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1 Introduction

In [5, Chapter 4] the Berezin integral on a supermanifold is explained in terms of the complex of
integral forms. The boundary operator on this complex is derived from a unique right connection,
a notion originating from the analysis of supersymmetric D-modules [6]. A right connection is
a version of a covariant derivative, whose covariance properties are different from (one might
say: dual to) that of the usual connection. The existence of a right connection can be proven
by a direct construction in terms of local coordinates.

The notions of a right connection and a complex of integral forms were extended to differential
operators over commutative algebras in [9] and, further, over a commutative algebra in the
braided category of Yetter–Drinfeld modules in [8].

Studies of right connections for non-commutative algebras were initiated in [1]. Right con-
nections for a non-commutative algebra are defined as maps between modules of (right) linear
homomorphisms from (homogeneous parts of) a differential graded algebra to a module over
the zero degree part of this algebra, and hence termed hom-connections (as opposed to usual
connections which operate between the tensor product of a module and a differential graded al-
gebra). The local arguments which lead to the existence of right connections on supermanifolds
are not available in the realm of noncommutative geometry. In their stead an effective method
of constructing differential graded algebras with a unique hom-connection was presented in [2].
This method is based on the use of twisted multi-derivations.

The aim of this note is to calculate explicitly two examples of complexes of integral forms
based on twisted multi-derivations, and to show that these complexes are isomorphic to the
corresponding de Rham complexes, which implies (a version of) the Poincaré duality. The
examples in question are the quantum Euclidean group Eq(2) obtained by the contraction of the
quantum group SUq(2) in [11], and its homogeneous space – the quantum plane.

The paper is organised as follows. In Section 2 we briefly recall from [1] and [2] definitions
of hom-connections and integral forms and the method of constructing hom-connections in
differential calculi determined by q-skew derivations. In Section 3 we recall from [11] the
definition of the quantum group Eq(2), describe a three-dimensional differential calculus on it
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and then explicitly construct a flat hom-connection and the complex of integral forms on Eq(2).
The explicit isomorphism of the complexes of differential and integral forms is then presented.
In Section 4 we derive a hom-connection and the complex of integral forms on the quantum
plane understood as the (quantum) homogeneous space of Eq(2). The paper is concluded with
comments and outlook.

We hope that the material contained in Section 2 of this note will provide the reader with
a concise introduction to non-commutative integral forms. We also hope that explicitly calcu-
lated examples (in Sections 3 and 4), which append examples presented in [2], will indicate the
methods and techniques involved in construction of integral forms on quantum spaces.

2 Noncommutative integral forms

An algebra means an associative algebra with identity over a field k. By a differential graded
algebra over an algebra A we mean a non-negatively graded algebra

Ω(A) :=
∞⊕

k=0

Ωk(A),

such that Ω0(A) = A, together with a degree one operation d : Ωk(A) → Ωk+1(A) that is
nilpotent, i.e. d ◦ d = 0, and satisfies the graded Leibniz rule, i.e., for all ω ∈ Ωk(A) and
ω′ ∈ Ω(A),

d(ωω′) = dωω′ + (−1)kωdω′.

Each of the Ωk(A) is an A-bimodule, and we denote the right dual of Ωk(A) (i.e. the collection
of all right A-linear maps Ωk(A) → A) by Ik(A), that is

Ik(A) := HomA(Ωk(A), A).

Each of the Ik(A) is an A-bimodule with the actions defined by

a · φ · b(ω) := aφ(bω), for all a, b ∈ A, φ ∈ Ik(A), ω ∈ Ωk(A). (1)

To ease the notation we write aφb for a · φ · b. The right action (1) is a special case of more
general operation that, for any ω ∈ Ωl(A), sends φ ∈ Ik+l(A) to φω ∈ Ik(A). The latter is
defined by

φω(ω′) := φ(ωω′), for all ω′ ∈ Ωk(A).

