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1 Introduction

Hodge theory provides the basic invariants of a complex algebraic variety. The two central open
problems in the subject, the conjectures of Hodge and of Bloch–Beilinson, relate Hodge theory
to the geometry/arithmetic of a complex algebraic variety.

The space of all polarized Hodge structures of weight n and with a given sequence h =
(hn,0, hn−1,1, . . . , h0,n), hp,q = hq,p, of Hodge numbers forms naturally a homogeneous complex
manifold Dh, and the moduli space Mh of equivalence classes of polarized Hodge structures is
a quotient ofDh by an arithmetic group acting properly discontinuously. In what we shall call the
classical case when the weights n = 1 or n = 2 and h2,0 = 1, Dh is a bounded symmetric domain
and Mh is a quasi-projective variety defined over a number field1. In this case the relation
between the Hodge theory and geometry/arithmetic of a variety is an extensively developed and
deep subject.

In the non-classical, or what we shall refer to as the higher weight, case2 the subject is
relatively less advanced. The fundamental difference between the classical and higher weight
cases is that in the latter case the Hodge structures associated to a family of algebraic varieties
satisfy a universal system I ⊂ T ∗D of differential equations. In this partly expository paper we
will discuss the system I from the perspective of exterior differential systems (EDS’s) with the
three general objectives:

(i) To summarize some of what is known about I from an EDS perspective.

(ii) To define and discuss the “universal characteristic cohomology” associated to a homoge-
neous Pfaffian system in the special case of a variation of Hodge structures.

(iii) To discuss and illustrate the question “How must expected dimension counts be modified
for integral manifolds of the system I?”

One overarching objective is this: When one seeks to extend much of the rich classical
theory, including the arithmetic aspects and the connections with automorphic forms, the various
compactifications of M and the resulting boundary cohomology, the theory of Shimura varieties,
etc., the fact that families of Hodge structures arising from geometry are subject to differential
constraints seems to present the major barrier. Perhaps by better understanding the structure
of these differential constraints, some insight might be gained on how at least some aspects of
the classical theory might be extended. We are especially interested in properties of variations
of Hodge structure that are not present in the classical case, as these may help to indicate what
needs to be better understood to be able to extend the classical case to higher weight Hodge
structures.

In more detail, in Section 2.1 we will review the definitions and establish notations for
polarized Hodge structures, period domains and their duals, and the infinitesimal period relation,
which is the basic exterior differential system studied in this paper. In Section 2.2 we recall
some of the basic definitions and concepts from the theory of exterior differential systems.

1Henceforth we shall drop reference to the h on D unless it is needed.
2It being understood that when n = 2 we have h2,0 = 2.
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In Section 3 we discuss the basic exterior differential system whose integral manifolds define
variations of Hodge structure. The basic general observation is that the integral elements are
given by abelian subalgebras

a ⊂ G−1,1 ⊂ GC

of the complexified Lie algebras of the symmetry group of the period domain. We then go on
in Section 3.1 to discuss in some detail two important examples where the EDS given by the
infinitesimal period relation may be integrated by elementary methods; both of these have been
discussed in the literature and here we shall summarize, in the context of this paper those results.
Then in Section 3.2 we shall discuss an example, the first we are aware of in the literature, where
the Cartan–Kähler theoretic aspects of exterior differential systems are applied to the particular
EDS arising from the infinitesimal period relation. Finally, in Section 3.3 we study the derived
flag of the infinitesimal period relation I. One result is that if all the Hodge numbers hp,q

are non-zero, then the derived flag of I terminates in zero and has length m where m 5 log n
log 2 ,

n being the weight of the Hodge structure.
Over the years there have been a number of studies of the EDS given by the infinitesimal

period relation. Here we mention [1, 6, 7, 8, 9, 10, 11] and [18]. Section 3 should be considered
as an introduction to those works. In particular the paper [18], which builds on and extends
the earlier works, contains a definitive account of the bounds on the dimension and rigidity
properties of maximal integral elements. At the end of Section 3.3 we shall comment on some
interesting questions that arise from [18] and [1] as well as providing a brief guide to the earlier
works referred to above.

