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Abstract. New algebraic relations are presented, involving anticommuting Grassmann
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calculations; their essential new feature is that, although they can be treated as deformations
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1 Introduction

The main aim of this paper is to present some results of symbolic calculations, namely, new
algebraic relations with anticommuting Grassmann variables and Berezin integral, corresponding
naturally to Pachner moves in three and four dimensions. These results do not rely on any
finished theory; they were found starting from considerations related to some unusual chain
complexes introduced in our previous works, an then using just free search on a computer, some
heuristics like parameter counting, some hardly explainable tricks, and a hope that interesting
relations may exist. Our software included GAP [7], our own package PL [8], and Maxima [15].

The essential new feature of our algebraic relations is that, although they can be treated as
deformations of already known relations corresponding to torsions of acyclic complexes, they
can no longer be formulated and explained in such terms1.

As we have said, our calculations – computer experiments – belong to three- and, what
seems the most interesting, four-dimensional topology. As the four-dimensional case is more
complicated, we restrict ourself to presenting relations corresponding to Pachner moves 3 → 3
and 2 → 4 (the first of them proved in full on a computer, while the second is a conjecture
confirmed by numerical2 calculations), and a (conjectured) formula for a “partial” manifold
invariant – a Grassmann algebra element preserved by these moves, leaving for future work
both the construction of a “full” invariant and its calculations for specific manifolds. In contrast
with this, we define an actual invariant of a three-dimensional piecewise-linear manifold with
triangulated boundary, based on our relations, and present example calculations confirming its
nontriviality.

1Note also that in our previous works, the (simpler) relations corresponding to Pachner moves were derived
using direct calculations as well, using only some “partial” theoretical considerations.

2As opposed to symbolic.

mailto:paloff@ya.ru
http://dx.doi.org/10.3842/SIGMA.2011.117


2 I.G. Korepanov

Figure 1. Pachner move 2→ 3.

This introduction continues with a brief reminder of what Pachner moves and Grassmann
algebras are, in Subsections 1.1 and 1.2 respectively. Then, we explain the organization of the
(main part of the) paper in Subsection 1.3.

1.1 Pachner moves and algebraic relations

Pachner moves [16] (see also a very good educational text [12]) are elementary rebuildings of
a manifold triangulation. Their importance is due to the fact that any triangulation of a closed
piecewise-linear (PL) manifold can be transformed into any other triangulation by a sequence of
these moves, of which, moreover, there exists only a finite number in any manifold dimension.
Thus, if we have algebraic formulas whose structure corresponds, in some natural sense, to all
Pachner moves in a given dimension, then there is a big hope that we will be able – maybe with
the help of some additional tools – to build a manifold invariant based on such formulas. Also,
some experience shows that if there is a formula corresponding to just one Pachner move, then
it makes a strong sense to search for more formulas for other moves.

Some modifications are to be done if we consider manifolds with boundary. Pachner proves
that, in this case, any triangulation can be transformed into any other triangulation by a se-
quence of shellings and inverse shellings. Each of these operations affects the boundary and
changes its triangulation. If we want, however, to construct an invariant of a manifold with a
fixed boundary triangulation – and this is what we do in Section 4 of the present paper – we must
choose another way. Namely, we consider relative Pachner moves, that is, moves not changing
the boundary triangulation. The resulting invariant depends thus on the way the manifold is
glued to its boundary3.

1.1.1 Pachner moves in three dimensions

There are four Pachner moves in three dimensions: 2↔ 3 and 1↔ 4.

Pachner move 2→ 3 is an elementary rebuilding of a 3-manifold triangulation, which replaces
two adjacent tetrahedra (1234) and (1235) (where of course (1234) is the tetrahedron with
vertices 1, 2, 3 and 4, and so on) with three tetrahedra (1245), (1345) and (2345) occupying the
same place in the manifold, as in Fig. 1.

Pachner move 1 → 4 adds a new vertex 5 inside a tetrahedron (1234) and replaces it with
tetrahedra (1235), (1245), (1345) and (2345), see Fig. 2.

Two other moves are their inverses.

Remark 1. Strictly speaking, our triangulations are not exactly like in [12]: we allow using
different simplices having the same boundary components, see Fig. 4 below for a good example.

3Recall that, for instance, in three dimensions there are many ways to glue a filled pretzel to its boundary.
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Figure 2. Pachner move 1→ 4.

Such triangulations are sometimes called “noncombinatorial” – a not very appropriate term, be-
cause combinatorics is exactly what we widely use, in particular, in our computer package PL [8].
Nevertheless, all our operations can be quite easily translated into the language of [12], see, for
instance, again [5, Section 2].

1.1.2 Pachner moves in four dimensions

There are five Pachner moves in four dimensions: 3→ 3, 2↔ 4 and 1↔ 5.
In Section 3, we will be dealing with Pachner moves 3→ 3 and 2→ 4, their descriptions are

given there in Subsections 3.2.1 and 3.2.2 respectively.
In this paper, we do not present formulas for a move 1→ 5, leaving this for further work. We

would like only to explain here that this move consists in adding a new vertex 6 inside a given
four-simplex (12345) and joining this new vertex with the boundary of (12345). This leads to
the latter being divided into five tetrahedra (12346), (12356), (12456), (13456), and (23456).

1.2 Grassmann algebras and Berezin integral

A Grassmann algebra over a field F – for which we can take in this paper any field of characte-
ristic 6= 2 – is an associative algebra with unity, having generators ai and relations

aiaj = −ajai. (1)

As this implies for i = j that a2i = 0, any element of a Grassmann algebra is a polynomial of
degree ≤ 1 in each ai. For a given Grassmann monomial, by its degree we understand its total
degree in all Grassmann variables; if an element of Grassmann algebra includes only monomials
of odd degrees, it is called odd; if it includes only monomials of even degrees, it is called even.

The exponent is defined by the standard Taylor series. For example,

exp(a1a2) = 1 + a1a2.

If at least one of ϕ1 and ϕ2 is even, then

exp(ϕ1) exp(ϕ2) = exp(ϕ1 + ϕ2). (2)

The Berezin integral [2] is an F-linear operator in a Grassmann algebra defined by equalities

∫
dai = 0,

∫
ai dai = 1,

∫
ghdai = g

∫
hdai, (3)

if g does not depend on ai (that is, generator ai does not enter the expression for g); multiple
integral is understood as iterated one, according to the following model:∫∫

abdbda =

∫
a

(∫
bdb

)
da = 1. (4)
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The left derivative ∂/∂a w.r.t. a Grassmann generator a for a monomial f is defined as
follows: if f does not contain a, then ∂f/∂a = 0, otherwise bring a to the left using commutation
relations (1) and strike it out.

Remark 2. A curious feature of Grassmann–Berezin calculus is that the integral is the same
operation as the right derivative (defined in obvious analogy with the left one). Nevertheless,
using the two names for one operation makes sense because sometimes this is an analogue of
the usual “commutative” integral, and sometimes – of the derivative. Moreover, it may turn
out that this feature makes Grassmann–Berezin calculus a powerful tool in constructing unusual
algabraic structures.

