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Abstract. Motivated by control-affine systems in optimal control theory, we introduce
the notion of a point-affine distribution on a manifold X – i.e., an affine distribution F

together with a distinguished vector field contained in F. We compute local invariants for
point-affine distributions of constant type when dim(X) = n, rank(F) = n − 1, and when
dim(X) = 3, rank(F) = 1. Unlike linear distributions, which are characterized by integer-
valued invariants – namely, the rank and growth vector – when dim(X) ≤ 4, we find local
invariants depending on arbitrary functions even for rank 1 point-affine distributions on
manifolds of dimension 2.
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1 Introduction

In [8] and [9], we introduced the notion of sub-Finsler geometry as a natural geometric setting
for certain problems in optimal control theory. In local coordinates, a control system may be
represented as an underdetermined system of ordinary differential equations of the form

ẋ = f(x, u), (1.1)

where x ∈ Rn represents the state vector of the system and u ∈ Rs represents the control vector,
i.e., variables which may be specified freely in order to “steer” the system in a desired direction.
More generally, x and u may take values in an n-dimensional manifold X and an s-dimensional
manifold U, respectively. Typically there are constraints on how the system may be “steered”
from one state to another, so that s < n. The systems of greatest interest are controllable, i.e.,
given any two states x1, x2, there exists a solution curve of (1.1) connecting x1 to x2.

The control systems for which sub-Finsler (or sub-Riemannian) geometry are most relevant
are control-linear systems. These are systems for which the right-hand side of (1.1) is linear in
the control variables u and depends smoothly on the state variables x; i.e., systems of the form

ẋ = A(x)u, (1.2)

where A(x) is an n × s matrix whose entries are smooth functions of x. For such a system,
admissible paths in the state space are those for which the tangent vector to the path at each
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is available at http://www.emis.de/journals/SIGMA/Cartan.html

mailto:Jeanne.Clelland@colorado.edu
mailto:cgm3@calvin.edu
mailto:grw@math.hawaii.edu
http://dx.doi.org/10.3842/SIGMA.2009.095
http://www.emis.de/journals/SIGMA/Cartan.html


2 J.N. Clelland, C.G. Moseley and G.R. Wilkens

point x ∈ X is contained in the subspace Dx ⊂ TxX determined by the image of the matrix A(x).
If this matrix has constant (maximal) rank s on X, then D is a rank s linear distribution1

on X. Thus the admissible paths in the state space are precisely the horizontal curves of the
distribution D, i.e., curves whose tangent vectors at each point are contained in D.

A sub-Finsler (resp., sub-Riemannian) metric on the distribution (X,D) is defined by speci-
fying a Finsler (resp., Riemannian) metric on each of the subspaces Dx. Such a metric may
represent a cost function for the control problem, and geodesics for the metric may be thought
of as stationary trajectories for the corresponding optimal control problem.

While the class (1.2) of control-linear systems contains many interesting examples, a much
broader class of interest is that of control-affine systems, i.e., systems of the form

ẋ = a0(x) +A(x)u, (1.3)

where A(x) is a smoothly-varying n × s matrix and a0(x) is a smooth vector field on X. (The
vector field a0(x) is known as the drift vector field.)

Example 1.1. The class of control-affine systems contains as a sub-class the linear control
systems. These are systems of the form

ẋ = Ax+Bu, (1.4)

where A is a constant n × n matrix and B is a constant n × s matrix. Note that despite the
terminology, the linear control system (1.4) is not control-linear unless A = 0.

The geometric structure corresponding to a control-affine system is an affine distribution on
the state space X. More precisely (see [12, 13]):

Definition 1.2. A rank s affine distribution F on an n-dimensional manifold X is a smoothly-
varying family of s-dimensional, affine linear subspaces Fx ⊂ TxX. We will say that F is strictly
affine if none of the affine subspaces Fx ⊂ TxX are linear subspaces. Associated to an affine
distribution F is the direction distribution

LF = {ξ1 − ξ2 | ξ1, ξ2 ∈ F}.

Note that LF is a rank s linear distribution on X.
In this paper, we will limit our attention to distributions (both linear and affine) which are

bracket-generating (or almost bracket-generating in the affine case) and have constant type. In
order to make these notions precise, we need the notion of the growth vector of a distribution
(cf. [21]). Let D be a linear distribution on a manifold X, and let D also denote the sheaf of
smooth vector fields on X which are local sections of D. The iterated Lie brackets of vector
fields in D generate a flag of subsheaves

D = D1 ⊂ D2 ⊂ · · · ⊂ TX,

defined by D1 = D, and

Di+1 = Di + [D,Di], i ≥ 1.

At each point x ∈ X, this flag of subsheaves gives a flag of subspaces of TxX:

Dx ⊂ D2
x ⊂ · · · ⊂ TxX.

1We use the adjective “linear” to distinguish the usual notion of a distribution D, where each fiber Dx is a linear
subspace of TxX, from that of an affine distribution F. Unless otherwise specified, the word “distribution” will
refer to a linear distribution throughout this paper.
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Definition 1.3. Let D∞ = ∪i≥1D
i ⊂ TX.

• The smallest integer r = r(x) such that Dr
x = D∞

x is called the step of the distribution
at x.

• The distribution D is bracket-generating if D∞ = TX.

• Set ni(x) = dim Di
x. The growth vector of D at x is the integer list (n1(x), n2(x), . . .,

nr(x)), where r(x) is the step of D at x.

• The distribution D has constant type if ni(x) is constant on X for all i; i.e., if the growth
vector of D is constant on X.

Remark 1.4. When working with distributions of constant type, it is customary to consider
only bracket-generating distributions. For if D is not bracket-generating, then D∞ is a Frobenius
distribution on X. The integral manifolds of D∞ define a local foliation of X with the property
that any horizontal curve of D is contained in a single leaf of the foliation, and the restriction
of D to each leaf of the foliation is bracket-generating.

We can define similar notions for affine distributions: let F be an affine distribution on
a manifold X, with direction distribution LF. Let F also denote the sheaf of smooth vector
fields on X which are local sections of F. The flag of subsheaves

F = F1 ⊂ F2 ⊂ · · · ⊂ TX

may be defined in the same manner as for distributions: set F1 = F, and

Fi+1 = Fi + [F,Fi], i ≥ 1.

At each point x ∈ X, this gives a flag of affine subspaces of TxX:

Fx ⊂ F2
x ⊂ · · · ⊂ TxX.

Each affine distribution Fi in the flag has an associated direction distribution LFi ; these distri-
butions clearly have the property that

LiF ⊂ LFi .

The step, the growth vector, and the notion of bracket-generating are defined for affine distri-
butions in the same way as for linear distributions. But we will also want to consider affine
distributions with a slightly weaker bracket-generating property.

Definition 1.5. An affine distribution F on an n-dimensional manifold X is almost bracket-
generating if rank(F∞) = n − 1, and for each x ∈ X and any ξ(x) ∈ Fx, span(ξ(x), (LF∞)x) =
TxX.

We also impose an additional condition in the definition of constant type – namely, that F

is strictly affine, and that each element Fi is either strictly affine or a linear distribution. This
condition is reflected in the second condition of the following definition.

Definition 1.6. The affine distribution F has constant type if

• ni(x) is constant on X for all i; i.e., the growth vector of F is constant on X, and

• for any section ξ of F, dim(span(ξ(x), (LFi)x)) is constant on X for all i.
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The well-known theorems of Frobenius, Pfaff, and Engel (cf. Section 2.1) imply that linear
distributions of constant type on manifolds of dimension n ≤ 4 have only integer-valued in-
variants: specifically, any two linear distributions of constant type on manifolds of the same
dimension, with the same rank and growth vector, are locally equivalent via a diffeomorphism
of the underlying manifolds. Beginning with n = 5 and s = 2, local invariants depending on
arbitrary functions appear: the famous paper of É. Cartan [7] describes local invariants of rank 2
distributions on 5-manifolds with growth vector (2, 3, 5). More recently, Bryant [5] has described
local invariants of rank 3 distributions on 6-manifolds with growth vector (3, 6), and Doubrov
and Zeleneko [10, 11] have given a fairly comprehensive treatment of maximally nonholonomic
distributions of ranks 2 and 3 on manifolds of arbitrary dimension.

