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Abstract. We analyze the moduli-space metric in the static non-Abelian charge-two sector
of the Moyal-deformed CP 1 sigma model in 1 + 2 dimensions. After carefully reviewing
the commutative results of Ward and Ruback, the noncommutative Kähler potential is
expanded in powers of dimensionless moduli. In two special cases we sum the perturbative
series to analytic expressions. For any nonzero value of the noncommutativity parameter,
the logarithmic singularity of the commutative metric is expelled from the origin of the
moduli space and possibly altogether.
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1 Introduction and summary

The CP 1 sigma model in 1 + 2 dimensions is a paradigm for soliton studies [1, 2]. In particular,
it provides the simplest example for a nontrivial dynamics of slowly-moving lumps, following
the adiabatic approximation scheme of Manton [3]. In a slice of the charge-two sector, the
moduli-space metric was worked out and the geodesic motion was analyzed by Ward [4]. The
corresponding Kähler potential was then given by Ruback [5] (see also [6]).

In the case just mentioned, the (restricted) moduli space of static charge-two solutions is
complex two-dimensional and contains ring-like as well as two-lump configurations. On the
complex line where the lump size shrinks to zero, the metric develops a logarithmic singularity.
Such divergencies can often be regulated by subjecting the system to a noncommutative defor-
mation, which introduces a dimensionful deformation parameter θ. To explore this possibility,
we analyze the Moyal-deformed CP 1 model [7] in this paper.

In fact, the (restricted) moduli-space metric for the charge-two sector of this noncommutative
model was already investigated in [8]. There, the authors show that the metric in question is
flat for θ → ∞ (corresponding to vanishing values of the dimensionless moduli) and possesses
a smooth θ → 0 limit (which is attained for infinite values of the dimensionless moduli). How-
ever, these findings do not establish the removal of the logarithmic singularity for finite values
of θ or amount to an explicit computation of the Kähler potential.

?This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is
available at http://www.emis.de/journals/SIGMA/noncommutative.html
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In this paper, we review the commutative results and present a power-series expansion of the
deformed Kähler potential in the ‘ring’ regime of the moduli space. For the first time, this is
achieved for arbitrary values of θ. We verify the commutative limit and sum up the perturbation
series on the would-be singular line in the ‘two-lump’ domain via the Gel’fand–Yaglom method.
There is a curious connection with the eigenvalues of the spheroidal wave equation. Around the
origin of the moduli space, the Kähler potential is shown to be analytic, which substantiates
the claim of [8]. Perturbative expressions for the moduli-space metric follow via differentiation,
and the two-lump scattering behavior may be quantified.

2 The CP 1 model and its solitons

The CP 1 or, equivalently, the O(3) sigma model describes the dynamics of maps from R1,2

with a metric (ηµν) = diag(−1,+1,+1) into CP 1 ' SU(2)
U(1) ' S2. There are various ways to

parametrize the target space, for instance by hermitian rank-one projectors P in C2,

P = P † = P 2 = T (T †T )−1T †,

or else by vectors T ∈ C2 modulo complex scale,

T =
(

p

q

)
∼
(

u

1

)
with u =

p

q
,

so that the field degree of freedom is a single function u taking values in the extended complex
plane Ċ ' CP 1.

Introducing coordinates on R1,2,

(xµ) = (t, x, y) with µ = 0, 1, 2 and z = x + iy,

we can formulate the action as

S = −4
∫

d3x tr ηµν∂µP ∂νP = −4
∫

d3x (T †T )−1ηµν∂µT †(1− P ) ∂νT

= −4
∫

d3x (1 + ūu)−2ηµν∂µū ∂νu,

where ū is the complex conjugate of u, and only the last equality uses the commutativity of the
functions. For later convenience, we also define the kinetic and potential energy density,

T = 4(T †T )−1Ṫ †(1− P )Ṫ =
4 ˙̄uu̇

(1 + ūu)2
and

V = 8(T †T )−1∂z̄T
†(1− P )∂zT + (∂z ↔ ∂z̄) =

8∂z̄ū∂zu

(1 + ūu)2
+ (∂z ↔ ∂z̄),

respectively, so that

S =
∫

d3x (T − V), and E =
∫

d2z (T + V)

yields the total energy of the configuration, which is conserved in time. Clearly, action and
energy are form-invariant under translations and rotations of the domain R2 (at fixed t),

z 7→ z + λ and z 7→ eiµz,

as well as under global SO(3) rotations of the target,

u 7→ au + b

−b̄u + ā
with āa + b̄b = 1.
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Classically, one is interested in the extrema of S whose energy is finite. Among the static
configurations, u̇ = 0 (hence T = 0), those are all well known:

δS = 0 ⇒ δE = 0 ⇒ δ

∫
d2z V = 0 ⇒ u = u(z) or u = u(z̄),

with u being a rational function (of z or z̄) to ensure finite energy. Each rational analytic (or
anti-analytic) function u = p

q is a soliton (or anti-soliton) with a topological charge given by its
degree n (or −n) and with energy E = 8π|n|. Hence, the soliton moduli spaceMn for charge n
has complex dimension 2n + 1. Some of these moduli, however, correspond to isometries of the
domain or the target.

