cl̄jk = ∂khjl̄ − ∂jhkl̄,
Cj̄k̄l = −Cj̄lk̄ = Clj̄k̄ = (Cjkl̄)

∗ = ∂k̄hlj̄ − ∂j̄hlk̄. (2.8)

The expressions (2.8) keep their form under holomorphic coordinate transformations. One can
also represent the torsions in an arbitrary frame in real notations

CQMN = I P
Q I R

M I T
N (∇P IRT +∇RITP +∇T IPR) (2.9)

such that the tensor nature of CQMN is seen explicitly.
The connection (2.7), (2.9) arises naturally when a supersymmetric Lagrangian describing

the Dolbeault complex on a generic complex manifold is built up [5]. Mathematicians know it as
the Bismut connection. The corresponding Bismut spin connection (it is given by (2.6) with Γ̂
substituted for Γ) and the Bismut curvature matrix do not have mixed components such that
the holonomy group with this curvature is U(n), as for the Kähler manifolds.

When the torsion is present, the Riemann tensor RMNPQ is not symmetric anymore with
respect to interchange {MN} ↔ {PQ}. We have instead

RMNPQ(T ) = RPQMN (−T ).

3 The SQM model

Following [5], consider the chiral superfields

Zj = zj +
√

2θψj − iθθ̄żj , Z̄ j̄ = z̄j̄ −
√

2θ̄ψ̄j̄ + iθθ̄ ˙̄zj̄ ,

3There are many such connections if the condition CQMN = C[QMN ] is not imposed. One of them is the so

called Chern or Hermitian connection with the only nonzero components ΓCp̄,nm =
(
ΓCp,n̄m̄

)∗
= ∂nhmp̄.
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j, j̄ = 1, . . . , n, D̄Z = DZ̄ = 0, and choose the supersymmetric action in the following form

S =

∫
dtd2θ

(
−1

4
hjk̄(Z, Z̄)DZjD̄Z̄ k̄ +W (Z, Z̄)

)
(3.1)

with Hermitian hjk̄.

The component Lagrangian of this model can be cast in the following nice form

L =
1

2

[
gMN ẋ

M ẋN + igMNψ
M∇̂ψN − 1

6
∂PCMNTψ

PψMψNψT
]

+AM ẋ
M − i

2
FMNψ

MψN , (3.2)

where xM ≡ {zj , z̄j̄}, etc. and the torsion tensor CMNT is given in (2.8), (2.9). The second line
in (3.2) involves the gauge potential AM = −I N

M ∂NW = (−i∂mW, i∂m̄W ) and its field strength
FMN = ∂MAN − ∂NAM .

The Lagrangian (3.2) is the Lagrangian of some particular supersymmetric sigma-model,
its bosonic part describing free motion over the manifold. There are two complications here
compared to the Kähler case: (i) the covariant derivative ∇̂ψM = ψ̇M + Γ̂MNK ẋ

NψK involves
now the Bismut connection rather than usual torsion-free connection; (ii) a 4-fermion term is
present.

We will discuss the 4-fermion term a bit later, but let us first notice the appearance of the
modified torsionfull connection. What is rather nontrivial and somewhat confusing is the fact
that the supercharges also involve some modified connections, but this modification is not the
same as in the Lagrangian!

The quantum covariant supercharges were presented in [5] in the form

Q =
√

2ψcekc

[
Πk −

i

2
∂k(ln det ē)− iψbψ̄āΩ a

k,b

]
,

Q̄ =
√

2ψ̄c̄ek̄c̄

[
Π̄k̄ −

i

2
∂k̄(ln det e) + iψ̄b̄ψaΩ̄ b

k̄,a

]
, (3.3)

where det e and det ē are the determinants of the holomorphic and antiholomorphic vielbein
matrices eak, e

ā
k̄
, Πk = −i(∂k − ∂kW ), and Π̄k = −i(∂k̄ + ∂k̄W ). This expression involves the

ordinary torsionless connections Ω, but not all components of the latter, only the holomorphic
ones4.

When

W = W0 =
1

2
ln det ē, (3.4)

the operator Q is isomorphic to the external holomorphic derivative ∂, and Q̄ – to ∂†.