A hom-connection on a k-algebra A (with respect to the differential graded algebra Ω(A)
over A) is a k-linear map ∇ : I1(A) → A such that,

∇(φa) = ∇(φ)a+ φ(da), for all a ∈ A, φ ∈ I1(A).

Any hom-connection can be extended to a family of maps ∇k : Ik+1(A) → Ik(A) by the formula

∇k(φ)(ω) := ∇(φω) + (−1)k+1φ(dω), for all φ ∈ Ik+1(A), ω ∈ Ωk(A).

The ∇k satisfy the following graded Leibniz rule

∇l(φω) = ∇k+l(φ)ω + (−1)k+lφdω, for all φ ∈ Ik+l+1(A), ω ∈ Ωk(A). (2)

The map F := ∇ ◦ ∇1 is a right A-module homomorphism which is called the curvature of ∇.
A hom-connection∇ is said to be flat provided F = 0. To a flat hom-connection∇ one associates
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a chain complex
(⊕

k=0 Ik(A),∇
)
. This complex is termed a complex of integral forms on A,

and the canonical map

Λ : A −→ coker(∇) = A/Im∇

is called a ∇-integral on A (or simply an integral on A).
A general construction of hom-connections based on twisted multi-derivations was presented

in [2]. This construction is applicable to all left-covariant differential calculi on quantum groups.
Presently we outline this construction in the special case of q-skew derivations and the reader
is referred to [2, Section 3] for more details and for the general case.

Let A be a k-algebra. Following [3], a linear map ∂ : A → A is called a q-skew derivation
provided there exists an algebra automorphism σ : A→ A and a scalar q such that σ−1◦∂◦σ = q∂
and, for all a, b ∈ A,

∂(ab) = ∂(a)σ(b) + a∂(b), (3)

i.e. ∂ satisfies the σ-twisted Leibniz rule. Starting with qi-skew derivations ∂i, i = 1, 2, . . . , n,
(with corresponding automorphisms σi) one constructs a first order differential calculus on A
as follows. Ω1(A) is a free left A-module

⊕n
i=1Aωi with basis ω1, . . . , ωn and right A-action

given by

ωia = σi(a)ωi, i = 1, 2, . . . , n. (4)

The exterior differential d : A→ Ω1(A) is defined by the formula

da =
∑

i

∂i(a)ωi =
∑
i,j

ωiσ
−1
i (∂j (a)) . (5)

Often one reserves the term differential calculus to the pair (Ω1(A), d) that is dense in the sense
that every element of Ω1(A) is of the form

∑
i aidbi, for some ai, bi ∈ A. The calculus described

above is dense if and only if there exist two finite subsets {ai t}, {bi t} of elements of A such
that, ∑

t

ai t∂k(bi t) = δik, for all i, k = 1, . . . , n.

The examples of calculi discussed in Sections 3 and 4 are dense in this sense.
(Ω1(A), d) can be extended to a full differential graded algebra (Ω(A), d) in the standard way,

that is by using the graded Leibniz rule and the A-bimodule structure of Ω1(A).
The calculus (Ω1(A), d) determined by the formulae (4), (5) admits a hom-connection ∇ :

I1(A) → A, given by, for all f ∈ I1(A),

∇(f) =
∑

i

qi∂i(f(ωi)). (6)

This is a unique hom-connection on Ω(A) with the property that ∇(ξi) = 0, where ξi ∈ I1(A)
are such that ξi(ωj) = δij , i, j = 1, 2, . . . , n.

3 Integral geometry of Eq(2)

In this and the following section the algebras are over the field of complex numbers. The
(polynomial part of the) quantum Euclidean group Eq(2), obtained by the contraction of SUq(2)
in [11], is a ∗-Hopf algebra generated by v, n subject to relations

nn∗ = n∗n, vv∗ = v∗v = 1, vn = qnv, vn∗ = qn∗v,
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where q ∈ R. The elements v, v∗ are grouplike, while

∆(n) = v⊗n+ n⊗v∗, ε(n) = 0, S(n) = −q−1n, S(n∗) = −qn∗.