In this paper, we shall investigate only charge-one and charge-two solitons. Let us characterize
their static moduli spaces. By employing the SO(3) target rotations, in the numerator p we
remove the highest monomial and restrict the coefficient of the second-highest one to be real
and non-negative. This is also true for the third-highest one by means of a domain rotation.
Furthermore, by a common rescaling of p and q we set the coefficient of the highest monomial
in the denominator q to unity. Finally, the domain translation isometry allows us to remove
the second-highest monomial of q, which corresponds to picking a center-of-mass frame for our
configuration. These choices fix all isometries except possibly for special values of the remaining
moduli. Of course, the full moduli space is recovered by acting with all isometries. In the charge-
one case, we thus get

T (z) =
(

β
z

)
⇒ V =

8|β|2

(|β|2 + |z|2)2
=

8
|β|2

1
(1 + |z′|2)2

with β ∈ R≥0 and z = βz′. This is a single lump of height |β|−2 and width of order |β|.
For charge two, one finds

T (z) =
(

βz + γ
z2 + ε

)
⇒ V =

8|βz2 + 2γz − βε|2

(|βz + γ|2 + |z2 + ε|2)2
=

8
|β|2

|z′2 + 2γ′z′ − ε′|2

(|z′ + γ′|2 + |z′2 + ε′|2)2

with β, γ ∈ R≥0 and ε ∈ C. In the last expression, we have introduced dimensionless quantities
by the rescaling

z = βz′, γ = β2γ′ and ε = β2ε′,

effectively putting β = 1. A different situation arises for the special value β = 0. Here, one can
also rotate away the phase of ε and should rather use z =

√
γz′ to arrive at

V =
32
|γ|

|z′|2(
1 +

∣∣z′2 + ε
γ

∣∣2)2 .

One may check that V integrates to 16π in both cases. This energy density can take a variety of
shapes, depending on the values of the moduli. Two well-separated lumps appear for |ε| > |β|2
and |ε| > |γ|, while ring-like structures emerge in the regime |γ| > |β|2 and |γ| > |ε|.

3 Moduli space metric

So far, we have only considered static solutions to the sigma model. For dynamical issues, we
must bring back the time dependence. Rather than attempting to solve the full equations of
motion δS = 0 for u(t, z, z̄), we resort to the adiabatic approximation valid for slow motion [2],

u(t, z, z̄) ≈ u(z |α(t)),
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where u(z|α) denotes a static soliton depending holomorphically on moduli parameters α. For
simplicity we suppress here the moduli labels but let α represent the holomorphic set {α}.1
By allowing these moduli to vary with time, we approximate the true time-dependent solution by
a sequence of snapshots of static solutions. In this way, the dynamics in the configuration space
of maps, u : R → maps(C, CP 1) via t 7→ u(t, ·), gets projected to the ‘mechanics’ of a particle
moving in the finite-dimensional moduli space for a fixed topological charge, α : R→Mn.

Since the potential energy of the soliton configurations is independent of α, the kinetic energy
provides an action principle for α(t): the extrema of∫

d3x T
[
u(· |α(t))

]
= 4

∫
dt

[∫
d2z (T †T )−1∂ᾱT †(1− P ) ∂αT

]
˙̄α α̇

= 4
∫

dt

[∫
d2z

∂ᾱū ∂αu

(1 + ūu)2

]
˙̄α α̇ =:

1
2

∫
dt gᾱα(α) ˙̄α α̇

are just geodesics inMn endowed with the induced Kähler metric

gᾱα = ∂ᾱ∂αK,

where

K = 8
∫

d2z lnT †T = 8
∫

d2z ln(1 + ūu)

computes the Kähler potential from the static soliton configurations u = u(z|α). We remark
that the freedom of rescaling T reappears in the ambiguity of K due to Kähler transformations,
K ∼ K + f(α) + g(ᾱ), and so we may also use the more divergent formal expression

K = 8
∫

d2z ln(p̄p + q̄q).

It turns out that gᾱα diverges for the modulus β (and also for the removed zn coefficient in p).
Hence, these particular moduli carry infinite inertia and do not participate in the dynamics,
because changing their values requires an infinite amount of energy. Consequently, they get
degraded to external parameters which are to be dialled by hand. In the charge-one case, no
dynamics remains, which is consistent with the picture of a single lump sitting in its rest frame.
Nevertheless, it is instructive to reinstate the translation moduli and verify the flat moduli
space. With T =

(
β

z+δ

)
we get

K = 8
∫

d2z ln
(

1 +
|β|2

|z + δ|2

)
.