For other choices of W , we are dealing with the twisted Dolbeault complex involving an extra
gauge field, ∂X → ∂X − iA′ ∧X with A′ = −i∂j(W −W0)dzj + i∂j̄(W −W0)dz̄j̄ .

4The quantum supercharges and the quantum Hamiltonian (the expression for the latter was derived in [5],
but we do not need it here) act on the holomorphic wave functions

Ψ(zk, z̄k;ψa) = C(0)(zk, z̄k) + ψjC
(1)
j (zk, z̄k) + · · ·+ ψj1 · · ·ψjnC(n)

j1...jn
(zk, z̄k)

(ψj = ejaψ
a). The coefficients in this expansion are isomorphic to the forms (2.2).
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Remarkably, one can also derive [7, 8, 9] that the sum Q + Q̄ is isomorphic to the Dirac
operator i∇/ = i∇̃MγM with ∇̃M = ∂M − iAM + (1/4)Ω̃M,ABγ

AγB involving the gauge field
A = A′ +A(0), where

A
(0)
M =

i

2
{−∂m ln det ē, ∂m̄ ln det e}. (3.5)

The potential (3.5) is gauge equivalent to i
4{−∂m, ∂m̄} ln deth.5

Besides the gauge field, ∇̃M involves also the spin connection

Ω̃M,AB = ΩM,AB −
1

6
eLAe

K
BCMLK , (3.6)

where the torsions appear with the extra factor 1/3 compared to the Bismut connection entering
the Lagrangian. The difference S = Q− Q̄ is isomorphic to the operator γMI N

M ∇̃N .

The presence of the extra supercharge S and hence the presence of the new supersymmetric
structure {i∇/, S} in addition to the well-known chiral structure {i∇/,∇/ γD+1} (γD+1 being the
multidimensional analog of γ5) was noticed first in [10] for Kähler manifolds. But as we see
now, this new structure is present for all complex manifolds with the only complication that the
Dirac operator and the operator S involve now the torsionfull connections (3.6).

4 The index

From now on, the manifold is assumed to be compact (for noncompact manifolds, the spectrum
of the Hamiltonian is continuous and the notion of the index is ill-defined)6. As we have just
seen, the problem of calculating the index of the Dolbeault complex7 is reduced to the problem of
calculating the index of the “nonstandard” Dirac operator involving extra torsions. The index of
the ordinary Dirac operator was, of course, calculated by Atiyah and Singer and then in [3] using
physical functional integral methods. In application to complex manifolds, this calculation was
recently discussed in some details (the derivation in original papers was rather sketchy) in [5].
The Witten index of our SQM system is expressed via the path integral

I = Tr
{

(−1)F e−βH
}

= lim
N→∞

∫ ∏
τ

deth(z̄j̄(τ), zj(τ))
∏
j

dz̄j̄(τ)dzj(τ)

2π(β/N)

×
∏
a

dψa(τ)dψ̄ā(τ) exp

{
−
∫ β

0
LE(τ)dτ

}
,

where LE(τ) is the Euclidean Lagrangian, N is the number of points into which the Eucli-
dean time interval (0, β) is subdivided, and the periodic boundary conditions, z(β) = z(0),
ψ(β) = ψ(0), are imposed onto all fields. The integral does not depend on β. To calculate
it, we consider the semiclassical limit β � 1 when the integral is saturated by constant or
nearly constant fields. For most systems, one can assume the fields to be constant, neglect
higher Fourier harmonics and trade the functional integral for the ordinary one [12]. However,
in this problem, such a simplified procedure does not work. One has to take into account higher
harmonics which amounts to calculating loops.

5Mathematicians call the shift A(0) which appears when establishing this Dolbeault ↔ Dirac correspondence
the connection of the determinant bundle (to be quite precise, its square root).

6See, however, [11] where the Dolbeault complexes on S4\{·} and S6\{·} were studied. In spite of that S4\{·}
is not compact, the spectrum of the Dolbeault Laplacian is still discrete, if including in the Hilbert space square
integrable functions with the factor

√
g = 1/(1 + z̄jzj)4 in the measure.

