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Abstract. In this review we discuss the interplay between discretization, constraint im-
plementation, and diffeomorphism symmetry in Loop Quantum Gravity and Spin Foam
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integral measure with the correct symmetry behavior under diffeomorphisms.
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1 Introduction

The dynamics of General Relativity is governed by the Einstein–Hilbert action (together with
the Gibbons–Hawking–York boundary term)
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The invariance of the action (1.1) under space-time diffeomorphisms (leaving the boundary
invariant) implies a large redundancy on the set of solutions, so that two solutions are to be
physically equivalent if they differ by such a diffeomorphism (Einstein’s hole argument [1]). The
diffeomorphism group therefore arises as gauge symmetry group of the theory.

Furthermore, unlike for usual gauge theories of connections where gauge transformations arise
as local bundle automorphisms, the diffeomorphism symmetry is deeply intertwined with the
dynamics of GR: The action (1.1) is the only diffeomorphism-invariant action of a metric which
leads to second order equations of motion [2]. The symmetry requirement and the prescribed
degrees of freedom therefore completely determine the theory.

?This paper is a contribution to the Special Issue “Loop Quantum Gravity and Cosmology”. The full collection
is available at http://www.emis.de/journals/SIGMA/LQGC.html
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On the canonical level the presence of a gauge symmetry results in first class constraints,
forming the so-called Dirac algebra. The Hamiltonian is a linear combination of constraints,
which generate both the dynamics and space-time diffeomorphisms [3].

The two main routes for quantizing GR are either taken via the path-integral formalism,
where the transition amplitudes between states |hab〉 on initial and final Cauchy surfaces Σi,f is
given by1

〈hfab|h
i
cd〉 =

∫
g
∣∣Σi,f=hi,f

Dgµνe
i
~SEH[gµν ]. (1.2)

Canonical quantization of GR [5] on the other hand relies on a definition of a state space for
the boundary metrics |ψ〉 whose evolution is governed by the Wheeler–DeWitt-equation [6]

Ĥ|ψ〉 = 0. (1.3)

Demanding that the gauge symmetry of (1.1) is also realized in the quantum theory either
manifests itself in the condition that the path integral measure in (1.2) is also invariant under
diffeomorphisms, or that the Dirac algebra is faithfully represented on the state space of the
canonical quantum theory. Attempts to make sense of either (1.2) or (1.3) very often rely on
discretization of space-time on one way or the other, and since the interplay of discretization
and space-time diffeomorphisms is highly nontrivial, this has been a central, and up to today
unsolved issue in either attempt of formulating a theory of quantum gravity.

Out of the various proposals for a quantum gravity theory based on discretizations2, we
concentrate in this article on Loop Quantum Gravity [11] and the closely related Spin Foam
approach (see [12] for a review and literature), which can be seen as the path-integral version of
canonical LQG (see e.g. the discussion in [13]).

1.1 Canonical approach

LQG is a canonical approach, in which the kinematical Hilbert space is well-understood, and
the states of which can be written as a generalization of Penrose’s Spin-Network Functions [14].
Although the formalism is inherently continuous, the states carry many discrete features of lattice
gauge theories, which rests on the fact that one demands Wilson lines to become observables.
The constraints separate into (spatial) diffeomorphism- and Hamiltonian constraints. While
the finite action of the spatial diffeomorphisms can be naturally defined as unitary operators,
the Hamiltonian constraints exist as quantizations of approximate expressions of the continuum
constraints, regularized on an irregular lattice. It is known that the regularized constraints
do not close, so that the algebra contains anomalies, whenever the operators are defined on
fixed graphs which are not changed by the action of the operators [15]. If defined in a graph-
changing way, the commutator is well-defined, even in the limit of the regulator going to zero
in a controlled way [16]. However, the choice of operator topologies to choose from in order
for the limit to exist is nontrivial [17], and the resulting Hamiltonian operators commute [18].
Since they commute on diffeomorphism-invariant states, the constraint algebra is satisfied in
that sense. Furthermore, however, the discretization itself is not unique, and the resulting
ambiguities survive the continuum limit [19]. In the light of this, it is non-trivial to check
whether the correct physics is encoded in the constraints.

Generically, the interaction of discretizations and constraints is intricate. Physical theories
based on continuous variables are typically discretized for two different purposes: a) to turn the

1The case in which Σi is empty is called the “no-boundary proposal” and in this case (1.2) is called the
“wave-function of the universe” [4].

2To this end, see [7], also in particular the Causal Dynamical Triangulations approach [8], Causal Set Theory [9],
and Quantum Graphity [10].
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differential equations of the theory into difference equations in order to solve them numerically;
b) to regularize and quantize the theory, as in lattice gauge theory. When the equations of
the theory describe a free time evolution the main concern when discretizing is to achieve
long term numerical stability. When the theories have constraints among their variables in
addition to evolution equations the situation complicates. Typically the constraints satisfy
certain conditions. Examples of such conditions are constraints that structure themselves into
Poisson algebras in canonically formulated theories. Moreover constraints have to hold for all
times, which implies that they need to be preserved by the evolution equations. The problem
is that if one simply discretizes constraints and evolution equations these conditions generically
get violated. At an operational level, to prove that constraints form an algebra or that they are
preserved upon evolution one uses repeatedly the Leibniz property for derivatives, which fails
to hold for discrete versions of derivatives. At a more profound level, constraints are associated
with symmetries of theories that generically get broken by the discretization. If one insists in
using the discrete equations, one is faced with the fact that generically they are inconsistent:
they cannot be solved simultaneously. This phenomenon is well known in numerical relativity,
where people proceed by ignoring some of the equations and solving the rest in the hope that the
ignored equations, when evaluated on the solution, will be non-zero but small. Some algorithms
can actually achieve this for long enough evolutions and that is the state of the art of that field.

These problems are pervasive even in simple theories. People tend to get misled by the success
of lattice gauge theory without realizing that a careful choice of staggered discretization is used
in order to preserve Gauss’ law. In fact one of the central properties of lattice gauge theories
is that it provides a gauge invariant regularization, i.e. it does not break the symmetries of the
theory. To give some perspective, it is worthwhile noting that even a relatively simple theory
like Maxwell theory has to be discretized judiciously. Attempts to integrate Maxwell’s equa-
tions numerically ran into significant problems until Yee [20], in a landmark paper, introduced
a staggered discretization that preserves Gauss’ law.

Going to the case of interest, that of general relativity and other diffeomorphism invariant
theory, we currently do not know of any discretization scheme that would preserve the constraints
of the theory. So we are, effectively, where people were with respect to Maxwell’s theory before
Yee’s algorithm. Attempts have been made to define a discrete calculus, but up to present
successful implementations only are possible in the linearized theory.

In Section 2, we will discuss these issues in more details for models that share important
features with General Relativity, and demonstrate the consistent and uniform discretization
approach, in order to deal with the aforementioned problems.

1.2 Covariant approach

On the covariant level, a very convenient and geometric way of discretizing GR is Regge Calculus,
in which the metric variables are discretized on a triangulation, i.e. a separation of space-time
into discrete building blocks. Although evolved from a different perspective, the Spin Foam
approaches can be seen as providing a path integral for Regge Calculus [21] in connection-,
rather than metric variables.

It is known that, generically, discretizing mechanical systems which possess a reparametriza-
tion-invariance breaks this invariance [22] (see also the discussion in [23]). There has been an
intensive discussion in the literature about whether some invariance akin to diffeomorphisms
exist in the case of Regge Calculus [24, 25]. While it is well-known that some very specific
solutions, describing a flat metric, can be related via continuous gauge transformations [26, 27,
28], it was also demonstrated in [29] that this symmetry is broken whenever solutions describe
geometries with curvature, and the breaking mechanism is completely analogous to what happens
in mechanical systems. Since the current Spin Foam models, at least in the semiclassical limit
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of large quantum numbers, reproduce Regge Calculus [30], it has to be expected that the same
breaking of diffeomorphism invariance also appears in the path integral measure.

In Section 3 we will discuss the mechanism of how diffeomorphism-symmetry is broken in
Regge Calculus, and describe an attempt to regain it by “improving” the Regge action. We
will show how one can attempt to construct a discrete action with the correct symmetries by
a coarse graining procedure, resembling a Wilsonian renormalization group flow. We will also
demonstrate how a similar procedure works for the toy example of the (an-)harmonic oscillator,
closing the section with remarks on consequences for renormalization in Spin Foam models.
Also, it will be argued how the symmetry breaking the path integral measure will account for
divergencies in the “sum over triangulations”.