In Section 4, we first discuss some general aspects of homogeneous Pfaffian systems, includ-
ing expressing the invariant part of their characteristic cohomology in terms of a Lie algebra
cohomology construction3. We then turn to the group invariant characteristic cohomology of
period domains. Here there is a very nice question

(1.1) Is the invariant part of the characteristic cohmology of a period domain generated by the
Chern forms of the Hodge bundles?

In the classical case the answer is positive and may be deduced from what is known in the
literature; we will carry this out below.

In the non-classical case when the Pfaffian system I associated to a variation of Hodge
structures is non-trivial, new and interesting issues arise. It seems likely that the question will
have an affirmative answer; this will be the topic of a separate work4.

In this paper we will establish two related results. The first is that we will show that the
invariant forms modulo the algebraic ideal generated by I are all of type (p, p). A consequence
is that on the complex of invariant forms the Lie algebra cohomology differential δ = 0. This is
analogous to what happens in the Hermitian symmetric case. However, in the non-classical case
there are always more invariant forms than those generated by the Chern forms of the Hodge
bundles, and the integrability conditions; i.e. the full differential ideal generated by I must be
taken into account. This involves subtle issues in representation theory and, as mentioned above,
this story will be reported on separately.

What we will prove here is that the integrability conditions imply topological conditions in
the form of new relations among the Chern classes of a VHS. Denoting by Fp the Hodge filtration
bundles we show that the Chern forms satisfy

ci(Fp)cj(Fn−p) = 0 if i+ j > hp,n−p.

3Here, we recall that the characteristic cohomology of an exterior differential system is the de Rham coho-
mological construction that leads to cohomology groups that induce ordinary de Rham cohomology on integral
manifolds of the EDS. The precise definition is recalled in Section 4 below.

4This question has now been answered in the affirmative and the proof will appear in a separate publication.
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What we see then is that this new algebro-geometric information has resulted from EDS con-
siderations.

The question (1.1) would have the following algebro-geometric consequence: First, for any
discrete group Γ acting properly discontinuously on a period domain D, the invariant charac-
teristic cohomology H∗

I (D)GR induces characteristic cohomology on the quotient Γ\D. A global
variation of Hodge structure is given by a period mapping

f : S → Γ\D, (1.2)

where S is a smooth, quasi-projective algebraic variety. Since (1.2) is an integral manifold of the
canonical EDS on Γ\D, the invariant characteristic cohomology induces ordinary cohomology

f∗
(
H∗

I (D)GR
)
⊂ H∗(S).

We may think of H∗
I (D)GR as universal characteristic cohomology for the exterior differential

system corresponding to the infinitesimal period relation, in that it induces ordinary cohomology
on the parameter space for variations of Hodge structures irrespective of the particular group Γ.
We may thus call it the universal characteristic cohomology. A positive answer to the question
would first of all imply that the universal characteristic cohomology is generated by the Chern
classes of the Hodge bundles over S. Although, perhaps not surprising to an algebraic geometer
this would be a satisfying result.

In Section 5 we turn to the interesting question

(1.3) How must one correct expected dimension counts in the presence of differential constraints?

Specifically, given a manifold A and submanifold B ⊂ A, for a “general” submanifold X ⊂ A
where dimX + dimB = dimA, we will have

codimB(X ∩B) = codimAB. (1.4)

Thus, the RHS of this equation may be thought of as the “expected codimension” of X ∩ B
in B. If X ∩B is non-empty, the actual codimension is no more than the expected codimension.

Suppose now that there is a distribution W ⊂ TA and X is constrained to have TX ⊂ W .
Then how does this affect the expected dimension counts? In case W meets TB transversely,
one sees immediately that the “expected codimension” counts decrease. Taking integrability
into account gives a further correction. Rather than trying to develop the general theory, in
Section 5 we shall discuss one particularly interesting special case.