7Mathematicians sometimes call this index arithmetic genus.
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For Kähler metric, it is sufficient to perform a one-loop calculation. An accurate analysis
(see [5] for details) shows that one loop contributions are of the same order as the tree level ones.
Even though the former include a formally small factor β, but this factor is always multiplied
by the structure ψ̄(0)ψ(0) (ψ(0) being the zero Fourier harmonic of the fermion field), which is
of order of 1/β, as is seen from the tree level integral over zero harmonics. Now, for Kähler
manifolds, one can show that the second and higher loop contributions are suppressed. The
explicit one-loop calculation gives the result

I =

∫
eF/2πdet−1/2

[
sin R4π
R
4π

]
, (4.1)

where F is the gauge field strength 2-form and R is the matrix 2-form associated with the
Riemann tensor

F =
1

2
FMN dx

M ∧ dxN , R B
A =

1

2
R B
A MN dx

M ∧ dxN . (4.2)

When expanding the integrand in (4.1) in Taylor series around unity, it represents a superposition
of forms of different dimensions, but one has, of course, to pick up only the terms involving the
top form ∝ dx1 ∧ · · · ∧ dx2n. Otherwise, the integral is zero. The determinant factor appearing
in the integrand just indicates that we have performed a one-loop calculation with integrating
over the higher Fourier modes.

In the generic complex case, the situation is substantially complicated by the presence of
the 4-fermion term in (3.2). As ψ̄ψ ∼ 1/β, the integral of the 4-fermion term is estimated to

be
∫ β

0 (ψ4)dτ ∼ β/β2 ∼ β−1. For small β, this contribution is large! Of course, being a total
derivative, it does not contribute to the integral at the tree level but, after doing loop integrals,
it could in principle be multiplied by some other structure and give a nonvanishing contribution.
Actually, counting the powers of β displays a worrisome fact that, to obtain a reliable result,
we should perform in this case a honest two-loop calculation in 4 and 6 dimension, a honest
three-loop calculation in 8 and 10 dimensions, etc.

Obviously, this calculation is not easy. A two-loop calculation for the heat kernel (the analog
of the Kähler heat kernel eF/2π det−1/2[· · · ] in equation (4.1)) of a 4-dimensional torsionfull
Dirac operator was performed in [13] (and, indeed, this heat kernel involves rather intricate
total derivative contributions). But nothing is known for higher dimensions.

Note, however, that there is a class of non-Kähler manifolds, namely, the manifolds where
the form ω = hjk̄ dz

j ∧ dz̄k̄ though not closed, satisfies the condition ∂∂̄ω = 0 such that the

4-fermion term vanishes. These manifolds are called SKT manifolds8. It is known, for example,
that all non-Kähler complex manifolds of complex dimension 2 (complex surfaces) belong to this
class (more exactly, for any complex surface a SKT metric can always be chosen [14]). In this
case, the functional integral for the Dolbeault index can be calculated by the same token as for
the torsionless Dirac operator. We obtain

I =

∫
e(F ′+F0)/2πdet−1/2

[
sin R̂4π
R̂
4π

]
, (4.3)

where F0 corresponds to the “geometrically induced” potential (3.5), F ′ = dA′, with A′ being
the extra gauge field of the twisted Dolbeault complex, and R̂ is the curvature form of the
Bismut connection that enters the Lagrangian (3.2). This formula was obtained in [6] by a rather
refined mathematical reasoning. We see that the functional integral method allows one to derive
it immediately for almost no price.

8SKT stands for strong Kähler with torsion. A little bit confusing because these manifolds are not Kähler,
but, anyway, this is how they are called.
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However, the formula (4.3) for the Dolbeault index is not the way it was represented in [15, 2].
They wrote instead

I =

∫
eF
′/2π Td(TM), (4.4)

where the symbol Td(TM) (Todd class of a complex tangent bundle associated with the mani-
fold M) is spelled out as

Td(TM) =

n∏
α=1

λα/2π

1− e−λα/2π
, (4.5)

where λα are eigenvalues of the curvature matrix.
This is the Hirzebruch–Riemann–Roch theorem9.
One must say that there is a significant confusion associated with this formula in the physical

literature. The curvature matrix is defined in (4.2). Were the elements ofR B
A ordinary numbers,

the eigenvalues can be found by diagonalizing

R → diag(iλ1σ2, . . . , iλnσ2) (4.6)

(σ2 being a Pauli matrix). They are not numbers, however, but 2-forms. Therefore, the
eigenvalues λα do not have as such a lot of meaning and only their certain combinations (like
n∑

α=1
λ2
α = Tr{R ∧R}) may have.

