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Abstract. Let G be a connected, simply connected one-parameter metabelian nilpotent
Lie group, that means, the corresponding Lie algebra has a one-codimensional abelian sub-
algebra. In this article we show that G contains a discrete cocompact subgroup. Given
a discrete cocompact subgroup Γ of G, we define the quasi-regular representation τ = IndG

Γ 1
of G. The basic problem considered in this paper concerns the decomposition of τ into
irreducibles. We give an orbital description of the spectrum, the multiplicity function and
we construct an explicit intertwining operator between τ and its desintegration without
considering multiplicities. Finally, unlike the Moore inductive algorithm for multiplicities
on nilmanifolds, we carry out here a direct computation to get the multiplicity formula.

Key words: nilpotent Lie group; discrete subgroup; nilmanifold; unitary representation;
polarization; disintegration; orbit; intertwining operator; Kirillov theory

2010 Mathematics Subject Classification: 22E27

1 Introduction

Let G be a connected simply connected nilpotent Lie group having a cocompact discrete sub-
group Γ, then the nilmanifold G/Γ has a unique invariant Borel probability measure ν and G
acts on L2(G/Γ) = L2(G/Γ, ν) by the quasi-regular representation τ = IndGΓ 1. This means that(

τ(a)f
)
(g) = f(a−1g), f ∈ L2(G/Γ), a, g ∈ G.

It is known [8, p. 23] that the representation τ splits into a discrete direct sum of a countable
number of irreducible unitary representations, each π with finite multiplicity m(π). We write

τ '
∑

π∈(G:Γ)

m(π)π. (1)

For any given nilpotent Lie group G with discrete cocompact subgroup Γ, there are two general
problems to consider. The first is to determine the spectrum (G : Γ) and the multiplicity
function m(π) of these representations. The second is to construct an explicit intertwining
operator between τ and its decomposition into irreducibles.

A necessary and sufficient condition for π to occur in τ was obtained, by Calvin C. Moore [14],
in the special case in which Γ is a lattice subgroup of G (i.e., Γ is a discrete cocompact subgroup
of G and log(Γ) is an additive subgroup of the Lie algebra g of G). Moreover, Moore deter-
mined an algorithm which expresses m(π) in terms of multiplicities of certain representations of
a subgroup of codimension one in G. Later, R. Howe and L. Richardson [11, 18] independently
obtained a closed formula for the multiplicities for general Γ. In [15], C. Moore and J. Wolf
determine explicitly which square integrable representations of G occur in the decomposition (1)
and give a method for calculating the multiplicities. Using the Poisson summation and Selberg
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trace formulas, L. Corwin and F. Greenleaf gave a formula for m(π) that depended only on the
coadjoint orbit in g∗ corresponding to π via Kirillov theory and the structure of Γ [6] (see also
[3, 4, 5, 6, 7]).

Our main goals in this paper are twofold. The first is to give an orbital description of
the decomposition of τ into irreducibles, in the case when G is a connected, simply connected
one-parameter metabelian nilpotent Lie group. Such a decomposition has two components,
the spectrum (G : Γ) and the multiplicity function π 7→ m(π). We give orbital description
of both. The second main goal is to give an explicit intertwining operator between τ and its
desintegration.

This paper is organized as follows. In Section 2, we establish notations and recall a few stan-
dard facts about representation theory, rational structure and cocompact subgroups of a con-
nected simply connected nilpotent Lie groups. Section 3 is devoted to present some results
which will be used in the next sections. In Section 4 we prove, first, that a one-parameter
metabelian nilpotent Lie group admits a discrete uniform subgroup Γ (i.e., the homogeneous
space G/Γ is compact). Next, for a fixed discrete uniform subgroup Γ we prove the existence of
a one-codimensional abelian rational ideal M (i.e., M ∩Γ is a discrete uniform subgroup of M).
Furthermore, we give a necessary and sufficient condition for the uniqueness of M . In Section 5,
we pick from a strong Malcev basis strongly based on Γ, an orbital description of the spectrum
(G : Γ). We obtain the following decomposition

τ ' ρ =
⊕
l∈Σ

IndGM χl +
⊕
l∈V

χl,

where Σ is a crosssection for Γ-orbits in a certain subspace W ⊂ g∗ and V ⊂ g∗ (more details in
Theorem 4).

We describe an intertwining operator U of τ and ρ, defined for all ξ ∈ C(G/Γ) and g ∈ G by

U(ξ)(l)(g) =

∫
M(l)/M(l)∩Γ

ξ(gm)χl(m)dṁ,

where M(l) = M if l ∈ Σ or M(l) = G if l ∈ V. This operator does not take into account the
multiplicities of the decomposition of τ . As a consequence, we give an orbital description of the
multiplicity function.

2 Notations and basic facts

The purpose of this section is to establish notations which will be used in the sequel and recall
some basic definitions and results which we shall freely use afterwards without mentioning them
explicitly.

Let G be a connected and simply connected nilpotent Lie group with Lie algebra g, then the
exponential map exp : g→ G is a diffeomorphism. Let log : G→ g denote the inverse of exp.

