Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 7 (2011), 041, 11 pages      arXiv:1102.1801      https://doi.org/10.3842/SIGMA.2011.041
Contribution to the Proceedings of the Conference “Symmetries and Integrability of Difference Equations (SIDE-9)”

Periodic and Solitary Wave Solutions of Two Component Zakharov-Yajima-Oikawa System, Using Madelung's Approach

Anca Visinescu a, Dan Grecu a, Renato Fedele b and Sergio De Nicola c
a) Department of Theoretical Physics, National Institute for Physics and Nuclear Engineering, Bucharest, Romania
b) Dipartimento di Scienze Fisiche, Universita Federico II and INFN Sezione di Napoli, Napoli, Italy
c) Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche, Pozuolli, (Na), Italy

Received February 10, 2011, in final form April 19, 2011; Published online April 23, 2011

Abstract
Using the multiple scales method, the interaction between two bright and one dark solitons is studied. Provided that a long wave-short wave resonance condition is satisfied, the two-component Zakharov-Yajima-Oikawa (ZYO) completely integrable system is obtained. By using a Madelung fluid description, the one-soliton solutions of the corresponding ZYO system are determined. Furthermore, a discussion on the interaction between one bright and two dark solitons is presented. In particular, this problem is reduced to solve a one-component ZYO system in the resonance conditions.

Key words: dark-bright solitons; nonlinear Schrödinger equation; Zakharov-Yajima-Oikawa system; Madelung fluid approach.

pdf (318 kb)   tex (15 kb)