This case concerns Noether–Lefschetz loci. Here we denote by WI ⊂ TD the distribution I⊥;
integral manifolds of I have their tangent spaces lying in WI . Given ζ ∈ HR, there is a homo-
geneous sub-period-domain Dζ ⊂ D, defined as the set of polarized Hodge structures of weight
n = 2m where ζ ∈ Hm,m. We have

codimD Dζ = h(2m,0) + · · ·+ h(m+1,m−1),

and the distribution WI on D meets TDζ transversely. For a variation of Hodge structure, given
by an integral manifold

f : S → D

of the canonical system I on D, the Noether–Lefschetz locus Sζ ⊂ S is given by

Sζ = f−1(Dζ).
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In algebro-geometric questions, ζ is usually taken to be a rational vector, but that will not
concern us here. The refined codimension estimate given by WI alone, i.e., without taking
integrability conditions into account, is

codimS Sζ 5 hm−1,m+1.

In the case m = 1, which algebro-geometrically reflects studying codimension one algebraic
cycles, the distribution WI does not enter and the estimate is classical, especially in the study
of curves on an algebraic surface. In the case m = 2, it is non-classical and seems only recently
to have been discussed in the literature (cf. [15, 21, 19, 20]). When the integrability conditions
are taken into account, the above codimension estimate is refined to

codimS Sζ 5 hm−1,m+1 − σζ ,

where σζ is a non-negative quantity constructed from ζ and the integral element of I given by
the tangent space to f(S) at the point in question. Assuming the Hodge conjecture, the above
would say that “there are more algebraic cycles than a näıve dimension count would suggest”.

In addition to establishing the above inequality, we will show that it is an equality in a sig-
nificant example, namely, that given by a hypersurface X ⊂ P5 of degree d = 6 and which
is general among those containing a 2-plane. This indicates that there is no further general
estimate.

We conclude this section by analyzing the case of Calabi–Yau fourfolds, where the quantity
h3,1 − σζ has a particularly nice interpretation, including an interesting arithmetic consequence
of the Hodge conjecture.

2 Preliminaries

2.1 Period domains5

Let H be a Q-vector space. A Hodge structure (HS) of weight n is given by any of the following
equivalent data:

(2.1) A Hodge decomposition HC = ⊕
p+q=n

Hp,q,

Hq,p = H̄p,q.

(2.2) A Hodge filtration Fn ⊂ Fn−1 ⊂ · · · ⊂ F 0 = HC where for each p

F p ⊕ F̄n−p+1 ∼→ HC.

(2.3) A homomorphism of real Lie groups

ϕ : C∗ → GL(HR)

of weight n in the sense that for z ∈ C∗, λ ∈ R∗

ϕ(λz) = λnϕ(z).

The relation between (2.1) and (2.2) is F p = ⊕
p′=p

Hp′,n−p′ ,

Hp,q = F p ∩ F̄ q.

5The general reference for this section is the book [12].
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The relation between (2.1) and (2.3) is

ϕ(z)u = zpz̄qu, u ∈ Hp,q.

This means: The element ϕ(z) ∈ GL(HC) just given lies in the subgroup GL(HR) of GL(HC)
and has weight n.

If we restrict ϕ to the maximal compact subgroup S1 = {z ∈ C∗ : |z| = 1} of C∗, then for
z ∈ S1, u ∈ Hp,q

ϕ(z)u = zp−qu,

and this shows how to recover the Hodge decomposition as the zp−q eigenspace of ϕ restricted
to S1. The Weil operator is defined by

C = ϕ(
√
−1).

We define the Hodge numbers hp,q := dimHp,q, and we set fp :=
∑

p1=p h
p′,n−p′ .

Since the Hodge filtration point of view will be the dominant one in this paper, we shall
denote a Hodge structure by (H,F ).

Now let

Q : H ⊗H → Q

be a non-degenerate bilinear form satisfying Q(u, v) = (−1)nQ(v, u) for u, v ∈ H. A Hodge
structure (H,F ) is polarized by Q if the Hodge–Riemann bilinear relations{

Q(F p, Fn−p+1) = 0,

Q(Cu, ū) > 0 for 0 6= u ∈ HC
(2.4)

are satisfied. The first of these is equivalent to Fn−p+1 = (F p)⊥. A polarized Hodge structure
(PHS) will be denoted by (H,Q,F ).

In the definition (2.3), for a polarized Hodge structure we need to restrict ϕ to S1 in order
to preserve, and not just scale, the polarization.