2.1 Induced representation

Starting from a closed subgroup H of a nilpotent Lie group G and a unitary representation σ
of H in a Hilbert space H σ, let us construct a unitary representation of G. We realize the
unitary representation IndGH σ of G, the representation induced on G from the representation σ
of H, by left translations on the completion of the space of continuous functions F on G with
values in H σ satisfying

F (gh) = σ(h−1)(F (g)), g ∈ G, h ∈ H, (2)
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and having a compact support modulo H, provided with the norm

‖F‖ =
(
νG,H

(
‖F‖2

)) 1
2 =

(∫
G/H
‖F (g)‖2dνG,H(g)

) 1
2

,

where((
IndGH σ

)
(g)F

)
(x) = F

(
g−1x

)
, g, x ∈ G.

2.2 The orbit theory

Suppose G is a nilpotent Lie group with Lie algebra g. G acts on g (respectively g∗) by the
adjoint (respectively co-adjoint) action. For l ∈ g∗, let

g(l) = {X ∈ g : 〈l, [X, g]〉 = {0}}

be the stabilizer of l in g which is actually the Lie algebra of the Lie subgroup

G(l) = {g ∈ G : g · l = l}.

So, it is clear that g(l) is the radical of the skew-symmetric bilinear form Bl on g defined by

Bl(X,Y ) = 〈l, [X,Y ]〉, X, Y ∈ g.

A subspace b(l) of the Lie algebra g is called a polarization for l ∈ g∗ if it is a maximal
dimensional isotropic subalgebra with respect to Bl. We have the following equality

dim(b(l)) =
1

2

(
dim(g) + dim(g(l))

)
. (3)

If b(l) is a polarization for l ∈ g∗ let B(l) = exp(b(l)) be the connected subgroup of G with
Lie algebra b(l) and define a character of B(l) by the formula

χl(exp(X)) = e2iπ〈l,X〉, ∀X ∈ b(l).

Now, we recall the Kirillov orbital parameters. We denote by Ĝ the unitary dual of G, i.e.
the set of all equivalence classes of irreducible unitary representations of G. We shall sometimes
identify the equivalence class [π] with its representative π and we denote the equivalence relation
between two representations π1 and π2 by π1 ' π2 or even by π1 = π2. The dual space Ĝ of G
is parameterized canonically by the orbital space g∗/G. More precisely, for l ∈ g∗ we may find
a real polarization b(l) for l. Then the representation πl = IndGB(l) χl is irreducible; its class is
independent of the choice of b(l); the Kirillov mapping

KirG : g∗ → Ĝ, l 7→ πl

is surjective and factors to a bijection g∗/G→ Ĝ. Given π ∈ Ĝ, we write Ω(π) ∈ g∗/G to denote
the inverse image of π under the Kirillov mapping KirG.

2.3 Rational structures and uniform subgroups

In this section we present some results on discrete uniform subgroups of nilpotent Lie groups.
Let G be a nilpotent, connected and simply connected real Lie group and let g be its Lie

algebra. We say that g (or G) has a rational structure if there is a Lie algebra gQ over Q such
that g ∼= gQ ⊗ R. It is clear that g has a rational structure if and only if g has an R-basis
(X1, . . . , Xn) with rational structure constants.

A discrete subgroup Γ is called uniform in G if the quotient space G/Γ is compact. The
homogeneous space G/Γ is called a compact nilmanifold. A proof of the next result can be
found in Theorem 7 of [12] or in Theorem 2.12 of [17].
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Theorem 1 (the Malcev rationality criterion). Let G be a simply connected nilpotent Lie group,
and let g be its Lie algebra. Then G admits a uniform subgroup Γ if and only if g admits a basis
(X1, . . . , Xn) such that

[Xi, Xj ] =
n∑
k=1

cijkXk ∀ 1 ≤ i, j ≤ n,

where the constants cijk are all rational.

More precisely, if G has a uniform subgroup Γ, then g has a rational structure such that

gQ = gQ,Γ = Q-span {log(Γ)} .

Conversely, if g has a rational structure given by some Q-algebra gQ ⊂ g, then G has a uniform
subgroup Γ such that log(Γ) ⊂ gQ (see [2] or [12]).

Definition 1 ([2]). Let g be a nilpotent Lie algebra and let B = (X1, . . . , Xn) be a basis of g.
We say that B is a strong Malcev basis for g if gi = R-span {X1, . . . , Xi} is an ideal of g for
each 1 ≤ i ≤ n.

Let Γ be a discrete uniform subgroup of G. A strong Malcev basis (X1, . . . , Xn) for g is said
to be strongly based on Γ if

Γ = exp(ZX1) · · · exp(ZXn).

Such a basis always exists (see [2, 13]).

2.4 Rational subgroups

Definition 2 (rational subgroup). Let G be a connected simply connected nilpotent Lie group
with Lie algebra g. We suppose that g has rational structure given by gQ.

(1) Let h be an R-subspace of g. We say that h is rational if h = R-span {hQ} where hQ =
h ∩ gQ.