By setting z = vn, the algebra Eq(2) can be equivalently defined as generated by a unitary
element v and elements z, z∗ subject to relations

vz = qzv, vz∗ = qz∗v, zz∗ = q2z∗z. (7)

The algebra Eq(2) has a Z-grading, defined by

|v| = |n∗| = 1, |v∗| = |n| = −1.

In particular, the elements z, z∗ generate the zero-degree subalgebra of Eq(2) which we denote
by Cq.

A three-dimensional left-covariant calculus Ω1(Eq(2)) on Eq(2) can be obtained by contrac-
tion of the 3D calculus on SUq(2) introduced in [10]. Ω1(Eq(2)) is generated by left-invariant
forms ω0, ω± subject to relations

ω0v = q−2vω0, ω0n = q2nω0, ω0n
∗ = q−2n∗ω0, ω0v

∗ = q2v∗ω0,

ω±v = q−1vω±, ω±n = qnω±, ω±n
∗ = q−1n∗ω±, ω±v

∗ = qv∗ω±. (8)

This is a ∗-calculus with ω∗0 = −ω0, ω∗± = q∓1ω∓. The action of the exterior differential d on
the generators is

dv = vω0, dn = −q2nω0 + vω−,

dn∗ = n∗ω0 + q2v∗ω+, dv∗ = −q2v∗ω0. (9)

Consequently,

ω0 = v∗dv, ω− = v∗dn− q−1ndv∗, ω+ = q−2vdn∗ − q−1n∗dv. (10)

In view of commutation rules (8), the module structure of Ω1(Eq(2)) is of the type described
by (4) with automorphisms σ0 and σ+ = σ− given by, for all homogeneous a ∈ A (with the
Z-degree |a|),

σ0(a) = q−2|a|a, σ±(a) = q−|a|a. (11)

The formulae (9) or (10) indicate that the Z-grading of Eq(2) can be extended to a Z-grading
of Ω1(Eq(2)) such that the differential d is the degree preserving map, by setting

|ω0| = 0, |ω±| = ±2.

Equations (9) determine (or can be understood as determined by as in (5)) maps ∂i : Eq(2) →
Eq(2) that satisfy the σi-twisted derivation properties (3). Explicitly, in terms of actions on
generators of Eq(2) the maps ∂i are

∂0(v) = v, ∂0(n) = −q2v, ∂0(n∗) = n∗, ∂0(v∗) = −q2v∗,
∂+(v) = 0, ∂+(n) = 0, ∂+(n∗) = q2v∗, ∂+(v∗) = 0,
∂−(v) = 0, ∂−(n) = v, ∂−(n∗) = 0, ∂−(v∗) = 0.

Since da = ∂−(a)ω− + ∂0(a)ω0 + ∂+(a)ω+, the derivations have Z-degrees

|∂0| = 0, |∂±| = ∓2, (12)
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i.e., for all homogeneous a ∈ Eq(2), |∂0(a)| = |a|, |∂±(a)| = |a| ∓ 2. Combining equations (11)
with (12) one easily finds that the maps ∂0, ∂+, ∂− are qi-skew derivations with constants 1, q−2

and q2, respectively. Therefore, there is a hom-connection on Eq(2) (with respect to Ω1(Eq(2)))
given by the formula (6), that is, for all f ∈ I1(Eq(2)),

∇(f) = ∂0 (f (ω0)) + q−2∂+ (f (ω+)) + q2∂− (f (ω−)) . (13)

The calculus Ω1(Eq(2)) can be extended to the full differential graded algebra. The relations
in the bimodule Ω2(Eq(2)) (deformed exterior product) are

ω2
i = 0, ω+ω− = −q2ω−ω+, ω0ω− = −q4ω−ω0, ω+ω0 = −q4ω0ω+, (14)

and the exterior derivative is

dω0 = 0, dω+ = q2(q2 + 1)ω0ω+, dω− = q2(q2 + 1)ω−ω0. (15)

Thus Ω2(Eq(2)) is a free module generated by three closed forms ω−ω0, ω0ω+ and ω−ω+. In
degree 3, Ω3(Eq(2)) is generated by the form ω−ω0ω+.

