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Abstract. In this paper we present a non-Gaussian integral based on a cubic polynomial,
instead of a quadratic, and give a fundamental formula in terms of its discriminant. It
gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also
present some related results. This is simply one modest step to go beyond the Gaussian but
it already reveals many obstacles related with the big challenge of going further beyond the
Gaussian.
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1 Introduction

The Gaussian is an abbreviation of all subjects related to the Gauss function e~ (P +az+r) Jike
the Gaussian beam, Gaussian process, Gaussian noise, etc. It plays a fundamental role in math-
ematics, statistics, physics and related disciplines. It is generally conceived that any attempts to
generalize the Gaussian results would meet formidable difficulties. Hoping to overcome this high
wall of difficulties of going beyond the Gaussian in the near future, a first step was introduced
in [1]. This paper is its polished version.

In the paper [2] the following “formula” is reported:

1
e—(am3+b12y+cmy2+dy3)dwdy _
6/__D7

where D is the discriminant of the cubic equation
azr® 4+ bx? +cx +d =0,
and it is given by
D = b?c? + 18abed — 4ac® — 4b3d — 27a°d>. (2)

The formula (1) is of course non-Gaussian. However, if we consider it in the framework of the
real category then (1) is not correct because the left hand side diverges. In this paper we treat
only the real category, and so a, b, ¢, d, z, y are real numbers.

Formally, by performing the change of variable x = tp, y = p for (1) we have

Lhs. of (1) = // e—Ps(at3+bt2+ct+d)‘p’dtdp: / {/e—(at3+bt2+ct+d)p3|p|dp} dt

:/\U]e_"ng/ ! dt
|3/ (at® + b2 + ct + d)| 3/ (at® + bt + ct + d)

by the change of variable o = V/at3 + bt2 + ct + dp.
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The divergence comes from

/|a\e”3do,

while the main part is

1

d
|/ (az® + ba? + cx + d) |/ (az® + bx? + cx + d) !

under the change t — x. As a kind of renormalization the integral may be defined like

f(ax3+bxzy+cxy2+dy3)d d _ / 1 d
e X = xZ.
i//]R? vt R| Y/ (ax3+ ba?+ cx + d)| ¥/ (aa3+ ba?+ cx + d)

However, the right hand side lacks proper symmetry. If we set

F(a,b,c,d) = // e—(a$3+bw2y+c:cy2+dy3)dxdy7
Dpg

where D = [—R, R] X [—R, R], then it is easy to see
F(—a,—b,—c,—d) = F(a,b,c,d).

Namely, F' is invariant under Zs-action. This symmetry is important and must be kept even
in the renormalization process. The right hand side in the “definition” above is clearly not
invariant. Therefore, by modifying it slightly we reach the renormalized integral

Definition 1.

f(az3+bx2y+cmy2+dy3)d d _ / 1 d 3
e X = Z.
i//11&2 vt R v/ (ax3 + br? + cx + d)? 3)

We believe that the definition is not so bad (see the Section 4).

In the paper we calculate the right hand side of (3) directly, which will give some interesting
results and a new perspective. The result gives a mathematical reinforcement to the result [2]
by Morozov and Shakirov.

2 Main result

Before stating the result let us make some preparations. The Gamma function I'(p) is defined
by

I(p) = /0 Tt ldr (p>0) (4)

and the Beta function B(p,q) is

1
B(p.q) = /0 N1 - ) e (pg > 0).

Note that the Beta function is rewritten as

B v
(P,Q)—/O Wl‘

See [3] for more detail. Now we are in a position to state the result.
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Fundamental formula.

(I) For D <0
1 C_
G dx: 6 ) (5)
R V/(ax3 + br? + cx + d)? -D
where
11
C_=vV2B(z,=].
5 (z)
(IT) For D >0
1 Cy
dr = —, 6
R /(az® 4+ b22 + cz + d)? v D (6)

where
11
C,=3B|-,-].
=35 (55)
(ITI) C_ and C, are related by C = v/3C_ through the identity
11 3 11
Bl=-,-|=Vv2B(=,=].

VB (3.3) = ¥28 (55 )

Our result shows that the integral depends on the sign of D, and so our question is as follows.

Problem. Can the result be derived from the method developed in [2]?