Definitions. (i) A period domain D is given by the set of polarized Hodge structures (H,Q,F )
with given Hodge numbers hp,q. (ii) The compact dual Ď is given by all filtrations F with
dimF p = fp and which satisfy the first bilinear relation Fn−p+1 = (F p)⊥ in (2.4).

We shall denote by G the Q-algebraic group Aut(H,Q), and by GR and GC the corresponding
real and complex forms. It is elementary that GR acts transitively onD, and choosing a reference
point F0 ∈ D we have

D ∼= GR/V,

where V is the compact subgroup of GR preserving the Hodge decomposition HC = ⊕
p+q=n

Hp,q
0

corresponding to F0. In terms of (2.3) we note that

ϕ(S1) ⊂ V ;

in fact, V is the centralizer of the circle ϕ(S1) in GR.
The complex Lie group GC acts transitively on the compact dual Ď, and choosing a reference

point F0 ∈ D as above we have

Ď ∼= GC/B,
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where B ⊂ GC is a parabolic subgroup. We have

V = GR ∩B.

The compact dual is a projective algebraic variety defined over Q. In fact we have an obvious
inclusion

Ď ⊂
[n+1

2 ]∏
p=n

Grass(fp,HC) (2.5)

and we may embed Ď in a PN by means of the Plücker coordinates of the flag subspaces
F p ⊂ HC.

Hodge structures and polarized Hodge structures are functorial with respect to the standard
operations in linear algebra. In particular, a Hodge structure (H,F ) induces a Hodge structure
of weight zero on End(H) where

End(HC)r,−r =
{
A ∈ End(HC) : A(Hp,q) ⊂ Hp+r,q−r

}
. (2.6)

A polarized Hodge structure (H,Q,F0) induces a polarized Hodge structure on the Lie algebra G

of G, where Gr,−r is given by (2.6) and the polarization is induced by the Cartan–Killing form.
For later use, we note that from (2.6) we have[

Gr,−r,Gs,−s
]
⊆ Gr+s,−(r+s). (2.7)

If we recall the natural identification

TF p Grass(fp,HC) ∼= Hom(F p,HC/F
p)

it follows that the Lie algebra of B is

b = ⊕
r=0

Gr,−r.

The subalgebra

p = ⊕
r>0

G−r,r

gives a complement to b in GC leading to the natural identification

TF •Ď ∼= p. (2.8)

By (2.7) the subspace

G−1,1 ⊂ p

is AdB-invariant and therefore defines a GC-invariant distribution

WI ⊂ TĎ,

and, by orthogonality, a Pfaffian system

I ⊂ T ∗Ď.

The sub-bundle I restricts to a GR-invariant sub-bundle I ⊂ T ∗D.

Definition. The Pfaffian system I is called the infinitesimal period relation.

It is this exterior differential system that we shall discuss in this paper.
In the literature the distribution WI ⊂ TD is frequently referred to as the horizontal sub-

bundle.
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2.2 Exterior differential systems (EDS)6

Although the subject is usually discussed in the smooth category, here we shall work complex-
analytically. A Pfaffian system is given by a holomorphic sub-bundle

I ⊂ T ∗M

of the cotangent bundle of a complex manifold. Associated to I is the differential ideal

I ⊂ Ω•
M

generated by the holomorphic sections of I together with their exterior derivatives. We shall
assume that the values of the sections of I generate a sub-bundle of Λ•T ∗M ; i.e., I is locally
free. An integral manifold, or just an “integral”, of I is given by a complex manifold N and
a holomorphic immersion

f : N →M

such that

f∗(I) = 0. (2.9)

If we denote by

WI = I⊥ ⊂ TM

the holomorphic distribution associated to I, the condition (2.9) is equivalent to

f∗(TN) ⊂WI .

An important invariant associated to a Pfaffian system is its derived flag. The exterior
derivative induces a bundle map

δ : I → Λ2T ∗M/I ∧ T ∗M,

and recalling our assumption that δ has constant rank we set

I[1] = ker δ.