The study of affine distributions is more recent and less extensive. Elkin [12, 13] has studied
equivalence of affine distributions on manifolds of dimension n ≤ 4 under diffeomorphisms of
the underlying manifolds, resulting in local normal forms for the associated control systems.
Local invariants appear in lower dimensions than for linear distributions: the first local invari-
ants arise in the case of rank 1 affine distributions on 3-dimensional manifolds. Local normal
forms for generic rank 1 affine distributions on R3 have also been obtained by Agrachev [1]
and Wilkens [25], and for generic rank 1 affine distributions on Rn and generic rank 2 affine
distributions on R4 and R5 by Agrachev and Zelenko [3].

Given a control-affine system (1.3), one can canonically associate to it an affine distribution F

on the state space X: if we let a1(x), . . . , as(x) denote the columns of the matrix A(x), then

Fx =

{
a0(x) +

s∑
i=1

uiai(x) | u1, . . . , us ∈ R

}
.

Elkin defines two systems

ẋ = a0(x) +
s∑
i=1

uiai(x), (1.5)

ẏ = b0(y) +
s∑
i=1

vibi(y) (1.6)

on state spaces X, Y, respectively, to be affine equivalent if there exists a diffeomorphism ψ :
X → Y such that any absolutely continuous curve x(t) in X is a solution of (1.5) if and only if
the curve y(t) = ψ(x(t)) is a solution of (1.6). More specifically, such a diffeomorphism must
have the property that

ψ∗(a0(x)) = b0(ψ(x)) +
s∑
j=1

λj0(x)bj(ψ(x)), (1.7)

ψ∗(ai(x)) =
s∑
j=1

λji (x)bj(ψ(x)), 1 ≤ i ≤ s

for some functions λj0, λ
j
i on X. In terms of the associated affine distributions FX, FY, this is

equivalent to the statement that ψ∗(FX) = FY.
This notion of equivalence is quite natural, especially in terms of the geometry of affine

distributions. But with an eye towards studying optimal control problems of the form (1.3), we
propose a slightly more restrictive definition of equivalence. According to (1.7), the drift vector
field a0(x) in (1.3) may be replaced by any vector field of the form a0(x)+

∑s
j=1 λ

j
0(x)aj(x), and

the resulting control system will be affine equivalent to the original. But in practice, there is
often a preferred choice for the drift vector field, corresponding to a zero value for some physical
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control inputs. This is particularly true in optimal control, where there is typically a specific
control input whose cost function is minimal. In this paper, therefore, we will study the following
type of geometric object, corresponding to a control-affine system (1.3) with a fixed drift vector
field a0:

Definition 1.7. A point-affine distribution on a manifold X is an affine distribution F on X,
together with a distinguished vector field a0 ∈ F.

We will consider the equivalence problem for point-affine distributions and their associated
control-affine systems with respect to the following notion of equivalence:

Definition 1.8. The point-affine distributions

FX = a0 + span (a1, . . . , as) , FY = b0 + span (b1, . . . , bs)

on the manifolds X,Y (corresponding to the control-affine systems (1.5) and (1.6), respectively)
will be called point-affine equivalent if there exists a diffeomorphism ψ : X → Y such that

ψ∗(a0(x)) = b0(ψ(x)),

ψ∗(ai(x)) =
s∑
j=1

λji (x)bj(ψ(x)), 1 ≤ i ≤ s

for some functions λji on X.

In other words, there must exist a diffeomorphism that preserves both the affine distributions
and the distinguished vector fields.

The primary goal of this paper is the local classification of point-affine distributions of con-
stant type with respect to point-affine equivalence. We will use Cartan’s method of equivalence
to compute local invariants for point-affine distributions. The remainder of the paper is or-
ganized as follows: in Section 2, we review some well-known results on the geometry of linear
distributions of constant type, as well as some of Elkin’s results on affine distributions, in order
to put our results in context. In Section 3 we compute local invariants for point-affine distribu-
tions of constant type when dim(X) = n, rank(F) = n− 1, and when dim(X) = 3, rank(F) = 1.
In Section 4 we discuss examples and potential directions for further study.

2 Review of prior results

2.1 Classical normal form results for linear distributions

The following results are well-known; see, e.g., [4] or [16]. We include them here primarily
to provide historical context for our results; some of them will also be used in the proofs in
Section 3.

Definition 2.1. A distribution D on a manifold X is called completely integrable (or, more
succinctly, integrable), if D∞ = D.

Theorem 2.2 (Frobenius). Let D be a rank s distribution on an n-dimensional manifold X.
If D is completely integrable, then in a sufficiently small neighborhood of any point x ∈ X, there
exist local coordinates (x1, . . . , xn) such that

D = span
(

∂

∂x1
, . . . ,

∂

∂xs

)
,

or, equivalently,

D⊥ = {dxs+1, . . . , dxn}.
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Theorem 2.3 (Pfaff). Let D be a rank n distribution on an (n+ 1)-dimensional manifold X,
and let θ be a nonvanishing 1-form on X such that D = {θ}⊥. Let k be the integer defined by
the conditions

θ ∧ (dθ)k 6= 0, θ ∧ (dθ)k+1 = 0.

(k is called the Pfaff rank of θ.) In a sufficiently small neighborhood of any point x ∈ X on which
k is constant, there exist local coordinates (x0, . . . , xn) such that

θ =

{
dx1 + x2 dx3 + · · ·+ x2k dx2k+1 if (dθ)k+1 = 0,
x0 dx1 + x2 dx3 + · · ·+ x2k dx2k+1 if (dθ)k+1 6= 0.

Theorem 2.4 (Engel). Let D be a rank 2 distribution of constant type on a 4-dimensional
manifold X, with growth vector (2, 3, 4). Then in a sufficiently small neighborhood of any point
x ∈ X, there exist local coordinates (x1, x2, x3, x4) such that

D⊥ = {dx2 − x3 dx1, dx3 − x4 dx1}.

2.2 Local classif ication of rank 1 affine systems
on 2- and 3-dimensional manifolds under affine equivalence

Linear distributions of rank 1 have no local invariants, as all nonvanishing vector fields on
a manifold are well-known to be locally equivalent. Affine distributions, however, may have
local invariants even in rank 1. The following results are due to Elkin [12, 13].

Theorem 2.5 (Elkin). Let F be a rank 1 strictly affine distribution of constant type on a 2-
dimensional manifold X.

1. If F is almost bracket-generating, then in a sufficiently small neighborhood of any point
x ∈ X, there exist local coordinates (x1, x2) such that

F =
∂

∂x1
+ span

(
∂

∂x2

)
.

2. If F is bracket-generating, then in a sufficiently small neighborhood of any point x ∈ X,
there exist local coordinates (x1, x2) such that

F = x2 ∂

∂x1
+ span

(
∂

∂x2

)
.

Note that, for reasons of dimension, any strictly affine distribution of rank 1 on a 2-manifold
is either almost bracket-generating or bracket-generating.

Theorem 2.6 (Elkin). Let F be a rank 1 strictly affine distribution of constant type on a 3-
dimensional manifold X.

1. If F is almost bracket-generating, then in a sufficiently small neighborhood of any point
x ∈ X, there exist local coordinates (x1, x2, x3) such that

F =
(

∂

∂x1
+ x3 ∂

∂x2

)
+ span

(
∂

∂x3

)
.
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2. If F is bracket-generating and LF2 (which must have rank 2) is Frobenius, then in a suf-
ficiently small neighborhood of any point x ∈ X, there exist local coordinates (x1, x2, x3)
such that

F =
(
x2 ∂

∂x1
+ x3 ∂

∂x2

)
+ span

(
∂

∂x3

)
.

3. If F is bracket-generating and LF2 is not Frobenius, then in a sufficiently small neighbor-
hood of any point x ∈ X, there exist local coordinates (x1, x2, x3) such that

F =
∂

∂x1
+ span

(
x3 ∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
,

where H is an arbitrary function on X satisfying ∂H
∂x1 6= 0.

Note that if a rank 1 strictly affine distribution F on a 3-manifold is not bracket-generating
or almost bracket-generating, then span(F) is a rank 2 Frobenius distribution DF on X, and F

may be regarded (at least locally) as living on the 2-dimensional leaves of the foliation which is
tangent to DF.