A comment is in order. If we treat the Gaussian case (e_(“x2+bxy+cy2)) then the integral is
reduced to

1 2
——dz = 8
/Razc2+bx+c = /~D ®
if a >0 and D = b? — 4ac < 0. Noting

VivT - TET(3) 11
N ¢

1
2
1 r

(8) should be read as

L B0
/Rax2+bx+c v V=D
3 Proof of the formula

The proof is delicate. In order to prevent possible misunderstanding we present a detailed proof
in this section.

Proof of (I). We prove (5) in case of D < 0.
First we consider the special case where a = 0 in the cubic equation ax® + bz? + cx + d.
Namely, we calculate the integral

dx.

1
/]R /(72 + cx + d)?
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Noting —D = b%(4bd — c?) > 0 we obtain
1

1
/3 ba? dex:/ o e
R /(ba? + cx + d) B2 (22 + o+ )2
1 1 1 1
\3/b2/]R . 22 \3/b2/]R _e2\2
3 (($+Tb)2+%_§) 3 ($2+4bzb22>

T2= 4bd c

\F/\/T I_Tyf/ﬂi”/yT

y=v& dx

:%TT/O W w)TT m2f

JbTT (v+1)5 T 0T? vm V-D

Now we consider the general case of a # 0. From the condition D < 0 there is (only) one real
root of the cubic equation ax® + bax? + cx 4+ d = 0. Let us denote it by o. From the equation

azr® +bx? + cx +d = (z — a)(az® + kx + 1), ac® +ba® +ca+d=0
we have easily
b=k —aa, c=1—ka, d= —lao. (10)
First we assume o = 0. In this case d = 0 and
az® +ba® + cx +d = x(ax® + bz + ¢).

Then
0 1

dx—i—/ dx
/ \/x2(ax2+bx+ / {22 (az? —|—b$—|—c) —0o V/22(az? + bx + )2

1

U

- / \/ oy 5 <_y2>+/o i,/le ($1§+C>2 <_Zl2/)

0 1
0 3(0y2+by+a)2 —oo v/ (cy* + by + a)?
(9) (b—rc¢; c—b; d—ra) \[B(z’ 6) \fB(% %)

1
pu— d pu—
/R & (ey? + by + a)? Y /2(dac —b2) /=D

Next, let us calculate the case a # 0:

1 ajfy—f—a 1
de = dy
R ¥/ (x — a)?(az? + kz 4 1)? R Vy*{aly + )2 + k(y + a) +1}2
1
dy
R v/y*{ay? + (2aa + k)y + (ac? + ka + 1) }2
0 Va5(3, 1)

V/(aa? + ka + 1)2{4a(aa? + ka + 1) — (2aa + k)2}

_ V283, 5)
N Y/ (aa? + ka +2l)6(4al—k2)' (11)
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Key Lemma. From (10) the following equation holds
(aa2 + ka + l)2(4al - k2) = 27a%d? + 4ac® — 18abed — b2c® + 4b*d = —D. (12)

The proof is straightforward but tedious.
Therefore, from both (11) and (12) we obtain the formula

T = .
R V/(z — a)2(az? + kz + 1)2 V=D

Proof of (II). We prove (6) in case of D > 0. Let us start with the evaluation of the following
integral

1
——dx
/R a2 (x — a)?
for o > 0. Then
1 0 1 > 1
/rd:c:/ ,dH/ S S—
R /22 (z — )2 oo V2% (= )? 0 Vri(r— «)?
e} 1 (o)
e [
0o iz + a)? 0 iz —«)?

where the change of variable x — —z for the first term of the right hand side was made.
Each term can be evaluated elementarily:

(13)

=at

00 1 -
—————dx "=
/0 2 (x + «)?

while

o L2
¢ 11
32dt:a:1%B< )

& h g,
— | ———dt=a"3 o=
Vo {/12(t+1)2 0 (t+1)3 373

r=at _1
= a3

e 1
/o \3/t2(t—1)2dt
—a7s /lldt—i— Oo;alt
o Vet ey

A T

where we have used

> 1 t=1 0 1 ds ! 1 ! 1
L YRt - 1)2dt T ) s iaoeez \ s2) 0 /21— S)st - 0 /21— t)zdt
$2 g2

From (13) we have
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Now we consider the special case a = 0 in the cubic equation ax® + bx? + cx 4+ d. Then by
D =b*(c? — 4bd) > 0 we obtain