This is again a Pfaffian system, and continuing in this way leads to the derived flag in T ∗M

I ⊃ I[1] ⊃ I[2] ⊃ · · · ⊃ I[m] = I[m+1] = · · · = I[∞]. (2.10)

Here, I[∞] is the largest integrable or Frobenius subsystem of I.
Dually, for the distribution we denote by

W
[1]
I = WI + [WI ,WI ]

the distribution generated by WI and the brackets of sections of WI . Continuing in this way we
obtain the flag in TM dual to (2.10)

WI ⊂W
[1]
I ⊂ · · · ⊂W

[m]
I = W

[m+1]
I = · · · = W

[∞]
I .

6General references for this section are books [17] and [2]; especially the former contains essentially all the
background needed for this work.
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We say that I is bracket generating in case W [∞]
I = TM , or equivalently I [∞] = (0). In this case,

by the holomorphic version of Chow’s theorem we may connect any two points of M by a chain
of holomorphic discs that are integral curves of WI .

Two central aspects of the theory of exterior differential systems are (i) regular and ordinary
integral elements and the Cartan–Kähler theorem, and (ii) prolongation and involution. For the
first, an integral element for I is given by a linear subspace E ⊂ TxM such that

θE =: θ |E= 0

for all θ ∈ I. We may think of E as an infinitesimal solution of the EDS. Denote by

π : Gp(TM) →M

the bundle whose fibre π−1(x) = Grp(TxM) over x ∈M is the Grassmannian of p-planes in TxM .
In Gp(TM) there is the complex analytic subvariety

Gp(I) ⊂ Gp(TM)

of integral elements defined by the Pfaffian system I.
Integral elements are constructed one step at a time by solving linear equations. For an

integral element E ∈ Gp(I), we define the polar space

H(E) = {v ∈ TxM : span{v,E} is an integral element} .

The equations that define H(E)

〈θ(x), v ∧ E〉 = 0 for all θ ∈ Ip+1

are linear in v, and we measure their rank by defining

r(E) = codimH(E) = dim P(H(E)/E).

Given E0 ∈ Gp(I) we choose a p-form Ω such that ΩE0 6= 0. For θ ∈ Ip and E ∈ Gp(TM)
near E0, for each ϕ ∈ Ip we write

θE = fθ(E)ΩE .

Then Gp(I) is locally defined by the analytic equations fθ(E) = 0; we say that E0 is regular
if Gp(I) is smoothly defined by these equations.

Given E ∈ Gp(I) we choose a generic flag

0 ⊂ E1 ⊂ · · · ⊂ Ep−1 ⊂ E

and define ci to be the rank of the polar equations of Ei. A central result is

Cartan’s test.
(i) We have

codimGp(I) = c1 + · · ·+ cp−1.

(ii) If equality holds, then for k < p each Ek is regular.
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By definition we say that E is ordinary if equality holds in Cartan’s test. We say that I is
involutive near an ordinary integral element.

The Cartan–Kähler existence theorem states that an ordinary integral element is locally
tangent to an integral manifold. It goes further to say “how many” local integral manifolds
there are. This will be briefly mentioned below.

If Gp(I) is a submanifold near E, but E is not ordinary one needs to prolong the EDS to
be able to use the Cartan–Kähler theorem in order to construct local integral manifolds. To
explain this, we first observe that there is a canonical Pfaffian system

J ⊂ T ∗Gp(TM)

defined by writing points of Gp(TM) as (x,E) and setting

J(x,E) = π∗(E⊥).

For any immersion f : N →M where dimN = p, there is a canonical lift

Gp(TM)

π

��
N

f (1)
::vvvvvvvvv f // M

where for y ∈ N we set f (1)(y) = (f(y), f∗TyN). This lift is an integral manifold of J . The
converse is true provided the p-dimensional integral manifold of J projects to an immersed
p-dimensional submanifold in M .

We define the 1st prolongation (M (1)
I , I(1)) of (M, I) by taking M (1)

I to be the smooth locus
of Gp(I) and defining I(1) to be the restriction of J to M

(1)
I . An integral manifold of (M, I)

gives one of (M (1)
I , I(1)); the converse holds in the sense explained above. The Cartan–Kuranishi

theorem states that, with some technical assumptions, after a finite number of prolongations an
exterior differential system either becomes involutive or else empty (no solutions).