1.3 Organization of the paper

A “theorem” in this paper is a statement proved either in a traditional way, or using a computer
and software for symbolic calculations. A “conjecture” is a statement whose correctness raises
practically no doubt but which has not been strictly proved. For instance, this can be a formula
whose validity has been checked for some arbitrarily chosen set(s) of values of indeterminates,
while checking it without assigning numerical values to indeterminates was beyond the avail-
able computational powers. Theorems and conjectures are numbered consecutively; “partial
verification” of a conjecture corresponds to the “proof” of a theorem.

Below:

• in Section 2, we present our Grassmann algebraic relations corresponding to Pachner moves
in three dimensions,

• in Section 3, we present similar relations corresponding to Pachner moves 3→ 3 and 2↔ 4
in four dimensions,

• in Section 4, we return to the three-dimensional case and consider an example of invariant
of three-manifolds with triangulated boundary, showing its nontriviality,

• in Section 5, we briefly discuss our results and further research.

2 Three dimensions: relations corresponding
to moves 2 ↔ 3 and 1 ↔ 4

2.1 Recalling the “undeformed” relations

2.1.1 The chain complex

The starting point for the invariants – field theory amplitudes – introduced in this paper, is
a particular – “scalar” – case of the theory exposed in paper [3]. Namely, we begin with the
following chain complex built for a triangulated orientable three-manifold M with boundary:

0 −→ CN ′
0

f2−→ CN2
f3−→ C2N3

f4−→ CN ′
0 −→ 0. (5)

Here N ′0 is the number of inner vertices in M , while N2 – the number of all 2-faces, and N3 –
the number of all tetrahedra.

We assume that all vertices in M are numbered from 1 to their total number N0, and we
ascribe “coordinates” ζ1, . . . , ζN0 to them. These are arbitrary complex numbers with the only
condition

ζi 6= ζj for i 6= j. (6)
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We will also use notation

ζij
def
= ζi − ζj . (7)

Remark 3. The numbers k of mappings fk in (5) begin from 2 and not 1 in order to make
them consistent with similar complexes that include two more mappings: f1 on the left and f5
on the right, see, e.g., [4, formula (5)]. In this paper, however, we do not use complexes longer
than (5).

Both spaces CN ′
0 in (5) consist, by definition, of column vectors whose components, denoted ui

for the left-hand space and vi for the right-hand space, are in one-to-one correspondence with
inner vertices i. More formally, each of these spaces is a space over C with inner vertices as its
basis.

Spaces CN2 and C2N3 are a bit more complicated. To explain them, we begin with two
auxiliary spaces: W2 whose basis is formed of all pairs (s, i), where s is a 2-face and i ∈ s – its
vertex, and W3 whose basis is formed of all pairs (r, i), where r is a tetrahedron and i ∈ r –
its vertex. Thus, dimW2 = 3N2 and dimW3 = 4N3. We use notations like xs,i or yr,i for
coordinates of a vector x ∈W2 or y ∈W3.

Then we introduce space V2 ⊂W2 consisting of vectors whose coordinates obey

xs,i + xs,j + xs,k = 0,

ζixs,i + ζjxs,j + ζkxs,k = 0
(8)

for every 2-face s with vertices i, j and k, and similarly space V3 ⊂ W3 consisting of vectors
whose coordinates obey

yr,i + yr,j + yr,k + yr,` = 0,

ζiyr,i + ζjyr,j + ζkyr,k + ζ`yr,` = 0
(9)

for every tetrahedron r with vertices i, j, k and `.

Thus, a vector x ∈ V2 is determined by specifying just one its coordinate in each 2-face s,
and assuming that i < j < k, we will take coordinate xs,i for that. The space CN2 consists, by
definition, of column vectors whose coordinates are these xs,i for all s.

Similarly, a vector y ∈ V3 is determined by specifying just two of its coordinates in each
tetrahedron r, and assuming that i < j < k < `, we will take yr,i and yr,j for that. The
space C2N3 consists, by definition, of column vectors whose coordinates are these yr,i and yr,j
for all r.

Linear mapping f2 makes, by definition, the following xs,i from given ui:

f2 : xs,i =
(
ζ−1ij − ζ

−1
ik

)
ui − ζ−1ij uj + ζ−1ik uk, (10)

where 2-face s has vertices i < j < k.

Linear mapping f3 makes, by definition, the following yr,i from given xs,i:

f3 :

{
yr,i = x(ijk),i − x(ij`),i + x(ik`),i,

yr,j = x(ijk),j − x(ij`),j − x(jk`),j ,
(11)

where tetrahedron r has vertices i < j < k < `, and by (ijk) and so on we denote the 2-faces
of r containing the indicated vertices.

Convention 1. In general, when we write an n-simplex in this paper as (i0 . . . in), the (numbers
of) its vertices are ordered so that i0 < · · · < in, if other ordering is not indicated explicitly.
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To define linear mapping f4, we must fix an orientation of M , i.e., a consistent orientation
of all its tetrahedra. This results in ascribing a sign

εr = ±1 (12)

to each tetrahedron r with vertices i < j < k < ` in the following way: εr = 1 if the orientation
of r determined by the order i, j, k, ` of vertices coincides with the mentioned consistent
orientation, and εr = −1 otherwise. Mapping f4 makes, by definition, the following vi from
given yr,i:

f4 : vi =
∑
r3i

εryr,i, (13)

the sum goes, of course, over all tetrahedra containing vertex i.

Theorem 1. The chain (5) of vector spaces and linear mappings defined as above is indeed
a chain complex, i.e.,

f4 ◦ f3 = 0, f3 ◦ f2 = 0.

Proof. Theorem 1 can be proved by direct calculations. For a conceptual explanation of the
origin of (5), see [3, Subsection 3.2]. �

2.1.2 Invariants from Reidemeister torsions

We want to calculate some Reidemeister torsions for chain complex (5). The complex (5) as it
is will, however, never be acyclic for a manifold with non-empty boundary. This is because its
algebraic Euler characteristic is −N2 + 2N3 6= 0. To be more exact, in the case of non-empty
boundary N2 > 2N3 > N ′2, where N ′2 is the number of inner 2-faces.

Actually, this allows us to introduce not one but many torsions. First, we take an ordered
subset C of boundary faces of cardinality #C = 2N3 −N ′2. Second, we consider, instead of CN2 ,
its subspace (V2)C consisting of those vectors whose coordinates corresponding to boundary faces
outside C are zero. We assume also that the coordinates corresponding to inner edges go first
and are ordered in the same fixed way for all C, and then go the coordinates belonging to C and
ordered also as C. Third, we define a new complex – a subcomplex of (5) – by replacing CN2

with (V2)C and restricting naturally linear mappings f2 and f3 – just taking their submatrices
corresponding to (V2)C .

It can be checked that Theorem 1 remains valid for this new chain complex corresponding to
the set C, and we define its Reidemeister torsion4 in a standard way as

τC =
(minor f3)C

minor f2 minor f4
, (14)

where the minors are chosen according to the rules for a matrix τ -chain, see [17, Subsection 2.1].
Moreover, we can take the the same minors of both f2 and f4 for all C, and this is reflected
in (14) by writing the subscript C only at (minor f3).