Although LQG and Spin Foam models agree well on the kinematical level, the connection of
their dynamics is still not understood perfectly [13, 31]. Therefore it is hard to argue that the
methods described in this article exactly correspond to each other. Still, they are both attempts
to solve problems that arise due to the introduction of a discretization. Also, in [32] it was
shown that, for a theory of gravity discretized on a triangulation, finding an action with the
right symmetries, and finding constraints satisfying the Dirac algebra (and therefore generating
deformations of the triangulated Cauchy surface), are equivalent. For a toy model, this was
shown to be true for the quantum case, i.e. a path integral measure with the right kind of
symmetries, and the propagator being the correct projector onto the physical Hilbert space,
this was shown in [33]. In this sense, the problems on the canonical and the covariant side are
directly related to each other, and the two approaches described in this article can be viewed as
addressing the problem from different angles.

It is important to note that the breaking of gauge symmetry in the current approaches to
Quantum Gravity arise due to the intricate relationship between space-time diffeomorphisms
and the discretization involved. Although it is widely expected that any Quantum Gravity
theory should predict a fundamental space-time discreteness due to the presence of a minimal
length scale, this does not necessarily require a breaking of diffeomorphism symmetry, but is
rather a statement about the discreteness of the spectrum of geometric operators measuring
lengths, areas, etc. [34].

2 Consistent discretisation

Consistent discretisations [35] were an attempt to discretise theories like general relativity in
which the resulting discretised equations were algebraically consistent, that is, they could be
solved simultaneously. Notice that this is not what happens if one just takes the Einstein
equations and discretises them. The Einstein equations divide into constraints that hold at
every instant of time and evolution equations that evolve the variables. It turns out that if one
evolves the variables with the discrete equations, at the end of the evolution the variables fail to
satisfy the constraints. The resulting equations are therefore inconsistent. This is well known,
for instance, in numerical relativity. The way consistent discretisations will make the equations
consistent is by determining the values of the Lagrange multipliers. That is, the latter stop being
free variables in the discrete theory. We will see that a problem arises in that the equations
determining the Lagrange multipliers are polynomials and therefore it is not guaranteed that
the multipliers remain real. And since one loses control of their values, one cannot guarantee
that the resulting discretisation will approximate well the continuum theory. This problem is
addressed by the Uniform Discretisations, which we discuss in Section 2.2.

Our goal would be to have a canonical quantization of a system in question using a discretiza-
tion. Let us outline the steps we would like to see carried out:

• We discretize the theory to be analyzed.
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• We study the resulting discrete theory at a classical level (in particular making sure it is
a well defined theory).

• We canonically quantize such a theory.

• We either take the continuum limit of the resulting quantum theory or show that it does
not exist.

We are particularly interested in studying systems with common features to those of general
relativity: invariance under diffeomorphisms, the presence of first class constraints, the theory
being totally constrained, among others.

If the starting theory is invariant under diffeomorphisms, the discretization inevitably will
break that symmetry. The discrete theory has less gauge symmetries and therefore more degrees
of freedom than the continuum one. When one works in a Hamiltonian picture, space and time
have asymmetrical roles, so the breakage of diffeomorphism symmetry manifests itself differently
in space than in time. If one only discretizes in time, the breaking of the invariance leads to the
corresponding constraints being absent in the discrete theory and the corresponding Lagrange
multipliers get determined. We will see an example soon. If one discretizes spatially only, the
breakage translates itself in the constraints associated with spatial diffeomorphisms becoming
second class and therefore fail to be generators of symmetries.

2.1 Systems with discrete time

There is an alternative way to construct a discretized version of a theory that instead of simply
discretizing evolution equations and constraints starts by discretizing the action of the theory.
One subsequently works out the equations of motion of such action. Unless pathologies arise,
the resulting equations are consistent, as they are simply the equations of motion of an action.
We call this approach consistent discretizations and refer the reader to [35] for more details. Let
us discuss how this works in the case of a simple mechanical system.

Suppose one has a mechanical system with Lagrangian L̂(q, q̇) where generically q and q̇
are N component vectors, representing a system with N degrees of freedom. We discretize
time in equal intervals tn+1 − tn = ε. We denote the coordinates at tn as qn For simplicity
we use a first order approximation for derivatives q̇ = (qn+1 − qn)/ε. One can choose other
approximations for the derivatives that may perform better numerically, but here for simplicity
we keep the first order one. We define a Lagrangian for the discrete theory as

L(n, n+ 1) ≡ L(qn, qn+1) ≡ εL̂(q, q̇).

In terms of this Lagrangian the action can be written as

S =

N∑
n=0

L(qn, qn+1)

and from it we can derive the equations of motion

∂S

∂qn
=
∂L(qn−1, qn)

∂qn
+
∂L(qn, qn+1)

∂qn
= 0. (2.1)

Notice that in the discrete theory the Lagrangian is a function of qn at the n-th level and of qn+1

at the next level (or equivalently qn and qn−1).

In order to formulate the theory canonically we need to define conjugate momenta. At first
this may appear surprising. If there is no variable q̇ anymore, how could there be a canonical
momentum? In the continuum the Lagrangian is a function of the cotangent bundle of the
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configuration space C. In the discrete theory the Lagrangian is a function of C × C. One
can change from the coordinatization (qn, qn+1) to (qn, pn) defining the momentum. For that
purpose it is useful to relate the continuum and discrete derivatives of the Lagrangians

∂L(n, n+ 1)

∂qn+1
=
∂L̂

∂q̇
, (2.2)

∂L(n, n+ 1)

∂qn
= ε

∂L̂

∂q
− ∂L̂

∂q̇
. (2.3)

The Lagrange equations in the continuum can be written as

d p

dt
=
∂L̂

∂q
.

To discretize this last expression we make the substitution

ṗ→ pn+1 − pn
ε

and use (2.2), (2.3) to get

pn+1 − pn
ε

=
∂L̂

∂q
=

1

ε

[
∂L̂

∂q̇
+
∂L(n, n+ 1)

∂qn

]

=
1

ε

[
∂L(n, n+ 1)

∂qn+1
+
∂L(n, n+ 1)

∂qn

]
=

1

ε

[
pn+1 +

∂L(n, n+ 1)

∂qn

]
.

Then

pn = −∂L(n, n+ 1)

∂qn
.

The resulting discrete Lagrange equations are

pn+1 =
∂L(qn, qn+1)

∂qn+1
, pn = −∂L(qn, qn+1)

∂qn
. (2.4)

It is worthwhile pointing out that these equations define a type 1 canonical transformation
from the variables (qn, pn) to (qn+1, pn+1). This transformation is canonical, in the sense that
it preserves the symplectic structure

{qn, pn} = {qn+1, pn+1} = 1.

In order to make contact with the continuum theory, we point out that if one takes as discrete
Lagrangian the Jacobi principal function S(q,Q, ε) then the discrete evolution given by (2.4)
will correspond to the evolution of the continuous system for times t = nε. This is an alternative
view on discrete Lagrangians: they are approximants to the function S(q,Q, ε). This is closely
related to the idea of a symplectic (also known as variational) integrator [22].

We note that there exists a discrete version of Noether’s theorem. If the system has a global
symmetry δuqn = uδqn, then the discrete Lagrangian will be invariant up to a total difference

δuL = u

(
∂L(qn, qn+1)

∂qn
δqn +

∂L(qn, qn+1)

∂qn+1
δqn+1

)
= u(Bn+1 −Bn),



Discretisations, Constraints and Diffeomorphisms in Quantum Gravity 7

and using the equation of motion (2.1), we get the conserved quantity

Cn = − ∂L
∂qn

δqn +Bn

(that is Cn+1 = Cn ).

If the action is invariant under a “local” transformation δuqn = u(n)δqn, we have

0 = δuS =
∑
n

∂S

∂qn
δqnu(n),

and since the u(n) are arbitrary, this means that ∂S
∂qn

δqn = 0, that is(
∂

∂qn
(L(qn−1, qn) + L(qn, qn+1))

)
δqn = 0. (2.5)

This implies that the equations of motion (2.1) will not be independent and therefore one
cannot unambiguously solve qn+1 in terms of qn and qn−1. That is, the system will be singular.
In particular the Legendre transform qn+1 → pn = −∂Lε

∂qn
will be singular and there will be

constraints in phase space. The framework to treat constrained systems of this sort parallels
Dirac’s method in the continuum and is described in the second reference of [35].

Let us conclude our classical discussion considering an example of a simple singular discrete
system: a parameterized free particle whose continuum Lagrangian is L̃ = m

2 ẋ
2/ṫ, and we

consider the following discretization

L(xn, tn, xn+1, tn+1) =
m

2

(xn+1 − xn)2

(tn+1 − tn)
.

This discretization inherits its singular nature from the continuum. In particular, when we
compute the momenta pxn = −∂L/∂xn and ptn = −∂L/∂tn we see they are not independent but
they satisfy the same relations as the continuum ones

φ = ptn +
1

2m
(pxn)2 = 0.

The “local” invariance of the Lagrangian is given by the transformations δuxn = u(n)δxn,
δutn = u(n)δtn, where

δtn = 1, δxn =
1

2m

(
xn+1 − xn
tn+1 − tn

+
xn − xn−1

tn − tn−1

)
,

and this transformation satisfies (2.5).