From the above we may infer the following

(2.11) Let f : N → M be an integral manifold of a Pfaffian system. If, at a general point
y ∈ N , f∗(TyN) is not an ordinary integral element then one of the following holds:

(A) f∗(TN) lies in the singular locus of Gp(I); or

(B) the prolongation f (1) : N →M
(1)
I is an integral manifold of I(1).

We may iterate this for the successive prolongations. Since the failure to be involutive means
that f : N →M satisfies additional differential equations not in I, we have the following

(2.12) Conclusion. If the assumption of (2.11) holds, then f : N →M satisfies additional
differential equations that are canonically associated to I but are not in the differential ideal I.

3 The exterior differential system associated
to a variation of Hodge structure

In this section, unless mentioned otherwise we shall work locally. Let D be a period domain and
I ⊂ T ∗D the infinitesimal period relation with corresponding horizontal distribution WI ⊂ TD.
We recall that both I and WI are the restrictions to D ⊂ Ď of similar structures over the
compact dual of D.
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3.1 Elementary examples

Definition. A variation of Hodge structure (VHS) is given by an integral manifold f : S → D
of I.

In the classical case where D is a bounded symmetric domain, it is well known that holomor-
phic mappings from quasi-projective varieties to quotients Γ\D of D by arithmetic groups have
strong analytical properties arising from the negative holomorphic sectional curvatures in TD.
Similar results hold in the general case as a consequence of the horizontality of a VHS. There
are also analogous properties that hold for the curvatures of the Hodge bundles. These results
are classical; cf. [12] for an exposition and references. In this partly expository paper we will
not discuss these curvature properties, but rather we will focus on variations of Hodge structure
from an EDS perspective.

We begin with the

(3.1) Basic observation. Integral elements of I are given by abelian subalgebras

a ⊂ G−1,1.

This result is a consequence of the Maurer–Cartan equation; it is discussed in a more general
context at the beginning of Section 4 below (cf. the proof of Proposition 4.2. Here we are using
the notations in Section 2.1 above. At a point F ∈ D, the Lie algebra G has a Hodge structure
constructed from F , and (3.1) above identifies the space of integral elements of I in TFD.

In the theory of EDS, there are two types of exterior differential systems, which may be
informally described as follows:

• Those that may be integrated by ODE methods.

• Those that require PDE techniques.

Although the first type may be said to be “elementary”, it includes many important EDS’s that
arise in practice. Roughly speaking, these are the exterior differential systems that, by using
ODE’s, may be put in a standard local normal form.

We begin by first recalling the contact system and then giving two interesting elementary
examples that arise in variations of Hodge structures.

Contact system. Here, dimM = 2k + 1 and I is locally generated by a 1-form θ with θ ∧
(dθ)k 6= 0. Then, by using ODE methods, it may be shown that there are local coordinates
(x1, . . . , xk, y, y1, . . . , yk) such that θ may be taken to be given by (using summation convention)

θ = dy − yidx
i.

Local integral manifolds are of dimension 5 k, and those of dimension k on which dx1∧· · ·∧dxk 6=
0 are graphs

(x1, . . . , xk) → (x1, . . . , xk, y(x), ∂x1y(x), . . . , ∂xky(x)).

Proposition. For weight n = 2 and Hodge numbers h2,0 = 2, h1,1 = k, I is a contact sys-
tem [11].

Proof. We shall use the proof to illustrate and mutually relate the two main computational
methods that have been used to study the differential system I.

The first is using the Hodge structure on G to identify both the tangent space at F ∈ D and
the fibre WI,F with subspaces of GC.
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For weight n = 2 we have for p ∼= TFD the inclusion

p ⊂ Hom(H2,0,H1,1)⊕Hom(H2,0,H0,2)⊕Hom(H1,1,H0,2). (3.2)

Using the polarizing form Q gives{
H1,1 ∼= Ȟ1,1,

H0,2 ∼= Ȟ2,0.

Then p is given by A = A1 ⊕A2 ⊕A3 in the RHS of (3.2) where{
A2 = −tA2,
A3 = tA1.