References

  1. Kivshar Y., Agrawal G.P., Optical solitons. From fibers to photonic crystals, Academic Press, San Diego, 2003.
  2. Tratnik M.V., Sipe J.E., Bound solitary waves in a birefringent optical fiber, Phys. Rev. A 38 (1988), 2011-2017.
  3. Menyuk C.R., Nonlinear pulse propagation in birefringent optical fiber, IEEE J. Quant. Electron. 23 (1987), 174-176.
  4. Christiansen P.L., Eilbeck J.C., Enolskii V.Z., Kostov N.A., Quasi-periodic solutions of the coupled nonlinear Schrödinger equations, Proc. Roy. Soc. London Ser. A 451 (1995), 685-700, hep-th/9410102.
  5. Carretero-Gonzales R., Frantzeskakis D.J., Kevrekidis P.G., Nonlinear waves in Bose-Einstein condensates: physical relevance and mathematical techniques, Nonlinearity 21 (2008), R139-R202, arXiv:0805.0761.
  6. Perez-Garcia V.M., Berloff N.G., Kevrekidis P.G., Konotop V.V., Malomed B.A., Nonlinear phenomena in degenerate quantum gas, Phys. D 238 (2009), 1289-1298.
  7. Agrawal G.P., Nonlinear fiber optics, 2nd ed., Academic Press, New York, 1995.
  8. Akhmediev N., Ankiewicz A., Solitons: nonlinear pulses and beams, Champan and Hall, London, 1997.
  9. Hasegawa A., Kodama Y., Solitons in optical communications, Oxford University Press, 1995.
  10. Onorato M., Osborne A.R., Serio M., Modulational instability in crossing sea states: a possible mechanism, Phys. Rev. Lett. 96 (2006), 014503, 4 pages.
  11. Kivshar Y., Stable vector solitons composed of bright and dark pulses, Optics Lett. 17 (1992), 1322-1325.
  12. Zakharov V.E., Collapse of Langmuir waves, Zh. Eksp. Teor. Fiz. 62 (1972), 1745-1751 (English transl.: Sov. Phys. JETP 35 (1972), 908-914).
  13. Yajima N., Oikawa M., Formation and interaction of sonic-Langmuir solitons-inverse scattering method, Progr. Theor. Phys. 56 (1976), 1719-1739.
  14. Laedke E.W., Spatschek K.H., Liapunov stability of generalized Langmuir solitons, Phys. Fluids 23 (1980), 44-51.
  15. Grimshaw R.H.J., Modulation of an internal gravity-wave packet and resonance with mean motion, Studies in Appl. Math. 56 (1977), 241-266.
  16. Benney D.J., General theory for interactions between short and long waves, Studies in Appl. Math. 56 (1977), 81-94.
  17. Djordjevic V.D., Redekopp L.G., 2-dimensional packets of capillary-gravity waves, J. Fluid. Mech. 79 (1977), 703-714.
  18. Davydov A.S., Solitons in molecular systems, D. Reidel Publishing Co., Dordrecht, 1985.
  19. Dodd R.K., Eilbeck J.C., Gibbon J.D., Morris H.C., Solitons and nonlinear wave equations, Academic Press, Inc., London - New York, 1982.
  20. Boiti M., Leon J., Pempinelli F., Spire A., Resonant two-wave interaction in the Davydov model, J. Phys. A: Math. Gen. 37 (2004), 4243-4265.
  21. Visinescu A., Grecu D., Modulational instability and multiple scales analysis of Davydov's model, in Proceedings of Fifth International Conference "Symmetry in Nonlinear Mathematical Physics" (June 23-29, 2003, Kyiv), Editors A.G. Nikitin, V.M. Boyko, R.O. Popovych and I.A. Yehorchenko, Proceedings of Institute of Mathematics, Kyiv 50 (2004), 1502-1509.
  22. Radha R., Senthil Kumar C., Lakshmanan M., Tang X.Y., Lou S.Y., Periodic and localized solutions of long wave-short wave resonance interaction equation, J. Phys. A: Math. Gen. 38 (2005), 9649-9663, nlin.SI/0604039.
  23. Yurova M., Application of dressing method for long wave-short wave resonance interaction equation, J. Math. Phys. 48 (2007), 053516, 7 pages, nlin.SI/0612041.
  24. Ohta Y., Maruno K., Oikawa M., Two-component analogue of two-dimensional long wave-short wave resonance interaction equations: a derivation and solutions, J. Phys. A: Math. Theor. 40 (2007), 7659-7672, nlin.SI/0702051.
    Maruno K., Ohta Y., Oikawa M., Note for two-component analogue of two-dimensional long wave-short wave resonance interaction system, Glasg. Math. J. 51 (2009), 129-135, arXiv:0812.4591.
  25. Grecu A.T., Grecu D., Visinescu A., Nonlinear dynamics of a Davydov's model with two independent excitonic modes in complex one-dimensional molecular systems, Romanian J. Phys., to appear.
  26. Myrzakulov R., Pashaev O.K., Kholmorodov Kh.T., Particle-like excitations in many component magnon-phonon systems, Phys. Scr. 33 (1986), 378-384.
  27. Whitham G.B., Linear and nonlinear waves, John Wiley & Sons, Inc., New York, 1999.
  28. Karpman V.I., Kruskal E.M., Modulated waves in nonlinear dispersive media, Zh. Eksp. Teor. Fiz. 55 (1968), 530-534 (English transl.: Sov. Phys. JETP 28 (1969), 277-281).
  29. Karpman V.I., Nonlinear waves in dispersive media, International Series of Monographs in Natural Philosophy, Vol. 71, Pergamon Press, Oxford - New York - Toronto, Ont., 1975.
  30. Madelung E., Quantentheorie in hydrodynamischer Form, Z. Physik 40 (1926), 332-326.
  31. Fedele R., Envelope solitons versus solitons, Phys. Scr. 65 (2002), 502-508.
    Fedele R., Schamel H., Solitary waves in the Madelung's fluid: connection between the nonlinear Schrödinger equation and the Korteweg-de Vries equation, Eur. Phys. J. B 27 (2002), 313-320.
  32. Manakov S.V., On the theory of two-dimensional stationary self focussing of electromagnetic waves, Zh. Eksp. Teor. Fiz. 65 (1973), 505-515 (English transl.: Sov. Phys. JETP 38 (1974), 248-258).
  33. Grecu D., Visinescu A., Fedele R., De Nicola S., Periodic and stationary wave solutions of coupled NLS equations, Romanian J. Phys. 55 (2010), 585-600.
  34. Visinescu A., Grecu D., Fedele R., De Nicola S., Madelung fluid description of the generalized derivative nonlinear Schrödinger equation: special solutions and their stability, Teoret. Mat. Fiz. 160 (2009), 229-239 (English transl.: Theoret. and Math. Phys. 160 (2009), 1066-1074).
  35. Byrd P.F., Friedman M.D., Handbook of elliptic integrals for engineering and scientists, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 67, Springer-Verlag, New York - Heidelberg, 1971.


Previous article   Next article   Contents of Volume 7 (2011)