1 > 1
/ > / dx :/ dx
/(b2 + cx + d)? \/ bey C2_4bd}2 —o0 3/ (b2 — CZZglbd)z
b

2 Czlfbgbd>0 1 1 d
ry— dr = X
3b2 7003(352—042)2 \F 0o V/(z — a)2(z + a)?
y=z+a 1 (13) 1 3B( )
T e/ m dy 2 a
_3B(33) _3BG3) _ 3B(G3)  _3B(G3)

= = 14

V2ab? Vaa2bt  §/b2(2 — 4bd) VD 14)

Next we consider the remaining general case of a # 0. From the condition D > 0 there

are three real solutions in the equation ax® + bx? + cx + d = 0. We denote one of them by «a.
Remember the relations b = k — aa, ¢ =1 — ka, d = —la from the equation

az® + b2 + cx +d = (x — ) (a2® + kz + 1), ac® +ba? + ca+d = 0.
First we assume a = 0. Then
ax® 4+ ba?® + cx +d = x(ax® + bx + ¢)

and from D = 02(b2 — 4ac) we have

dx

/ $/x2( ax2+b$+ / N azz—l—bx—i—c / e ax2+bm+ c)?

) (94 %)
”V;z(;wzw)z o %%(;‘HS“)Q y

o0 1 0 1 1
— / dy + dy = dy
0o (cy?> +by+a)? oo v/ (cy? + by + a)? R /(cy? + by + a)?

(14) (c=b; b—rc; a—d) 3B(%; %) 3B(37 3)

15
20—t VD (15)
For the case a # 0 we obtain the formula
/ 1 a:y—l—a/ 1
de = dy
R /(& — a)2(az? + ka + )2 R /y*Haly + )2 + k(y + o) +1)2
1
3/ 28 02 2 S
R v/y*{ay? + (2aa + k)y + (aa? + ka + 1)}
(15) 3B(3.3)
V(aa? + ka + 1)2{(2aa + k)% — 4a(aa® + ka + 1)}
L sBGY wBRY) ]
V/(aa2 + ka + 1)2(k2 — 4al) v D

Proof of (IIT). We prove the relation (7). Let us make some preparations. For the Gamma
function (4) there are well-known formulas (see for example [3])

I'(2)I'(y)

Blz.y) = [(z +y)

(z,y > 0), (16)



Beyond the Gaussian 7

™

M)l —z) = (0<z<1), (17)

sin(nz)
r (g) r <x ; 1> - ;ﬁm;) = ol-aT <;> T(z). (18)

(18) is called the Legendre’s relation. In the formula we set = 2/3, then

C)rE)-= ()6

Multiplying both sides by I'(1/6) gives

SORBNOREL

— ol (;) = V2l (;) r

o, ;((;))2 -t Q)

= =remem - (36)
— Sm%(}):g) ~van (L1

= va(33)=ve(}4).

where we have used formulas (16) and (17) several times.
The proof of (7) is now complete. |
4 Renormalized integral revisited

In this section let us check whether the renormalized integral (3) is reasonable or not by making
use of the results in the Section 3.
In the introduction we introduced the following integral defined on Dr = [~ R, R] X [-R, R]

F(a,b,c, d) = // e*(am3+b:p2y+czy2+dy3)dxdy'
Dpg

For this it is easy to see

0 0 0 0
<8aad - 61)8) F(a,b,c,d)

// = 2Py ay?)en (e ) gy — o,
Dg

< aaac> Fla,b,c,d)

DR
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0 0 0 0
<6@80 - 8()&1) F(a,b,c,d)
= // (xy2 . ny o ny . yS)e—(a$3+bx2y+cmy2+dy3)dxdy —0. (19)
Dpg

On the other hand, if we set

) _/ 1 Cy
R v/ (ax3 + bx? + cx + d)? VED’

then we can also verify the same relations:

F(a,b,c,d

0 0 0 0 0 0 0 0
<aaad‘abac> Flabed =0, <abab‘8a6c> b ed) =0
0 0 0 0
(acac B abad) Fla.be.d) =0 2

Verification by hand is rather tough, but it can be done easily by use of MATHEMATICA!.
From (19) and (20) we can conclude that our renormalized integral (3) is reasonable enough.
5 Discriminant

In this section we make some comments on the discriminant (2). See [4] for more details ([4] is
strongly recommended).
For the equations

f(x) = a2’ + b2 +cx+d,  f'(z) =3az® 4+ 2bx + ¢ 1)

the resultant R(f, f’) of f and f’ is given by

a b ¢ d 0
0 a b ¢ d
R(f,f)=|3a 20 ¢ 0 0 (22)
0 3a 2b ¢ O
0 0 3a 2b ¢

It is easy to calculate (22) and the result becomes
1
aR( f, ) = 27a%d? + 4ac® — 18abed — b?c? + 4b3d = —D.