Remark 4. Of course, for some C’s, both (minor f3)C and τC will vanish, or, speaking more
strictly, there will be no τ -chain.

4This construction can be also interpreted in terms of torsions for chain complexes with nonvanishing ho-
mologies, see [17, Subsection 3.1]. We leave this as an exercise for the reader, just mentioning that a subset C
determines a basis in the homology space corresponding to the middle term of the complex conjugate to (5), i.e.,
with arrows reversed and matrices f2, f3, f4 transposed.
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Now we introduce the following quantities, where the letter I stays for “invariant”, and the
superscript (0) is to emphasize that these are our “old” invariants, to be deformed soon:

I
(0)
C =

∏
inner

2-faces s

ζs2s3

∏
inner

edges `

ζ`1`2
∏
all

tetrahedra r

ζr3r4
· τC , (15)

where we use the following notations:

• `1 and `2 are the vertices of an inner edge ` taken in the increasing order: `1 < `2,

• similarly, s1 < s2 < s3 are the vertices of an inner 2-face s, and

• r1 < r2 < r3 < r4 – the vertices of a tetrahedron r.

Theorem 2. The values (15) for all C form a multicomponent invariant of manifold M with
a fixed boundary triangulation, defined up to an overall (the same for all C) sign.

Proof. To prove that I
(0)
C , for a given C, is a manifold invariant, it is enough to prove its

invariance under:

(i) a change of order of inner vertices,

(ii) a Pachner move 2↔ 3,

(iii) a Pachner move 1↔ 4.

For items (ii) and (iii), we refer the reader to [3, Theorem 4], where this is proved in a more
general situation5.

To prove (i)6, we note that a change of vertex order implies the corresponding change of bases
in spaces V2 and V3. To see the change of Reidemeister torsion, we must calculate determinants
of transition matrices between bases in V2 and V3, or their inverses – ratios between exterior
products of all new and all old coordinates in the corresponding space:∧

(xs,i)new∧
(xs,i)old

and

∧
(yr,i)new∧
(yr,i)old

.

As one can deduce from (8) and (9) such relations as, for instance,

xs,j
xs,i

= − ζik
ζjk

and
yr,k ∧ yr,`
yr,i ∧ yr,j

=
ζij
ζk`

,

it is not hard to check that the invariance of (15) really holds.

As for the sign of each I
(0)
C , it is not determined uniquely because of arbitrariness of ordering

basis vectors in our vector spaces. It can be easily seen, however, that any change in such

ordering makes the same effect on the sign of every I
(0)
C : the only basis vectors that differ in

two complexes corresponding to two C’s belong to these C’s, and their order is fixed because
the C’s are ordered. Also, any possible sign ambiguities in the above transformations (i), (ii)

and (iii) affect the signs of all I
(0)
C in the same way. This proves that all I

(0)
C are determined up

to one overall sign. �

5In the formulation of [3, Theorem 4], the boundary ∂M is assumed to be one-component. This, however,
is not used in the proof. The point is that, actually, (19) vanishes for multicomponent ∂M . In this paper we,
nevertheless, do not put away the multicomponent case, because our aim is to introduce a deformation of (19)
which may behave differently.

6It must be admitted that the (more general) analogue of (i) should have been proven also already in [3].



8 I.G. Korepanov

2.1.3 Invariants made from Reidemeister torsions in terms of Grassmann algebra

We put in correspondence to each unoriented 2-face s in the triangulation a Grassmann genera-

tor as, and to each unoriented7 tetrahedron r two Grassmann generators b
(1)
r and b

(2)
r .

We denote a the column vector made of all aj , and b the column vector made of all b
(1)
r

and b
(2)
r .

Definition 1. For a tetrahedron r, we introduce its Grassmann weight as follows:

Wr = exp Φr, (16)

where

Φr =
(
b
(1)
r b

(2)
r

)( 1 −1 1 0
−ζ−1r2r3ζr1r3 ζ−1r2r4ζr1r4 0 −1

)
a(r1r2r3)
a(r1r2r4)
a(r1r3r4)
a(r2r3r4)

 . (17)

In (17), r1, r2, r3, r4 are the vertices of r in the increasing order; (r1r2r3) and the like are
the faces of r having corresponding vertices. The 2 × 4 matrix in the r.h.s. is a block of which
matrix f3 is built, in accordance with (11), (8) and (9).

Definition 2. For every inner vertex i, we introduce the following vertex-face differential oper-
ator in our Grassmann algebra:

dai =
∑

2-faces s3i
das,i,

where

das,i =


(1/ζs1s2 − 1/ζs1s3)∂/∂as if i = s1,

(−1/ζs1s2)∂/∂as if i = s2,

(1/ζs1s3)∂/∂as if i = s3;

s1, s2, s3 are the vertices of s in the increasing order. The coefficients at ∂/∂as are matrix
elements of matrix f2, in accordance with (10).

Definition 3. Also, we introduce one more operator for every inner vertex i, the vertex-
tetrahedron differential operator :

dbi =
∑

tetrahedra r3i
dbr,i,

where

dbr,i =


εr ∂/∂b

(1)
r if i = r1,

εr ∂/∂b
(2)
r if i = r2,

εr
(
−(ζr1r4/ζr3r4)∂/∂b

(1)
r − (ζr2r4/ζr3r4)∂/∂b

(2)
r

)
if i = r3,

εr
(
ζr1r3/ζr3r4∂/∂b

(1)
r + ζr2r3/ζr3r4∂/∂b

(2)
r

)
if i = r4;

r1, r2, r3, r4 are the vertices of r in the increasing order. The coefficients at ∂/∂b
(1)
r and ∂/∂b

(2)
r

are matrix elements of matrix f4, in accordance with (13) and (9).

7The orientations of tetrahedra are actually important for us, but we will take them into account in another
way, see Definition 3.
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Convention 2. Let h be a homogeneous element of Grassmann algebra of degree m, and d
a homogeneous Grassmann differential operator of degree n. Then d−1h means any homogeneous
element f of Grassmann algebra (of degree (m+ n), of course) such that df = h.

Theorem 3. The following function of Grassmann variables as living on boundary 2-faces:

T =

∫
· · ·
∫ ∏

all
tetrahedra r

Wr ·

( ∏
inner

vertices i

dai

)−1
1 ·

( ∏
inner

vertices i

dbi

)−1
1 · db dainner (18)

is the generating function for torsions τC, see (14), in the sense that

T =
∑
C
τC
∏
s∈C

as.

In (18), dainner and db stay for the products

dainner =
∏
inner

2-faces s

das, db =
∏
all

tetrahedra r

db(1)r db(2)r ,

and the expressions (differential operator)−11 are defined according to Convention 2.