This is formally independent of δ (by shifting z 7→ z − δ) but it is logarithmically divergent, so
we better compute its second derivatives

∂β̄∂βK = 8
∫

d2z
|z|2

(|β|2 + |z|2)2
=∞ and ∂δ̄∂δK = 8

∫
d2z

|β|2

(|β|2 + |z|2)2
= 8π,

as well as ∂δ̄∂βK = −8πδ/β. Hence, we indeed get K = 8πδ̄δ. Since the center-of-mass motion
decouples from the remaining dynamics, we shall suppress it from now on.

For charge two, the Kähler potential K reads

8|β|2
∫

d2z′ ln
(

1 +
|z′ + γ′|2

|z′2 + ε′|2

)
or 8|γ|

∫
d2z′ ln

(
1 +

1
|z′2 + ε

γ |2

)
1We apply isometries to undo possible phase restrictions on β or γ.
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depending on whether β is chosen nonzero or not. In the first case, K is again divergent, and
its derivatives are not elementary integrable. For the sake of simplicity, we therefore restrict
ourselves to the second (special) case and put β = 0 from now on. The form of the relevant
integral reveals that K is a function only of |γ| and |ε| which, up to an overall dimensional factor,
depends merely on their ratio. The last integral can in fact be executed to yield2

K = 16π|γ|
∫ π/2

0
dθ

√
1 +

∣∣∣∣ εγ
∣∣∣∣2 sin2 θ = 16π|γ|E

(
−
∣∣∣∣ εγ
∣∣∣∣2
)

= 16πr| cos ϕ|E
(
− tan2 ϕ

)
,

where E(m = k2) denotes the complete elliptic integral of the second kind as a function of its
parameter m (k is called the elliptic modulus), and we have parametrized3

ε = reiω sinϕ and γ = reiχ cos ϕ.

In the (|ε|, |γ|) plane, the Kähler potential grows linearly with the distance from the origin, with
a slope varying between 8π2 (for ε = 0) and 16π (for γ = 0). It is continuous but not smooth on
the complex line γ = 0 (ϕ = π

2 ), which is the localization locus in the two-lump region because
the lump width is of order |γ|√

|ε|
at a lump separation of order 2

√
|ε|.

To investigate the two extreme situations, |ε| � |γ| and |γ| � |ε|, we expand the Kähler
potential in | εγ | and |γε |, respectively. For the ‘ring’ regime, |ε| � |γ|, we have

K = 8π2|γ|
∞∑

`=0

(−1)`

1− 2`

[
(2`− 1)!!

(2`)!!

]2 ∣∣∣∣ εγ
∣∣∣∣2`

= 8π2|γ|

{
1 +

1
4

∣∣∣∣ εγ
∣∣∣∣2 − 3

64

∣∣∣∣ εγ
∣∣∣∣4 +

5
256

∣∣∣∣ εγ
∣∣∣∣6 + · · ·

}
, (1)

while in the ‘two-lump’ domain, |γ| � |ε|, we encounter logarithms,

K = 16π|ε|

{
1−

∞∑
`=0

(−1)`

4(` + 1)

[
(2`− 1)!!

(2`)!!

]2

c`

∣∣∣γ
ε

∣∣∣2(`+1)
}

− 4π

∣∣∣∣γ2

ε

∣∣∣∣ ln∣∣ γ4ε

∣∣2
2F1

(
1
2
,
1
2
; 2;−

∣∣∣γ
ε

∣∣∣2)
= 16π|ε|

{
1−

∞∑
`=0

(−1)`

4(` + 1)

[
(2`− 1)!!

(2`)!!

]2(
c` + ln

∣∣∣ γ
4ε

∣∣∣2) ∣∣∣γ
ε

∣∣∣2(`+1)
}

= 16π|ε|
{

1− 1
4

(
−1 + ln

∣∣∣ γ
4ε

∣∣∣2) ∣∣∣γ
ε

∣∣∣2 +
1
32

(
3
2

+ ln
∣∣∣ γ
4ε

∣∣∣2) ∣∣∣γ
ε

∣∣∣4
− 3

256

(
2 + ln

∣∣∣ γ
4ε

∣∣∣2) ∣∣∣γ
ε

∣∣∣6 + · · ·
}

(2)

with

c0 = −1, c1 =
3
2
, c2 = 2,

c` =
2
`

+
3

` + 1
+

4
` + 2

+
4

` + 3
+ · · ·+ 4

2`− 1
for ` ≥ 3.

2Apart from the normalization, we differ from [5] by the absence of a term linear in |ε|.
3There is some ambiguity in the range of the angles. We take ϕ ∈ [0, 2π).
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The metric coefficients

gγ̄γ =
∫

8|z2 + ε|2d2z

(|γ|2 + |z2 + ε|2)2
, gε̄ε =

∫
8|γ|2d2z

(|γ|2 + |z2 + ε|2)2
, gγ̄ε =

∫
−8γε̄d2z

(|γ|2 + |z2 + ε|2)2

may of course be expressed in terms of complete elliptic integrals [4]. The geodesic motion in
this metric cannot be found in closed form, except for special motions α(t),

ω̇ = χ̇ = ϕ̇ = 0 ⇒ (ds)2 =
4π

r
| cos ϕ|E

(
− tan2 ϕ

)
(dr)2,

which yields r(t) = r0 + h(ϕ)t2 with a specific function h(ϕ).