3 Local point-affine equivalence results
for point-affine distributions

3.1 Equivalence problem for rank 1 point-affine distributions on 2-manifolds

For point-affine equivalence, the first local invariants appear in the simplest nontrivial case:
rank 1 point-affine distributions on 2-dimensional manifolds.

Theorem 3.1. Let F be a rank 1 strictly affine point-affine distribution of constant type on
a 2-dimensional manifold X.

1. If F is almost bracket-generating, then in a sufficiently small neighborhood of any point
x ∈ X, there exist local coordinates (x1, x2) such that

F =
∂

∂x1
+ span

(
∂

∂x2

)
.

2. If F is bracket-generating, then in a sufficiently small neighborhood of any point x ∈ X,
there exist local coordinates (x1, x2) such that

F = x2

(
∂

∂x1
+ J

∂

∂x2

)
+ span

(
∂

∂x2

)
,

where J is an arbitrary function on X.

Proof. We will employ Cartan’s method of equivalence in this proof. Let F be a rank 1 point-
affine distribution of constant type on a 2-dimensional manifold X. A local framing – i.e., a pair
of everywhere linearly independent vector fields (v1, v2) on X – will be called admissible if v1 is
the distinguished vector field and

F = v1 + span(v2).
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If (v1, v2) is any admissible framing on X, then any other admissible framing (ṽ1, ṽ2) has the
form

ṽ1 = v1, ṽ2 = b2v2,

for some nonvanishing function b2 on X.
A local coframing (η̄1, η̄2) on X will be called 0-adapted if it is the dual coframing of some

admissible framing. Any two 0-adapted coframings on X vary by a transformation of the form[
˜̄η1

˜̄η2

]
=

[
1 0

0 b2

]−1 [
η̄1

η̄2

]
, (3.1)

with b2 6= 0.
The 0-adapted coframings are the local sections of a principal fiber bundle π : B0 → X, with

structure group G0 ⊂ GL(2) consisting of all invertible matrices of the form in (3.1). The right
action of G0 on sections σ : X → B0 is given by σ · g = g−1σ. (This is the reason for the inverse
occurring in (3.1).)

There exist canonical 1-forms η1, η2 on B0 with the reproducing property that for any cofram-
ing (η̄1, η̄2) given by a local section σ : X → B0,

σ∗(ηi) = η̄i.

These are referred to as the semi-basic forms on B0. A standard argument shows that there also
exists a (non-unique) 1-form β2 (referred to as a pseudo-connection form or, more succinctly,
a connection form), linearly independent from the semi-basic forms, and a function T 1

12 on B0

(referred to as a torsion function) such that[
dη1

dη2

]
= −

[
0 0

0 β2

][
η1

η2

]
+

[
T 1

12η
1 ∧ η2

0

]
. (3.2)

(See [15] for details about the method of equivalence.) These are the structure equations of the
G0-structure B0. The semi-basic forms and the connection form together form a local coframing
on B0.

We proceed with the method of equivalence by examining how the function T 1
12 varies if we

change from one 0-adapted coframing to another. A straightforward computation shows that
under a transformation of the form (3.1), we have

T̃ 1
12 = b2T

1
12. (3.3)

Thus T 1
12 is a relative invariant: if it vanishes for any coframing at a point x ∈ X, then it vanishes

for every coframing at x.
At this point, we need to divide into cases based on whether or not T 1

12 vanishes.
Case 1. Suppose that T 1

12 = 0. Then the structure equations (3.2) contain no local invariants,
so no further adaptations can be made. The tableau consisting of all matrices of the form in (3.2)
is involutive with Cartan character s1 = 1.

Given any 0-adapted coframing, consider the dual framing (v1, v2). The structure equations
imply that

[v1, v2] ≡ 0 mod v2;

therefore, F is almost bracket-generating. In order to recover the normal form of Theorem 3.1,
let (η̄1, η̄2) be any 0-adapted local coframing on X given by a local section σ : X → B0, and
consider the pullbacks of the structure equations (3.2) via σ:

dη̄1 = 0, dη̄2 = −β̄2 ∧ η̄2.
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(Note that the pullback β̄2 of the connection form β2 is a 1-form on X, so it is no longer linearly
independent from η̄1, η̄2.)

Since η̄1 is an exact 1-form, we can choose a local coordinate x1 on X such that η̄1 = dx1.
Then, since η̄2 is an integrable 1-form, we can choose a local coordinate x2 on X, functionally
independent from x1, such that

η̄2 = λ dx2

for some nonvanishing function λ on X. By replacing the given coframing with the (also 0-
adapted) coframing (η̄1, λ−1η̄2), we can assume that λ ≡ 1. Our 1-adapted coframing now has
the form

η̄1 = dx1, η̄2 = dx2.

The dual framing is

v1 =
∂

∂x1
, v2 =

∂

∂x2
,

and

F =
∂

∂x1
+ span

(
∂

∂x2

)
.

Case 2. Suppose that T 1
12 6= 0. (3.3) implies that, given any 0-adapted coframing (η̄1, η̄2),

we can perform a transformation of the form (3.1) to arrive at a new 0-adapted coframing for
which T 1

12 = 1. Such a coframing will be called 1-adapted.
Any two 1-adapted coframings on X vary by a transformation of the form[

˜̄η1

˜̄η2

]
=

[
1 0

0 1

]−1 [
η̄1

η̄2

]
.

In other words, the 1-adapted coframings are the local sections of an (e)-structure B1 ⊂ B0.
The projection π : B1 → X is a diffeomorphism, and there is a unique 1-adapted coframing
(η̄1, η̄2) on X. This coframing has structure equations

dη̄1 = η̄1 ∧ η̄2, (3.4)

dη̄2 = T 2
12 η̄

1 ∧ η̄2,

for some function T 2
12 on X.

Consider the dual framing (v1, v2) of a 1-adapted coframing. The structure equations (3.4)
imply that

[v1, v2] ≡ −v1 mod v2;

therefore, F is bracket-generating. Since η̄1 is integrable but not exact, we can choose local
coordinates x1, x2 on X such that η̄1 = 1

x2dx
1. Then the first equation in (3.4) implies that

η̄2 =
1
x2

(dx2 − J dx1)

for some function J on X. The second equation then implies that

T 2
12 = x2 Jx2 − J.
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In terms of these local coordinates, the dual framing is

v1 = x2

(
∂

∂x1
+ J

∂

∂x2

)
, v2 = x2 ∂

∂x2
,

and since span(v2) = span( ∂
∂x2 ),

F = x2

(
∂

∂x1
+ J

∂

∂x2

)
+ span

(
∂

∂x2

)
. (3.5)

�

Remark 3.2. This choice of coordinates x1, x2 such that η̄1 = 1
x2dx

1 is unique up to coordinate
transformations of the form

x1 → f(x̃1), x2 → f ′(x̃1)x̃2. (3.6)

Under a transformation of the form (3.6), we have

J(x1, x2) → J(f(x̃1), f ′(x̃1)x̃2)− f ′′(x̃1)
f ′(x̃1)

x̃2.

Therefore, an admissible change of coordinates can only change J by a linear function of x2,
and point-affine distributions of this type locally depend essentially on one arbitrary function
of 2 variables. In particular, the point-affine distribution (3.5) is locally equivalent to the “flat”
case J = 0 if and only if J = g(x1)x2 for some function g(x1).

3.2 Equivalence problem for rank (n − 1) point-affine distributions
on n-manifolds

Theorem 3.1 is a special case of the following more general theorem:

Theorem 3.3. Let F be a rank (n− 1) strictly affine point-affine distribution of constant type
on an n-dimensional manifold X. Let LF be the associated direction distribution of rank (n−1),
let v1 denote the distinguished vector field, and let η̄1 be the unique 1-form on X satisfying

LF = (η̄1)⊥, η̄1(v1) = 1.

Let k denote the Pfaff rank of η̄1, i.e., the unique integer such that

η̄1 ∧ (dη̄1)k 6= 0, η̄1 ∧ (dη̄1)k+1 = 0.