(2) A connected, closed subgroup H of G is called rational if its Lie algebra h is rational.

Remark 1. The R-span and the intersection of rational subspaces are rational [2, Lemma 5.1.2].

Definition 3 (subgroup with good Γ-heredity, [16]). Let Γ be a discrete uniform subgroup in
a locally compact group G and H a closed subgroup in G. We say that H is a subgroup with
good Γ-heredity if the intersection Γ ∩H is a discrete uniform subgroup of H.

Theorem 2 ([6, Lemma A.5]). Let G be a connected, simply connected nilpotent Lie group
with Lie algebra g, let Γ be a discrete uniform subgroup of G, and give g the rational structure
gQ = Q-span {log(Γ)}. Let H be a Lie subgroup of G. Then the following statements are
equivalent

(1) H is rational;

(2) H is a subgroup with good Γ-heredity;

(3) The group H is Γ-closed (i.e., the set HΓ is closed in G).

A proof of the next result can be found in Proposition 5.3.2 of [2].
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Proposition 1. Let Γ be discrete uniform subgroup in a nilpotent Lie group G, and let H1 $
H2 $ · · · $ Hk = G be rational normal subgroups of G. Let h1, . . . , hk−1, hk = g be the
corresponding Lie algebras. Then there exists a strong Malcev basis (X1, . . . , Xn) for g strongly
based on Γ and passing through h1, . . . , hk−1.

Now let G be a connected, simply connected nilpotent Lie group with Lie algebra g, and
suppose that g has a rational structure given by the discrete uniform subgroup Γ. A real linear
functional f ∈ g∗ is called rational (f ∈ g∗Q, gQ = Q-span {log(Γ)}) if 〈f, gQ〉 ⊂ Q, or equivalently
〈f, log(Γ)〉 ⊂ Q.

Proposition 2 ([6], Theorem A.7). Let G be a nilpotent Lie group with rational structure and
let g be its Lie algebra. If l ∈ g∗ is rational, then its radical g(l) is rational.

3 Preliminary results

Definition 4. A functional l ∈ g∗ is said in general position or generic linear functional, if its
coadjoint orbit has maximum dimension.

The following proposition will be used in the sequel

Proposition 3. Let G = exp(g) be a nilpotent Lie group and Γ a discrete uniform subgroup
of G. Then there exist rational generic linear functionals.

Proof. Let O be the set of elements in general position in g∗. We have O is a nonempty Zariski
open set in g∗. Since g∗Q is dense in g∗ then g∗Q ∩ O 6= ∅. �

Before stating the next result, we introduce some notations and definitions. We first recall
the concept of fundamental domain.

Definition 5. Let G be a topological group and let H be a subgroup of G. A fundamental
domain for H is a Borel subset Ω of G such that

G =
⊔
h∈H

Ωh

is the disjoint union of the Borel subsets Ωh, h ∈ H.

Remark 2. It is clear that a Borel subset Ω of G is a fundamental domain for H in G if and
only if the natural map Ω→ G/H defined by g 7→ gH is bijective.

Let Γ be a discrete uniform subgroup of a connected, simply connected nilpotent Lie group G,
and let B = (X1, . . . , Xn) be a strong Malcev basis for the Lie algebra g of G strongly based
on Γ. Define the mapping EB : Rn → G by

EB(T ) = exp(tnXn) · · · exp(t1X1),

where T = (t1, . . . , tn) ∈ Rn. It is well known that EB is a diffeomorphism [2]. Let

I = [0, 1) = {t ∈ R : 0 ≤ t < 1}

and let

Ω = EB(In).
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Then Ω is a fundamental domain for Γ in G [6, Lemma 3.6], and the mapping EB maps the
Lebesgue measure dt on In to the G-invariant probability measure ν on G/Γ, that is, for ϕ
in C(G/Γ), we have∫

G/Γ
ϕ(ġ)dν(ġ) =

∫
In
ϕ(EB(t))dt.

Furthermore, for φ ∈ Cc(G) we have∫
G
φ(g)dν(g) =

∑
s∈Zn

∫
In
φ
(
EB(t)EB(s)

)
dt. (4)

The following proposition will be used in the sequel.

Proposition 4. Let G = exp(g) be a connected, simply connected nilpotent Lie group and
let Γ be a discrete uniform subgroup of G. Let m be a rational ideal of g of dimension k. Let
M = exp(m) and let (X1, . . . , Xn) be a strong Malcev basis of g strongly based on Γ passing
through m. For every ξ ∈ Cc(G/M), we have∫

G/M
ξ(g)dg =

∑
s∈Zn−k

∫
In−k

ξ
(

exp(xn−kXn) · · · exp(x1Xk+1)

× exp(sn−kXn) · · · exp(s1Xk+1)
)
dxn · · · dxk+1,

where Xi are the image of Xi under the canonical projection p : g→ g/m.