4 Moyal deformation

The task of this paper is the Moyal deformation of the Ward metric and the Kähler potential
presented in the previous section. One way to describe such a noncommutative deformation of
the zz̄ plane is by giving the following ‘quantization rule’:

coordinates (z, z̄) 7−→ operators (Z, Z̄) with [Z, Z̄] = 2θ = const,

where these operators may be realized as infinite matrices

Z =
√

2θa =
√

2θ


0 0√
1 0 0√

2 0 0√
3 0

. . .. . . . . .

 , Z̄ =
√

2θa† =
√

2θ


0
√

1
0 0

√
2

0 0
√

3

0 0
. . .. . . . . .

 .

More generally,

functions f(z, z̄) 7−→ operators F = f(Z, Z̄)
∣∣
sym

,

where ‘sym’ indicates a symmetric ordering of all monomials in (Z, Z̄). Naturally, derivatives
turn into inner derivations,

∂z 7→ 1
2θ

[ · , Z̄] =
1√
2θ

[ · , a†] and ∂z̄ 7→ 1
2θ

[Z, · ] =
1√
2θ

[a, · ],

and the integral over the complex plane becomes a trace over the operator algebra,∫
d2z f(z, z̄) 7−→ 2πθ trF.

A highest-weight representation space F for the Heisenberg algebra, [a, a†] = 1, is easily con-
structed from a vacuum |0〉,

a |0〉 = 0 ⇒ F = span
{
|n〉 =

1√
n!

(a†)n|0〉 | n = 0, 1, 2, . . .

}
,

where the basis states are the normalized eigenstates of the ‘number operator’ N = a†a,

N |n〉 = n |n〉 and 〈n|n〉 = 1 for n = 0, 1, 2, . . . . (3)

The Moyal-deformed CP 1 model is defined by copying most definitions of the previous sec-
tion, but taking the entries of P and T to be operator-valued. Since, in this context, q may not
have an inverse, we avoid using u as a variable and work with p and q instead. Because the
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deformation has traded functions on the xy plane with operators on F , densities such as T or V
are less intuitive objects, but may still be visualized via the Moyal–Weyl map. The noncommu-
tative solitons are found by taking T to be polynomial in a, i.e. both p and q are polynomial of
degree n, and their moduli are identical to the commutative ones4. It is important to note that
the deformation has introduced a new dimensionful parameter, θ. Therefore, we may relate all
dimensional quantities to θ and pass to dimensionless parameters,

Z =
√

2θa, β =
√

2θb, δ =
√

2θd, γ = 2θg, ε = 2θe.

As a consequence, K and gᾱα will depend on all moduli individually and not only on their ratios.
Of course, in the commutative limit θ → 0, the ratios will again dominate.

As a warm-up, let us reconsider the charge-one soliton (with b frozen but including the
translational moduli d), now given by

T =
(

b
a + d

)
⇒ K = 16πθ tr lnT †T = 16πθ tr ln

(
b̄b +

(
a† + d̄

)
(a + d)

)
.

Since by a unitary basis change in F we can shift a 7→ a − d, this expression is again formally
independent of d, but it is divergent:

K
16πθ

=
∞∑

n=0

〈n| ln(b̄b + N)|n〉 =
∞∑

n=0

ln(b̄b + n) = − ln Γ(b̄b) + λb̄b + µ, (4)

where the divergence is hidden in the ambiguous coefficients λ and µ, which may depend on b
and b̄. To fix this ambiguity, we first take derivatives and then shift away the d dependence:

gd̄d

16πθ
=

∂d̄∂dK
16πθ

= tr
[
(b̄b + N)−1

(
1− a(b̄b + N)−1a†

)]
= tr

[
(b̄b + N)−1

(
1− (N + 1)(b̄b + N + 1)−1

)]
= b̄b tr

[
(b̄b + N)−1(b̄b + N + 1)−1

]
=
∑
n≥0

b̄b

(n + b̄b)(n + 1 + b̄b)
= 1,

while gb̄b is still infinite. Hence, λ remains arbitrary but µ = d̄d up to irrelevant terms. With b
fixed, we therefore get K = 16πθd̄d = 8πδ̄δ, the same flat metric as in the commutative case.
Note that even though the modulus b has infinite inertia, it is needed to regulate the Kähler
potential (4), which blows up at b = 0.5

5 Deformed rings

We now turn to the nontrivial charge-two case with the choice of β = 0, defined by

T =
(

g
a2 + e

)
⇒ K = 16πθ tr lnT †T with

T †T = ḡg +
(
a†2 + ē

)(
a2 + e

)
= ḡg + N(N − 1) + ea†2 + ēa2 + ēe.