It might be worth noticing at this point that the differential graded algebra Ω•(Eq(2)) can
be equivalently (and conveniently) described in terms of generators v, z, z∗. An easy calculation
reveals that

ω+ = q−3v2dz∗, ω− = v∗2dv, (16)

so that

dz∗ = q3v∗2ω+, dz = v2ω−. (17)

Therefore, the ∗-calculus Ω1(Eq(2)) is freely generated by dv, dz and dz∗ subject to relations

vdv = q2dvv, v∗dv = q−2dvv∗, zdv = q−1dvz, z∗dv = q−1dvz∗,

vdz = qdzv, vdz∗ = qdz∗v, zdz = q−2dzz, z∗dz = q−2dzz∗. (18)

The wedge product calculated from relations (14) comes out as

(dz)2 = (dv)2 = dvdv∗ = 0, dvdz = −qdzdv,
dvdz∗ = −qdz∗dv, dzdz∗ = −q2dz∗dz. (19)

Note that relations (19) are simply obtained by differentiating rules (18) (and observing that v∗

is the inverse of v).
Every element of Ω3(Eq(2)) can be written as a linear combination of

vkz∗l−1zm−1dzdvdz∗, k ∈ Z, l,m ∈ N.

On the other hand, relations (18) and the Leibniz rule imply that

d
(
vkz∗l−1zm

)
= d

(
vkz∗l−1)zm + [m]q2vkz∗l−1zm−1dz,

where

[m]x = 1 + x+ · · ·+ xm−1

is a notation for the x-integer. Therefore,

vkz∗l−1zm−1dzdvdz∗ = d

(
1

[m]q2

vkz∗l−1zmdvdz∗
)
, (20)

so the third de Rham cohomology group of Eq(2) is trivial, H3(Eq(2)) = 0.
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Our next aim is to show that ∇ defined by equation (13) is a flat hom-connection and
thus defines a complex of integral forms on Eq(2). To this end we need first to extend ∇ to
∇1 : I2(Eq(2)) → I1(Eq(2)). Define φ0, φ± ∈ I2(Eq(2)) by

φ0(ω−ω+) = 1, φ+(ω−ω0) = 1, φ−(ω0ω+) = 1,

and zero on other generators. By inspection of relations (14) one concludes that any f ∈
I2(Eq(2)) can be written as f = φ0a0 +φ+a+ +φ−a−, for suitably defined ai ∈ Eq(2). Since the
curvature of a hom-connection is a right Eq(2)-linear map, it suffices to compute it on the φi.
Let ξ0, ξ± ∈ I1(Eq(2)) be the right dual basis to ω0, ω±, i.e. such that ξ0(ω0) = ξ±(ω±) = 1 and
zero on other generators of Ω1(Eq(2)). Using commutation rules (14) one easily computes that

φ0ω0 = 0, φ0ω+ = −q2ξ−, φ0ω− = ξ+,

φ+ω0 = −q4ξ−, φ+ω+ = 0, φ+ω− = ξ0,

φ−ω0 = ξ+, φ−ω+ = −q4ξ0, φ−ω− = 0. (21)

By definition, for all one-forms ω and all φ ∈ I2(Eq(2)),

∇1(φ)(ω) = ∇(φω) + φ(dω). (22)

Combining (21) with (22) and (15), and remembering that ∇ given by (13) is the unique hom-
connection such that ∇(ξi) = 0, i = 0,+,−, we obtain

∇1(φ0) = 0, ∇1(φ+) = q2(q2 + 1)ξ−, ∇1(φ−) = q2(q2 + 1)ξ+.