Proof. Since M is rational, it follows from Lemma 5.1.4 of [2], that P (Γ) is a uniform subgroup
of P (G), where P : G→ G/M is the canonical projection. On the other hand, (Xk+1, . . . , Xn)
is a strong Malcev basis of g/m strongly based on P (Γ). We conclude by applying (4). �

4 On the rational structure of one-parameter
metabelian nilpotent Lie groups

Definition 6 (one-parameter metabelian nilpotent Lie algebra). A nonabelian nilpotent Lie al-
gebra g is said to be one parameter metabelian nilpotent Lie algebra, if it admits a co-dimensional
one abelian ideal in g.

First, we give an important example of one-parameter metabelian nilpotent Lie groups.

Example 1 (the generic filiform nilpotent Lie group). Let G be the generic filiform nilpotent
Lie group of dimension n with Lie algebra g, where

g = R-span {X1, . . . , Xn}

The Lie brackets given by

[Xn, Xi] = Xi−1, i = 2, . . . , n− 1,

and the nondefined brackets being equal to zero or obtained by antisymmetry. It is clear that g
is a one-parameter metabelian nilpotent Lie algebra.

Remark 3. Let g be a one-parameter metabelian nilpotent Lie algebra. Any codimension one
abelian ideal m ⊂ g is a common polarization for all functionals l ∈ g∗ in general position (i.e.,
l|[g,g] 6= 0).
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Definition 7 (one-parameter metabelian nilmanifold). A factor space of a one-parameter
metabelian nilpotent Lie group over a discrete uniform subgroup is called a one-parameter
metabelian nilmanifold.

Proposition 5. Let g be a one-parameter metabelian nilpotent Lie algebra. Then we have the
following decomposition

g = RX ⊕⊕pi=1Lni ⊕ a

such that for all i = 1, . . . , p, the subalgebra RX⊕Lni is the generic filiform nilpotent Lie algebra
of dimension ni + 1 and a ⊂ z(g).

Proof. Let I be a one-codimensional abelian ideal of g and let X ∈ g such that

g = I⊕R-span {X} .

Let adX|I be the restriction of adX to I;

adX|I : I→ I, Y 7→ [X,Y ].

Remark that adX acts as a nilpotent linear transformation on I. By the Jordan normal form
theorem, the matrix of adX|I is similar to a matrix in real Jordan canonical form. Then there
exist BI = (e1, . . . , en−1) a basis of I, J0,ni , 1 ≤ i ≤ s elementary Jordan blocks of order ni such
that

Mat(adX|f,BI) = diag[J0,n1 , . . . , J0,ns ].

This completes the proof. �

Proposition 6. Let G be a one-parameter metabelian nilpotent Lie group with Lie algebra g.
Then G admits a discrete uniform subgroup.

Proof. This follows at once from the Malcev rationality criterion (Theorem 1) and Proposi-
tion 5. �

Proposition 7. Let G be a one-parameter metabelian nilpotent Lie group of dimension n. Let Γ
be a discrete uniform subgroup of G. Then G admits a rational abelian ideal of codimension one.

Before proving the proposition, we need the following theorem.

Theorem 3 ([1, p. 17]). If l ∈ g∗ is in general position then g(l) is abelian.

Proof of Proposition 7. Let (e1, . . . , en) be a strong Malcev basis for g strongly based on Γ.
Let l be a rational linear functional in general position (see Proposition 3). The stabilizer of l
is a rational abelian subalgebra. On the other hand, applying equality (3) we obtain

dim(g(l)) = n− 2. (5)

Let (ei1 , ei2) be a basis of g modulo g(l). If [ei1 , g(l)] = {0}, then g(l)⊕R-span{ei1} is a rational
abelian ideal of g of codimension one. If [ei1 , g(l)] 6= {0}, let

a = {X ∈ R-span{ei1 , ei2} : [X, g(l)] = {0}}.

In this case, we have dim(a) = 1. Moreover, it is clear that

a = {X ∈ g : [X, g(l)] = {0}} ∩R-span{ei1 , ei2}.

By Proposition 5 of [9], the space

{X ∈ g : [X, g(l)] = {0}}

is rational. Consequently, a is rational subspace in g. Thus a ⊕ g(l) is a rational abelian ideal
of g of codimension one. �
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The next proposition is a generalization of Proposition 3.1 of [10], in which we give a necessary
and sufficient condition for uniqueness of the one-codimensional abelian normal subgroup.

Proposition 8. Let G be a one-parameter metabelian nilpotent Lie group. Then G admits
a unique one-codimensional abelian normal subgroup if and only if G is not of the form H3×Rk,
where k ∈ N and H3 is the Heisenberg group of dimension 3.

Proof. The necessity of this condition is evident. We prove the sufficiency. Let m1, m2 be
two abelian one-codimensional subalgebras of g. Let l be a linear functional in general position.
Since every polarization for l contains g(l) then there exists X ∈ g (see (5)) such that

m1 = g(l)⊕R-span {X} .

Let Y ∈ g such that

g = m1 ⊕R-span {Y } .

On the other hand, there exist α ∈ R∗ and u ∈ m1 such that

m2 = g(l)⊕R-span {αY + u} .

Since m1 and m2 are abelian then

[Y, g(l)] = {0} .