Proof. It is always possible to choose both

( ∏
inner

vertices i

dai

)−1
1 and

( ∏
inner

vertices i

dbi

)−1
1 as Grass-

mann monomials – products of some Grassmann generators and a numeric factor. Then it can
be seen that the numeric factor is exactly (minor f2)

−1 or (minor f4)
−1 respectively (compare

formula (14)), where the rows in minor f2 or the columns in minor f4 correspond to the men-

tioned Grassmann generators. Then it is not hard to deduce that the factor at
∏
s∈C

as in T

is nothing but τC , and in passing we see that it does not depend on the choice of monomials.
Nor will it change, of course, if we take a linear combination of monomials satisfying the same
Grassmann differential equation

(differential operator)f = 1. �

Definition 4. We call the following function of Grassmann variables as corresponding to

boundary 2-faces s generating function of invariants I
(0)
C :

F =
∑
C
I
(0)
C

∏
s∈C

as. (19)

It follows from Theorem 3 and formula (15) that

F =

∏
inner

2-faces s

ζs2s3

∏
inner

edges `

ζ`1`2
∏
all

tetrahedra r

ζr3r4
·T. (20)
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2.1.4 Opening the way to generalizations:
Grassmann algebra relations corresponding to Pachner moves

Writing the multicomponent invariants F (20) for the l.h.s. and r.h.s. of the Pachner move 2→ 3,
see Fig. 1, we come to the following relation in Grassmann algebra:

ζ23
ζ34ζ35

∫
W1234W1235 da123 = − 1

ζ45

∫∫∫
W1245W1345W2345 da145 da245 da345, (21)

where we define

Wr =

∫∫
Wr db(1)r db(2)r , (22)

and where we have also, of course, checked the sign separately. We also write W1234, a123 and
so on instead of more pedantic W(1234) and a(123).

The Grassmann function Wr can be treated as the invariant F for just one tetrahedron r.

It is quite clear that Grassmann algebra relations like (21) can be taken themselves as a start-
ing point for building manifold invariants and a topological quantum field theory, and there is,
in principle, no need for the components of Wr to be related to torsions of any chain complex.
This is the idea that we are going to explore.

2.2 The deformed relations

Our search for new Grassmann algebra relations associated with Pachner moves started with
“deformations” of the weight Wr: what terms (if any) can be added to Wr so that relation (21)
stays valid? Of course we have not yet found all possible deformations; the miracle is, however,
that such deformations do exist, as shown by the results of our search, presented below.

2.2.1 Deformation of degree 0

We introduce the following deformation of the weight Wr for a tetrahedron r = (r1r2r3r4)
belonging to an oriented triangulated PL manifold M with boundary:

W̃r
def
= Wr + εrζr3r4αr, (23)

where εr is the tetrahedron orientation (see formula (12) and explanation after it), and αr is some
even element in the Grassmann algebra, depending on the tetrahedron r. Thus, αr commutes
with any other element, for instance, αr may be a scalar ∈ F, and this possibility looks (at this
moment) the most natural. So, assuming αr ∈ F, the term εrζr3r4αr in (23) has the degree 0,
and we call W̃r deformation of degree 0 of Wr.

Remark 5. Both factors εr and ζr3r4 are introduced in formula (23) because such definition
of αr clarifies formulas below, like (24)–(27).

The direct substitution of W̃r, given by the ansatz (23), in place ofWr in (21), using GAP [7]
and our package PL [8] and assisted also by maxima [15], gives the following result: (21) holds
for W̃r, provided the α’s in the r.h.s. of Pachner moves are expressed through the α’s in the
l.h.s. as follows:

ζ35α1235 − ζ34α1234 = ζ45α1245,

ζ25α1235 − ζ24α1234 = ζ45α1345,

ζ15α1235 − ζ14α1234 = ζ45α2345.

(24)
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Note that we have written the α’s corresponding to the r.h.s. of Pachner move also in the r.h.s.
of (24), and we of course assume the same orientations for both sides of the move.

Equations (24) can be written in the following elegant form. First, it will be convenient for
us to write αr also as α{ijkl}, where i, j, k and l are the vertices of r taken in an arbitrary
order (recall that, according to Convention 1, we usually assume i < j < k < l when we
write r = (ijkl)). Now, choose an oriented edge (kl); given also a consistent orientation of all
tetrahedra, the link of (kl) can be considered as made of oriented edges (ij).

In an oriented edge (ij), the order of vertices i and j determines its orientation, so this is an
exception where Convention 1 does not work!

Definition 5. We say that a consistent system of α’s is given for a Pachner move 2 ↔ 3 or
1↔ 4, if ∑

(ij) in the
oriented link of (kl)

in the l.h.s.

ζij α{ijkl} =
∑

(ij) in the
oriented link of (kl)

in the r.h.s.

ζij α{ijkl} . (25)

If (kl) is present in only one of the sides of Pachner move, then of course the sum in the
corresponding side of (25) is zero. We also say that a consistent system of α’s is given for any
triangulated oriented manifold M with boundary, if∑

(ij) in the
oriented link of (kl)

ζij α{ijkl} = 0 (26)

for any inner (non-boundary) edge (kl) ⊂M .

The three equations (24) have already the form (25) for edges 12, 13 and 23 respectively;
other relations follow from these, like

0 = ζ12α1245 − ζ13α1345 + ζ23α2345 (27)

for edge 45.

Definition 6. Let a consistent system of α’s be given for a Pachner move 2↔ 3 or 1↔ 4, then
for a tetrahedron r = (r1r2r3r4), taking part in the move, we introduce its deformed Grassmann
weight

W̃r = exp
(
Φr + εrζr3r4αrb

(2)
r b(1)r

)
. (28)

Here Φr is the same as before, see formula (17).

Obviously, the analogue of (22) holds:

W̃r =

∫∫
W̃r db(1)r db(2)r . (29)

Remark 6. The weight W̃r introduced in formula (28) coincides, essentially, with the second
solution of pentagon equation in [10], with the constant multiplier µ omitted and in a different
gauge. See [3, Subsection 5.3], where the transition from one gauge to the other is described for
the case of “undeformed” weights – and this transition stays the same in the “deformed” case.
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Theorem 4. The weights defined according to (28) and (29) satisfy the following 2→ 3 relation:

ζ23
ζ34ζ35

∫
W̃1234W̃1235 da123 = − 1

ζ45

∫∫∫
W̃1245W̃1345W̃2345 da145 da245 da345, (30)

if the α’s form a consistent system for this move.

Moreover, the weights defined according to the same formulas, together with the operators dai
and dbi given in Definitions 2 and 3, satisfy the following 1→ 4 relation:

1

ζ34
W̃1234 = − 1

ζ15ζ45

∫
· · ·
∫
W̃1235W̃1245W̃1345W̃2345 · (da5)−11 · (db5 )−11

× db
(1)
1235 db

(2)
1235 db

(1)
1245 db

(2)
1245 db

(1)
1345 db

(2)
1345 db

(1)
2345 db

(2)
2345

× da125 da135 da145 da235 da245 da345, (31)

if the α’s form a consistent system for this move.

Proof. We have already explained the formula (30). Similarly, formula (31) has been checked
on a computer using our package PL [8]. �

Definition 7. We denote (da5)−11 = u5 and (db5 )−11 = w5 and call them vertex weights for
vertex 5; similarly below ui and wi for any vertex i. Each of them can be chosen as a monomial
of degree one: ui containing Grassmann generator as for some 2-face s 3 i, and wi containing

b
(1 or 2)
r for some tetrahedron r 3 i. If, additionally, r ⊃ s, we refer to both ui and wi as

corresponding to tetrahedron r.