In phase space the transformation is given by δtn = 1 and δxn = 1/(2m)(pxn + pxn−1). Using
the equations of motion we have that pxn−1 = pxn which implies

δtn = 1, δxn =
1

m
pxn.

This is the general transformation generated by the constraint φ.

Let us briefly discuss how to quantize these discrete systems. The general treatment is
discussed in [36]. The treatment is similar to ordinary quantum mechanics, but evolving in
discrete intervals ε. The starting point is as in the continuum, one considers wavefunctions ψ(q),
defining the operators q̂ and p̂ as usual, and the canonical evolution is implemented through a
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unitary operator. That is, if we call Q(q, p) and P (q, p) to the solution of the classical equations
of motion (2.4), we need a unitary operator Û such that

Q(q̂, p̂) = Û q̂Û †, P (q̂, p̂) = Û p̂Û †, (2.6)

which represent the discrete evolution equations in the Heisenberg representation.
In the position basis equations (2.6) are a set of differential equations that determine the

matrix U(q′, q). In some cases one can show that the solution to such equations is U(q′, q) =
C exp i

~Lε(q, q
′) with C a proportionality constant.

We illustrate the quantization with a simple example given by a particle in a potential. The
Lagrangian is

L(qn, qn+1) = m
(qn+1 − qn)2

2ε
− V (qn)ε

the canonical momentum is given by pn+1 = m(qn+1 − qn)/ε, from which we can get qn+1 =
pn+1ε/m+ qn. The generating function is,

F2 = pn+1qn +
p2
n+1

2m
ε+ V (qn+1)ε = pn+1qn +H(pn+1, qn),

and the equations of motion derived from the corresponding canonical transformation are

qn+1 = qn +
pn+1

m
ε, pn = pn+1 + V ′(qn)ε,

which can be solved for pn+1 as

qn+1 = qn +
pn
m
ε− V ′(qn)

ε2

m
, pn+1 = pn − V ′(qn)ε.

To quantize the system we choose a polarization such that the wavefunctions are functions
of the configuration variables, Ψ(qn+1). The canonical operators have the usual form. The
evolution of the system is given by a unitary transformation, pn+1 = UpnU

†, qn+1 = UqnU
† and

the unitary operator U is given by

U = exp

(
i
V (qn)ε

~

)
exp

(
i
p2
nε

2m~

)
.

Quantum mechanically, the energy H0(qn+1, pn+1) is not conserved, as expected since it was
not conserved classically. It is remarkable however, that one can construct an “energy” (both
at a quantum and classical level) that is conserved by the discrete evolution. This can be
accomplished using the Baker–Campbell–Hausdorff formula

exp (X) exp (Y ) = exp

(
X + Y +

1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]]) + · · ·

)
,

and one can therefore write U = exp
(
iε
~Heff(qi, pi)

)
where Heff = H0(q, p) + O

(
ε2
)
, which is

conserved under evolution. It is straightforward to write down a classical counterpart of this
expression.

Let us now return to the classical theory and turn our attention towards systems with con-
straints in the continuum. In that case the discrete Lagrangian will be

L(n, n+ 1) = pn(qn+1 − qn)− εH(qn, pn)− λnBφB(qn, pn),

where we assume we have M constraints B = 1, . . . ,M .
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We construct the appropriate canonically conjugate momenta using the first of (2.4)

P qn+1 =
∂L(n, n+ 1)

∂qn+1
= pn, (2.7)

P pn+1 =
∂L(n, n+ 1)

∂pn+1
= 0, (2.8)

P λBn+1 =
∂L(n, n+ 1)

∂λ(n+1)B
= 0. (2.9)

Notice that the canonically conjugate momentum of the variable q at instant n + 1 is equal to
the variable that superficially appeared as canonically conjugate at time n.

To determine the equations of motion for the system we start from the second set of equa-
tions (2.4)

P qn = −∂L(n, n+ 1)

∂qn
= pn + ε

∂H(qn, pn)

∂qn
+ λnB

∂φB(qn, pn)

∂qn
,

P pn = −∂L(n, n+ 1)

∂pn
= −(qn+1 − qn) + ε

∂H(qn, pn)

∂pn
+ λnB

∂φB(qn, pn)

∂pn
,

P λBn = φB(qn, pn).

Combining the last two sets of equations we get the equations of motion for the system

pn − pn−1 = −ε∂H(qn, pn)

∂qn
− λnB

∂φB(qn, pn)

∂qn
, (2.10)

qn+1 − qn = ε
∂H(qn, pn)

∂pn
+ λnB

∂φB(qn, pn)

∂pn
, (2.11)

φB(qn, pn) = 0. (2.12)

These equations appear very similar to the ones one would obtain by first working out the
equations of motion in the continuum and then discretizing them. A significant difference, how-
ever, is that when one solves this set of equations the Lagrange multipliers get determined, they
are not free anymore as they are in the continuum. We consider the constraint equation (2.12)
and substitute pn by (2.7)

φB
(
qn, P

q
n+1

)
= 0.

We then solve (2.11) for qn and substitute it in the previous equation, one gets

φB
(
qn+1, P

q
n+1, λnB

)
= 0,

and this constitutes a system of equations. Generically, these will determine

λnB = λnB
(
qn+1, P

q
n+1, v

α
)
,

where the vα are a set of free parameters that may arise if the system of equations is undeter-
mined. The eventual presence of these parameters will signify that the resulting theory still has
a genuine gauge freedom represented by freely specifiable Lagrange multipliers. We therefore
see that generically when one discretizes constrained theories one gets a different structure than
in the continuum in which Lagrange multipliers get determined.

The main advantage of this approach is that the resulting set of equations are consistent.
The equations that in the continuum used to be constraints become upon discretization pseudo-
constraints in that they relate variables at different instants of time and are solved by determin-
ing the Lagrange multipliers. The approach has been successfully applied in various example
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systems [35] including cosmologies [37] and used to evolve numerically the Gowdy space-time [38].
However, in pursuing those examples, particularly the Gowdy one which has a reasonable level
of complexity, a drawback to this approach became quite evident, that led to a reformulation
we will discuss next.

Before continuing it is worthwhile emphasizing some aspects of the discrete theories we have
been constructing:

• The discrete Lagrangian is independent of the step ε.

• The discrete system is unconstrained, or at least has less constraints than the continuum
one. If there are no constraints the evolution equations can be solved without ambiguities.

• Since the discrete system has more degrees of freedom than the continuum one there will
exist trajectories that have no relation to those of the continuum (for instance trajectories
far from the constraint surface).

• The Lagrange multiplier in the discrete theory is not free but becomes a well defined
function of phase space. Its precise form will depend on the discretization, but in general
it will vanish on the constraint surface. The closer the discrete evolution is to the constraint
surface of the continuum theory, the smaller the values of the Lagrange multipliers.

• It could happen that the Lagrange multipliers in the discrete theory become complex.

Let us assume that the discrete theory is well defined. In that case we can proceed to quantize
as we described. Supposing one can find the operator Û that implements the evolution, one
has a complete description of the quantum theory. The question now is: how do we take the
continuum limit? The question is non-trivial since we don’t have at hand the parameter ε
that controls the continuum limit. The classical continuum theory is achieved in the limit in
which qn+1 → qn, which is equivalent to taking initial conditions close to the constraint surface.
Quantum mechanically one would like something like “q̂n+1 → q̂n”. Since the evolution operator
is given (it does not depend on any parameter ε) such a condition can only be imposed at the
level of the Hilbert space, considering states |ψ〉 such that Û |ψ〉 → |ψ〉. We will therefore say
that the continuum theory is defined by states such that Û |ψ〉 = |ψ〉. Later on, in the context
of uniform discretizations, we will relate this condition with the definition of physical space in
the Dirac quantization of constrained systems.

2.2 Uniform discretizations

The main drawback of the approach presented in the previous subsection is that the equations
that determine the Lagrange multipliers are non-linear algebraic equations. Generically their
solutions are therefore complex. Given that the Lagrange multipliers in general relativity are the
lapse and shift, they cannot be complex. That means that the discrete theory can suddenly fail
to approximate the continuous theory in a dramatic way as it becomes complex. Also, since the
lapse and the shift determine the size of the temporal and spatial discrete steps, one typically
would not want their values to become too large, otherwise the discrete equations will surely
differ quite significantly or may even miss features from the continuum theory. Unfortunately
one has no control on these matters. Given some initial data, the lapse and shift will evolve
dynamically. If one encounters that they become complex, negative or too large one cannot do
anything but change the initial data. This lack of control in the approximation clearly is a very
undesirable feature, both for numerical evolutions but also for quantization.