Of course, K is divergent, but the singularity is removable, and ∂ḡgK and ∂ē∂eK already converge.
Like the modulus b in the previous section, here g plays the role of a regulator, but this time

4In addition to these ‘non-Abelian’ solitons, which smoothly deform the standard commutative solitons, there
exist a plethora of ‘Abelian’ solitons, which are singular in the commutative limit [9, 10, 11].

5In the operator formalism, the inversion of operators is sometimes complicated due to zero modes, but may
still be accomplished by means of partial isometries or Murray–von Neumann transformations (see, e.g. [12]).
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its inertia is finite. This expression is not amenable to exact analytic computation, but we can
attempt to establish power series expansions in ēe or in ḡg. In this section, we investigate the
‘ring’ regime |e| � |g|.

It is easy to set up an expansion around e = 0, since T †T |e=0 is already diagonal in our
basis (3). Note that no zero-mode issue arises since ḡg > 0. Writing

T †T = G+E with G = ḡg +N(N − 1) and E = ea†2 + ēa2 + ēe =:↖ +↙ +←,

the Taylor series of ln(1 + x) unfolds to

K
16πθ

= tr ln(G + E) = tr lnG−
∞∑

k=1

(−1)k

k
tr
(
G−1E

)k
= tr lnG + ēe tr

1
G
− 2

2
ēe tr

1
G

a†2
1
G

a2 − 1
2
(ēe)2tr

1
G

1
G

+
3
3
(ēe)2tr

1
G

1
G

a†2
1
G

a2

+
3
3
(ēe)2tr

1
G

a†2
1
G

1
G

a2 +
1
3
(ēe)3tr

1
G

1
G

1
G
− 2

4
(ēe)2tr

1
G

a†2
1
G

a2 1
G

a†2
1
G

a2

− 4
4
(ēe)2tr

1
G

a†2
1
G

a†2
1
G

a2 1
G

a2 − 4
4
(ēe)3tr

1
G

1
G

a†2
1
G

1
G

a2

− 4
4
(ēe)3tr

1
G

1
G

1
G

a†2
1
G

a2 − 4
4
(ēe)3tr

1
G

a†2
1
G

1
G

1
G

a2 − 1
4
(ēe)4tr

1
G

1
G

1
G

1
G

+
5
5
(ēe)3tr

1
G

1
G

a†2
1
G

a2 1
G

a†2
1
G

a2 +
5
5
(ēe)3tr

1
G

a†2
1
G

1
G

a2 1
G

a†2
1
G

a2

+
5
5
(ēe)3tr

1
G

1
G

a†2
1
G

a†2
1
G

a2 1
G

a2 +
5
5
(ēe)3tr

1
G

a†2
1
G

1
G

a†2
1
G

a2 1
G

a2

+
5
5
(ēe)3tr

1
G

a†2
1
G

a†2
1
G

1
G

a2 1
G

a2 +
5
5
(ēe)3tr

1
G

a†2
1
G

a†2
1
G

a2 1
G

1
G

a2

+
5
5
(ēe)4tr

1
G

1
G

1
G

1
G

a†2
1
G

a2 +
5
5
(ēe)4tr

1
G

1
G

1
G

a†2
1
G

1
G

a2

+
5
5
(ēe)4tr

1
G

1
G

a†2
1
G

1
G

1
G

a2 +
5
5
(ēe)4tr

1
G

a†2
1
G

1
G

1
G

1
G

a2 +
1
5
(ēe)5tr

1
G

1
G

1
G

1
G

1
G

− 2
6
(ēe)3tr

1
G

a†2
1
G

a2 1
G

a†2
1
G

a2 1
G

a†2
1
G

a2 − 6
6
(ēe)3tr

1
G

a†2
1
G

a†2
1
G

a†2
1
G

a2 1
G

a2 1
G

a2

− 6
6
(ēe)3tr

1
G

a†2
1
G

a†2
1
G

a2 1
G

a†2
1
G

a2 1
G

a2 − 6
6
(ēe)3tr

1
G

a†2
1
G

a2 1
G

a†2
1
G

a†2
1
G

a2 1
G

a2

+ O
(
(ēe)4

)
,

displaying all terms to order (G−1E)6 and (ēe)3. One sees that for a given power k of G−1E,
there is a sum over all cyclic paths of length k, where each step is either↖ or↙ or←, separated
by a factor of 1

G . All terms containing ← can be resummed into the shift operator exp(ēe ∂ḡg),
which shortens the above to