1. If (dη̄1)k+1 = 0, then in a sufficiently small neighborhood of any point x ∈ X on which k
is constant, there exist local coordinates (x1, . . . , xn) such that

F =

(
1 +

k∑
r=1

xk+r+1Jk+r+1

)
∂

∂x1
+

k∑
r=1

(
Jk+r+1

∂

∂xr+1
− Jr+1

∂

∂xk+r+1

)
+ span

((
∂

∂x2
+ xk+2 ∂

∂x1

)
, . . . ,

(
∂

∂xk+1
+ x2k+1 ∂

∂x1

)
,

∂

∂xk+2
, . . . ,

∂

∂xn

)
,

where J2, . . . , J2k+1 are arbitrary functions on X.
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2. If (dη̄1)k+1 6= 0, then in a sufficiently small neighborhood of any point x ∈ X on which k
is constant, there exist local coordinates (x1, . . . , xn) such that

F =

(
x2k+2+

k∑
r=1

xk+r+1Jk+r+1

)
∂

∂x1
+

k∑
r=1

(
Jk+r+1

∂

∂xr+1
−Jr+1

∂

∂xk+r+1

)
−J1

∂

∂x2k+2

+ span
((

x2k+2

(
∂

∂x2
+ xk+2 ∂

∂x1

)
− J2

∂

∂x2k+2

)
, . . . ,(

x2k+2

(
∂

∂xk+1
+ x2k+1 ∂

∂x1

)
− Jk+1

∂

∂x2k+2

)
,(

∂

∂xk+2
− Jk+2

∂

∂x2k+2

)
, . . . ,

(
∂

∂x2k+1
− J2k+1

∂

∂x2k+2

)
,

∂

∂x2k+2
, . . . ,

∂

∂xn

)
,

where J1, . . . , J2k+1 are arbitrary functions on X.

Proof. Let F be a rank (n− 1) point-affine distribution of constant type on an n-dimensional
manifold X. A local framing (v1, . . . , vn) on X will be called admissible if v1 is the distinguished
vector field and

F = v1 + span(v2, . . . , vn).

A local coframing (η̄1, . . . , η̄n) on X will be called admissible if, for any admissible framing
(v1, . . . , vn),

η̄1(v1) = 1,

η̄1(vj) = 0, 2 ≤ j ≤ n,

η̄j(v1) = 0, 2 ≤ j ≤ n.

Any two admissible coframings on X vary by a transformation of the form
˜̄η1

˜̄η2

...
˜̄ηn

 =


1 0 · · · 0
0
... A
0


−1 

η̄1

η̄2

...
η̄n


for some matrix A ∈ GL(n− 1,R).

An admissible coframing will be called 0-adapted if

dη̄1 ≡
k∑
r=1

η̄r+1 ∧ η̄k+r+1 mod η̄1,

where k is the Pfaff rank of η̄1. Since the Cartan system

C(η̄1) = {η̄1, . . . , η̄2k+1}

and the system

v⊥1 = {η̄2, . . . , η̄n}

are both well-defined independent of the choice of 0-adapted coframing, the subsystem

C(η̄1) ∩ v⊥1 = {η̄2, . . . , η̄2k+1}
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is also well-defined. Thus any two 0-adapted coframings on X vary by a transformation of the
form 

˜̄η1

˜̄η2

...
˜̄η2k+1

˜̄η2k+2

...
˜̄ηn





1 0 · · · 0 0 · · · 0
0 0 · · · 0
... A

...
...

0 0 · · · 0
0
... B C
0



−1 

η̄1

η̄2

...
η̄2k+1

η̄2k+2

...
η̄n


, (3.7)

where A ∈ Sp(2k,R), B ∈M(n−2k−1)×(2k)(R), C ∈ GL(n−2k−1,R).
The bundle π : B0 → X of 0-adapted coframings with structure group G0 consisting of

matrices of the form (3.7) is defined as in Section 3.1, as are the semi-basic forms η1, . . . , ηn

on B0. The first structure equation of B0 is

dη1 = η1 ∧ φ+
k∑
r=1

ηr+1 ∧ ηk+r+1,

where φ ∈ π∗(v⊥1 ). There are two cases to consider:

1. φ ∈ C(η1);

2. φ 6∈ C(η1).

Case 1: φ ∈ C(η1). Then

(dη1)k+1 = 0.

Let σ : X → B0 be any local section of B0 (i.e., a 0-adapted coframing (η̄1, . . . , η̄n) on X). By
the reproducing property of the semi-basic forms,

(dη̄1)k+1 = 0,

so by the Pfaff theorem there exist local coordinates x1, . . . , x2k+1 on X such that

η̄1 = dx1 −
k∑
r=1

xk+r+1 dxr+1. (3.8)

We can write

φ̄ =
2k∑
j=1

Jj+1η̄
j+1

for some functions J2, . . . , J2k+1 on X. Then we have

dη̄1 = η̄1 ∧

 2k∑
j=1

Jj+1η̄
j+1

+
k∑
r=1

η̄r+1 ∧ η̄k+r+1

=
k∑
r=1

(
η̄r+1 + Jk+r+1η̄

1
)
∧
(
η̄k+r+1 − Jr+1η̄

1
)

=
k∑
r=1

dxr+1 ∧ dxk+r+1.



Geometry of Control-Affine Systems 13

Thus we can choose a 0-adapted coframing with

η̄s+1 = dxs+1 − Jk+s+1η̄
1

η̄k+s+1 = dxk+s+1 + Js+1η̄
1

}
, 1 ≤ s ≤ k. (3.9)

For reasons of dimension, the system

v⊥1 = {η̄2, . . . , η̄n}

is Frobenius; therefore, we can extend the local coordinates x1, . . . , x2k+1 to a full local coordinate
system x1, . . . , xn with the property that

v⊥1 = {η̄2, . . . , η̄2k+1, dx2k+2, . . . , dxn};

we can then choose the remainder of our 0-adapted coframing to be

η̄j = dxj , 2k + 2 ≤ j ≤ n. (3.10)

The dual framing to the coframing defined by (3.8), (3.9), and (3.10) is:

v1 =

(
1 +

k∑
r=1

xk+r+1Jk+r+1

)
∂

∂x1
+

k∑
r=1

(
Jk+r+1

∂

∂xr+1
− Jr+1

∂

∂xk+r+1

)
,

vs =
∂

∂xs
+ xk+s

∂

∂x1
, 2 ≤ s ≤ k + 1,

vj =
∂

∂xj
, k + 2 ≤ j ≤ n.

The corresponding point-affine distribution F is:

F =

(
1 +

k∑
r=1

xk+r+1Jk+r+1

)
∂

∂x1
+

k∑
r=1

(
Jk+r+1

∂

∂xr+1
− Jr+1

∂

∂xk+r+1

)
+ span

((
∂

∂x2
+ xk+2 ∂

∂x1

)
, . . . ,

(
∂

∂xk+1
+ x2k+1 ∂

∂x1

)
,

∂

∂xk+2
, . . . ,

∂

∂xn

)
.

Note that our choices of local coordinates were arbitrary up to at most functions of (n − 1)
variables, while the local invariants J2, . . . , J2k+1 are arbitrary functions of n variables. There-
fore, point-affine distributions of this type locally depend essentially on 2k arbitrary functions
of n variables.

Case 2: φ 6∈ C(η1). Then

(dη1)k+1 6= 0.

Let σ : X → B0 be any local section of B0 (i.e., a 0-adapted coframing (η̄1, . . . , η̄n) on X).
Because dη1 is semi-basic, it follows from the reproducing property of the semi-basic forms that

(dη̄1)k+1 6= 0.

By the Pfaff theorem, there exist local coordinates x1, . . . , x2k+2 on X such that

η̄1 =
1

x2k+2

(
dx1 −

k∑
r=1

xk+r+1 dxr+1

)
. (3.11)



14 J.N. Clelland, C.G. Moseley and G.R. Wilkens

Then we have

dη̄1 = η̄1 ∧ φ̄+
k∑
r=1

η̄r+1 ∧ η̄k+r+1

= η̄1 ∧
(
dx2k+2

x2k+2

)
+

1
x2k+2

k∑
r=1

dxr+1 ∧ dxk+r+1.

Therefore,

k∑
r=1

η̄r+1 ∧ η̄k+r+1 ≡ 1
x2k+2

k∑
r=1

dxr+1 ∧ dxk+r+1 mod η̄1.