Consequently, [X,Y ] is nonzero bracket. Let a be an ideal of g such that g(l)=a⊕R-span {[X,Y ]}.
Then we have g = h3 ⊕ a where h3 = R-span {X,Y, [X,Y ]} is the three dimensional Heisenberg
algebra. �

5 Construction of intertwining operators

Let G be a one-parameter metabelian nilpotent Lie group of dimension n with Lie algebra g.
Let Γ be a discrete uniform subgroup of G. Let M = exp(m), where m is a rational abelian ideal
in g of codimension one. Let B = (X1, . . . , Xn) be a strong Malcev basis of g strongly based
on Γ passing through [g, g] and m. We put

[g, g] = R-span{X1, . . . , Xp} (6)

and

m = R-span {X1, . . . , Xn−1} .

Let

V = ZX∗p+1 + · · ·+ZX∗n

and

W = {l ∈ ZX∗1 + · · ·+ZX∗n−1 : l|[g,g] 6= 0}.

In the following, for l ∈ m∗ ⊂ g∗ and g ∈ G we denote

Ad∗0gl = (Ad∗gl)|m.

Lemma 1. The subset W is Ad∗0Γ invariant.
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Proof. Let exp(γ) ∈ Γ and l ∈ W. Let i = 1, . . . , n − 1. By definition of the coadjoint
representation we have

〈exp(−γ) · l,Xi〉 = 〈l, ead γ(Xi)〉.

On the other hand, since M is normal in G, we have that

exp
(
ead γ(X)

)
= exp(γ) expXi exp(−γ) ∈ Γ ∩M.

Since M is abelian and

Γ ∩M = exp(ZX1) · · · exp(ZXn−1)

then

log(Γ) ∩m = ZX1 ⊕ · · · ⊕ZXn−1.

It follows that 〈l, ead γ(Xi)〉 ∈ Z. Then

exp(−γ) · l ∈ ZX∗1 ⊕ · · · ⊕ZX∗n−1. (7)

It remains to prove that

(exp(−γ) · l)|[g,g] 6= 0. (8)

We have

g(exp(−γ) · l) = Ad exp(−γ)(g(l)).

Since g(l) 6= g, then g(exp(−γ) · l) 6= g and therefore (8) holds. Consequently, from (7) and (8)
we have exp(−γ) · l ∈ W. �

Let C(G/Γ) be the space of all complex valued continuous functions ξ on G satisfying

ξ(gγ) = ξ(g), (9)

for any g in G and γ in Γ.

Lemma 2. Let l ∈ V, we have

(1) χl|Γ = 1.

(2) For ξ ∈ C(G/Γ), and g ∈ G, the function

G/Γ→ C, mΓ 7→ ξ(gm)χl(m)

is well defined.

Proof. (1) Let γ ∈ Γ, then there exist t1, . . . , tn ∈ Z such that

γ = exp(t1X1) · · · exp(tnXn).

By the Baker–Campbell–Hausdorff formula we have

log(γ) ≡ tp+1Xp+1 + · · ·+ tnXn (mod [g, g]).

Since l|[g,g] = 0 then χl(γ) = 1.
(2) Let γ ∈ Γ. We have

ξ(gmγ)χl(mγ) = ξ(gm)χl(mγ)
by (9)

= ξ(gm)χl(m)χl(γ) = ξ(gm)χl(m).

This completes the proof of the lemma. �
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Let Σ be a crosssection for Γ-orbits in W. Let

ρ =
⊕
l∈Σ

IndGM χl +
⊕
l∈V

χl.

We are now in a position to formulate the following

Theorem 4. The operator U defined for all ξ ∈ C(G/Γ) and g ∈ G by

U(ξ)(l)(g) =


∫
M/M∩Γ

ξ(gm)χl(m)dṁ if l ∈ Σ,∫
G/Γ

ξ(gm)χl(m)dṁ if l ∈ V

is an isometric linear operator having value in the Hilbert space H ρ of ρ and can be extended
on L2(G/Γ) to an intertwining operator of τ and ρ.

Proof. Clearly for l ∈ Σ ∪ V, the function U(ξ)(l) satisfies the covariance relation (2). First,
we establish that U is well defined and isometric. Let ξ ∈ C(G/Γ). Then

‖U(ξ)‖2 =
∑
l∈Σ

‖U(ξ)(l)‖2L2(G/M,l) +
∑
l∈V
‖U(ξ)(l)‖2.