On the other hand, if a, 3, v are three solutions of f(z) = 0 in (21), then the following
relations are well-known

b c d
atfty=——  abtoy+fy=—-, afy=-——.
a a a
From these it is easy to see
b 9 o . o b*—2ac s 3 3 b? + 3a?d — 3abe
04—1—54-7:—5, o +B +’Y :T, (0% +6 +’7 = — a3 N
B bt + 4a2bd + 2a%c? — 4ab’c

a4+ﬁ4+’y4

at

!The author owes the calculation to Hiroshi Oike.
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If we set

A=(a=B)a=7B~-7)

the discriminant D is given by

D = a*A2.

Let us calculate A? directly. For the Vandermonde matrix

1 1 1
V= a B =~
a2 ,62 ,YQ

—

V|i=-A

we obtain by some manipulations of determinant

A= (= |[V])? = V|V = vV =

3

a+B8+y o+ p%+42
5 _é b2 —22ac
a a
_ 9 b2 — 2ac b3 + 3a2d — 3abc
a a? al
b2 — 2ac b3 + 3a%d — 3abe  b* + 4a2bd + 2a>c¢? — dabc
a? B al at
3 _é b2 —22ac
a a
. 2b 2c 3ad — bc
a a a?
262 + 2ac 3ad — 3bc  4abd + 2ac? — 2b%¢
a2 - a? al
2 _ b 2
3 79 b 2ac 3 0 2
a a? a a
2b 2c 3ad — be 276 7% - 3ad + bc
a a a? a a a?
2c 3ad — be  abd + 2ac® — b3¢ _% B 3ad — be  —2bd + 2¢2
a a? al a a? a?
b 2c
3 a T 2
a a 2b —3ac  be—9ad
0 2()2 —3ac  bc—9ad | 3a? 3a?
3a2 3a2 bc — 9ad 2c2 — 3bd
be — 9ad 202 — 3bd 3a? 3a?
3a2 3a?
1 -1

T al3

{(bc — 9ad)? — 4(b* — 3ac)(c* — 3bd)} .

This result is very suggestive. In fact, from the cubic equation

ar® + b’ +cx+d=0

we have three data

A =b? - 3ac,

B = bc —9ad,

C = c* — 3bd,
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and so if we consider the quadratic equation
AX?*+BX +C =0

then the discriminant is just B2 — 4AC. This is very interesting.
Problem. Clarify the above connection.

As a result we have

-1
D = 3 {(bc — 9ad)? — 4(b* — 3ac)(c* — 3bd) } = b2c? + 18abed — dac® — 4b3d — 27a?d>.

6 Some calculations

In this section we calculate some quantities coming from the integral.
The expectation value (z3) is formally given by

/ / e (e Hb?yteny®+dy®) g B, S+ba?y-+eny?+dy®
(z3) = =——log // e (ax* tba’ytery®+dy?) gy, L
/ / e_(“$3+bm2y+6$92+dy3)dxdy o

so renormalized expectation values (z3)rN, (2y)rN, (2¥%)rN, (¥3)rN are defined as

Definition 2.
($3>RN _ _:a log {i//RQ e—(ax3+bx2y+cxy2+dy3)dxdy i} :
(z2y) RN = _% log {i //]12{2 ¢~ (@ +bztyteay?+dy®) g g, i} 7
<$y2>RN _ _aaclog {i//R2 67(aw3+bx2y+ca:y2+dy3)dl,dy i},

<y3>RN _ —;log {i//R2 e*(ax3+bx2y+cxy2+dy3)dxdy i} )

From the integral forms (5) and (6) it is easy to calculate the above. Namely, we have

_ 18bed — 4c® — bdad? 2bc? 4 18acd — 12b%d

3 2 _
(z°)rN = oD ; (z7y)rN = oD :
P 2b%c + 18abd — 12ac? ) = 18abc — 4b® — 54a’d
TY )RN = 6D ) Y )RN = 6D )

where D = b%c? + 18abed — 4ac® — 4b3d — 27ad>.
We can calculate other quantities like (x9y)rn or (x%y?)rn by use of these ones, which will
be left to readers.