For Kähler manifolds, mixed holomorphic components R b̄
a , R b

ā vanish and one can consider
instead of the antisymmetric 2n× 2n matrix RAB, the n× n matrix R b

a and its eigenvalues10.
The symmetric polynomials of the roots of the characteristic equation (having the order n),
which enter equation (4.5), are expressed in a simple way into its coefficients and are reduced to
combinations of products of the invariants Tr{R}, Tr{R∧R}, etc. But in a generic non-Kähler
case, the characteristic equation has the order 2n. It involves only even powers of λ, such that

its roots come in pairs {λα,−λα}, and an expression like
n∑

α=1
λα is simply meaningless!

This is true for the ordinary Riemann tensor that does not respect the holomorphic structure
in the tangent space. We have learned, however, that even if the manifold is not Kähler, one
can define the Bismut connection (2.7), (2.8) and the corresponding curvature tensor which
do respect the holomorphic structure. The eigenvalues λα entering equation (4.5) refer to this
Bismut torsionfull curvature tensor, not the usual one11!

One can show that, in the Kähler case, the integrands in (4.3) and (4.4) coincide. Indeed,
the factor det−1/2[· · · ] in (4.3) can be represented as12

det−1/2

[
sin R4π
R
4π

]
=

n∏
α=1

λα/4π

sinh(λα/4π)
, (4.7)

9It represents the multidimensional generalization of the Riemann–Roch theorem. The latter is a statement
about the dimensions of the moduli spaces of meromorphic functions on Riemann surfaces, but this statement
can be shown to be equivalent to the statement (4.4) about the Dolbeault index of Riemann surfaces equipped
by Abelian gauge fields. (If trying to squeeze such a field on a single map, singularities (Dirac strings) appear.
This singularities may be associated with the poles of meromorphic functions.) The HRR theorem was originally
proven by Hirzebruch only for Kähler manifolds, but Atiyah and Singer proved it for all complex manifolds.

10Note that, with the convention (4.6) chosen, the eigenvalues of R b
a are not λα, but −iλα.

11To be more precise, one needs not to consider necessarily a Bismut connection, any connection satisfying
∇g = ∇I = 0 is a complex tangent bundle connection and can be used to calculate the index. (To reiterate,
the ordinary real tangent bundle connection (2.6) cannot be used for this purpose.) Even though the Todd
polynomials (4.5) of different such complex connections are different, their integrals (4.4) are the same. We will
see it soon.

12The r.h.s. of equation (4.7) is called A-roof genus.
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while

eF0/2π Kähler
= eiR

a
a /4π = exp

{
1

4π

∑
α

λα

}
. (4.8)

The identity (4.7) is valid in a generic complex case (one has only to substitute R̂ for R), but
the relation (4.8) is not.

In the generic case

iR̂ a
a = idΩ̂ a

a = id

[(
∂j̄ ln det e+

1

2
hk̄tCj̄k̄t

)
dz̄j̄ −

(
∂j ln det ē+

1

2
ht̄kCjkt̄

)
dzj
]
, (4.9)

i.e. the connection (3.5) (that would lead alone to
∑

α λα )is shifted by a certain vector.
Following the logics of [16], it is not difficult to see, however, that this shift does not affect

the value of the integral. The variation of the integrand in (4.3) under an infinitesimal shift
A(0) → A(0) + εB involves various terms. Consider one of them, say, the term

X = εdB ∧ F0 ∧ R̂ b
a ∧ R̂ a

b .