We proceed to calculate the first sum. For x = (x1, . . . , xn−1) ∈ Rn−1 and t ∈ R, let

δ(t, x) = EB((x, t)) = exp(tXn) exp(xn−1Xn−1) · · · exp(x1X1),∑
l∈Σ

‖U(ξ)(l)‖2L2(G/M,l) =
∑
l∈Σ

∫
G/M
|U(ξ)(l)(g)|2dġ

=
∑
l∈Σ

∫
G/M

∣∣∣∣ ∫
M/M∩Γ

ξ(gm)χl(m)dṁ

∣∣∣∣2dġ
=
∑
l∈Σ

∑
s∈Z

∫
I

∣∣∣∣ ∫
M/M∩Γ

ξ(δ(t, 0)δ(s, 0)m)χl(m)dṁ

∣∣∣∣2dt
=
∑
l∈Σ

∑
s∈Z

∫
I

∣∣∣∣ ∫
M/M∩Γ

ξ(δ(t, 0)m)χl(δ(s, 0)−1mδ(s, 0))dṁ

∣∣∣∣2dt
=
∑
l∈Σ

∑
s∈Z

∫
I

∣∣∣∣ ∫
M/M∩Γ

ξ(δ(t, 0)m)χAd∗(δ(s,0))l(m)dṁ

∣∣∣∣2dt.
As the mapping Σ×Z→W, (l, s) 7→ Ad∗(δ(s, 0))l is bijective, then

∑
l∈Σ

‖U(ξ)(l)‖2L2(G/M,l) =
∑
l∈W

∫
I

∣∣∣∣ ∫
M/M∩Γ

ξ(δ(t, 0)m)χl(m)dṁ

∣∣∣∣2dt
=
∑
l∈W

∫
I

∣∣∣∣ ∫
In−1

ξ(δ(t, x))χl(δ(0, x))dx

∣∣∣∣2dt.
Next, we compute

∑
l∈V
‖U(ξ)(l)‖2 =

∑
l∈V
|U(ξ)(l)(e)|2 =

∑
l∈V

∣∣∣∣ ∫
G/Γ

ξ(g)χl(g)dġ

∣∣∣∣2
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=
∑
l∈V

∣∣∣∣ ∫
In
ξ(δ(t, x))χl(δ(t, x))dtdx

∣∣∣∣2
=
∑
l1∈V1

∑
l2∈V2

∣∣∣∣ ∫
In
ξ(δ(t, x))χl1(δ(0, x))χl2(δ(t, 0))dtdx

∣∣∣∣2
(where V1 = ZX∗p+1 + · · ·+ZX∗n−1,V2 = ZX∗n and l = l1 + l2 ∈ V1⊕V2)

=
∑
l1∈V1

∫
I

∣∣∣∣ ∫
In−1

ξ(δ(t, x))χl1(δ(0, x))dx

∣∣∣∣2dt,
where we have applied Parseval’s equality with respect to the variable t. Summarizing, we have

‖U(ξ)‖2 =
∑
l∈W

∫
I

∣∣∣∣ ∫
In−1

ξ(δ(t, x))χl(δ(0, x))dx

∣∣∣∣2dt
+
∑
l∈V1

∫
I

∣∣∣∣ ∫
In−1

ξ(δ(t, x))χl(δ(0, x))dx

∣∣∣∣2dt.
It is clear that W and V1 are disjoint. In fact, suppose that W ∩V1 6= ∅. Let l ∈ W ∩V1.

The condition l ∈ V1 implies that l|[g,g] = 0 since [g, g] = RX1 ⊕ · · · ⊕ RXp (see (6)). This
contradicts the fact that l|[g,g] 6= 0 because l ∈ W. Now, let

m∗Z =W tV1 . (10)

It is clear that

m∗Z = ZX∗1 + · · ·+ZX∗n−1.

Consequently, we obtain

‖U(ξ)‖2 =

∫
I

∑
l∈m∗

Z

∣∣∣∣∫
In−1

ξ(δ(t, x))χl(δ(0, x))dx

∣∣∣∣2 dt =

∫
I

∫
In−1

|ξ(δ(t, x))|2dxdt

(by Parseval’s equality)
=

∫
In
|ξ(δ(t, x))|2dxdt = ‖ξ‖2Hτ

.

The operator U being now isometric, it can be extended to an isometry of L2(G/Γ). It remains to
verify that U is an intertwining operator for τ and ρ. It suffices then to prove that U ◦τ(g)(ξ) =
ρ(g) ◦U(ξ) for every g in G and ξ in C(G/Γ). Let l ∈ Σ, a ∈ G. We compute

U ◦τ(g)(ξ)(l)(a) =

∫
M/M∩Γ

τ(g)(ξ)(am)χl(m)dṁ =

∫
M/M∩Γ

ξ(g−1am)χl(m)dṁ.

On the other hand

ρ(g) ◦U(ξ)(l)(a) = IndGM χl(g)(U(ξ)(l))(a) = U(ξ)(l)
(
g−1a

)
=

∫
M/M∩Γ

ξ(g−1am)χl(m)dṁ.

Thus

U ◦τ(g)(ξ)(l)(a) = ρ(g) ◦U(ξ)(l)(a).
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Similarly, we prove that the same equality holds if l ∈ V. Consequently, the following diagram:

Hτ
τ(g)−−−−→ Hτ

U

y U

y
Hρ

ρ(g)−−−−→ Hρ

(11)

is commutative. �

Next, we show that U is an invertible operator. For this, let

H c
ρ =

⊕
l∈Σ

Cc(G/M,χl)⊕
⊕
l∈V

Cχl ⊂Hρ,

where Cc(G/M,χl) is the space of complex valued continuous functions ξ on G satisfying

ξ(gm) = χ−1
l (m)ξ(g) ∀ g ∈ G, m ∈M, (12)

and having a compact support modulo M .