2.2.2 Deformation of degree 4

It turns out that there exists also another deformation W̃r of our weight Wr, where, instead of
the term of degree 0, a term of degree 4 is added to Wr:

W̃r
def
= Wr + εrζr3r4cr1r2r3r4ar1r2r3ar1r2r4ar1r3r4ar2r3r4 , (32)

where

cr1r2r3r4 =
∏

1≤i<j≤4
ζrirj ,

and εr = ±1 is the same as in Subsection 2.2.1. For instance, in the following Theorem 5,
ε(1234) = ε(1345) = 1 and ε(1235) = ε(1245) = ε(2345) = −1.

The detailed study of the weight (32) is still in progress; here we just report about the result
which we formulate as the following theorem.

Theorem 5. Tetrahedron Grassmann weights W̃r defined according to (32) satisfy the same
2↔ 3 relation (30).

Proof. Direct calculation. �

Remark 7. The weight (32) appeared first in formula (11) of preprint [10], but in a different
gauge, see again Remark 6.
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3 Four dimensions: deformed relations 3 → 3 and 2 ↔ 4

3.1 Recalling the undeformed relations

3.1.1 The chain complex

In four dimensions, the starting point for introducing the “undeformed” 4-simplex weight is
again an exotic chain complex – a four-dimensional analogue of complex (5). We write out here
its simplified – short – version, suited for studying Pachner moves 3→ 3 and 2↔ 4. This will
be enough for explaining then the current results of our symbolic calculations; a longer version
of the complex will be presented in a separate paper [11].

We consider a triangulated orientable four-manifoldM with boundary and with the additional
requirement that the triangulation has no inner vertices. Our short chain complex for such
a manifold8 is:

0 −→ CN ′
2

f3−→ C2N3
f4−→ C3N4 −→ 0. (33)

Here N ′2 is the number of inner 2-faces, while N3 and N4 are the numbers of all 3-faces and
4-simplices in M , respectively.

As before, all triangulation vertices have numbers i from 1 to N0 and complex “coordinates” ζi
with the condition (6), and we again use notation (7) for their differences.

Remark 8. Again, like in the three-dimensional case, the numbering of mappings in (33) begins
from f3 because notations f1 and f2 (and actually f5 and f6) are reserved for longer complexes.

The spaces in (33) are much like those in (5). Again, we begin with auxiliary spaces: W2

whose basis is formed of all pairs (s, i), where s is now an inner 2-face and i ∈ s – its vertex,
W3 whose basis is formed of all pairs (r, i), where r is a 3-face and i ∈ r – its vertex, and W4

whose basis is formed of all pairs (u, i), where u is a 4-simplex and i ∈ u – its vertex. Thus,
dimW2 = 3N ′2, dimW3 = 4N3, and dimW4 = 5N4. We use notations xs,i, yr,i or zu,i for
coordinates of a vector x ∈W2, y ∈W3 or z ∈W4 respectively.

Then we introduce spaces V2 ⊂ W2 and V3 ⊂ W3 consisting of vectors whose coordinates
obey the same relations (8) and (9) as in the three-dimensional case, and the space V4 ⊂ W4

consisting of vectors z whose coordinates also obey similar relations:

zu,i + zu,j + zu,k + zu,` + zu,m = 0,

ζizu,i + ζjzu,j + ζkzu,k + ζ`zu,` + ζmzu,m = 0

for every 4-simplex u with vertices i, j, k, ` and m.
In the same way as in the three-dimensional case, we take for a vector x ∈ V2 one coordinate in

each (inner) 2-face s, namely coordinate corresponding to the vertex with the smallest number,
to identify V2 with CN ′

2 , and similarly identify V3 with C2N3 and V4 with C3N4 , taking two
coordinates in each 3-face or three coordinates in each 4-simplex, respectively.

Linear mapping f3 is defined by the old formulas (11), and linear mapping f4 is also defined
in a similar way. Namely, it makes the following zu,i from given yr,i:

f4 :


zu,i = y(ijk`),i − y(ijkm),i + y(ij`m),i − y(ik`m),i ,

zu,j = y(ijk`),j − y(ijkm),j + y(ij`m),j + y(jk`m),j ,

zu,k = y(ijk`),k − y(ijkm),k − y(ik`m),k + y(jk`m),k ,

where 4-simplex u has vertices i < j < k < ` < m, and by (ijk`) and so on we denote the 3-faces
of u containing the indicated vertices.

8Of course, complex (33) can be written out also for a triangulation having inner vertices, but in such case (33)
is not enough to obtain nonzero torsions.
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Theorem 6. The chain (33) of vector spaces and linear mappings defined as above is indeed
a chain complex, i.e.,

f4 ◦ f3 = 0.

Proof. Direct calculation. �

3.1.2 Changing the gauge

Before constructing a Grassmann weight out of matrix f4, we see it convenient to make a “gauge
transformation” for this matrix. Namely, we multiply each column corresponding to each 3-
face ijk` by ζk` (matrix f4 has, of course, two columns for each 3-face). We denote the resulting
matrix f̃4.

Accordingly, we divide each row of matrix f3 by ζk`, if it corresponds to a 3-face ijk`.
Additionally, we multiply each column of f3 by ζjk if it corresponds to an inner 2-face ijk. The
obtained matrix is denoted f̃3. Obviously, the chain complex condition f̃4f̃3 = 0 still holds.

Below, Definitions 8 and 9 show how to construct Grassmann weights in order to interpret
the torsions of complex (33) (in the new gauge) in terms of Grassmann algebra. Namely, in
formula (34) for a 4-simplex weight, the three expressions in parentheses have matrix elements
of the three rows of f̃4 as coefficients at Grassmann variables (while multiplier 1/ζ45 is just for
elegance, see Remark 9), and in formulas (35), the coefficients at partial derivatives are matrix
elements of f̃3.

3.1.3 The formulas for weights

We present now the undeformed 4-simplex weight, and the differential operators corresponding
to 2-faces, in the gauge described above9. Instead of writing out the Grassmann weight Wijklm

for a general 4-simplex (ijklm), we write out just W12345 for readability; Wijklm is obtained by
the obvious substitution 1 7→ i, . . . , 5 7→ m.

Definition 8. The undeformed Grassmann weight corresponding to 4-simplex (12345) is the fol-
lowing function of Grassmann variables ai1i2i3i4 and bi1i2i3i4 attached to each tetrahedron (i1i2i3i4) –
a 3-face of (12345):

W12345
def
=

1

ζ45
(ζ34a1234 − ζ35a1235 + ζ45a1245 − ζ45a1345)

× (ζ34b1234 − ζ35b1235 + ζ45b1245 + ζ45a2345)

× (−ζ14a1234 − ζ24b1234 + ζ15a1235 + ζ25b1235 − ζ45b1345 + ζ45b2345). (34)

Remark 9. The factor 1/ζ45 in (34) cancels out in all monomials obtained after expanding (34).
So the weight (34) is bilinear in ζ’s and, moreover, the coefficient at each product of a’s and/or
b’s has the form ζijζkl, where the subscripts may coincide. The total number of such terms
(monomials with nonzero coefficients ζijζkl) in the expansion of (34) is 72, see [9, Appendix].