Due to the facts dF0 = 0 and d(R̂ b
a ∧ R̂ a

b ) = 0 (the latter identity is proven using the Bianchi
identities

dR̂ b
a − R̂ C

a ∧ Ω̂ b
C + Ω̂ C

a ∧ R̂ b
C = 0

and the fact that, for the Bismut connection, only the holomorphic dummy indices C = c
contribute), X is an exact form and its integral is zero. The same reasoning can be applied to
all other terms in the variation, like

Y = εdB ∧ F0 ∧ F ′ ∧ F ′ ∧ Tr R̂4 ∧ Tr R̂6 = εd
(
B ∧ F0 ∧ F ′ ∧ F ′ ∧ Tr R̂4 ∧ Tr R̂6

)
,

etc.
Consider now a finite shift A(t) = A + tB. We have just seen that the derivative of the

integral over t is zero. This means that I(t) does not depend on t, i.e. it is the same for the
shifted and unshifted gauge field.

This proof relies on the fact that B is a regular 1-form well defined at every point of our
manifold and satisfying the condition (2.3). Were it not so, for example, if B ∝ A, the variation
would still formally be an exact form, but it would involve singularities, and its integral might
not vanish.

This proves the HRR theorem for the SKT manifolds. How to proceed in a general case when
the 4-fermion term in (3.2) does not vanish and we cannot calculate the path integral?

We have seen that the problem of evaluating the Dolbeault index is reduced to the problem
of evaluating the index of a nonstandard torsionfull Dirac operator. The point is that one can
deform this nonstandard operator such that the torsions disappear. The index, however, is not
changed under such smooth deformation. The invariance of a topological index under smooth
deformation is a tool widely used in physics to calculate Witten indices of different supersym-
metric theories [4]. It always works under the condition that supersymmetry survives under
such deformation13.

13And if supersymmetry does not survive, it does not work. Torsions representing regular tensors on a manifold
can be unwinded. But topologically nontrivial gauge fields cannot. Indeed, even if disregarding the fact that
a correctly from mathematical viewpoint defined fiber bundle has always an integer topological charge and just
trying to solve the Schrödinger equation for a system with a fractional topological charge (for example, a fractional
magnetic flux on S2), one would see that, for fractional charges, supersymmetry is lost [17]. And this is the reason
why the deformation philosophy does not work in this case.
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Does the supersymmetry survive under an arbitrary torsion shift? After all, we have seen
that the Dolbeault operator is isomorphic to the Dirac operator with some particular torsions
given in (2.8). For other torsions, Dolbeault supersymmetry encoded in the superspace ac-
tion (3.1) and associated with the existence of two supercharges i∇̃MγM and S = γMI N

M ∇̃N is
lost. The point is, however, that an even-dimensional Dirac operator, irrespectively of whether
it involves torsions or not, enjoys the supersymmetry associated with the chiral pair of super-
charges {i∇/ and ∇/ γD+1}. The latter is true under two conditions: i) The manifold should
admit spin structure14, which means that topological charge associated with the gauge field is
quantized in a proper way (cf. the footnote remark above). ii) The torsions should represent
a regular tensor. If either of these conditions is violated, the result of the action of i∇/ on the
regular spinors might be singular, and this breaks supersymmetry.

But in our case, the torsions (2.9) are regular tensors and the gauge field topological charge is
quantized as it should. We then conclude that the Dolbeault index for an arbitrary compact com-
plex manifold coincides with the index of the associated Dirac operator with unwinded torsions.
This gives the following result

I =

∫
eF
′/2π exp

{
1

16π
I P
M ∂N∂P (ln det g)dxM ∧ dxN

}
det−1/2

[
sin R4π
R
4π

]
, (4.10)

where we have explicitly written in real notations the contribution due to the metric-induced
gauge field (3.5). The determinant factor involves the conventional torsionless Riemann tensor.

Let us show now that the integral (4.10) coincides with (4.4). Again, we can use the reasoning
of [16].

Consider the variation of the integrand in (4.10) under an infinitesimal deformation

ω B
A → ω B

A + ελ B
A ,

where λPMN = eAMeBNλ
B

P,A is a tensor. Then, say, the structure R B
A ∧R A

B is shifted as

δ
(
R B
A ∧R A

B

)
= ε
(
dλ B

A + λ C
A ∧ Ω B

C + Ω C
A ∧ λ B

C

)
∧R A

B = εd
(
λ B
A ∧R A

B

)
,

where the Bianchi identity was used. The same reasoning applies to the terms like R B
A ∧R C

B ∧
R D
C ∧ R A

D , F ′ ∧ F ′ ∧ R B
A ∧ R A

B , etc. In other words, the variation is an exact form and its
integral vanishes. This applies also to a finite deformation: we can deform (2.6) all the way to
the Bismut connection and the integral for the index still does not change.