Thus we can choose a 0-adapted coframing with

η̄s+1 = 1
x2k+2 (dxs+1 − Jk+s+1η̄

1)
η̄k+s+1 = dxk+s+1 + Js+1η̄

1

}
, 1 ≤ s ≤ k, (3.12)

for some functions J2, . . . , J2k+1 on X. Then we have

φ̄ ≡ 1
x2k+2

dx2k+2 +
2k∑
j=1

Jj+1η̄
j+1

 mod η̄1.

The requirement that φ ∈ π∗(v⊥1 ) is equivalent to φ̄ ∈ v⊥1 , and this determines a unique func-
tion J1 on X such that

φ̄ =
1

x2k+2

dx2k+2 +
2k∑
j=0

Jj+1η̄
j+1

 .

We can now set

η̄2k+2 = φ̄ =
1

x2k+2

dx2k+2 +
2k∑
j=0

Jj+1η̄
j+1

 , (3.13)

and a similar argument to that given in the previous case shows that we can extend the local
coordinates x1, . . . , x2k+2 to a full local coordinate system x1, . . . , xn and choose the remainder
of our 0-adapted coframing to be

η̄j = dxj , 2k + 3 ≤ j ≤ n. (3.14)

The dual framing to the coframing defined by (3.11), (3.12), (3.13), and (3.14) is:

v1 =

(
x2k+2+

k∑
r=1

xk+r+1Jk+r+1

)
∂

∂x1
+

k∑
r=1

(
Jk+r+1

∂

∂xr+1
−Jr+1

∂

∂xk+r+1

)
−J1

∂

∂x2k+2
,

vs = x2k+2

(
∂

∂xs
+ xk+s

∂

∂x1

)
− Js

∂

∂x2k+2
, 2 ≤ s ≤ k + 1,

vs =
∂

∂xs
− Js

∂

∂x2k+2
, k + 2 ≤ s ≤ 2k + 1,

v2k+2 = x2k+2 ∂

∂x2k+2
, vj =

∂

∂xj
, 2k + 3 ≤ j ≤ n.



Geometry of Control-Affine Systems 15

Since span(v2k+2) = span( ∂
∂x2k+2 ), the corresponding point-affine distribution F is:

F =

(
x2k+2+

k∑
r=1

xk+r+1Jk+r+1

)
∂

∂x1
+

k∑
r=1

(
Jk+r+1

∂

∂xr+1
−Jr+1

∂

∂xk+r+1

)
−J1

∂

∂x2k+2

+ span
((

x2k+2

(
∂

∂x2
+ xk+2 ∂

∂x1

)
− J2

∂

∂x2k+2

)
, . . . ,(

x2k+2

(
∂

∂xk+1
+ x2k+1 ∂

∂x1

)
− Jk+1

∂

∂x2k+2

)
,(

∂

∂xk+2
− Jk+2

∂

∂x2k+2

)
, . . . ,

(
∂

∂x2k+1
− J2k+1

∂

∂x2k+2

)
,

∂

∂x2k+2
, . . . ,

∂

∂xn

)
.

Note that our choices of local coordinates were arbitrary up to at most functions of (n − 1)
variables, while the local invariants J1, . . . , J2k+1 are arbitrary functions of n variables. There-
fore, point-affine distributions of this type locally depend essentially on 2k+1 arbitrary functions
of n variables. �

Corollary 1. Let F be a rank 2 strictly affine point-affine distribution of constant type on
a 3-dimensional manifold X.

1. If F is almost bracket-generating, then in a sufficiently small neighborhood of any point
x ∈ X, there exist local coordinates (x1, x2, x3) such that

F =
∂

∂x1
+ span

(
∂

∂x2
,
∂

∂x3

)
.

2. If F is bracket-generating and LF is Frobenius, then in a sufficiently small neighborhood
of any point x ∈ X, there exist local coordinates (x1, x2, x3) such that

F =
(
x2 ∂

∂x1
− J1

∂

∂x2

)
+ span

(
∂

∂x2
,
∂

∂x3

)
,

where J1 is an arbitrary function on X.

3. If F is bracket-generating and LF is a contact distribution, then in a sufficiently small
neighborhood of any point x ∈ X, there exist local coordinates (x1, x2, x3) such that

F =
(

(1 + x3J3)
∂

∂x1
+ J3

∂

∂x2
− J2

∂

∂x3

)
+ span

(
x3 ∂

∂x1
+

∂

∂x2
,
∂

∂x3

)
,

where J2, J3 are arbitrary functions on X.

Proof. Let η̄1 be as in Theorem 3.3.
1. If F is almost bracket-generating, then dη̄1 = 0, so k = 0 and Case 1 of Theorem 3.3

applies.
2. If F is bracket-generating and LF is Frobenius, then

η̄1 ∧ dη̄1 = 0, dη̄1 6= 0,

so k = 0 and Case 2 of Theorem 3.3 applies.
3. If F is bracket-generating and LF is a contact distribution, then

η̄1 ∧ dη̄1 6= 0, (dη̄1)2 = 0,

so k = 1 and Case 1 of Theorem 3.3 applies. �
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3.3 Equivalence problem for rank 1 point-affine distributions on 3-manifolds

In this section we consider point-affine equivalence for rank 1 point-affine distributions F

on 3-dimensional manifolds. We will assume that F is bracket-generating or almost bracket-
generating, since otherwise the equivalence problem may be reduced to a problem on a 2-
dimensional manifold.

Theorem 3.4. Let F be a rank 1 strictly affine point-affine distribution of constant type on
a 3-dimensional manifold X.

1. If F is almost bracket-generating, then in a sufficiently small neighborhood of any point
x ∈ X, there exist local coordinates (x1, x2, x3) such that

F =
(

∂

∂x1
+ x3 ∂

∂x2
+ J

∂

∂x3

)
+ span

(
∂

∂x3

)
,

where J is an arbitrary function on X.

2. If F is bracket-generating and LF2 (which must have rank 2) is Frobenius, then in a suf-
ficiently small neighborhood of any point x ∈ X, there exist local coordinates (x1, x2, x3)
such that

F =
(
x2 ∂

∂x1
+ x3 ∂

∂x2
+ J

∂

∂x3

)
+ span

(
∂

∂x3

)
,

where J is an arbitrary function on X.

3. If F is bracket-generating and LF2 is not Frobenius, then in a sufficiently small neighbor-
hood of any point x ∈ X, there exist local coordinates (x1, x2, x3) such that

F =
(

∂

∂x1
+ J

(
x3 ∂

∂x1
+

∂

∂x2
+H

∂

∂x3

))
+ span

(
x3 ∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
,

where H, J are arbitrary functions on X satisfying ∂H
∂x1 6= 0.

Compare Theorem 3.4 with Theorem 2.6; in each case there is a new invariant J which
reflects the restriction that v1 is a fixed vector field in F.

Proof. A local framing of (v1, v2, v3) on X will be called admissible if v1 is the distinguished
vector field and

F = v1 + span(v2).

If (v1, v2, v3) is an admissible framing on X, then any other admissible framing (ṽ1, ṽ2, ṽ3) has
the form

ṽ1 = v1, ṽ2 = b2v2, ṽ3 = a3v1 + b3v2 + c3v3,

for some functions a3, b2, b3, c3 on X which satisfy b2c3 6= 0.
A local coframing (η̄1, η̄2, η̄3) on X will be called 0-adapted if it is the dual coframing of some

admissible framing. Any two 0-adapted coframings on X vary by a transformation of the form˜̄η1

˜̄η2

˜̄η3

 =

1 0 a3

0 b2 b3

0 0 c3


−1 η̄

1

η̄2

η̄3

 , (3.15)

with b2c3 6= 0.
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The 0-adapted coframings are the local sections of a principal fiber bundle B0 → X, with
structure group G0 ⊂ GL(3) consisting of all invertible matrices of the form in (3.15). The
structure equations on B0 take the formdη

1

dη2

dη3

 = −

0 0 α3

0 β2 β3

0 0 γ3


η

1

η2

η3

+

T
1
12η

1 ∧ η2

0

T 3
12η

1 ∧ η2

 .
Under a transformation of the form (3.15), the torsion functions T 1

12, T
3
12 transform as follows:

T̃ 1
12 = b2T

1
12 −

a3b2
c3

T 3
12, T̃ 3

12 =
b2
c3
T 3

12. (3.16)

The function T 3
12 is a relative invariant, and the assumption that F is (almost) bracket-generating

implies that T 3
12 6= 0. So, given any 0-adapted coframing (η̄1, η̄2, η̄3), (3.16) implies that we can

perform a transformation of the form (3.15) to arrive at a new 0-adapted coframing for which
T 3

12 = 1, T 1
12 = 0. Such a coframing will be called 1-adapted.