Definition 9. For a 2-face s = (ijk), we introduce the differential operator dijk as

dijk =
∑

tetrahedra t⊃s
dt,s,

where dt,s are the following operators, which we again prefer to write out putting numbers
rather than letters in subscripts: we take tetrahedron t = (1234) and its four faces, having in

9They have been already written in such form in preprint [9]; we only change the letter W to W, because our
weight (34) is an analogue of (22) rather than (16). The situation with gauges in four dimensions is largely the
same as in three dimensions, compare Remark 6.
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mind that, for an arbitrary tetrahedron (ijkl) (remember that i < j < k < l), the substitution
1 7→ i, . . . , 4 7→ l must be done. So, the operators are:

d(1234),s =


(ζ23/ζ34) ∂/∂a1234 − (ζ13/ζ34) ∂/∂b1234 if s = (123),

−(ζ24/ζ34) ∂/∂a1234 + (ζ14/ζ34) ∂/∂b1234 if s = (124),

∂/∂a1234 if s = (134),

−∂/∂b1234 if s = (234).

(35)

3.2 The deformed four-simplex weight and the relations 3 → 3 and 2 ↔ 4

Our deformed four-simplex Grassmann weight – an analogue of (23) – is introduced as follows.
First, we need a “constant” (not depending on any simplices) odd element of Grassmann algebra,
we denote it e. Then, we need an even element α{ijklm} for every four-simplex (ijklm), satis-
fying an analogue of relation (25), namely relation (37) below. The curly brackets around the
subscripts of α mean the following: in order to write (37) in a simple way, it will be convenient
for us to assume that the α’s depend on an unordered quintuple {i, j, k, l,m} = {j, i, k, l,m} =
· · · = {m, l, k, j, i}, that is, an α does not change under a permutation of its indices.

Let there be a 2-face (klm) in the l.h.s. or/and r.h.s. of a Pachner move. Then, given
a consistent orientation (the same in both sides) of all 4-simplices, the link(s) of (klm) can be
considered as made of oriented edges (ij). Recall that oriented edges form an exception from
Convention 1!

Definition 10. The deformed 4-simplex weight, entering in a 3→ 3 or 2↔ 4 Pachner move, is

W̃ijklm =Wijklm + α{ijklm}e, (36)

where the α’s are even elements of the Grassmann algebra satisfying the following relations for
all 2-faces (klm)∑

(ij) in the
oriented link of klm

in the l.h.s.

ζij α{ijklm} =
∑

(ij) in the
oriented link of klm

in the r.h.s.

ζij α{ijklm} . (37)

If (klm) is present in only one of the sides of Pachner move, then of course the sum in the
corresponding side of (37) iz zero.

Remark 10. Our formula (36) reveals some difference from its three-dimensional analogue (23).
While the analogue of the factor ζr3r4 is absent from (36) simply because of a different gauge,
the role of εr is played in (36) by an object of apparently different nature – odd Grassmann ele-
ment e. And the experimental fact that formulas (38) and (40) below hold for our weight W̃ijklm

definitely deserves further research.

3.2.1 Move 3 → 3

Here is the description of the move 3 → 3: the cluster of three 4-simplices (12345), (12346)
and (12356), of which we think as being in the “l.h.s.”, is replaced by the cluster of simplices
(12456), (13456) and (23456) in the “r.h.s.”. The boundary of either side consists of tetrahedra
(1245), (1246), (1256), (1345), (1346), (1356), (2345), (2346), and (2356). The inner tetrahedra
are, however, different: (1234), (1235) and (1236) in the l.h.s., and (1456), (2456) and (3456)
in the r.h.s. Also, there is one inner 2-face (123) in the l.h.s., and one inner 2-face (456) in the
r.h.s.
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Theorem 7. The following identity, corresponding naturally to the 3→ 3 Pachner move, holds:∫
W̃12345W̃12346W̃12356w123

da1234 db1234
ζ34

da1235 db1235
ζ35

da1236 db1236
ζ36

=

∫
W̃12456W̃13456W̃23456w456

da1456 db1456
ζ56

da2456 db2456
ζ56

da3456 db3456
ζ56

, (38)

where

w123 = d−11231, w456 = d−14561

(for instance, w123 = ζ−123 ζ34a1234 and w456 = −b1456, recall Convention 2).

Proof. It can be checked that both sides of (38) cannot contain the α’s in the (total) degree more
than one. The “constant” terms – not containing the α’s – form themselves the “undeformed”
equation of preprint [9], which can be, and has been, verified separately on a computer. Then,
it is not hard to see that, in order to prove the equality between the terms linear in α’s, it is
enough to do so for just two following sets of α’s:

α{12345} = α{12346} = α{12356} = α{12456} = α{13456} = α{23456} = 1,

and

α{12345} = ζ6, α{12346} = ζ5, α{12356} = ζ4,

α{12456} = ζ3, α{13456} = ζ2, α{23456} = ζ1.

This has also been done on a computer, using GAP [7] and our PL package [8]. �

3.2.2 Move 2 → 4

Next, we consider the following 2→ 4 move: the cluster of two 4-simplices (12345) and (12346) is
replaced by the cluster of four 4-simplices (12356), (12456), (13456) and (23456). The bounda-
ry of both sides consists of tetrahedra (1235), (1236), (1245), (1246), (1345), (1346), (2345)
and (2346).

In the l.h.s., there is one inner tetrahedron (1234) and no inner 2-faces.

In the r.h.s., there are six inner tetrahedra (1256), (1356), (1456), (2356), (2456) and (3456),
and four inner 2-faces (156), (256), (356) and (456). The d-operators for these 2-faces are,
according to (35), as follows:

d156 =
∂

∂a1256
+

∂

∂a1356
+

∂

∂a1456
, d256 = − ∂

∂b1256
+

∂

∂a2356
+

∂

∂a2456
,

d356 = − ∂

∂b1356
− ∂

∂b2356
+

∂

∂a3456
, d456 = − ∂

∂b1456
− ∂

∂b2456
− ∂

∂b3456
. (39)

So, one can check10 that, for instance,

a1256b1256a3456b3456

is suitable as w156,256,356,456 in formula (40) below.

10Recalling again Convention 2.
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Conjecture 8. The following identity, corresponding naturally to the 2→ 4 move, holds:∫
W̃12345W̃12346

da1234 db1234
ζ34

= −ζ56
∫
W̃12356W̃12456W̃13456W̃23456w156,256,356,456 (40)

× da1256 db1256
ζ56

da1356 db1356
ζ56

da1456 db1456
ζ56

da2356 db2356
ζ56

da2456 db2456
ζ56

da3456 db3456
ζ56

.

Here, like in Theorem 7, the weights W̃ in (40) are taken for the 4-simplices which are
respectively in the l.h.s. and r.h.s.; the weight w is taken for the inner 2-faces; and the integration
is performed in a and b corresponding to the inner tetrahedra.