Since ∇(ξi) = 0, ∇ ◦∇1(φi) = 0, for all i = 0,+,−, and the hom-connection (13) is flat.
The module I3(Eq(2)) is generated by φ ∈ I3(Eq(2)) defined by φ(ω−ω0ω+) = 1. Using

commutation rules (14), one finds

φω−ω0 = ξ+, φω0ω+ = q6ξ−, φω−ω+ = −q4ξ0. (23)

Since, for any 2-form ω, ∇2(φ)(ω) = ∇(φω)− φ(dω), the forms generating Ω2(Eq(2)) are closed
and ∇(ξi) = 0, i = 0,+,−, we conclude that

∇2(φ) = 0.

This completes the description of the complex

0 // I3(Eq(2))
∇2 // I2(Eq(2))

∇1 // I1(Eq(2)) ∇ // Eq(2) Λ // coker∇ // 0 (24)

of integral forms on Eq(2). Here Λ is the associated integral on Eq(2). We will presently show
that Eq(2) enjoys the strong Poincaré duality in the sense that the complex (24) is isomorphic
to the de Rham complex. In view of the triviality of H2(Eq(2)) this will allow us to deduce
that coker∇ = 0, hence the integral Λ is zero. The isomorphism of the de Rham and integral
complexes means the following commutative diagram

Eq(2) d //

Θ∗

��

Ω1(Eq(2)) d //

Φ
��

Ω2(Eq(2)) d //

Ψ
��

Ω3(Eq(2))

I3(Eq(2))
∇2 // I2(Eq(2))

∇1 // I1(Eq(2)) ∇ // Eq(2) ,

Θ

OO

(25)
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in which all columns are (right A-module) isomorphisms. These are defined as follows. Θ∗(a) =
φa, Θ(a) = ω−ω0ω+a, and

Φ(ω−a+ ω0b+ ω+c) = φ−a− q4φ0b+ q6φ+c,

Ψ(ω−ω0a+ ω−ω+b+ ω0ω+c) = ξ+a− q4ξ0b+ q6ξ−c,

for all a, b, c ∈ Eq(2) (compare the form of Ψ with relations (23)). The commutativity of the
diagram (25) can be checked by a straightforward albeit lengthy calculation. For example, the
commutativity of the leftmost square can be verified as follows. Take a homogeneous a ∈ Eq(2)
with the Z-degree |a|. In view of the form of commutation rules (8) or the automorphisms σ±, σ0

in (11), and the grading of derivations ∂±, ∂0, one easily computes

∇2 ◦Θ∗(a)(ω−ω0) = ∇2(φ)(ω−ω0)a+ φda(ω−ω0)

= φ(∂+(a)ω+ω−ω0) = q4|a|−8φ(ω+ω−ω0)∂+(a) = q4|a|−2∂+(a),

where the first equality follows by the Leibniz rule for a hom-connection (2), and the last
two equalities by the right linearity and the definition of φ combined with the commutation
rules (14). On the other hand

Φ(da)(ω−ω0) = Φ(∂−(a)ω− + ∂0(a)ω0 + ∂+(a)ω+)(ω−ω0)

= q|a|+4φ+(∂+(a)ω−ω0) = q4|a|−2∂+(a),

where the equations (11), the definitions of Φ and of φ±, φ0 were used. In the same way one
computes

∇2 ◦Θ∗(a)(ω−ω+) = −q4|a|+4∂0(a) = Φ(da)(ω−ω+)

and

∇2 ◦Θ∗(a)(ω0ω+) = q4|a|+8∂−(a) = Φ(da)(ω0ω+).