(3.3)

The transpose notation refers to the identification just preceding (3.2). The sub-space G−1,1 is
defined by A2 = 0. By (3.1), integral elements are then given by linear subspaces

a ⊂ Hom(H2,0,H1,1) (3.4)

satisfying

A tB = B tA (3.5)

for A,B ∈ a.
The second method is via moving frames. Over an open set in D we choose a holomorphic

frame field

e1, . . . eh︸ ︷︷ ︸
F2

, f1, . . . , fk︸ ︷︷ ︸
F 1

, e∗1, . . . , e
∗
h

adapted to the Hodge filtrations and to Q in the sense that{
Q(eα, e∗α) = 1,

Q(fi, fi) = 1

and all other inner products are zero. Then, using summation convention,{
deα = θβ

αeβ + θi
αfi + θαβe

∗
β,

dfi = θα
i eα + θijfj + θiαe

∗
α.

Denoting TFD by just T and referring to (3.2), (3.3) we have

θi
α ∈ T ∗ ⊗Hom(H2,0,H1,1) ↔ A1,

θαβ ∈ T ∗ ⊗Hom(H2,0,H0,2) ↔ A2.

From 0 = dQ(eα, eβ) = Q(deα, eβ) +Q(eα, deβ) we have

θαβ + θβα = 0

which is the first equation in (3.3). The second equation there is

θα
i = θi

α.

From the above we see that I is generated by the h(h − 1)/2 1-forms θαβ for α < β, where
h = h2,0. When h = 1, we are in the classical case and I is zero. When h = 2, I is generated by
a single 1-form θ = θ12 and is thus a candidate to be a contact system.

To calculate dθ we use d(de1) = 0, which together with the above formulas give

dθ ≡ θi
1 ∧ θi

2 mod θ.

Since the 1-forms θi
α are independent, we see that θ ∧ (dθ)k 6= 0 as desired. �
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The simplest case of this example is when k = 1. Then dimD = 3 and I is locally equivalent
to the standard contact system

dy − y′dx = 0 (3.6)

in C3 with coordinates (x, y, y′).
In general, as noted above the contact system is locally equivalent to the standard one

generated by

θ = dy − yidx
i

in C2k+1 with coordinates (x1, . . . , xk, y, y1, . . . , yk). Their integral manifolds are graphs(
x1, . . . , xk, y(x), ∂x1y(x), . . . , ∂xky(x)

)
where y(x) is an arbitrary function of x1, . . . , xk. It is of interest to see explicitly how one may
construct integral manifolds depending on one arbitrary function of k variables.

For this it is convenient to choose a basis for HC relative to which

Q =

 0 0 I

0 −I 0

I 0 0

}h

}k

}h︸︷︷︸
h

︸︷︷︸
k

︸︷︷︸
h

Then F 2 will be spanned by the columns in a matrix

F =

 A

B

C

}h

}k

}h︸︷︷︸
h

In an open set we will have detC 6= 0, and it is convenient to normalize to have C = I. The
equations tFQF = 0 are

A+ tA = tBB. (3.7)

The infinitesimal period relation tFQdF = 0 is

dA = tB dB. (3.8)

Note that adding to this relation its transpose gives the differential of (3.7). Thus

(3.9) If (3.8) is satisfied and (3.7) is satisfied at one point, then it is satisfied identically.

We now specialize to the case h = 2 and write

A =

(
A11 A12

A21 A22

)
, B =


B1 x1

...
...

Bk xk

 ,

where the Aαβ , Bα, xj are independent variables and eventually the Aαβ and Bj are to be
functions of x1, . . . , xk. The equations (3.8) are

(i) dA11 = ΣBjdBj = d

(∑
B2

j

2

)
;
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(ii) dA22 = Σxjdxj = d

(∑
(xj)2

2

)
;

(iii) dA12 = Bjdx
j ;

(iv) dA21 = xjdBj .

Now 0 = d(dA12) = ΣdBj ∧ dx2 or

Bj(x) = ∂xjB(x),

where B(x) is an arbitrary function of x1, . . . , xk.
This then leads to the construction of integral manifolds, here constructed by ODE methods.

