Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 7 (2011), 008, 16 pages      arXiv:1010.4382
Contribution to the Proceedings of the International Workshop “Recent Advances in Quantum Integrable Systems”

A Vertex Operator Approach for Form Factors of Belavin's (Z/nZ)-Symmetric Model and Its Application

Yas-Hiro Quano
Department of Clinical Engineering, Suzuka University of Medical Science, Kishioka-cho, Suzuka 510-0293, Japan

Received October 22, 2010, in final form January 07, 2011; Published online January 15, 2011

A vertex operator approach for form factors of Belavin's (Z/nZ)-symmetric model is constructed on the basis of bosonization of vertex operators in the An−1(1) model and vertex-face transformation. As simple application for n=2, we obtain expressions for 2m-point form factors related to the σz and σx operators in the eight-vertex model.

Key words: vertex operator approach; form factors; Belavin's (Z/nZ)-symmetric model; integral formulae.

pdf (480 kb)   tex (15 kb)


  1. Quano Y.-H., A vertex operator approach for correlation functions of Belavin's (Z/nZ)-symmetric model, J. Phys. A: Math. Theor. 42 (2009), 165211, 20 pages, arXiv:0810.4220.
  2. Quano Y.-H., A vertex operator approach for form factors of Belavin's (Z/nZ)-symmetric model, J. Phys. A: Math. Theor. 43 (2010), 085202, 23 pages, arXiv:0912.1149.
  3. Belavin A.A., Dynamical symmetry of integrable quantum systems, Nuclear Phys. B 180 (1981), 189-200.
  4. Richey M.P., Tracy C.A., Zn Baxter model: symmetries and the Belavin parametrization, J. Statist. Phys. 42 (1986), 311-348.
  5. Jimbo M., Miwa T., Algebraic analysis of solvable lattice models, CBMS Regional Conferences Series in Mathematics, Vol. 85, American Mathematical Society, Providence, RI, 1995.
  6. Baxter R.J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982.
  7. Lashkevich M., Pugai L., Free field construction for correlation functions of the eight vertex model, Nuclear Phys. B 516 (1998), 623-651, hep-th/9710099.
  8. Lashkevich M., Free field construction for the eight-vertex model: representation for form factors, Nuclear Phys. B 621 (2002), 587-621, hep-th/0103144.
  9. Lukyanov S., Pugai Ya., Multi-point local height probabilities in the integrable RSOS model, Nuclear Phys. B 473 (1996), 631-658, hep-th/9602074.
  10. Kojima T., Konno H., Weston R., The vertex-face correspondence and correlation functions of the fusion eight-vertex model. I. The general formalism, Nuclear Phys. B 720 (2005), 348-398, math.QA/0504433.
  11. Quano Y.-H., Spontaneous polarization of the Zn-Baxter model, Modern Phys. Lett. A 8 (1993), 3363-3375, hep-th/9308053.
  12. Kojima T., Konno H., The elliptic algebra Uq,p(^slN) and the Drinfeld realization of the elliptic quantum group Bq(^slN), Comm. Math. Phys. 239 (2003), 405-447, math.QA/0210383.
  13. Kojima T., Konno H., The elliptic algebra Uq,p(^slN) and the deformation of the WN algebra, J. Phys. A: Math. Gen. 37 (2004), 371-383, math.QA/0307244.
  14. Jimbo M., Miwa T., Okado M., Local state probabilities of solvable lattice models: an An(1) family, Nuclear Phys. B 300 (1988), 74-108.
  15. Asai Y., Jimbo M., Miwa T., Pugai Ya., Bosonization of vertex operators for the An−1(1) face model, J. Phys. A: Math. Gen. 29 (1996), 6595-6616, hep-th/9606095.
  16. Furutsu H., Kojima T., Quano Y.-H., Type II vertex operators for the An−1(1)-face model, Internat. J. Modern Phys. A 15 (2000), 1533-1556, solv-int/9908009.
  17. Feigin B.L., Frenkel E.V., Quantum W-algebras and elliptic algebras, Comm. Math. Phys. 178 (1996), 653-678, q-alg/9508009.
  18. Awata H., Kubo H., Odake S., Shiraishi J., Quantum WN algebras and Macdonald polynomials, Comm. Math. Phys. 179 (1996), 401-416, q-alg/9508011.
  19. Fan H., Hou B-Y., Shi K-J., Yang W-L., Bosonization of vertex operators for the Zn-symmetric Belavin model, J. Phys. A: Math. Gen. 30 (1997), 5687-5696, hep-th/9703126.
  20. Lukyanov S., Terras V., Long-distance asymptotics of spin-spin correlation functions for the XXZ spin chain, Nuclear Phys. B 654 (2003), 323-356, hep-th/0206093.
  21. Smirnov F.A., Form factors in completely integrable models of quantum field theory, Advanced Series in Mathematical Physics, Vol. 14, World Scientific Publishing Co., Inc., River Edge, NJ, 1992.

Previous article   Next article   Contents of Volume 7 (2011)