Any two 1-adapted coframings on X vary by a transformation of the form˜̄η1

˜̄η2

˜̄η3

 =

1 0 0

0 b2 b3

0 0 b2


−1 η̄

1

η̄2

η̄3

 , (3.17)

with b2 6= 0. The 1-adapted coframings are the local sections of a principal fiber bundle B1 ⊂ B0,
with structure group G1 consisting of all matrices of the form in (3.17). When restricted to B1,
the connection forms α3, γ3−β2 become semi-basic, thereby introducing new torsion terms into
the structure equations of B1. By adding multiples of the semi-basic forms to the connection
forms β2, β3 so as to absorb as much of the torsion as possible, we can arrange that the structure
equations of B1 take the formdη

1

dη2

dη3

 = −

0 0 0

0 β2 β3

0 0 β2


η

1

η2

η3

+

(T 1
13η

1 + T 1
23η

2) ∧ η3

0

η1 ∧ η2 + T 3
13η

1 ∧ η3

 .
Under a transformation of the form (3.17), we have

T̃ 1
13 = b2T

1
13, T̃ 1

23 = b22T
1
23, T̃ 3

13 = T 3
13 +

b3
b2
.

The functions T 1
13, T

1
23 are relative invariants; however, given any 1-adapted coframing (η̄1, η̄2, η̄3),

we can perform a transformation of the form (3.17) to arrive at a new 1-adapted coframing for
which T 3

13 = 0. Such a coframing will be called 2-adapted.
Any two 2-adapted coframings on X vary by a transformation of the form˜̄η1

˜̄η2

˜̄η3

 =

1 0 0

0 b2 0

0 0 b2


−1 η̄

1

η̄2

η̄3

 , (3.18)

with b2 6= 0. The 2-adapted coframings are the local sections of a principal fiber bundle B2 ⊂ B1,
with structure group G2 consisting of all matrices of the form in (3.18). When restricted to B2,
the connection form β3 becomes semi-basic, thereby introducing new torsion terms into the
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structure equations of B2. By adding multiples of the semi-basic forms to the connection form β2

so as to absorb as much of the torsion as possible, we can arrange that the structure equations
of B2 take the formdη

1

dη2

dη3

 = −

0 0 0

0 β2 0

0 0 β2


η

1

η2

η3

+

(T 1
13η

1 + T 1
23η

2) ∧ η3

T 2
13η

1 ∧ η3

η1 ∧ η2

 . (3.19)

Under a transformation of the form (3.18), we have

T̃ 1
13 = b2T

1
13, T̃ 1

23 = b22T
1
23, T̃ 2

13 = T 2
13. (3.20)

Thus the functions T 1
13, T

1
23 are relative invariants, while T 2

13 is a well-defined function on X. As
in Section 3.1, we will divide into cases based on the vanishing/nonvanishing of T 1

23 and T 1
13.

Case 1. Suppose that T 1
23 = T 1

13 = 0. Since T 2
13 is well-defined on X, no further adaptations

can be made based on the structure equations (3.19). The tableau consisting of all matrices of
the form in (3.19) is not involutive, so in principle the next step in the method of equivalence
would be to prolong the structure equations. However, equations (3.19) already contain enough
information to produce a local normal form for such structures, so we will proceed in this
direction.

Given any 1-adapted coframing, consider the dual framing (v1, v2, v3). The structure equa-
tions (3.19) imply that

[v1, v2] ≡ −v3 mod v2, [v2, v3] ≡ 0 mod v2, v3, [v1, v3] ≡ 0 mod v2, v3.

The first equation implies that LF2 is spanned by {v2, v3}; the second implies that LF2 is
a Frobenius distribution, and the third implies that F is almost bracket-generating. Thus, this
case corresponds to Case 1 of Theorem 3.4.

In order to recover the normal form of Theorem 3.4, let (η̄1, η̄2, η̄3) be any 1-adapted local
coframing on X given by a local section σ : X → B2, and consider the pullbacks of the structure
equations (3.19) via σ:

dη̄1 = 0,

dη̄2 = −β̄2 ∧ η̄2 + T̄ 2
13η̄

1 ∧ η̄3, (3.21)

dη̄3 = −β̄2 ∧ η̄3 + η̄1 ∧ η̄2.

Since η̄1 is an exact 1-form, we can choose a local coordinate x1 on X such that η̄1 = dx1.
Then, since η̄3 is a contact form with

dη̄3 ≡ 0 mod {η̄3, dx1},

there exist local coordinates x2, x3, functionally independent from x1, and a nonvanishing func-
tion λ on X such that

η̄3 = λ(dx2 − x3 dx1).

By replacing the given coframing with the (also 1-adapted) coframing (η̄1, λ−1η̄2, λ−1η̄3), we
can assume that λ ≡ 1. The third equation in (3.21) then implies that

η̄2 = dx3 +Bdx1 + C(dx2 − x3 dx1)

for some functions B, C on X, and that

β̄2 = Cdx1 +D(dx2 − x3 dx1)
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for some additional function D on X. Finally, the second equation in (3.21) implies that

C = 1
2Bx3 , D = 1

2Bx3x3 .

Our 2-adapted coframing now has the form

η̄1 = dx1,

η̄2 = dx3 +B dx1 + 1
2Bx3(dx2 − x3 dx1), (3.22)

η̄3 = dx2 − x3 dx1.

The dual framing is

v1 =
∂

∂x1
+ x3 ∂

∂x2
−B

∂

∂x3
, v2 =

∂

∂x3
, v3 =

∂

∂x2
− 1

2Bx3

∂

∂x3
;

setting J = −B, we have:

F = v1 + span(v2) =
(

∂

∂x1
+ x3 ∂

∂x2
+ J

∂

∂x3

)
+ span

(
∂

∂x3

)
.

Comparing the structure equations (3.21) with those of the coframing (3.22), we see that

T 2
13 = Jx2 − 1

2(Jx1x3 + x3Jx2x3 + JJx3x3) + 1
4(Jx3)2.

Case 2. Suppose that T 1
23 = 0, T 1

13 6= 0. (3.20) implies that, given any 2-adapted coframing
(η̄1, η̄2, η̄3), we can perform a transformation of the form (3.18) to arrive at a new 2-adapted
coframing for which T 1

13 = 1. Such a coframing will be called 3-adapted.
Any two 3-adapted coframings on X vary by a transformation of the form˜̄η1

˜̄η2

˜̄η3

 =

1 0 0

0 1 0

0 0 1


−1 η̄

1

η̄2

η̄3

 .
In other words, the 3-adapted coframings are the local sections of an (e)-structure B3 ⊂ B2.
The projection π : B3 → X is a diffeomorphism, and there is a unique 3-adapted coframing
(η̄1, η̄2, η̄3) on X.

When restricted to B3, the connection form β2 becomes semi-basic. The first structure
equation in (3.19) now takes the form

dη1 = η1 ∧ η3.

Differentiating this equation yields

β2 ∧ η1 ∧ η3 = 0;

therefore, β2 is a linear combination of η1 and η3, and the structure equations of B3 take the
form

dη1 = η1 ∧ η3,

dη2 = T 2
12η

1 ∧ η2 + T 2
13η

1 ∧ η3 + T 2
23η

2 ∧ η3, (3.23)

dη3 = η1 ∧ η2 + T 2
12η

1 ∧ η3.
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Given any 3-adapted coframing, consider the dual framing (v1, v2, v3). The structure equa-
tions (3.23) imply that

[v1, v2] ≡ −v3 mod v2, [v2, v3] ≡ 0 mod v2, [v1, v3] ≡ −v1 mod v2.

The first equation implies that LF2 is spanned by {v2, v3}; the second implies that LF2 is
a Frobenius distribution, and the third implies that F is bracket-generating. Thus, this case
corresponds to Case 2 of Theorem 3.4.