Lemma 3. Let K ∈H c
ρ, l ∈ Σ and g ∈ G. The function

Γ/Γ ∩M → C, γ(Γ ∩M) 7→ K(l)(gγ)

is well defined.

Proof. Let γ ∈ Γ and γ′ ∈ Γ ∩M . Since K(l) ∈ Cc(G/M,χl) then K(l) satisfies the covari-
ance relation (12). Hence K(l)(gγγ′) = χ−1

l (γ′)K(l)(gγ). On the other hand, as Γ ∩ M =
exp(ZX1) · · · exp(ZXn−1) and M is abelian, then log(Γ) ∩ m = ZX1 ⊕ · · · ⊕ ZXn−1. It follows
that χl|Γ∩M = 1, in particular, χl(γ

′) = 1. Then K(l)(gγγ′) = K(l)(gγ). �

Let

H 0
ρ = {K ∈H c

ρ : K(l)is a zero function everywhere, except for finite number of l}.

The space H 0
ρ is dense in H ρ.

Lemma 4. For K ∈H 0
ρ and g ∈ G, the sum∑

l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(gγ) +
∑
l∈V

K(l)(g), g ∈ G, (13)

has only finitely many nonzero terms.

Proof. Let l ∈ Σ ∪ V. For g ∈ G, let

Sg = {γ ∈ Γ : gγ ∈ supp(K(l))} .

Then there is an integer nK(l) independent of g ∈ G such that Sg is the union of at most nK(l)

cosets of Γ ∩M [3, Lemma 3.2]. This observation shows that the sum over Γ/Γ ∩M in (13)
has at most nK(l) nonzero entries for each g ∈ G. Consequently, the sum (13) is a sum of finite
terms. �

We define the operator V on the dense subspace H 0
ρ by

V(K)(g) =
∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(gγ) +
∑
l∈V

K(l)(g), g ∈ G.
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Proposition 9. The operator V is the inverse of U.

Proof. First, we observe that V(K) satisfies the covariance relation (2) in L2(G/Γ). In fact,
let g ∈ G and γ0 ∈ Γ, we have

V(K)(gγ0) =
∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(gγ0γ) +
∑
l∈V

K(l)(gγ0)

(in the first sum, we use the change of variable γ 7→ γ−1
0 γ)

=
∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(gγ) +
∑
l∈V

K(l)(gγ0).

As γ0 ∈ Γ and l ∈ V then χl(γ0) = 1 (see property (1) of Lemma 2). Consequently we obtain

V(K)(gγ0) = V(K)(g).

Now, we calculate U ◦V(K) for some K ∈ H ρ. Let K ∈ H 0
ρ. We distinguish the following

two cases.
Case 1. l0 ∈ Σ.

U ◦V(K)(l0)(e) = U(V(K))(l0)(e) =

∫
M/M∩Γ

V(K)(m)χl0(m)dṁ

=

∫
M/M∩Γ

(∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(mγ) +
∑
l∈V

K(l)(m)

)
χl0(m)dṁ

=

∫
M/M∩Γ

(∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(γγ−1mγ) +
∑
l∈V

K(l)(m)

)
χl0(m)dṁ

=

∫
M/M∩Γ

(∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(γ)χ−1
l (γ−1mγ) +

∑
l∈V

K(l)(e)χ−1
l (m)

)
χl0(m)dṁ

=

∫
M/M∩Γ

(∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(γ)χAd∗ γl(m) +
∑
l∈V

K(l)(e)χl(m)

)
χl0(m)dṁ

=
∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(γ)

∫
M/M∩Γ

χAd∗ γl(m)χl0(m)dṁ

+
∑
l∈V

K(l)(e)

∫
M/M∩Γ

χl(m)χl0(m)dṁ.

The interchange of integration and summation is justified by the fact that K ∈ H 0
ρ. On the

other hand, the integral∫
M/M∩Γ

χAd∗ γl(m)χl0(m)dṁ =

{
1, if Ad∗ γl = l0,
0, otherwise.

Since l and l0 belong to Σ, then

Ad∗ γl = l0 ⇔ l = l0 and γ(Γ ∩M) = Γ ∩M.

It follows that∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(γ)

∫
M/M∩Γ

χAd∗ γl(m)χl0(m)dṁ = K(l0)(e).
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On the other hand, since l0 6∈ V then∫
M/M∩Γ

χl(m)χl0(m)dṁ = 0,

for every l ∈ V and hence∑
l∈V

K(l)(e)

∫
M/M∩Γ

χl(m)χl0(m)dṁ = 0.

Finally, we obtain

U ◦V(K)(l0)(e) = K(l0)(e).

Case 2. l0 ∈ V.

U ◦V(K)(l0)(e) = U(V(K))(l0)(e) =

∫
G/Γ

V(K)(g)χl0(g)dġ

=

∫
G/Γ

(∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(gγ) +
∑
l∈V

K(l)(g)

)
χl0(g)dġ.