7 Concluding remarks

In this paper we calculated the non-Gaussian integral (1) in a direct manner and, moreover,
calculated some renormalized expectation values. It is not clear at the present time whether
these results are useful enough or not. It would be desirable to accumulate many supporting

evidences. Some application(s) will be reported elsewhere [5].
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At this stage we can consider a further generalization. Namely, for the general degree n
polynomial

f(z) = apz™ + a1z + - F ap_1x + ay

the (non-Gaussian) integral becomes

(23)

1
—dx.
|7
The discriminant D of the equation f(z) = 0 is given by the resultant R(f, f’) of f and f’
like

1 ’ n(n—1) n(n—1) ,
where
agp al s an—1 (79
agp a s an—1 Qn
Ay ao a T an—1 Gn
R(fvf ) - nao (n_ 1)&1 Ap—1 ’
nag (n—1a; -+ ap—1
nagy (m—1ay -+  ap—1
see (21) and (22).
For example, for n = 4
ap a1 a2 az a4 0 O
0 ag a1 ag as Qa4 0
0 0 ag ay a2 a3 Qa4
R(f, f/) = 4CLO 3a1 2as as 0 0 0
0 4dag 3a1 2as asg 0 0
0 0 4a0 3(11 2&2 as 0
0 0 0 4ag 3ai1 2as ag

and

D = 256a3a3 — 4ata3 — 27a%a§ — 27ata? — 128a3a3ai + aia3a3 + 16apasay
— 4a0a§a§ — 4a%a§a4 + 144a(2)a2a§a4 — 6a0a%a§a4 + 144a0a%a2a?1 — 192aga1a3ai
+ 18a0a1a2a§ + 18a:fa2a3a4 — 80a0a1a%a3a4,

and for n =5

agy ai Gy a3 a4 as 0 0 0
0 a aj a9 as a4 as 0 0
0 0 a a a a3 a4 az O
0 0 0 a aj a9 as a4 as
R(f, f/) = 5a0 4(11 3(12 2(13 a4 0 0 0 0
0 5a0 4a1 3&2 2&3 aq 0 0 0
0 0 b5ag 4a1 3as 2a3 a4 0O O
0 0 0 b5ag 4a1 3as 2a3 a4 O
0 0 0 0 5&0 4&1 3@2 2@3 ay
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and

D = 3125aga3 — 2500agaiasa — 3750a3azazal + 2000ajazaia? + 2250a3a3asa?

— 1600ajazaias + 256a3a] + 2000a3a3azas — 50a2a?aias + 2250a3a1a3a;

— 2050a0a1a2a3a4a5 + 160a0a1a2aia5 — 900a0a1a a5 + 1020a0a1a3a4a5

- 192a(2)a1ag,aj11 — 900a(2)a§a4a§ + 825a a%agag + 560a0a2a3a4a5 128a(2)a§aj11

— 630a3asaiasas + 144adaza3al + 108a3aias — 27ajaza; — 1600apa’sazal

+ 160a0a1a3a4a5 36a0a1a4a5 + 1020a0a1a§a4a5+ 560a0a1a2a§a5 746a0a1a2a3a?1a5
+ 144a0a1a2a4 + 24a0a1a§a4a5 6aoa1a3a4 630a0a1a%a3a5 + 24a0a1a§a4a5

+ 356a0a1a%a§a4a5 — 80a0a1a2a3a4 — 72a0a1a2a3a5 + 18a0a1a2a3a4 + 108a0a2a§

— 72a0a%a3a4a5 + 16a0a%ai + 16agasasas — 4agasaia? + 256a5as — 192a1a2a4a§

— 1284} a3a5 + 144afaza?as — 27ata] + 144a1a2a3a5 — 6aSa3alas — 80a1a2a3a4a5

+ 18a3asazal + 16a1a3a5 4a1a3a4 27a azag + 18a2a3azaqas — 4a3adal

2.2 .2 2
—_ 4@1@2@3@5 + a1a2a3a4

However, to write down the general case explicitly is not easy (almost impossible).

Problem. Calculate (23) for n =4 (and n =5) directly.

The wall called Gaussian is very high and not easy to overcome, and therefore hard work will

be needed.

Recently the subsequent paper [6] by Morozov and Shakirov appeared. Our works are deeply
related to so-called non-linear algebras, so we will make some comments on this point in a near
future. As a general introduction to them see for example [7].

The author thanks referees and Hiroshi Oike, Ryu Sasaki for many useful suggestions and

comments.
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