In order to recover the normal form of Theorem 3.4, let (η̄1, η̄2, η̄3) be the 3-adapted local
coframing on X given by the unique local section σ : X → B3, and consider the pullbacks of the
structure equations (3.23) via σ. Since η̄1 is an integrable 1-form (i.e., dη̄1 ≡ 0 mod η̄1) but
not exact, we can choose local coordinates x1, x2 on X such that η̄1 = 1

x2 dx
1. Then the first

equation in (3.23) implies that

η̄3 ≡ 1
x2
dx2 mod dx1.

Now, since dη̄3 6≡ 0 mod η̄3, there must exist another local coordinate x3, functionally indepen-
dent from x1, x2, such that

η̄3 =
1
x2

(
dx2 − x3

x2
dx1

)
.

Moreover, the third equation in (3.23) implies that

η̄2 =
1
x2

(
(dx3 +

1
x2
B dx1 +

1
x2
C

(
dx2 − x3

x2
dx1

))
for some functions B, C on X. Finally, the second equation in (3.23) implies that

C = 1
2

(
x2Bx3 − x3

)
.

Our 3-adapted coframing now has the form

η̄1 =
1
x2
dx1,

η̄2 =
1
x2
dx3 +

1
(x2)2

B dx1 + 1
2

(
(x2Bx3 − x3)

(x2)2

)(
dx2 − x3

x2
dx1

)
, (3.24)

η̄3 =
1
x2
dx2 − x3

(x2)2
dx1.

The dual framing is

v1 = x2 ∂

∂x1
+ x3 ∂

∂x2
−B

∂

∂x3
,

v2 = x2 ∂

∂x3
,

v3 = x2 ∂

∂x2
− 1

2

(
x2Bx3 − x3

) ∂

∂x3
;

setting J = −B and noting that span(v2) = span( ∂
∂x3 ), we have:

F = v1 + span(v2) =
(
x2 ∂

∂x1
+ x3 ∂

∂x2
+ J

∂

∂x3

)
+ span

(
∂

∂x3

)
.
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Comparing the structure equations (3.23) with those of the coframing (3.24), we see that

T 2
12 =

1
2x2

(x2Jx3 − 3x3),

T 2
13 =

1
4(x2)2

(
3(x3)2 − 6x2J + 4(x2)2Jx2 + 2x2x3Jx3 − 2(x2)3Jx1x3

− 2(x2)2x3Jx2x3 + (x2)2(Jx3)2 − 2(x2)2JJx3x3

)
,

T 2
23 = 1

2(1− x2Jx3x3).

Case 3. Suppose that T 1
23 6= 0. (3.20) implies that, given any 2-adapted coframing

(η̄1, η̄2, η̄3), we can perform a transformation of the form (3.18) to arrive at a new 1-adapted
coframing for which T 1

23 = ±1. Such a coframing will be called 3-adapted. (For ease of notation,
let ε = T 1

23 = ±1.)
Any two 3-adapted coframings on X vary by a transformation of the form˜̄η1

˜̄η2

˜̄η3

 =

1 0 0

0 ±1 0

0 0 ±1


−1 η̄

1

η̄2

η̄3

 ,
where the signs are chosen such that the matrix above has determinant equal to 1. The cor-
responding principal fiber bundle B3 ⊂ B2 has discrete fiber group G3

∼= Z/2Z, and we can
regard B3 as an (e)-structure over a 2-to-1 cover of X. When restricted to B3, the connection
form β2 becomes semi-basic; the structure equations of B3 take the form

dη1 = T 1
13η

1 ∧ η3 + εη2 ∧ η3,

dη2 = T 2
12η

1 ∧ η2 + T 2
13η

1 ∧ η3 + T 2
23η

2 ∧ η3, (3.25)

dη3 = η1 ∧ η2 + T 2
12η

1 ∧ η3 + T 3
23η

2 ∧ η3.

Given any 3-adapted coframing, consider the dual framing (v1, v2, v3). The structure equa-
tions (3.25) imply that

[v1, v2] ≡ −v3 mod v2, [v2, v3] ≡ −εv1 mod v2, v3, [v1, v3] ≡ 0 mod v1, v2, v3.

The first equation implies that LF2 is spanned by {v2, v3}, and the second implies that LF2

is not Frobenius and that F is bracket-generating. Thus, this case corresponds to Case 3 of
Theorem 3.4.

In order to recover the normal form of Theorem 3.4, let (η̄1, η̄2, η̄3) be any 3-adapted local
coframing on X given by a local section σ : X → B3, and consider the pullbacks of the structure
equations (3.25) via σ. Since dη̄1 6≡ 0 mod η̄1, Pfaff’s theorem implies that we can choose local
coordinates x1, x2, x3 on X such that

η̄1 = dx1 − x3 dx2.

Set T 1
13 = B; this will simplify notation in what follows. The first equation in (3.25) becomes

(Bη̄1 + εη̄2) ∧ η̄3 = dx2 ∧ dx3,

which implies that

η̄2 = ε(−B(dx1 − x3 dx2)− λ−1dx2 + C(Hdx2 − dx3)),

η̄3 = λ(Hdx2 − dx3),
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for some functions λ, C, H on X with λ 6= 0. (If necessary, perform the contact transformation

x1 → x1 − x2x3, x2 → x3, x3 → −x2

to achieve this form.) Now the third equation in (3.25) implies that

−ελ2Hx1 = 1.

Therefore, Hx1 6= 0; εHx1 < 0, and

λ = ± 1√
−εHx1

.

The Z/2Z freedom in the structure group G3 may be used to eliminate the sign ambiguity in λ;
for simplicity we will take the positive square root.

Our 3-adapted coframing now has the form

η̄1 = dx1 − x3 dx2,

η̄2 = −ε
(√

−εHx1dx2 +B(dx1 − x3 dx2) + C(H dx2 − dx3)
)
, (3.26)

η̄3 =
1√

−εHx1

(H dx2 − dx3).

The dual framing is

v1 =
∂

∂x1
− B√

−εHx1

(
x3 ∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
,

v2 = − ε√
−εHx1

(
x3 ∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
,

v3 = −
√
−εHx1

∂

∂x3
+ C

(
x3 ∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
;

setting J = −B√
−εHx1

, we have:

F = v1 + span(v2)

=
(

∂

∂x1
+ J

(
x3 ∂

∂x1
+

∂

∂x2
+H

∂

∂x3

))
+ span

(
x3 ∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
.

Comparing the structure equations (3.25) with those of the coframing (3.26) shows that

C =
1

2Hx1

√
−εHx1

(
(Hx1Hx3 −HHx1x3 −Hx1x2)J

− (1 + x3J)Hx1x1 − (Jx2 + x3Jx1 +HJx3)Hx1

)
,

and that

T 2
12 = 1

2

(
Jx2 + x3Jx1 +HJx3 + JHx3

)
,

T 2
13 = εC2Hx1 −Hx1Jx3 + J2Hx1 +

1
2
√
−εHx1

(
2C(Hx1Jx2 + JHx1,x2 +Hx1x1

+ 2x3Hx1Jx1 + x3JHx1x1 + 2HHx1Jx3 +HHx1x3J − 2Hx1Hx3J)

− 2x3Cx1Hx1J − 2Cx1Hx1 − 2Cx3HHx1J − 2Cx2Hx1J

)
,

T 2
23 = −

(
Cx2 + x3Cx1 +HCx3 + CHx3

)
− ε

2
√
−εHx1

(Hx1x3 + 2JHx1) ,

T 3
23 =

ε

2Hx1

√
−εHx1

(
x3Hx1x1 − 2Hx1Hx3 +Hx1x2 +HHx1x3

)
. �
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4 Examples and questions for further study

4.1 Examples

Example 4.1 (NMR control). In quantum mechanics, a particle with spin 1
2 is represented

by a state vector

|ψ〉 =
[
α
β

]
∈ C2

with |α|2 + |β|2 = 1. In the presence of a magnetic field B = Bxi +Byj +Bzk, the state vector
at time t is

|ψ(t)〉 = U(t)|ψ0〉,

where U : R → SU(2) is a solution of Schrödinger’s equation

U̇ = −iHU. (4.1)

(See [22] for more details.) The Hamiltonian operator H is given by

H = −γ~(Bx · Ix +By · Iy +Bz · Iz),

where γ is the gyromagnetic ratio (a constant), ~ = h
2π (where h is Planck’s constant), and Ix, Iy,

and Iz are the Pauli spin matrices

Ix =
1
2

[
0 1
1 0

]
, Iy =

1
2

[
0 −i
i 0

]
, Iz =

1
2

[
1 0
0 −1

]
.