Partial verif ication. First, like in Theorem 7, both sides of (40) contain only terms of degree ≤
1 in all α’s, and the “constant” parts form themselves the “undeformed” equation of [9] that has
been verified directly and fully. Second, the equality between the parts linear in α’s have been
checked not in full, but for some arbitrarily chosen values of ζ’s (assuming that we are working
in the field F = Q of rational numbers), such as

ζ1 = 0, ζ2 = 1, ζ3 = 3, ζ4 = 8, ζ5 = 17, ζ6 = 21. �

Remark 11. The factor (−ζ56) before the integral in the r.h.s. of (40) is naturally interpreted
as corresponding to the inner edge 56 in the cluster of four 4-simplices. There are of course no
inner edges in any cluster of two or three 4-simplices considered in this paper.

Remark 12. Is both formulas (38) and (40), specific orderings/numberings of vertices 1, . . . , 6
were involved. For other orderings, similar formulas still hold, but we do not discuss it in this
paper, where our modest aim is just to show the existence of such relations. Note that in
a simpler three-dimensional situation, necessary arguments about (change of) vertex ordering
are given in the proof of Theorem 10.

3.3 Conjectured invariant of moves 3 → 3 and 2 ↔ 4

Formulas (38) and (40) lead to a conjectured invariant of moves 3 → 3 and 2 ↔ 4. We would
like to formulate this as the following Conjecture 9, even if this conjecture looks somewhat pre-
liminary at this stage of research, mainly because the question of choosing interesting consistent
systems of α’s remains open. Note, however, that one possibility to satisfy equations (37) is to
take all α’s simply equal to 1!

Conjecture 9. The following expression, written for an arbitrary triangulated 4-manifold with
boundary, remains invariant under moves 3→ 3 and 2↔ 4:

±
∏

over inner
edges ij

∫ ∏
over all

4-simplices ijklm

W̃ijklm · w ·
∏

over inner
tetrahedra ijkl

daijkl dbijkl

ζkl
, (41)

where

w =

( ∏
over inner
2-faces ijk

dijk

)−1
1. (42)

The sign ± in (41) corresponds to the fact that we did not specify the exact order in the
products; most likely, there exists some elegant formula relating this order and this sign.
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4 Again three dimensions: definition of a deformed invariant
and nontriviality check

4.1 Some combinatorics before introducing the deformed invariant

Definition 11. Let there be a finite set X and its cover {Si, i = 1, . . . , N} consisting of its
subsets Si ⊂ X. Let there be also given an injection f choosing an element in each of the
covering sets:

f : Si 7→ ri ∈ Si, ri 6= rj if i 6= j.

We call the mapping f orderly if the following relation generates correctly a partial order for
sets Si:

Si ≤ Sj if f(Si) ∈ Sj .

Clearly, an orderly mapping f sends Sk into an element not belonging to any preceding set
Si < Sk. We denote

R
(f)
k = Sk \ (sets preceding Sk).

Definition 12. An elementary move is the following change of an orderly mapping f : change

one image f(Sk) to some other element r̃k ∈ R
(f)
k ; other images f(Si), i 6= k, remain intact.

Remark 13. An elementary move may change the partial order on sets Si, and thus, generally

speaking, new subsets R
(h)
i ⊂ Si appear as its result, where h denotes the result of applying

the above elementary move to f . It does not, however, change R
(f)
k = R

(h)
k , because it does

not affect the order of sets preceding Sk. So, the inverse to elementary move is also elementary
move.

Lemma 1. For a given cover {Si, i = 1, . . . , N} of a finite set X, any orderly mapping f can
be transformed into any other orderly mapping g by a sequence of elementary moves.

Proof. Induction in N – the number of sets Si. For N = 1, the theorem obviously holds.
For arbitrary N , denote Sm a maximal Si, with respect to the partial order determined

by mapping f . Then R
(f)
m ⊂ Sm is its part not belonging to any other Si. Consider the set

X ′ = X \R(f)
m , its cover of cardinality N − 1 consisting of all Si except Sm, and restrictions of f

and g on this cover. Due to induction hypothesis, the restriction of f can be transformed into
the restriction of g by elementary moves. This means also that f can be transformed into the

mapping g̃ which is by definition the same as g except for, maybe, just one image, g̃(Sm)
def
=

f(Sm).

Finally, changing g to g̃ is also an elementary move, because R
(g)
m ⊃ R(f)

m , so g(Sm) is changed

within R
(g)
m . �

4.2 The deformed multicomponent invariant of a three-manifold
with triangulated boundary

For an inner vertex i in a triangulated orientable three-manifold M with nonempty bounda-
ry ∂M , let Si be the set containing all tetrahedra in the star of i as its elements, and X be the
union of all Si. We are going to choose a tetrahedron in each Si using an orderly mapping f in
the sense of Definition 11.

We can construct f as follows: let r be any tetrahedron in the triangulation having at least
one boundary (i.e., such that there is no tetrahedron on its other side) 2-face. Then we remove r
from the triangulation. If, as a result of this, a vertex i uncloses – ceases to be inner, we put
f(Si) = r. Then we repeat this step until there remain no inner vertices.
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Remark 14. If Si precedes Sj in the sense of Definition 11, then vertex i uncloses in this
process after vertex j.

Remark 15. Let there also be a marked PL ball B made of some tetrahedra in the triangula-
tion, containing no inner vertices, in the sense that all its vertices are in ∂B. Then the above
construction of f can obviously be done without removing tetrahedra in B. We say then that f
avoids tetrahedra in B.

Definition 13. We say that we have chosen vertex weights according to orderly mapping f if,
for each inner vertex i, we have chosen ui and wi corresponding to the tetrahedron f(Si), see
Definition 7.

Theorem 10. The following function of Grassmann variables and coordinates ζi, considered up
to an overall sign, is an invariant of a three-dimensional manifold M with a fixed triangulation
of its boundary ∂M :

G =

∏
inner

2-faces s

ζs2s3

∏
inner

edges `

ζ`1`2
∏
all

tetrahedra r

ζr3r4
·
∫
· · ·
∫

exp(bTf3a + bTCb)

×
∏
inner

vertices i

ui ·
∏
inner

vertices i

wi · db da. (43)

Here matrix f3 is the same as in Subsection 2.1, and matrix C is made of blocks

εr

(
0 ζr3r4

−ζr3r4 0

)
, (44)

where both rows and columns correspond to b
(1)
r and b

(2)
r , in this order; vertex weights ui and wi

are chosen according to any orderly mapping f .

Remark 16. Both Grassmann variables and coordinates ζi on which G depends belong, of
course, to the boundary ∂M .

First, we prove the following lemma.

Lemma 2. Elementary moves, changing the orderly mapping f , do not affect the function G
defined according to (43).

Proof. Consider an elementary move changing f(Sk). Consider, in the situation before the
move, the chain of all Si preceding f(Sk), and let Si1 be the minimal element in this chain. If
there are more than 4 tetrahedra11 in Si1 , we, using a suitable sequence of Pachner moves 2→ 3
within the star of i1 (each lessening the number of tetrahedra in the actual star of i1 by one)
and the final move 4→ 1, remove the vertex i1 from triangulation; as there is exactly one vertex
weight ui1 and one wi1 within the star, it can be seen that the moves can be chosen in such way
that formula (30) can be applied to all moves 2→ 3 and formula (31) – to the final move. Then
we do the same for the second element Si1 and so on, and finally we do this for Sk itself.