To address the above problem we would like to make use of the considerable freedom that
one has at the time of discretizing a theory. There exist infinitely many discrete theories that
approximate a continuum one. We will use the freedom to demand that the evolution equations
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of the discrete theory take the form

An+1 = e{•,H}(An) ≡ An + {An, H}+
1

2
{{An, H}, H}+ · · · .

The quantity H is defined in the following way: Consider a smooth function of N variables
f(x1, . . . , xN ) such that the following three conditions are satisfied: a) f(x1, . . . , xN ) = 0 ⇐⇒
xi = 0 ∀ i and otherwise f > 0; b) ∂f

∂xi
(0, . . . , 0) = 0; c) det ∂2f

∂xi∂xj
6= 0 ∀x and d) f(φ1(q, p), . . .,

φN (q, p)) is defined for all (q, p) in the complete phase space. Given this we define H(q, p) ≡
f(φ1(q, p), . . . , φN (q, p)).

A particularly simple example is

H(q, p) =
1

2

N∑
i=1

φi(q, p)
2, (2.13)

essentially the “master constraint” of the “Phoenix project” [39]. The key observation is that
the above evolution preserves the value of H. Therefore if one chooses initial data such that
the constraints are small, they are guaranteed to remain small upon evolution. The evolution
step is controlled by the value of H and therefore by how small the constraints are. We call this
approach uniform discretizations and the reader is referred to [40] for more details.

At first the chosen form for the evolution may sound counterintuitive. After all, if one gave
data that satisfy the constraints exactly, there would be no evolution. Let us show that indeed
the evolution approximates the continuum evolution well. Let H as in the simple example above

and take its initial value to be H0 = δ2/2. We define λi = φi/δ, and therefore
N∑
i=1

λ2
i = 1. The

evolution of the dynamical variable q is given by

qn+1 = qn +
N∑
i=1

{qn, φi}λiδ +O
(
δ2
)

and if we define q̇ ≡ lim
δ→0

(qn+1 − qn)/δ, where we have identified the “time evolution” step with

the initial data choice for δ, one then has

q̇ =

N∑
i=1

{q, φi}λi,

and similarly for other dynamical variables. The particular values of the multipliers λi depend on
the initial values of the constraints φi. Notice that as in the consistent discretizations approach,
the Lagrange multipliers get determined, but they are well defined real functions of phase space.
And note that the Lagrange multipliers are proportional to the constraints of the continuum
theory. Therefore if the evolution is kept close to the constraint surface, the Lagrange multipliers
will be small. If one chose initial data that exactly solved the continuum constraints, the
Lagrange multipliers will vanish and the system does not evolve.

To illustrate that the above construction is actually feasible, let us consider a one-dimensional
system, the parameterized harmonic oscillator. The continuum action for this system is

S =
1

2

∫ (
ẋ2/ṫ− x2ṫ

)
dτ,

where we have chosen m = k = 1 and the potential V (x) = kx2/2 as usual. The Lagrangian
that yields the discrete evolution is given by

LU (x, t,X, T ) = S(x,X, T − t) +
1

2
(T − t)2,
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where S is Hamilton’s principal function of the continuous system and we introduced the short-
hand t = tn, T = tn+1, x = xn and X = xn+1.

The equations for X and x give the equations of motion for a harmonic oscillator at a time
(T − t). When we work out the equations for T and t we have two terms

Pt = pt =
∂S(x,X, T − t)

∂T
+ (T − t).

Since S satisfies by the Hamilton–Jacobi equation, we have that

∂S(x,X, T − t)
∂T

= −H(x, px) = −1

2

(
p2
x + x2

)
,

so the equation for T is

T = t+ pt +H(x, px) = t+ φ(q, p).

That is, λd(q, p) = φ(q, p) as we expected. Note that this construction can be carried out for
any parameterized system.

The constants of motion of the discrete theory are functions OD such that {OD, H} = 0.
On the constraint surface, such functions coincide with the Dirac observables of the continuum
theory, OC . In order to see this, we note that

{OD, H} =
∑
k

φk{OD, φk} = 0. (2.14)

Let us take a point in phase space close to the constraint surface such that φ1 = δ and φk = 0
∀ k 6= 1. From (2.14) we therefore see that {OD, φ1} = 0 at that point. Taking δ → 0 we
conclude that {OD, φ1} = 0 for points on the constraint surface. Repeating this for the other
constraints completes the proof. Conversely, to every Dirac observable of the continuum theory
corresponds one or several constants of the motion of the discrete theory.

Let us conclude the classical part noting that in the case in which the constraints are Abelian it
is possible to give an expression for the type 1 generating function of the canonical transformation
that gives the discrete evolution. If the constraints φk are Abelian, then the discrete evolution be
given by the Hamiltonian (2.13) can be understood as: “evolve for a time λ1 with the field Xφ1 ;
then evolve for a time λ2 with the field Xφ2 ; etc.” Here λi(q, p) = ∂f/∂xi|xk=φk(q,p) is the
Lagrange multiplier of the discrete theory. This can be done because the fields commute and
because λi(q, p) is constant throughout the evolution.

This construction corresponds to the evolution of the discrete Lagrangian

L(qn, qn+1, λ1, . . . , λr) = S(qn, qn+1, λ1, . . . , λr) + g(λ1, . . . , λr),

where λi are the discrete Lagrange multipliers at the time n, S is the Hamilton principal function
of the system and g satisfies that: 1) g(0) = 0 and 2) the map λi → ∂g

∂λi
is the inverse of the

map xi → ∂f
∂xi

. In order to see this, note that the evolution equations of the q’s yield the “exact”
evolution with given Lagrange multipliers λk. The equations for the multipliers are

0 =
∂L

∂λi
=
∂S

∂λi
+
∂g

∂λi
.

From the Hamilton–Jacobi equation one has that ∂S/∂λi = −φi and we recover the values
of the multipliers that we had before.

Let us now discuss the quantum theory. Given how the system was put together, there is
a natural candidate for the evolution operator

Û = e−iĤ .
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The continuum limit is given by the quantum states |ψ〉 that satisfy

Û |ψ〉 = |ψ〉,

which is equivalent to

Ĥ|ψ〉 = 0, (2.15)

which corresponds, at least classically, to the condition that the system satisfy the constraints.
Condition (2.15) with H given by (2.13) is the same condition used by Thiemann in his “master
constraint” [39] proposal. The latter consists in finding the solutions of (2.15) as a means to
finding the physical space of the theory. In that context the operator Ĥ is not interpreted as
a Hamiltonian but as a “master constraint” that includes all the constraints of the problem.
The idea is that states |ψ〉 that satisfy (2.15) will satisfy φ̂k|ψ〉 = 0 ∀ k.

The existence of solutions to (2.15) depends on if zero is in the spectrum of H. If it is
not it will not be possible to find solutions and we will say that the quantum theory does not
have a continuum limit. If zero is in the spectrum there will be a solution and the states that
satisfy (2.15) are the physical space of states.

In order to define an inner product in the physical space of states one has to see if zero belongs
in the discrete or continuous part of the spectrum of H. In the first case, the inner product
is the same as in the kinematical Hilbert space. In the second, the states that satisfy (2.15)
are not normalizable in the kinematical inner product and are generalized states. It is possible
to introduce an inner product in this generalized space in the following way. One takes the
projector P̂ from the kinematical to the physical Hilbert space. The internal product between
two states |ψ1〉Ph and |ψ2〉Ph of the physical Hilbert space such that |ψi〉Ph = P̂ |ψi〉 with |ψi〉
states of the kinematical Hilbert space is given by

Ph〈ψ1|ψ2〉Ph = 〈ψ1|P̂ |ψ2〉.

Such a projector can be constructed from the evolution operator in the following manner

P̂ ≡ lim
n→∞

CnÛ
n (2.16)

with appropriate constants (c-numbers) Cn such that lim
n→∞

(Cn+1/Cn) = 1. One then has that

Û P̂ = P̂ and therefore Û P̂ |ψ〉 = P̂ |ψ〉 for all states |ψ > of the kinematic Hilbert space.
The quantization of the resulting discrete theories have important conceptual simplifications

with respect to the original continuum theory. First of all, the theories are free of constraints.
The latter are approximately enforced by the evolution and can be made as small as one wishes
by choosing initial data. But one does not need to be concerned with issues like constraint
algebras anymore. One will be quantizing a classical theory that, although it approximates the
theory of interest with arbitrary precision, is conceptually very different.

To quantize these theories we start by picking a kinematical Hilbert space that will be given
by square integrable functions of the configuration variables Ψ(q). On this space one defines
operators Q̂ and P̂ as usual. To construct the operators at other time levels one introduces
a unitary operator Û that we will define later, with the following properties

Q̂n ≡ Û−1Q̂n−1Û = Û−nQ̂0Û
n, P̂n ≡ Û−1P̂n−1Û = Û−nP̂0Û

n.