This brings the integral to the form (4.3). Then, following the procedure above, we deform
further the gauge field (3.5) as in (4.9) and bring the integral to the canonical form (4.4). The
theorem is proven.

5 Example: Hopf manifolds

The simplest example for non-Kähler complex manifolds are Hopf manifolds. Their metric has
a simple form15

ds2 =
dz̄jdzj
z̄kzk

, (5.1)

and the complex coordinates zj lie in the region 1 ≤ |z| ≤ 2, with the points wj and 2wj being
identified (|w| = 1). The conformally invariant metric (5.1) is consistent with this identification.

14To be quite precise, spinC structure.
15In this section, we do not distinguish between covariant and contravariant, holomorphic and antiholomorphic

indices.
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Topologically, the Hopf manifold Hn of complex dimension n is a torus S1×S2n−1. The Kähler
form ωn associated with the metric (5.1) is not closed and Hn is not Kähler. Note, however,
that ∂∂̄ω2 = 0 such that H2 represents (as all complex surfaces do [14]) an SKT manifold.

The (untwisted) Dolbeault Laplacian acting on the functions on Hn is

−1

2
4Dol for 0-forms

= −(z̄kzk)∂̄j∂j + zj∂j (5.2)

to be compared with the usual Laplacian

−1

2
4 = −(z̄z)∂̄∂ +

1

2
(z∂ + z̄∂̄).

The operator (5.2) has one zero mode, Ψ(z̄, z) = 1. Actually, the operator 4Dol gives also zero,
when acting on any antiholomorphic function χ(z̄). However, if χ(z̄) is not constant, it is not
a function on Hn because it is not the same at z̄j = w̄j and z̄j = 2w̄j

The full Dolbeault Laplacian has also a zero mode in the sector of (1,0)-forms. To see this,
note that

4Dol ln(z̄z) = 0. (5.3)

ln(z̄z) is not a function on Hn, but the 1-form

P = ∂ ln(z̄z) = ∂j [ln(z̄z)]dzj =
z̄jdzj
z̄kzk

is well defined on Hn. It satisfies ∂P = ∂†P = 0 and represents thus a zero mode of the full
Dolbeault Laplacian16.

The index in this case is equal to 1 − 1 = 0. It is instructive to reproduce this result by
calculating the integrals (4.4) or, alternatively, (4.10) (the latter expression is somewhat simpler
because it depends only on the ordinary curvature rather than the Bismut curvature). For the
Hopf manifold, the symmetry dictates17

RMN = AdxM ∧ dxN +B(xMdxN − xNdxM ) ∧ (xQdxQ).

In addition

F = F0 ∝ ∂j ∂̄k ln(z̄z)dzj ∧ dz̄k =
dzj ∧ dz̄j

z̄z
− (z̄jdzj) ∧ (zkdz̄k)

(z̄z)2
.

One can then be directly convinced that

F ∧ F = 0, RMN ∧RNP = 0 (5.4)

for any A, B.
The index represents a combination of the integrals of the terms like F ∧F ∧RMN ∧RNP ∧

RPQ ∧RQM which all vanish due to (5.4).
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12 A.V. Smilga

References

[1] Witten E., Quantum field theory and Jones polynomials, Comm. Math. Phys. 121 (1989), 351–399.

[2] Atiyah M.F., Singer I.M., The index of elliptic operators. I, Ann. of Math. (2) 87 (1968), 484–530.
Atiyah M.F., Singer I.M., The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604.
Atiyah M.F., Singer I.M., The index of elliptic operators. IV, Ann. of Math. (2) 93 (1971), 119–138.
Atiyah M.F., Singer I.M., The index of elliptic operators. V, Ann. of Math. (2) 93 (1971), 139–149.
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