By multiplying the Pauli spin matrices by −i as in (4.1) we obtain members of the Lie algebra
of SU(2). The commutation relations for −iIx, −iIy, and −iIz are

[−iIx,−iIy] = −iIz, [−iIy,−iIz] = −iIx, [−iIz,−iIx] = −iIy.

In nuclear magnetic resonance (NMR) experiments, an ensemble of atomic nuclei of the same
type can be modeled as a single spin system [14]. In such experiments, an ensemble of nuclei is
subjected to a constant magnetic field B0 in the z-direction (called the longitudinal field), and
an oscillating field B1 in the xy-plane (called the rf field):

B0 = B0k,

B1 = B1(cos (ωt+ φ)i + sin (ωt+ φ)j),

where ω is the frequency of the rf field and φ is a phase. The Hamiltonian H can thus be
written as

H = −γ~(B0 · Iz +B1(cos (ωt+ φ)Ix + sin (ωt+ φ)Iy).

In NMR experiments, the magnitude of the longitudinal field B0 is usually kept constant,
while the magnitude of the rf field B1 may be used as a control variable. By transforming
the coordinate system to a system that rotates at the same frequency ω as the rf field, and
normalizing the constant −γ~B0 to 1, we may rewrite the Hamiltonian as

H = Iz + u(t)Ix,

where u(t) = B1(t)
B0

.
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Thus Schrödinger’s equation (4.1) becomes the control-affine system

U̇ = −iIzU − (iIxU)u (4.2)

on the 3-dimensional state space SU(2). This system corresponds to a strictly affine, rank 1
point-affine distribution

F = v1 + span(v2),

where v1, v2 are the right-invariant vector fields

v1 = −iIzU, v2 = −iIxU

on SU(2). Let α1, α2, α3 denote the canonical right-invariant 1-forms on SU(2) dual to the
basis −iIxU , −iIyU , −iIzU for the right-invariant vector fields; these forms satisfy the structure
equations

dα1 = α2 ∧ α3, dα2 = α3 ∧ α1, dα3 = α1 ∧ α2.

A 0-adapted coframing for the system (4.2) (corresponding to the choice v3 = −[v1, v2] = −iIyU)
is given by

η1 = α3, η2 = α1, η3 = α2.

This coframing has structure equations

dη1 = η2 ∧ η3, dη2 = η3 ∧ η1, dη3 = η1 ∧ η2;

therefore this example falls into Case 3 of Theorem 3.4, with ε = 1. Since T 1
13 = 0, we have

J = 0.
Let x1, x2, x3 be local coordinates such that η1 = dx1 − x3 dx2. Then as in the proof of

Theorem 3.4, there exist functions C, H, λ such that

η̄2 = −λ−1dx2 + C(Hdx2 − dx3)),

η̄3 = λ(Hdx2 − dx3).

(Note that B = 0 in this example.) The structure equations imply that

H = −e2f(x2,x3) tan
(
x1 + g(x2, x3)

)
+ h(x2, x3),

C = −e−f(x2,x3) sin
(
x1 + g(x2, x3)

)
,

λ = e−f(x2,x3) cos
(
x1 + g(x2, x3)

)
,

for functions f , g, h which satisfy the additional PDEs

e2ffx3 + gx2 + hgx3 + x3 = 0,

e2fgx3 + fx2 + hfx3 − hx3 = 0.

Thus the invariants for this system are

H = −e2f(x2,x3) tan
(
x1 + g(x2, x3)

)
+ h(x2, x3), J = 0.
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Figure 1. Heading angle ψ in Example 4.2.

Example 4.2 (Navigation on a river). Consider a boat navigating on a river with a current;
for simplicity, assume that the current runs parallel to the x-axis with constant speed c. The
state of the boat is represented by its position (x, y) and heading angle ψ (see Fig. 1); thus the
state space is X = R2 × S1.

Due to asymmetry in the shape of the boat’s hull, the current may have a rotational effect as
well as a translational effect on the boat, and this effect depends on the boat’s heading angle.
Thus we will assume that the drift vector field has the form

v1 = c
∂

∂x
+ r(ψ)

∂

∂ψ
.

We also assume that the boat can be propelled in a forward or backward direction, corresponding
to the vector field

v2 = (cosψ)
∂

∂x
+ (sinψ)

∂

∂y
,

and that it can be steered to the right or left, corresponding to the vector field

v3 =
∂

∂ψ
.

The navigation problem for the boat is then the control-affine system corresponding to the
rank 2 point-affine distribution

F = v1 + span(v2, v3)

on X.
Note that F fails to be strictly affine precisely when ψ = 0 or ψ = π, since then v1 is contained

in LF. Thus our results are only applicable when the boat is not pointed directly upstream or
downstream. Since LF = span(v2, v3) is a contact distribution, this system falls into Case 3 of
Corollary 1.

The dual coframing to the framing (v1, v2, v3) on X is

η̄1 =
1
c

(dx− (cotψ)dy) , η̄2 = (cscψ)dy, η̄3 = dψ − r(ψ)
c

(dx− (cotψ)dy) .

This coframing has

dη̄1 ≡ −(cscψ)
c

η̄2 ∧ η̄3 mod η̄1;

in order to obtain a 0-adapted coframing as in the proof of Theorem 3.3, we multiply η̄2 by
(sinψ)
c and η̄3 by −(csc2 ψ), resulting in the following coframing:

η̄1 =
1
c

(dx− (cotψ)dy) , η̄2 =
1
c
dy,

η̄3 = −(csc2 ψ)
(
dψ − r(ψ)

c
(dx− (cotψ)dy)

)
. (4.3)
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The local coordinate functions

x1 =
x

c
, x2 =

y

c
, x3 = cotψ

are Pfaff normal form coordinates for η̄1; i.e.,

η̄1 = dx1 − x3 dx2.

In terms of these coordinates, the coframing (4.3) becomes:

η̄1 = dx1 − x3 dx2, η̄2 = dx2, η̄3 = dx3 − ((x3)2 + 1)R(x3)(dx1 − x3 dx2),

where R(x3) = r(ψ) = r(cot−1(x3)). Thus the invariants for this system are

J2 = ((x3)2 + 1)R(x3) = (csc2 ψ)r(ψ), J3 = 0.

4.2 Questions for further study

There are two main issues that we hope to address in future papers, both motivated by optimal
control theory.

1. What metric structures (analogous to sub-Riemannian or sub-Finsler geometry for linear
distributions) are appropriate for point-affine distributions, and what can we say about
their geometry, geodesics, etc.? Even for linear distributions, issues such as controllability
and the presence of rigid curves – i.e., curves with no C1 variations whatsoever among
horizonal curves – are nontrivial, and the study of optimal trajectories for sub-Riemannian
and sub-Finsler metrics is quite complicated. (See, for instance, [20, 21, 9].) Agrachev
and Sarychev have studied time-optimal extremals and given necessary and sufficient con-
ditions for ridigity of trajectories for affine distributions in [2], but the consequences of
imposing any type of metric structure on a point-affine distribution and the resulting
geometry remain entirely unexplored. These issues are obviously important for under-
standing the associated control problems.

2. What can we say about the geometry of affine distributions of non-constant type, partic-
ularly for affine distributions which are not strictly affine? Normal forms for non-strictly
affine distributions of rank 1 have been given by Kang and Krener [19], Kang [18], and
Tall and Respondek [24], and for corank-1 affine distributions by Jakubczyk and Respon-
dek [17], Respondek [23], and Zhitomirskii and Respondek [26]. However, intermediate
ranks are important as well – for instance, for understanding second-order systems arising
in mechanics, e.g.

ẍ =
s∑
i=1

uiFi(x).

This system can be rewritten as the following first-order system on the cotangent bund-
le T ∗X, with local coordinates (x, p):

ẋ = p,

ṗ =
s∑
i=1

uiFi(x).

The associated rank s affine distribution fails to be strictly affine precisely along the
submanifold {p = 0} of stationary points. The behavior of trajectories near such points
is of vital interest in control theory, so it would be useful to understand the geometry of
such structures. Elkin has introduced the notion of a “t-codistribution” in [12, 13], and we
anticipate that this will be a useful tool for extending our methods to affine distributions
of this type.
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