Therefore,

∇2 ◦Θ∗ = Φ ◦ d,

as required. The commutativity of the other squares in diagram (25) is proven similarly.
The commutativity of (25) implies that coker∇ is isomorphic to the third de Rham cohomo-

logy group H3(Eq(2)), and thus allows one to compute the form of the former (and hence the
integral on Eq(2)). Recall that H3(Eq(2)) = 0, so also coker∇ = 0, i.e. ∇ is surjective, and the
corresponding integral Λ is zero. More specifically, take a ∈ Eq(2). If ω ∈ Ω2(Eq(2)) is such
that dω = Θ(a) (and ω exists by the triviality of H3(Eq(2))), then

∇(Ψ(ω)) = a.

For an element a = vkz∗lzm of a basis for Eq(2),

Θ
(
vkz∗lzm

)
= q−4k−8+m+lvk−1z∗lzmdzdvdz∗,

where the definition of Θ and relations (16), (18) and (7) were used. In view of (20) followed
by (18) and (17) the corresponding ω comes out as

ω =
q−4k−8+m+l

[m+ 1]q2

vk−1z∗lzm+1dvdz∗ =
q−k−6+2m+2l

[m+ 1]q2

ω0ω+v
k−2z∗lzm+1,
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therefore,

vkz∗lzm = ∇
(
q−k+2m+2l

[m+ 1]q2

ξ−v
k−2z∗lzm+1

)
,

which explicitly proves that ∇ is onto.
Note that although the isomorphisms Φ, Ψ, Θ and Θ∗ are right Eq(2)-linear, they are not

Eq(2)-bimodule maps, when the Ik(Eq(2)) are viewed as Eq(2)-bimodules by (1). However,
being right Eq(2)-module isomorphisms, they can be forced to produce new left Eq(2)-actions
on the Ik(Eq(2)) and also to make the complex of integral forms a differential graded algebra,
isomorphic to Ω(Eq(2)). The basic integral forms φ, φ±, φ0, ξ±, ξ0 themselves form a seven-
dimensional skeletal algebra of integral forms on Eq(2). The multiplication table can be easily
worked out from the definitions of isomorphisms Φ, Ψ, Θ and Θ∗, and from the multiplication
rules in Ω(Eq(2)):

φ φ− φ0 φ+ ξ− ξ0 ξ+
φ φ φ− φ0 φ+ ξ− ξ0 ξ+
φ− φ− 0 −q−4ξ+ −q−2ξ0 q−6φ 0 0
φ0 φ0 ξ+ 0 −q−4ξ− 0 −q−4φ 0
φ+ φ+ ξ0 ξ− 0 0 0 φ

ξ− ξ− φ 0 0 0 0 0
ξ0 ξ0 0 −q−4φ 0 0 0 0
ξ+ ξ+ 0 0 q−6φ 0 0 0

4 Integral geometry of Cq

The subalgebra Cq of Eq(2) generated by z, z∗ is a quantum homogeneous space of Eq(2). It is
also a base algebra for the quantum principal bundle with the quantum total space Eq(2) and
the structure group U(1) identified with the Hopf algebra of Laurent polynomials in variable u,
C[u, u−1] (u is a grouplike element). In other words, Eq(2) is a principal comodule algebra. The
coaction of C[u, u−1] on Eq(2) is given by the Z-grading, i.e. for any a ∈ Eq(2) of Z-degree |a|,

a 7−→ a⊗u|a|. (26)

C[u, u−1] has a natural ∗-Hopf algebra structure given by u∗ = u−1. With respect to this, the
coaction (26) is a ∗-algebra map.

The calculus described by equations (18) and (19) restricts to the calculus on Cq. By [2,
Theorem 4.3], the hom-connection (13) restricts to the hom-connection on the quantum plane Cq,

∇ : I1(Cq) → Cq, ∇f = q2∂−(f̂(ω−)) + q−1∂+(f̂(ω+)), (27)

where

f̂(ω−) = f
(
ω−v

2
)
v∗2, f̂(ω+) = f

(
ω+v

∗2)v2.