First remark that:∫
G/Γ

∑
l∈V

K(l)(g)χl0(g)dġ =

∫
G/Γ

∑
l∈V

K(l)(e)χl(g)χl0(g)dġ

=
∑
l∈V

K(l)(e)

∫
G/Γ

χl(g)χl0(g)dġ = K(l0)(e).

Next∫
G/Γ

∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(gγ)χl0(g)dġ =

∫
In

∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(δ(t, x)γ)χl0(δ(t, x))dxdt

=

∫
In

∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(δ(t, 0)γγ−1δ(0, x)γ)χl0(δ(t, 0))χl0(δ(0, x))dxdt

=

∫
I

∫
In−1

∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(δ(t, 0)γ)χ−1
l (γ−1δ(0, x)γ)χl0(δ(t, 0))χl0(δ(0, x))dxdt

=

∫
I

∑
l∈Σ

∑
γ∈Γ/Γ∩M

K(l)(δ(t, 0)γ)

∫
In−1

χAd∗ γl(δ(0, x))χl0(δ(0, x))dxχl0(δ(t, 0))dt = 0.

Then U ◦V(K)(l0)(e)=K(l0)(e). We conclude that for every K in H 0
ρ, we have U ◦V(K)=K.

Next, for ξ ∈ L2(G/Γ) such that U(ξ) ∈H 0
ρ we compute

V ◦U(ξ)(e) = V(U(ξ))(e) =
∑
l∈Σ

∑
γ∈Γ/Γ∩M

U(ξ)(l)(γ) +
∑
l∈V

U(ξ)(l)(e)

=
∑
l∈Σ

∑
γ∈Γ/Γ∩M

∫
M/M∩Γ

ξ(γm)χl(m)dṁ+
∑
l∈V

U(ξ)(l)(e)

=
∑
l∈Σ

∑
γ∈Γ/Γ∩M

∫
M/M∩Γ

ξ(γmγ−1)χl(m)dṁ+
∑
l∈V

U(ξ)(l)(e)
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=
∑
l∈Σ

∑
γ∈Γ/Γ∩M

∫
M/M∩Γ

ξ(m)χl(γ
−1mγ)dṁ+

∑
l∈V

U(ξ)(l)(e)

=
∑
l∈Σ

∑
γ∈Γ/Γ∩M

∫
M/M∩Γ

ξ(m)χAd∗γl(m)dṁ+
∑
l∈V

U(ξ)(l)(e)

=
∑
l∈W

∫
M/M∩Γ

ξ(m)χl(m)dṁ+
∑
l∈V

U(ξ)(l)(e)

=
∑
l∈W

∫
In−1

ξ(δ(0, x))χl(δ(0, x))dx+
∑
l∈V

U(ξ)(l)(e).

On the other hand∑
l∈V

U(ξ)(l)(e) =
∑
l∈V

∫
G/Γ

ξ(g)χl(g)dġ =
∑
l∈V

∫
In
ξ(δ(t, x))χl(δ(t, x))dtdx

=
∑
l1∈V1

∑
l2∈V2

∫
In
ξ(δ(t, x))χl1(δ(0, x))χl2(δ(t, 0))dtdx

(where V1 = ZX∗p+1 + · · ·+ZX∗n−1,V2 = ZX∗n and l = l1 + l2 ∈ V1⊕V2)

=
∑
l1∈V1

∫
In−1

ξ(δ(0, x))χl1(δ(0, x))dx

by the Fourier inversion
formula to the variable t

=
∑
l∈V1

∫
In−1

ξ(δ(0, x))χl(δ(0, x))dx.

Then

V ◦U(ξ)(e) =
∑
l∈W

∫
In−1

ξ(δ(0, x))χl(δ(0, x))dx+
∑
l∈V1

∫
In−1

ξ(δ(0, x))χl(δ(0, x))dx

by (10)
=

∑
l∈m∗Z

∫
In−1

ξ(δ(0, x))χl(δ(0, x))dx

by the Fourier inversion
formula to the variable x

= ξ(e). �

Finally, we obtain that U is well defined and isometric and has dense range. It therefore
extends uniquely into an isometry of H τ onto H ρ. As immediate consequences of the last
theorem are the following

Corollary 1. We have the following decomposition

τ ' ρ =
⊕
l∈Σ

IndGM χl +
⊕
l∈V

χl.

For the next corollary, we write #E to denote the cardinal number of a set E.

Corollary 2. We keep the same notations as Theorem 4. The multiplicity function m(πl) is
given by m(πl) = 1 if l ∈ V and m(πl) = #[Ω(πl) ∩ Σ] if l ∈ Σ.

Proof. Let l ∈ A, where A = Σ or V. The multiplicity m(πl) is equal to the number of l′ ∈ A
such that πl ' πl′ . Thus, by the Kirillov theory, we have

m(πl) = #{l′ ∈ A : l′ ∈ Ω(πl)} = #[Ω(πl) ∩A].

Now, if l ∈ V, the coadjoint orbit Ω(πl) has only one element and therefore m(πl) = 1. �
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