K
16πθ

= exp
(
ēe∂ḡg

){
tr lnG− ēe tr

1
G

a†2
1
G

a2 − 1
2
(ēe)2tr

1
G

a†2
1
G

a2 1
G

a†2
1
G

a2

− (ēe)2tr
1
G

a†2
1
G

a†2
1
G

a2 1
G

a2 − 1
3
(ēe)3tr

1
G

a†2
1
G

a2 1
G

a†2
1
G

a2 1
G

a†2
1
G

a2

− (ēe)3tr
1
G

a†2
1
G

a†2
1
G

a†2
1
G

a2 1
G

a2 1
G

a2 − (ēe)3tr
1
G

a†2
1
G

a†2
1
G

a2 1
G

a†2
1
G

a2 1
G

a2

− (ēe)3tr
1
G

a†2
1
G

a2 1
G

a†2
1
G

a†2
1
G

a2 1
G

a2 + · · ·
}

= exp
(
ēe ∂ḡg

)
tr
{

lnG− ēe ↖↙ −(ēe)2
(

1
2
↖↙↖↙ +↖↖↙↙

)
− (ēe)3

×
(

1
3
↖↙↖↙↖↙ +↖↖↖↙↙↙ +↖↖↙↖↙↙ +↖↙↖↖↙↙

)
+ · · ·

}
.
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Using

a†2|n〉 =
√

(n + 1)(n + 2)|n + 2〉, a2|n〉 =
√

n(n− 1)|n− 2〉 and
1
G
|n〉 =

1
ḡg + n(n− 1)

|n〉,

the above traces convert into infinite sums of rational functions of n. After repeated partial
fraction decomposition these sums can be evaluated to

K
16πθ

= ln ḡg + ln cos W + ēeπ2 ḡg

4ḡg + 3
tanW

W

+ (ēe)2π4

{
48(ḡg)4 + 200(ḡg)3 − 33(ḡg)2 + 27ḡg

4(4ḡg + 3)3(4ḡg + 15)
tanW

W 3
− (ḡg)2

2 (4ḡg + 3)2
sec2 W

W 2

}
+ (ēe)3π6

{
1

8(4ḡg + 3)5(4ḡg + 15)2(4ḡg + 35)
(
10240(ḡg)8 + 171520(ḡg)7

+ 878336(ḡg)6 + 1161920(ḡg)5 − 354936(ḡg)4 + 549414(ḡg)3 − 13770(ḡg)2

+ 6075ḡg
)tanW

W 5
− 48(ḡg)5 + 200(ḡg)4 − 33(ḡg)3 + 27(ḡg)2

4(4ḡg + 3)4(4ḡg + 15)
sec2 W

W 4

+
(ḡg)3

3(4ḡg + 3)3
tanW sec2 W )

W 3

}
+ O

(
(ēe)4

)
(5)

with the definition

W =
π

2

√
1− 4ḡg.

The leading term was determined via

∂ḡgtr lnG = tr G−1 =
∑
n≥0

1
ḡg + n(n− 1)

=
1
ḡg

+
π2

2
tanW

W
,

and a constant as well as the ln ḡg term in K may be omitted.
To each order in ēe, the expression (5) is exact in ḡg and, hence, valid for arbitrary values

of θ. For strong noncommutativity, when g → 0 but | eg | � 1 fixed, potential poles due to
tanW ∼ sec W ∼ (πḡg)−1 are always compensated by suitable powers of ḡg. To check our
computation, let us take the opposite, commutative limit,

θ → 0 with γ, ε fixed ⇒ g, e → ∞ with
e

g
=

ε

γ
fixed.

For g →∞, the expansion (5) takes the form

K
16πθ

= ln ḡg − ln 2 + π
√

ḡg

{(
1− 1

8ḡg
+ · · ·

)
+
∣∣∣∣eg
∣∣∣∣2(1

4
− 5

32ḡg
+ · · ·

)
+
∣∣∣∣eg
∣∣∣∣4(− 3

64
+

35
512ḡg

+ · · ·
)

+
∣∣∣∣eg
∣∣∣∣6( 5

256
− 105

2048ḡg
+ · · ·

)
+ · · ·

}
' π|γ|

2θ

{
1 +

1
4

∣∣∣∣ εγ
∣∣∣∣2 − 3

64

∣∣∣∣ εγ
∣∣∣∣4 +

5
256

∣∣∣∣ εγ
∣∣∣∣6 − 175

16384

∣∣∣∣ εγ
∣∣∣∣8 + · · ·

}
+ O(θ),

after dropping the irrelevant logarithmic and constant terms through ‘'’. Indeed, the leading
contributions reproduce the commutative Kähler potential (1) in the |ε| � |γ| ‘ring’ regime.
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6 Deformed lumps

More interesting however is the |γ| � |ε| ‘two-lump’ domain, which at θ = 0 featured a weak
logarithmic singularity for γ → 0, where the two lumps are localized infinitely sharply. To
analyze this situation, we need to expand K around g = 0, in powers and perhaps also logarithms
of ḡg, generalizing (2) to finite values of θ. To this end, we are interested in the eigenvalues of

T †T
∣∣
g=0

= (a†2 + ē)(a2 + e) = N(N − 1) + ea†2 + ēa2 + ēe =: F.