The evolution operator is given by Û = e−iĤ/~. The operator Û may also be determined by
requiring that the fundamental operators satisfy an operatorial version of the evolution equations

Q̂nÛ − ÛQn+1(Q̂n, P̂n) = 0, P̂nÛ − ÛPn+1(Q̂n, P̂n) = 0,

and this provides a consistency condition that aids in the construction of Û .
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We recall that classically H = 0 if and only if the constraints φi = 0. One can define naturally
the physical space of the continuum theory in a way that does not require that we refer to the
constraints directly. Since we know that Û = exp(−iĤ/~), a necessary condition satisfied by
the states of the physical space of the continuum theory, ψ ∈ Hphys is given by Ûψ = ψ. More
precisely the states ψ of Hphys should belong to the dual of a space Φ of functions sufficiently
regular on Hk. That is, the states ψ ∈ Hphys satisfy∫

ψ∗Û †ϕdq =

∫
ψ∗ϕdq,

where ϕ ∈ Φ. This condition characterizes the quantum physical space of a constrained con-
tinuum theory without needing to implement the constraints as quantum operators. This is an
important advantage in situations where implementing the constraints as quantum operators
could be problematic, as for instance when they do not form a Lie algebra. This is the case in
general relativity where the constraint algebra has structure functions. For more details on the
quantization see [40].

2.2.1 Examples

We discuss now two significant examples that will illustrate the main two possibilities when
implementing the construction outlined here. In the first example, one finds that the quantum
master constraint includes the zero eigenvalue in its kernel. There the technique reproduces the
results of the ordinary Dirac quantization technique. In the second example the zero eigenvalue
is not in the kernel. The resulting quantum theory has a fundamental level of discreteness and
will only recover semiclassically the continuum theory in certain circumstances. In this example
the Dirac quantization is also problematic. We believe this example illustrates the most likely
situation one will face in gravity: the resulting quantum theory will have a fundamental level of
discreteness and classical general relativity will only be recovered in long length scales compared
to the Planck length. This is a point of view that many people have advocated for an ultimate
theory of quantum gravity over the years.

The two examples are taken from [40].

2.2.2 Model with continuum limit

Here we will consider a model constrained system with non-Abelian constraints that form a Lie
algebra. We consider a mechanical system with configuration manifold R3, coordinatized by qi,
i = 1, 2, 3 and 3 non-commuting “angular momentum” constraints

Ci = Li ≡ εijkqjpk, i = 1, 2, 3,

where the pi’s are the momenta conjugate to the qi’s and we assume Einstein’s summation
convention on repeated indices. The three constraints are not independent. Vanishing angular
momentum is equivalent to requiring qi = λpi with λ arbitrary, which implies two conditions to
be satisfied by the phase space variables. The constraint surface is four dimensional and therefore
the system has two independent observables. We can choose to construct the Hamiltonian
starting from two independent constraints or one could choose to use a more symmetric, yet
redundant, form of the constraints, which will be our choice. The Hamiltonian that will dictate
evolution is

H =
3∑
i=1

(Li)2

2k
,
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where k is a constant with units of action. The resulting discrete evolution equations are

qin+1 = qin + εijk
qkLj

k
+ εijkεjmnq

mL
nLk

k2
+ · · · ,

pin+1 = pin + εijk
pkLj

k
+ εijkεjmnp

mL
nLk

k2
+ · · · .

One obtains the continuum limit by setting H = δ2/2 and defining λi = Li/(δ
√
k). Taking

the limit as explained before, one gets

q̇i = εijk
qkλj√
k
, ṗi = εijk

pkλj√
k
.

The components Li are constants of the motion and therefore λi are constant. There exist
three constants more: q · q = qiqi, p · p = pipi, q · p = qipi. These are not independent since
L2−((q ·q)(p·p)−(q ·p)2) = 0. One therefore has five independent constants of the motion of the
discrete theory. In the continuum limit the Li’s vanish and one has two independent constants
of motion, for instance q ·q and q ·p. In the continuum, the trajectories are arbitrary trajectories
on a sphere. In the discrete theory, when one takes the continuum limit one obtains trajectories
that correspond to arbitrary circumferences on the sphere, since the λi’s are constant. The
constraint surface is therefore completely covered, but not all orbits of the continuum theory are
recovered. This however, is not problematic since we can recover all physical information with
the trajectories obtained.

To quantize the system, we will start with an auxiliary Hilbert space L2(RN ) on which the
operators q̂i act as multiplication operators and the momenta as derivatives

q̂iψ(q) = qiψ(q), p̂iψ(q) = −i~∂iψ(q),

and immediately construct the unitary operator

Û = exp

(
−i L̂

2

2k~

)
,

which recovers (up to terms of order ~) the classical discrete evolution equations as operatorial
relations so the correspondence principle is satisfied.

To compute the projector we use the formula (2.16) and, work with a basis labeled by the
radial and angular momentum eigenvalues. The projector is given by

P̂ |n, `,m〉 = δ`0|n, `,m〉 = δ`0|n, 0, 0〉,

which can be rewritten as,

P̂ =

∞∑
n=0

|n, 0, 0〉〈0, 0, n|.

The continuum limit is therefore immediately achieved. The physical space is the space of
vanishing angular momentum and on it the constraints of the continuum theory are automati-
cally satisfied. We have therefore recovered the usual Dirac quantization. The physical space is
given by the square integrable functions depending on the radial variable |q|. The physical inner
product is therefore induced by the kinematical inner product on the physical space of states.
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2.2.3 A model with non-compact gauge group

We will now consider a system with non-Abelian constraints that form a Lie algebra that is non-
compact, associated with the SO(2, 1) group. It has the same phase space as in the previous
example, except that the metric will be given by diag(−1, 1, 1). The constraints are

Ci = Li ≡ εijkqjpk, i = 0, 1, 2.

One has to be careful about upper and lower indices since the metric is non-trivial. Just like
before, the three constraints are not independent and the constraint surface is four dimensional
and the system has two independent observables. The canonical evolution is given through the
master constraint

H =
LiL

i + 2L2
0

2k
,

where k is a constant with units of action. The discrete evolution equations are

qin+1 = qin + εijk
qkLj

k
− 2εi0k

qkL0

k
+ · · · ,

pin+1 = pin + εijk
pkLj

k
− 2εi0k

pkL0

k
+ · · · .

The continuum limit is achieved setting H = δ2/2. Defining λi = Li/(δ
√
k) for i = 1, 2 and

λ0 = −L0/(δ
√
k) we have, taking the limit as explained before

q̇i = εijk
qkλj√
k
, ṗi = εijk

pkλj√
k
.

We note that although L0 is a constant of the motion, the other components are not. However
L2

1 + L2
2 is a constant, so L1 and L2 rotate around L0 throughout the evolution. There exist

three further constants q · q = qiqi, p · p = pipi q · p = qipi. These are not independent since
L ·L− ((q · q)(p · p)− (q · p)2) = 0. One therefore has four independent constants of the motion
of the discrete theory. In the continuum limit two vanish and one is left with two constants of
motion, for instance q ·q and q ·p. The trajectories in the continuum are arbitrary trajectories on
two hyperboloids, one space-like and one time-like. The continuum limit of the discrete theory
yields trajectories that correspond to particular choices of the Lagrange multipliers, depending
on the initial conditions chosen.

The quantization of this model (and similar ones) is known to have subtleties [39, 41, 42].
The central problem is that if one promotes the constraints to operators on the usual Hilbert
space, they do not have a vanishing eigenvalue in their spectra. This can happen, but usually
the resolution is to extend the Hilbert space by including an improper basis of eigenvectors.
This can be done in this case, but one finds that the spectrum again does not contain zero.
More specifically, the continuum spectrum has eigenvalues larger than ~2/4. One can find
eigenvectors with eigenvalues smaller than ~2/4, but they do not arise as limit of functions of
the Hilbert space, i.e. they cannot form part of an improper basis of the Hilbert space. One
can adopt the point of view that nevertheless the eigenvectors with zero eigenvalue are the
“physical space” of the theory, essentially abandoning the idea that the physical space arises
as a suitable limit of the kinematical space. This was suggested in [41, 42]. From the point
of view of our approach this does not suffice, since we wish to construct the physical space of
states starting from the quantum kinematical space, taking a limit. As we mentioned before,
lacking the zero eigenvalue in the spectrum of the Hamiltonian yields our prescription for the
projector on the physical space useless. With this in mind, the most satisfactory solution is
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the one chosen in [39], where one chooses as physical space the eigenvectors that have ~2/4 as
eigenvalue. Another attractive possibility in the discrete approach is not to take the continuum
limit and retain a level of fundamental discreteness. This is very natural in a model where it is
difficult to achieve a vanishing eigenvalue for the constraints, a natural minimum existing for
their eigenvalues. As we argued before, such models can approximate the semiclassical physics
of the theory of interest with some restrictions on the type of states considered. There can
therefore be viewed as the best thing one can do in terms of having an underlying quantum
theory for the model that approximates the classical physics of interest.