The same can obviously be done for the situation after the move, with the very same final
triangulation. So, there is a chain of transformations connecting the two choices of f and not
affecting G. �

11With our definition of triangulation, there might be also just 2 tetrahedra in the star; we leave this easy case
to the reader.
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Figure 3. Triangulated lens space with a chain of two tetrahedra.

Proof of Theorem 10. Any triangulation of the interior of M can be transformed into any
other triangulation by a sequence of relative Pachner moves, i.e., moves leaving the boundary
triangulation intact. As this has been explained in detail in [5, Section 2], here we only note that,
although the boundary in [5] was just a specially triangulated torus, the techniques generalize
directly to the case of a general boundary.

We want now to apply Theorem 4 to each of these Pachner moves. First, comparing (43)
and (44) with (28), we see that this will work if all α’s in Theorem 4 are chosen to equal −2
(condition 25 is then obviously satisfied). Second, we must ensure the right number of multi-
pliers ui living on 2-faces and wi living in tetrahedra involved in the move, namely zero for
moves 2 ↔ 3 and 1 → 4, and one u5 and one w5 for 4 → 1, in accordance with (30) and (31).
This is, however, easy to do having in mind Remark 15: for all moves except 4 → 1, construct
f avoiding all tetrahedra that are to be replaced, and for 4→ 1 – avoiding three of them. The
possible change of f is, of course, justified by Lemmas 1 and 2.

And third, formulas (30) and (31) may seem to require a specific ordering of vertices involved
in any Pachner move. This question is solved by re-formulating our results in the “symmetric”
gauge of [10], in which the Grassmann weight of a tetrahedron cannot depend on the order of
vertices in any way except its overall sign (recall again that the transition from one gauge to
the other is described in [3, Subsection 5.3]). �

Remark 17. We see thus that the following consistent system of α’s corresponds to inva-
riant (43):

αr = −2 for all tetrahedra r.

It is of course interesting how to introduce an invariant with more general α’s than just all the
same constant. We leave this question for further work.

4.3 Example calculation: triangulated lenses
without tubular neighborhoods of unknots

Consider a three-dimensional lens space L(p, q), represented in a standard form of a bipyramid
whose upper half-surface is glued to its lower half-surface after a rotation through angle 2πq/p
around the vertical axis (see, for instance, textbook [6]). Let then the bipyramid be divided
into 4p tetrahedra, all with the same vertices 1, 2, 3, 4. A fragment of such triangulation is shown
in Fig. 3. Then we choose an integer n 6= 0 mod p, and two tetrahedra in this triangulation
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Figure 4. The chain of two tetrahedra.

Figure 5. After doubling edges 12 and 34, the boundary of what remains of lens space becomes a torus

triangulated in 8 triangles.

obtained one from another by a rotation through angle 2πn/p. In Fig. 3, these are shown in
boldface lines, for the case n = 2.

We thus obtain a chain of two tetrahedra in L(p, q), of the form pictured in Fig. 4. Removing
the interiors of these tetrahedra from L(p, q), and doubling common for two tetrahedra edges 12
and 34 as shown in Fig. 5, we obtain the lens space without a tubular neighborhood of an unknot
representing a 1-cycle determined by the number n above. Here an “unknot” in a closed 3-
manifold M is characterized by the property that it can be represented by an unknotted line
when M is represented as a 3-ball with its surface glued in a proper way to itself. We denote
the obtained 3-manifold with triangulated torus boundary as L̃.

Next, we can calculate the invariant function G (43) for L̃, denoted GL̃. As there are no
inner vertices in our triangulation, (43) reduces to

GL̃ =

∏
inner

2-faces s

ζs2s3

∏
inner

edges `

ζ`1`2
∏
all

tetrahedra r

ζr3r4
·
∫
· · ·
∫

exp(bTf3a + bTCb) db da. (45)

Our modest aim in this paper is just to show that our deformed invariants are nontrivial, that
is, take some interesting values12 that, we hope, deserve further investigation. We think that,
at this stage, it is enough to present the results for the monomial in GL̃ of degree zero in

12Even for all α = 1.
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anticommuting variables; we denote it GL̃. The essential point with GL̃ is that its calculation
really involves the deformation, that is, it would vanish if we took all α’s equal to zero.

We simply present the following tables of directly calculated values of GL̃. We made use of
the fact that the integral in (45) is the Pfaffian of the quadratic form in the exponent. Also,
it was enough for us to do calculations for specific values of ζ’s using the already cited GAP
system and our package PL, although it makes little doubt that general formulas for a Pfaffian
with a regular structure can be derived.

L(7, 1) :

n ζ1=1, ζ2=2, ζ3=3, ζ4=4 ζ1=1, ζ2=2, ζ3=4, ζ4=3

1 153 92

2 313 324

3 381 452

L(7, 2) :

n ζ1=1, ζ2=2, ζ3=3, ζ4=4 ζ1=1, ζ2=2, ζ3=4, ζ4=3

1 12 61

2 108 39

3 153 92

L(7, 3) :

n ζ1=1, ζ2=2, ζ3=3, ζ4=4 ζ1=1, ζ2=2, ζ3=4, ζ4=3

1 39 108

2 92 153

3 61 12

Remark 18. Recall that every value of GL̃ in these three tables is defined up to a sign.

Remark 19. L(7, 3) was here, of course, just for controle, as it is known to be homeomorphic
to L(7, 2) and, moreover, a PL homeomophism can be described explicitly in a simple and direct
way as disassembling a bipyramid representing one of these spaces into a set of tetrahedra and
then assembling them back into another bipyramid, see, e.g., textbook [6].

5 Discussion

Our hope is that our Pacher-move-like algebraic relations will lead to constructing new topo-
logical quantum field theories (TQFT’s). As they will be based on the Grassmann–Berezin
calculus, they can be called “fermionic TQFT’s”. This is, of course, especially interesting in
four dimensions.

It would be interesting to relate our research to ideas of the paper [1]. More specifically, it is
interesting to know whether the formulas in [1] can be extended/deformed to incorporate a case
outside of a pure Reidemeister torsion, as well as four-dimensional manifolds.

On the other side, we considered in the present paper only the case where a “coordinate” ζi
is put in correspondence to a vertex i, and not a more general case where a universal cover of
the manifold is involved and different coordinates correspond to different lifts of a vertex. In
terms of [1], this corresponds to considering a trivial flat connection and a trivial bundle over the
manifold. So, one direction of our further research may involve our “deformed” Pacher-move-
like algebraic relations together with nontrivial flat connections. In the “undeformed” case and
a slightly different specific theory, this was done in papers [13, 14].

One more very important generalization may be made through considering general consistent
systems of α’s (see (25) and (37)). This is expected to be related to some interesting homological
problems. Also, some parameter counting suggests that in the four-dimensional case, interesting
deformations of degree 1 in variables a and b are expected to exist, which may be even more
interesting than the deformation (36).
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Finally, we emphasize that our calculations in Subsection 4.3 simply show the nontriviality
of invariants arising from our “deformed” relations. The nature of these invariants and possible
relations to existing theories are still to be investigated, and again especially in four dimensions.
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