Representing the noncommutative coordinates on L2(R) 3 f : R→ R,

a =
1√
2
(x + ∂x) =

1√
2
e−x2/2∂xex2/2 and

a† =
1√
2
(x− ∂x) =

1√
2
ex2/2∂xe−x2/2,

one gets

[
Ff
]
(x) ≡

[
1
4
∂4

x − x∂3
x +

(
x2 − 1

2
+

e + ē

2

)
∂2

x − 2ex∂x + (2ex2 − e + ēe)
]

f(x)

= λ(e)f(x),

which via Fourier transformation and change of variables is equivalent to[
−∂z(1− z2)∂z +

1
1− z2

+ ēe
(
1− z2

)]
f(z) = λ(e) f(z) with z ∈ [−1, 1]. (6)

This equation matches with the one defining spheroidal (scalar) wave functions [13, 14],[
−∂z

(
1− z2

)
∂z +

m2

1− z2
− γ2

(
1− z2

)]
fmn(z) = λmn(γ)fmn(z), with m ∈ Z

and n = 0, 1, 2, . . . (in our convention) counting the discrete spheroidal eigenvalues λmn(γ).
Clearly, we have m = 1 and γ2 = −ēe (the oblate case), hence λn(e) = λ1n(i|e|). For small
values of ēe one finds the expansion [13]

λn(e) = n(n− 1)
{

1 +
2

(2n− 3)(2n + 1)
ēe

+
2(4n4 − 8n3 − 35n2 + 39n + 63)

(2n− 5)(2n− 3)3(2n + 1)3(2n + 3)
(ēe)2 + · · ·

}
=: n(n− 1)λ̃n(e),

where the two zero modes of F , namely λ0 = λ1 = 0, are explicit. Therefore, we may write

K
16πθ

=
∞∑

n=0

ln
[
λn(e) + ḡg

]
= 2 ln ḡg +

∞∑
n=2

ln
[
λn(e) + ḡg

]
= 2 ln ḡg +

∞∑
n=2

ln
[
n(n− 1) + ḡg

]
+

∞∑
n=2

ln
[
1 +

n(n− 1)
n(n− 1) + ḡg

(λ̃n(e)− 1)
]

. (7)

The role of g as a regulator is obvious; the first term carries the F zero modes. After expanding
the logarithm under the last sum, one can perform the sums and nicely reproduces all terms
in (5).
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We have not found an asymptotic expansion of the spheroidal eigenvalues around |e| = ∞,
and so it is difficult to analyze the ‘two-lump’ domain in general. For a first impression, let us
expand (5) in powers of ḡg and collect the e dependence of each term:

K
16πθ

= 2 ln ḡg +
{

lnπ +
2
3
ēe− 4

45
(ēe)2 +

64
2835

(ēe)3 − 32
4725

(ēe)4 + · · ·
}

+ ḡg

{
1− 2

9
ēe +

56
675

(ēe)2 − 656
19845

(ēe)3 +
1216
91125

(ēe)4 + · · ·
}

+ (ḡg)2
{(

3
2
− π2

6

)
+
(

62
27
− 2π2

9

)
ēe +

(
3742
3375

− 16π2

135

)
(ēe)2 (8)

+
(

3822944
10418625

− 32π2

945

)
(ēe)3 + · · ·

}
+ (ḡg)3

{(
10
3
− π2

3

)
+
(

292
81
− 10π2

27

)
ēe

+
(

254846
151875

− 112π2

675

)
(ēe)2 +

(
1235859892
3281866875

− 12176π2

297675

)
(ēe)3 + · · ·

}
+ O

(
(ḡg)4

)
.

The g → 0 singularity due to the two zero modes is visible in the first term, but it is inconsequen-
tial in a Kähler potential. Besides this, the expression is devoid of the commutative logarithmic
small-g singularity6! From the pattern in (5) it is clear that this feature persists to all orders in
the expansion. Apparently, the Moyal deformation has smoothed out the Kähler potential near
γ = ε = 0, where the two lumps collide.

To attain the analog of (5) for the ‘two-lump’ domain, one would have to sum the series in
each pair of curly brackets in (8). This can actually be achieved for the first of these series
(the g-independent contribution), as we shall demonstrate shortly. So let us concentrate on the
dangerous g = 0 line from now on. Because λ̃n(0) = 1 and

1
16πθ

K
∣∣
e=0

= 2 ln ḡg + lnπ + O(ḡg),

at g = 0 we may subtract this from the Kähler potential, and (7) simplifies to

ln
det(a†2 + ē)(a2 + e)

det a†2a2
= lim

g→0

K −K|e=0

16πθ
=

∞∑
n=2

ln λ̃n(e) = − ln λ̃1(e).

The last equality is an observation we have checked to O((ēe)8) but do not know its origin7. It
allows us to easily push the ēe expansion to higher orders,

lim
g→0

K −K|e=0

16πθ
=

2
3
ēe− 4

45
(ēe)2 +

64
2835

(ēe)3 − 32
4725

(ēe)4 +
1024

467775
(ēe)5

− 1415168
1915538625

(ēe)6 +
32768

127702575
(ēe)7 − 14815232

162820783125
(ēe)8 + · · · . (9)

To identify the function behind this power series, we exploit the Gel’fand–Yaglom theorem [15,
16, 17]. Let us go back to the eigenvalue problem (6) and stretch the interval [−1, 1] to R by
the change of variables z = tanh y, so that it becomes

[
F (e)f

]
(y) ≡

[
− cosh2 y∂2

y + cosh2 y +
ēe

cosh2 y

]
f(y) = λ(e)f(y).