2.2.4 Other examples

The above two examples capture the essence of the technique in which we see in one case that
we recover the traditional Dirac quantization, whereas in the other case, where even the Dirac
procedure faces issues, we obtain a satisfactory solution. The technique has also been applied
in 2 + 1 gravity [40] where one recovers the traditional quantization and more recently to the
study of spherically symmetric gravity coupled to a spherically symmetric scalar field [43]. This
is a challenging example with a rich and complex dynamical structure and infinite degrees of
freedom. Up to now only low energy regimes close to flat space have been studied . One cannot
achieve a continuum limit and one is left with a theory with a fundamental level of discreteness
that nevertheless approaches semiclassically general relativity very well, as we had anticipated.

3 Improved and perfect actions

In this section we review the mechanism of symmetry breaking in the covariant language,
i.e. within Regge Calculus. We also describe the perfect action approach in order to cope
with the arising problems, and demonstrate the connections to the renormalization group.

3.1 Diffeo breaking in Regge

We consider the discretization of General Relativity via Regge’s method, and demonstrate in
which sense the diffeomorphisms of the continuum are broken. In Regge calculus d-dimensional
space-time is discretized by a triangulation T consisting of simplices σ, and the metric infor-
mation is encoded as edge lengths3 le of the simplices σ. By specifying the edge lengths the
geometry of the simplex is uniquely determined, and the discrete analogue of the Einstein–
Hilbert action (1.1), called the Regge action, is given by

SR[le] =
∑
h∈T ◦

Vh

(
2π −

∑
σ⊃h

θσh

)
︸ ︷︷ ︸

=:εh

+
∑
h∈∂T

Vh

(
π −

∑
σ⊃h

θσh

)
︸ ︷︷ ︸

=:ψh

−Λ
∑
σ

Vσ, (3.1)

where the first sum ranged over all d−2-simplices (called hinges) in the interior, and the second
sum ranges over all hinges in the boundary of T . The curvature is encoded in the excess of
the sum of dihedral angles θσh around a hinge h with respect to 2π (see Fig. 1), and denoted
as deficit angle εh. Similarly, for a hinge h ∈ ∂T on the boundary, ψh encodes the extrinsic
curvature of the boundary surface ∂T in T . Also, Vh denotes the (d− 2)-dimensional volume of
the hinge h, and Vσ the d-dimensional volume of the simplex σ.

3For simplicity we consider only Riemannian metrics in what follows, although Lorientzian metrics can equally
well be treated by considering the edge length squares l2e , which can e.g. be negative if the edge is time-like.
Special care has to be taken when considering the causal structure of the triangulation [44].
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Figure 1. Deficit angle εh situated at a (d− 2)-dimensional simplex (hinge) h.

The boundary terms and the Schlaefli-identity [45] ensure that the equations of motion are
given by

∂SR

∂le
=
∑
h⊃e

∂Vh
∂le

εh − Λ
∑
σ⊃e

∂Vσ
∂le

= 0 (3.2)

for all interior edges e ∈ T ◦, which are conditions for the interior edge lengths le with fixed
boundary edge lengths.

In the continuum theory, i.e. GR, the Einstein equations do not determine uniquely a solution
for the interior metric, but only up to diffeomorphism. Also, the Einstein equations contain as
subset consistency conditions for the boundary metric, which do not contain dynamical infor-
mation, but constitute constraints. In the discrete setting the same situation appears in the
special case of d = 3 and Λ = 0: The hinges h and the edges e coincide, and therefore the Regge
equations (3.2) simply become

εe = 0. (3.3)

For given boundary lengths le, the equations (3.3) have in general infinitely many solutions
for the interior lengths, since there are infinitely many ways of filling up a portion of flat
3-dimensional space with tetrahedra. Of a given solution for the le, another solution can be
constructed by vertex translation, and it can be shown that this transformation between solutions
is generated by the discrete Bianchi-identities [24, 25, 46], which therefore corresponds exactly
to a diffeomorphism in this case. Also, as part of the Regge equations, the boundary lengths
have to satisfy a constraint, which demands that the 2d boundary triangulation can be immersed
in flat 3d space [28], which is again completely similar to the continuum case.

However, as soon as one leaves the case of d = 3 or Λ = 0, the situation changes. This can
be seen as follows: The non-uniqueness of the solutions to (3.3) manifest themselves in zero
Eigenvalues of the Hessian matrix Hee′ = ∂2SR/∂le∂le′ . These zeros are precisely what makes
the Legendre transformation singular, indicating the presence of gauge symmetries [29]. The
same zeros appear in the Hessian for 4d, Λ = 0, whenever evaluated on a flat solution εt = 0
(where t denotes the triangles of T ), and the zero modes correspond to the diffeomorphism
gauge modes of linearized gravity [27].

It was well-known for some time that for 4d and Λ = 0 the vertex displacement symmetry,
around the flat solution, is satisfied at least up to terms of order ε2 [26, 27]. In [29] this bound
was made sharp by showing that the Hessian is non-degenerate, i.e. has no zero Eigenvalues, in
the case of 3d, Λ 6= 0, and in 4d, Λ = 0 whenever the boundary data is such that the solution
has internal curvature. In fact, the smallest Eigenvalue scales with ε2 ∼ Λ2 in the case of 3d,
as well was with ε2 (where ε is a deficit angle at an internal edge) in 4d (see Fig. 2). As soon
as the solution to (3.2) exhibits curvature, there is no continuous symmetry relating different
solutions anymore, and although in some cases there are different discrete solutions [47], these
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Figure 2. The lowest eigenvalue of the Hessian as a function of deviation from flatness (proportional

to ε), in a particular 4d-triangulation with one inner vertex, discussed in [29].

are rather a discretization artifact. In most cases the solution for given boundary data is unique.
Moreover, the part of the Regge equations which, in the flat case, constituted the constraints,
i.e. which involved only the initial data on one time step4, acquired a weak coupling between
data on subsequent time slices, i.e. turned from a constraint into a (weakly) dynamical equation.
These equations are therefore called pseudo-constraints.

The uniqueness of solutions in cases with nonvanishing curvature (i.e. the breaking of the
continuum gauge symmetry) leads to a vast overcounting of degrees of freedom. Consider e.g. the
case of 3d Regge with Λ 6= 0. For a fixed triangulation, since there are no constraint equations
for the boundary data, not only can one prescribe many more initial conditions, each of which
lead to a unique solution of motion, since there are infinitely many different triangulations (even
with the same boundary triangulation), each of which produce physically different solutions, the
discrete theory has many more than just the finitely many (topological) degrees of freedom that
the continuum theory has.

The breaking of symmetries in the discrete therefore leads to the emergence of pseudo-degrees
of freedom, leading to several problems: The first is an interpretational one, which has also been
realized in other discrete, in particular numerical, approaches to GR [52]: It is unclear how to
distinguish the pseudo degrees of freedom from the actual physical ones. It is therefore difficult
to extract the physical content from a numerical solution, e.g. disentangling actual oscillations
of gravitational waves from oscillations of the chosen coordinate system.

Another problem arises within any attempt to build a quantum gravity theory based on Regge
discretizations: Generically, breaking of gauge symmetries within the path integral measure leads
to anomalies, in particular problematic in interacting theories [53]. In quantum theories based
on Regge calculus, the path integral will, for a very fine triangulation, contain contributions of
lots of almost gauge equivalent discrete metrics, each with nearly the same amplitude. Hence the
amplitude will not only contain infinities of the usual field theoretic nature, but also coming from
the effective integration over the diffeomorphism gauge orbit. This is in particular a problem for
the vertex expansion of the spin foam path integral, as advocated in [54]. The triangulations with
many vertices will contribute much more to the sum than the triangulations with few vertices, so
that, at every order, the correction terms dominate, rendering the whole sum severely divergent.
We will see this phenomenon occur in Section 3.4, in the case of a toy model.

In the following we describe an attempt to circumvent the above problems, by constructing
a discrete action with the correct amount of symmetries. The main technical tool for this is
coarse graining.

4Here the different time steps were taken as a series of so-called tent moves [48]. For a canonical framework
for simplicial theories which builds on Pachner moves, see also [32, 49, 50, 51].
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Figure 3. A tetrahedron Σ subdivided into smaller tetrahedra σ. The length LE of a coarse edge E is

the sum of all the lengths le of edges e ⊂ E that constitute E.