The skew derivations ∂+ and ∂− are not defined on Cq but on Eq(2), hence (27) is not the
optimal description of the hom-connection ∇ on Cq as it seems to depend on the embedding
of Cq into Eq(2). The calculus Ω1(Cq) is freely generated by the holomorphic form dz and
the antiholomorphic form dz∗. Using the right Cq-linearity of f ∈ I1(Cq) and commutation
rules (18) one easily finds that

f̂(ω−) = q−2f(dz)v∗2, f̂(ω+) = q−1f(dz∗)v2. (28)
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Next, introduce (twisted) derivatives ∂, ∂̄ associated to dz, dz∗ by the formula

d(a) = ∂(a)dz + ∂̄(a)dz∗, for all a ∈ Cq.

Computing d(av∗2) and d(av2) with the help of equations (17) and commutation rules in
Ω1(Eq(2)), one easily finds that, for all a ∈ Cq,

d(av∗2) = q2∂(a)ω− + ∂̄(a)dz∗v∗2, d(av2) = ∂(a)dzv2 + q∂̄(a)ω+.

This implies that

∂−(av∗2) = q2∂(a), ∂+(av2) = q∂̄(a)ω+, for all a ∈ Cq. (29)

Putting equations (28), (29) and (27) together we obtain the following formula for a hom-
connection on Cq given in terms of (anti)holomorphic forms,

∇(f) = q2∂ (f (dz)) + q−2∂̄ (f (dz∗)) , for all f ∈ I1(Cq). (30)

Working entirely in terms of dz and dz∗, the module of integral forms I1(Cq) is generated
by ξ, ξ̄ defined by

ξ(dz) = ξ̄(dz∗) = 1, ξ(dz∗) = ξ̄(dz) = 0.

The formula (30) immediately implies that ∇(ξ) = ∇(ξ̄) = 0.
The degree-two integral forms I2(Cq) are generated by ψ determined by ψ(dzdz∗) = 1, as

one easily finds that Ω2(Cq) is generated by dzdz∗; see relations (19). The latter imply that

ψdz = ξ̄, ψdz∗ = −q−2ξ,

and thus arguments analogous to those in the case of Eq(2) affirm flatness of ∇.
Similarly to the quantum Euclidean group, the quantum plane Cq enjoys the strong Poincaré

duality, i.e. there is a commutative diagram

Cq
d //

Θ∗

��

Ω1(Cq)
d //

Φ
��

Ω2(Cq)

I2(Cq)
∇1 // I1(Cq)

∇ // Cq ,

Θ

OO

in which vertical maps are right Cq-module isomorphisms. These are given by, for all a, b ∈ Cq,

Θ(a) = dzdz∗a, Φ(dza+ dz∗a) = −ξ̄a+ q−2ξb, Θ∗(a) = ψa.

The second de Rham cohomology group is trivial, hence, consequently, the integral on Cq is
zero.

5 Comments

In this note we presented two explicit examples of complexes of integral forms. In relation to such
specific examples one can pose two more general questions. First, the quantum group Eq(2)
and its differential calculus are obtained by contraction of SUq(2) and a calculus on it. It
might be interesting to study in general the effect of contraction on integral geometry or to
develop the contraction procedure for integral forms. Second, together with examples in [2],
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the examples presented here provide an indication that the (strong) Poincaré duality in non-
commutative geometry could be understood as existence of an isomorphism between differential
and integral complexes. One could even venture a suggestion that a (compact without bounda-
ry) noncommutative differentiable or smooth manifold should be understood as a differential
graded algebra Ω(A) over A which is isomorphic (as a complex) to the complex of integral forms
(I•(A),∇) (with respect to Ω(A)). It would be rather interesting to investigate, what classes
of differential graded algebras can be characterised by this property, and how this viewpoint
on the Poincaré duality compares with the (algebraic, homological) noncommutative Poincaré
duality of Van den Bergh [7]; see also [4].
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