6The linear piece, Klin = 16πθ
(
ḡg + 2

3
ēe

)
, has already been found in [8]. Furthermore,

∞∑
n=2

ln n(n− 1)
reg
= ln π.

7It amounts to
∞∏

n=1

λ̃n(e) =
∞∏

n=1

λn(e)
λn(0)

= 1, i.e. the formal product of all spheroidal eigenvalues is e independent.
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The Gel’fand–Yaglom theorem states that

det(a†2 + ē)(a2 + e)
det a†2a2

≡ det F (e)
det F (0)

= lim
L→∞

Φ(L)
Ψ(L)

, (10)

where the functions Φ(y) and Ψ(y) satisfy the following set of equations and boundary conditions,[
F (e)Φ

]
(y) = 0, Φ(−L) = 0, Φ′(−L) = 1,[

F (0)Ψ
]
(y) = 0, Ψ(−L) = 0, Ψ′(−L) = 1. (11)

respectively. The solution can be given analytically:

Φ(y) =
1√
ēe

sinh
[√

ēe(tanh y + tanh L)
]
cosh y coshL

=
1√
ēe

sinh
[√

ēe
sinh(y + L)
cosh y coshL

]
cosh y coshL,

Ψ(y) = sinh(y + L),

which leads to

Φ(L)
Ψ(L)

=
sinh(2

√
ēe tanh L)

2
√

ēe tanh L

L→∞−→ sinh(2
√

ēe)
2
√

ēe
=

det F (e)
det F (0)

.

Hence, we finally arrive at

lim
g→0

K −K|e=0

16πθ
= ln

sinh(2
√

ēe)
2
√

ēe
= ln

{
1 +

∞∑
`=1

(4 ēe)`

(2` + 1)!

}
,

whose expansion indeed reproduces all terms in (9). This simple expression represents the full
noncommutative Kähler potential at g = 0 and provides an analytic formula for λ̃1(e). Moreover,
it has the correct commutative limit e→∞,

lim
g→0

K −K|e=0

16πθ
= 2|e| − ln |e| − 2 ln 2 + O(e−4|e|)

2e=ε/θ
=⇒ lim

θ→0
K(γ = 0) = 16π|ε|,

again up to irrelevant constant and ln ε̄ε terms. It is tempting to add the constant shift by ḡg
in (10) and apply the Gel’fand–Yaglom technique for all values of g. However, we have not been
able to solve (11) with this shift.

For completeness, we display the metric coefficients,

gγ̄γ =
4π

θ
∂ḡg

(
ḡg∂ḡg

K
16πθ

)
=

4π

θ
tr
{
(T †T )−1 − ḡg(T †T )−2

}
,

gε̄ε =
4π

θ
∂ēe

(
ēe∂ēe

K
16πθ

)
=

4π

θ
tr
{
(T †T )−1 − (T †T )−1(a†2 + ē)(T †T )−1(a2 + e)

}
,

gγ̄ε =
4π

θ
gē∂ḡg∂ēe

K
16πθ

= −4π

θ
g tr
{
(T †T )−2(a†2 + ē)

}
.

All these traces converge and should be finite in the entire γε plane. The coefficient gε̄ε may be
read off (5) by replacing (ēe)k with k2(ēe)k−1 in the series. For the other two, one has to work
out the derivatives.
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commutative
regime

lumps
two

commutative
singularity 22|γ|  +|ε|  = 4θ2

|ε|

|γ|
ring

two  lumps

deformed regime
ring

Figure 1. Modulus-of-moduli space.

7 Conclusions

We have investigated the charge-two moduli-space metric in the noncommutative CP 1 sigma
model in 2+1 dimensions. After decoupling the center of mass and a convenient dialling of frozen
moduli, we find that the Kähler potential depends only on the combinations ḡg and ēe of the
dynamical complex-valued dimensionless moduli g and e. The noncommutativity strength

√
θ

sets the single scale of the system. In the limit |e| � |g| → ∞, where the solitonic energy
density has a ring-like profile, our power series in ēe matches with the known commutative
Kähler potential, which depends only on the ratio |e|

|g| . In the complementary regime |g| � |e|,
where the configuration splits into two lumps, we observe that the logarithmic singularity of
the commutative Kähler potential is smoothed out by the deformation, which pushes it to the
θ = 0 boundary of the moduli space. The (|γ|, |ε|) = 2θ(|g|, |e|) plane is depicted in Fig. 1.

We have expanded the Kähler potential to order (ēe)4 and to any order in ḡg, but an analytic
expression remains a challenge, which amounts to computing the spectrum of the spheroidal
wave equation for m = 1 but any e. However, at g = 0 we only needed the lowest (regularized)
eigenvalue, and the ēe series could be summed to an analytic function via the Gel’fand–Yaglom
trick.
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