3.2 The coarse graining idea: classical

A toy model for the breaking of diffeomorphism symmetry in Regge calculus, which has been
investigated in [23, 33, 55] is parameterized mechanics, in which time t itself is treated as
a configuration variable, which, together with q, evolves with respect to an auxiliary parameter s.
The broken symmetry in the discrete case is invariance under reparametrization s→ s′(s), which
is effectively diffeomorphism symmetry in 1d. In this case, there is a way of constructing an
action for the discrete theory (i.e. depending on (tn, qn)), which nevertheless exhibits the exact
symmetry from the continuum theory. Given a discretization of the continuum action S(0),
this perfect action can be constructed iteratively by a coarse graining procedure, resulting in
a sequence of discrete actions S(n) converging to the perfect action S(∞) in the limit.

A similar construction can be employed in principle within the context of Regge calculus,
and we show how this procedure, described in [23], is able to cure the problems described above
in the case of 3d Regge with Λ 6= 0. Consider a 3d triangulation T (capturing the macroscopic
degrees of freedom) and a refined triangulation τ , such that each edge E ∈ T can be composed
of edges e ∈ τ (see Fig. 3), capturing the microscopic degrees of freedom. The effective (or
improved) action ST ,τ [LE ], which lives on T , is constructed by putting the Regge action on τ
and integrating out the microscopic degrees of freedom. To this behalf, one solves the Regge
equations for the le, e ∈ τ , with fixed edge lengths∑

e⊂E
le

!
= LE . (3.4)

One therefore adds the conditions (3.4) to the Regge action (3.1) via Lagrange multipliers αE ,
extremizing

S[le] =
∑
e

leεe − Λ
∑
σ∈τ

Vσ +
∑
E

αE

(
LE −

∑
e⊂E

le

)
. (3.5)

Note that the action (3.5) depends on the LE as parameters. The effective action ST ,T ′ [LE ] is
then defined as the value of the action (3.5) evaluated on a solution, i.e.

ST ,τ [LE ] := S[le]∣∣∣ ∂S∂le= ∂S
∂αE

=0
.

One can show straightforwardly that

ST ,τ [LE ] =
∑
E

LEαE + 2Λ
∑
Σ∈T

VΣ
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with VΣ :=
∑
σ⊂Σ

Vσ for a simplex Σ ∈ T . Note that both αE and VΣ are a priori complicated

functions of the LE , which have to be determined by the equations of motion for S. Without
knowing their form explicitly, setting

ΘΣ
E :=

∑
σ⊃e,σ⊂Σ

(
θσe − Λ

∂Vσ
∂le

)
,

which does not depend on the choice of e ⊂ E by the equations of motion, one can derive the
identities

αE = 2π −
∑
Σ⊃E

ΘΣ
E , (3.6)

∑
E⊂Σ

LE
∂ΘΣ

E

∂LE′
= 2Λ

∂VΣ

∂LE′
. (3.7)

Note that (3.7) implies that the equations of motion for the LE as given by the effective ac-
tion ST ,τ are simply

∂ST ,τ
∂LE

= αE = 0.

Not only is (3.7) precisely of the form of the Schlaefli identity for simplices of constant curva-
ture Λ [45], but one can also show [23] that in the limit of τ becoming very fine with respect
to T in a controlled way, the functions ΘΣ

E , VΣ converge to the dihedral angle and the volume
within a tetrahedron of constant curvature Λ, with edge lengths LE . So the perfect action, as
the limit of infinite refinement τ →∞, is given by the Regge action with simplices of constant
curvature Λ

ST ,∞ =
∑
E

LEεE + 2Λ
∑

Σ

VΣ. (3.8)

Indeed, the equations of motion for (3.8) are simply εE = 0, so the solutions describe a metric of
constant curvature everywhere. Just as in the case for Λ = 0, where εE = 0 allows for arbitrary
subdivision of flat space into flat simplices, resulting in the vertex displacement symmetry, in
the Λ 6= 0 case εE = 0 allow for arbitrary subdivision of constantly curved space into constantly
curved simplices, and the same vertex displacement symmetry appears. Hence, unlike the Regge
action (3.1), the perfect action (3.8) exhibits the correct symmetries of the continuum theory5.

The same coarse graining procedure works for the Λ 6= 0 sector in 4d, which is such that
the solution to the equations of motion results in constant curvature [23]: also in this case the
Regge action (3.1) converges to its analogue with constantly curved 4-simplices by means of the
procedure described above.

3.3 Feasibility

The procedure for constructing the perfect action for a discrete system requires the solution
of the equations of motion for a very fine discretization. Even for the case for 3d, Λ 6= 0
described above there is no analytic formula for the solutions. The simplicity of the system,
and in particular the structural equation (3.7) allowed to prove that the sequence of effective
actions ST ,τ converges to (3.8) in the limit of infinitely fine τ . For more complicated systems (in
particular for discrete GR in 4d), it might not be feasible to try and compute the perfect action

5In fact, (3.1) for 3d consists of the first two terms in the Λ-expansion of (3.8), i.e. up to O(Λ2).
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explicitly. In particular, in the known cases the perfect actions are always closely related to the
Hamilton’s principal function of the continuous system [23], the explicit knowledge of which is
equivalent to having control over the solution space of the continuum theory, which is definitely
not the case for 4d GR.

Still, the concept of a perfect action is a very powerful tool in numerical studies of lattice
QCD [56, 57], where it is used to minimize discretization artifacts. Here, the perfect action is
not known explicitly, but there exist very good numerical and analytical approximations to it.
In [58], a procedure was described for how to compute the perfect action approximately within
a vicinity of a point in configuration space. Here it was found that, if one concentrates on the

perfect action around a solution {l(0)
e } which exhibits the exact symmetry of the continuum (as

e.g. the case for flat space in 4d Regge for Λ = 0), the gauge symmetries are satisfied to linear
order in the perturbative expansion. However, the breaking of the gauge symmetries to higher
order imposes consistency conditions on the actual state around which one perturbs. Within

the gauge equivalence class {l(0)
e } of solutions which all solve the equations of motion, there is

only one particular solution around which the perturbative expansion is consistent. In fact, this
solution is singled out by the condition that the Hamilton’s principal function to second order
depends minimally on the gauge parameters [32].

Computing the perfect action to lowest non-trivial order for linear systems has been performed
in [58], where it could be shown that, for linearized gravity the perfect action (to linear order) is
invariant under coarse graining, and displays the correct amount of symmetries in 3d. In 4d, there
appear non-localities, which make the results more complicated, and which could in principle
be dealt with by Migdal–Kadanoff-type approximation schemes [59, 60].

3.4 Coarse graining: quantum

The broken diffeomorphism symmetry of discretized theories can lead to interpretational prob-
lems in the classical realm, as we have argued in the last section. Here one cannot easily
distinguish the physical degrees of freedom from the ones that arise by breaking the gauge sym-
metry. The finer the discretization, the better the approximate symmetries (i.e. the closer the
minimal Eigenvalues in the Hessian are to actually vanish), and the closer the pseudoconstraints
are to the actual constraints of the continuum theory.

Within the corresponding quantum theory, the problem becomes even more severe. For finite
discretization, the additional degrees of freedom, which become gauge in the continuum limit,
are being treated as physical and are summed over in the path integral, which lead to unphysical
singularities6.

Consider for instance the example of parametrized 1d mechanics, with continuum vari-
ables q(s) and t(s), s being an auxiliary gauge parameter. Due to the gauge symmetry (i.e. re-
parametrization-invariance) only the dependence q(t) is physical, rather than q and t itself, and
one indeed gets the correct answer for the propagator if one drops the integration over t within
the path integral, and only integrates over q.

The discrete configuration variables are (tn, qn) and n = 1, . . . , N . In the path integral

K(0)(t0, q0, tn, qn) =

∫
R2N

dtndqn e
i
~Sdiscrete(tn,qn) (3.9)

the summation over both tn and qn have to be performed, since there is no gauge symmetry
between the variables, if one uses a generic discretized approximation to the continuum action.
In the limit of finer and finer discretization (i.e. letting N go to infinity), the contribution
coming from the integration over the tn approaches the integral over the gauge group (which

6As opposed to e.g. UV or IR divergencies in QFT, which carry information about the physical properties of
the system.
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is infinite7). While in this particular case the problem can be solved by just neglecting the
tn-integration by hand, this relies on an apriori knowledge of which variables remain physical
and which become gauge within the continuum, i.e. a separation of the configuration variables
into t and q. For more complicated systems (in particular within GR), this separation is not
possible.

However, given the propagator K(0) as by (3.9), it is possible to construct a series of propa-
gators K(n), which converge to a propagator K(∞) which avoids the problems above and which
is the quantum analogue of the perfect action. This is done by performing the quantum ana-
logue of the coarse graining procedure described in the last section, and closely resembles the
construction of a Wilsonian renormalization group flow:

For a given discretization 2N one sets up the propagator (3.9), and performs the integration
over every odd t2k+1, q2k+1, keeping the even t2k, q2k fixed. For N = 1 this simply reads

K(n+1)(t0, q0, t2, q2) :=

∫
R2

dt1, dq1K
(n)(t0, q0, t1, q1)K(n)(t1, q1, t2, q2). (3.10)

This procedure has been tested for the harmonic oscillator8 and for the quartic anharmonic
oscillator (to linear order in the interaction parameter λ) in [58]. It could be shown that in the
limit n→∞ the K(n) converge to an infinite contribution coming from the tn integration, times
a propagator K(∞).

The perfect propagator K(∞) satisfies some crucial properties:

• K(∞) exhibits the correct gauge symmetry, i.e. it is invariant under a simultaneous trans-
formation of e.g. t0 and q0 via

t0 → t̃0 = t0 + ∆t0, q0 → q̃0 = q0 + ∆q(t0, q0,∆t0), (3.11)

which are such that (t̃0, q̃0) lie on a solution to the continuum equations of motion con-
necting (t0, q0) and (t1, q1).

• Equivalently, K(∞) satisfies the correct constraint equation, i.e.(
i~

∂

∂t0
−H

(
q0,

∂

∂q0

))
K(∞)(t0, q0, t1, q1) = 0,

where H(q, p) is the Hamiltonian of the system.

• K(∞) is a fixed point of the recursion relation (3.10), if one neglects the t1-integration.
Due to the symmetry (3.11) it is clear that the integral over t1 leads to a divergent result,
and this is exactly the volume of the orbit of the discrete gauge symmetry.

• Parametrizing the propagator by K(n) = η(n)e
i
~S

(n)
, i.e. an action and a measure factor,

the relation (3.10) leads to renormalization group equations for η(n) and S(n). One can
show that in each case at the fixed point S(∞) agrees with the perfect action for the
system, and η(∞) can be regarded as the perfect path integral measure, which contains
the quantum corrections to the perfect action, leading to the correct symmetries of K(∞)

reflected in (3.11).

• The quantum theory defined by K(∞) is discretization-independent, in the sense that it
does not depend on N , i.e. performing the same calculation for any other N leads back to
the same propagator K(∞).

7This system has also bee investigated in [55], where the monotonicity of the tn was enforced, i.e. it was only
integrated over t0 < · · · < tk < tk+1 < · · · < tN , which improves convergence properties. In [33] the integration
range for each tk was the whole real line however, since this resembles more closely what happens in e.g. the
Ponzano–Regge model [61, 62] where a similar restriction would be very difficult to implement.

8Note that due to the discretization, this system is not trivial, since the action is non-polynomial in the tn.
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It is not hard to see that the last property is a necessary result of the invariance under gauge
symmetries (3.11): Assume there is a propagator KN (ti, qi, tf , qf ), which for N = 1 time steps
satisfies an invariance property such as (3.11) for both (ti, qi) and (tf , qf ). Then the propagator
for N = 2 time steps is given by

K2(ti, qi, tf , qf ) =

∫
R
dq K1(ti, qi, t, q)K1(t, q, tf , qf ), (3.12)

where the integration over t has been dropped since it is effectively the integration over the
gauge orbit. By the property (3.11) for K1, the right hand side of (3.12) does not depend in t.
Therefore we can let it go to one boundary value, i.e. t → ti. But if the dynamics is to be
consistent, the propagator KN has to satisfy

KN (t, qi, t, qf ) = δ(qi − qf ),

which, together with (3.12), results in K1 ≡ K2. By induction one can easily show that the
propagators for any number N of time step KN is equal to K1. In this sense, KN is discretization-
independent, and one can always set N = 1.

3.5 Renormalization

The analysis of systems in which the discretization breaks the continuum diffeomorphism sym-
metry suggests that renormalization methods play a crucial role in any attempt of regaining
it. In particular, in the examples observed above, it is only at the RG fixed point where
diffeomorphism symmetry is restored in the discrete system, such that the correct number of
degrees of freedom is quantized.

This is different from the situation encountered in usual lattice gauge theories, and is due
to the fact that the way in which the gauge symmetry and the dynamics interact differently in
this case. In lattice gauge theories, one has discretized the system in a way that preserves the
gauge symmetries, and there is a good control over the gauge invariant observables (i.e. Wilson
loops). Real space renormalization is being carried out in order to find the UV completion of the
theory, i.e. incorporate all degrees of freedom by performing the continuum limit. The method of
perfect actions is also applied here, but is usually performed to minimize lattice artifacts, and in
order to restore the space-time symmetries which have been broken by the lattice, e.g. rotations.
Also, they are a tool in order to improve the convergence to the continuum limit when taking
the lattice spacing a→ 0 [56].

In the case of GR however, the gauge symmetry and the dynamics are intimately interwined.
Being on the gauge-invariant sector of the theory implies being on the solution space of GR as
well. Hence a discrete approximation will only have exact gauge symmetry if it contains all the
information of the continuum theory, and therefore sits at the RG fixed point.

This adds another point of view to the issue of renormalization in lattice theories to the case
of discrete gravity. On the one hand, the RG flow can just be seen as a method of investigating
the behavior of a theory described by a (fundamental) lattice model, on different scales. In
particular, one can ask under which circumstances the UV limit of the theory describes GR,
i.e. in which sense diffeomorphism symmetry emerges. In this case, one does not necessarily have
to demand diffeomorphism invariance of the discrete theory. As a result, the discrete theory
will contain information about more degrees of freedom than just pure GR. These pseudo-
degrees of freedom arise in the same way in which e.g. in electromagnetism breaking of the
gauge symmetries would result in the emergence of longitudinal photons. In this framework, the
main contribution of the path integral would come from triangulations with a large number of
vertices, which would render the expansion into vertex numbers problematic [54].
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From this point of view, the investigation of Spin Foam renormalization deals with the ques-
tion of how the pseudo degrees of freedom decouple in the thermodynamic limit9.

On the other hand, if one were to strictly demand the correct implementation of diffeo-
morphism symmetry at all scales, then one would have to demand the gauge symmetry to be
present on the discrete level (i.e. on a triangulation). One would then have to construct the
path integral measures with the correct symmetries, and the analysis of the last sections suggest
that renormalization techniques are a helpful tool to achieve this. Only in this case would the
corresponding canonical theory support the constraints satisfying the Dirac algebra, exactly
also for coarse triangulations. In particular, the theory would most likely be independent under
Pachner moves, as has been argued in [65, 66].

Both points of view are physically quite different, and the resulting theories for either case
would only agree for large triangulations. The investigation of both, however, require the use of
renormalization group techniques, albeit for different purposes.

To investigate these issues, a collection of toy models has been introduced in [67], where
the gauge groups within spin foam models are replaced by finite groups, making them more
accessible to numerical studies and avoiding many issues with divergencies. In [60] the coarse
graining methods described above have been applied to a class of so-called cut-off models based
on the Abelian group Zp. In order to deal with the non-local terms which are prevalent in
real space renormalization approaches, a Migdal–Kadanoff-type approximation scheme has been
employed [59]. Already in 3D one can see that it is a highly nontrivial issue whether the discrete
model flows to a fixed point at which diffeomorphism symmetry is realized. The behavior of
RG trajectories depends highly on the starting point, leading to a structured phase diagram
with several different fixed points.

4 Summary

In this article, we have reviewed various angles of the problems that arise in discretizing theories
with diffeomorphism symmetry, with (quantum) general relativity in mind.

On the one side, we have discussed in Section 2 how the constraint algebra can be deformed,
and how this can lead to all sorts of undesirable problems, such as Lagrange multipliers becoming
complex, and one essentially losing control over the quality of the approximation that the discrete
theory provides for the continuum theory. To remedy this problem, the uniform discretization
approach was presented, which can be seen as a concrete implementation of the master constraint
programme. Although the symmetries are not restored on the discrete level, one has good
control over the value of the constraints, which can be made arbitrarily small, and constant over
time. We have treated two examples, one with a good continuum limit, and another one with
a fundamental level of discreteness, in which the continuum theory is only approximated well
in some sense. It is widely believed that this should be a characteristic of a quantum theory of
gravity.

On the other side, in Section 3 we have demonstrated in which sense the diffeomorphism
symmetry is broken in the covariant setting, in particular in Regge Calculus. We have described
how one might hope to restore diffeo symmetry on the discrete level, by replacing the Regge
action with a so-called perfect action, which can be defined by an iterative coarse-graining
process. On the quantum side, this process resembles a Wilsonian renormalization group flow,
and it has been shown how, with this method, one can construct both the classical discrete
action, as well was the quantum mechanical propagator, with the correct implementation of

9Note that this is also connected to the question of whether in this limit the path integral is dominated by
states which resemble smooth manifolds. This is a long-standing question also in other approaches to discrete
gravity such as causal dynamical triangulations [63], and is also under intensive investigation in the GFT approach
to spin foams [64].
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diffeomorphism symmetry, in certain mechanical toy models, as well as for 3d GR. Whether
a similar construction works in 4d general relativity is still an open question, being related to
issues of locality and renormalizability, which are still largely open in this context.
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