As previously noted, in general, PDE methods – the Cartan–Kähler theorem – are required.
In the above example the 1st derived system I[1] = (0). Below we shall give an example,

usually referred to as the mirror quintic, that shows a different phenomenon. In general we
have

dθαβ ≡ θi
α ∧ θi

β mod span{θαβ ’s}. (3.10)

We may then think of I as a sort of multi-contact system (cf. [18]). Note that for each α < β

θαβ ∧ (dθαβ)k 6= 0

and ∧
α<β

(
θαβ ∧ (dθαβ)k

)
6= 0.

Integral elements are spanned by matrices Ai
αλ satisfying (using summation convention)

Ai
αλA

i
βµ = Ai

αµA
i
βλ

corresponding to subspaces span{Ai
αλ} ⊂ Hom(H2,0,H1,1) on which the RHS of (3.10) vanishes.

When h = h2,0 = 2, the maximal abelian subalgebras (3.4) have dimension k = h1,1 and
correspond to Lagrangian subspaces in the symplectic vector space G−1,1. In general, the multi-
contact nature of I suggests a bound of the sort

dim a 5
1
2
(h2,0h1,1).

This is in fact proved in [6], where it is also shown that the bound is sharp for h1,1 even. When
h1,1 is odd, it is shown there that the sharp bound is 1

2h
2,0(h1,1−1)+1. Because it illustrates yet

another method for estimating the dimension of, and actually constructing, integral elements
we shall give a proof of this result in the cases h2,0 = 2 and h2,0 = 3. By (3.5), we are looking
for a linear subspace

E ⊂ Hom(H2,0,H1,1)

with a basis A1, . . . , Ar satisfying

Ai
tAj = Aj

tAi

for all i, j. A key fact is

Ai(v) = 0 ⇒ Q(Aj(v), ImageAi) = 0

for all j.
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Case h2,0 = 2

We want to show that r = k+1 is impossible. Assuming that r = k+1 then some A ∈ E drops
rank. With suitable labelling, for some 0 6= v ∈ H2,0 we will have Ak+1(v) = 0. By the above,
this gives

Ai(v) ∈ Im(Ak+1)⊥

for 1 5 i 5 k. Remembering that h1,1 = k, we have dim Im(Ak+1)⊥ 5 k − 1 so that
A1(v), . . . , Ak(v) are linearly dependent. Relabelling, we may assume that Ak(v) = 0. Now

dim(ImAk + ImAk+1) = 2,

since otherwise some linear combination of Ak and Ak+1 is zero. Then

Ai(v) = (ImAk + ImAk+1)⊥

for i = 1, . . . , k − 1 forces a linear dependence on A1(v), . . . , Ak−1(v). Proceeding by downward
induction gives a contradiction to the assumption r = k + 1.

Case h2,0 = 3

Since r = k − 1 we have A(v) = 0 for some 0 6= v ∈ H2,0, A ∈ E. Choosing a basis A1, . . . , Am

for the kernel of the map v → A(v), we let

s = dim{ImA1 + · · ·+ ImAm}.

This gives an injective map

H2,0/Cv → Cs ⊂ Ck.

By the previous case, m 5 k. Clearly m 5 2s since dim(HomH2,0/Cv,Ck) = 2s. Thus
m 5 min(2s, k). Since for all A ∈ E

A(v) ∈ (ImA1 + · · ·+ ImAm)⊥ ∼= Ck−s

we have m = r − (k − s). Thus min(2s, k) = r − (k − s) which gives

k − s+ min(2s, k) = r

or r 5 3k/2 as desired.
When k = 2s this bound is sharp. To see this, take a subspace U ⊂ H1,1 ∼= C2s such that

Q|U = 0. Let e1, e2, e3 ∈ H2,0 be a basis, and take linearly independent A1, . . . , Ak satisfying

e1 → 0 and e2, e3 → U.

Then take linearly independent B1, . . . , Bs satisfying

e1 → U and e2, e3 → 0.

It follows that E = span{A1, . . . , Ak, B1, . . . , Bs} is an integral element of dimension k + s =
3k/2.
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Example. We take weight n = 3 and Hodge numbers h3,0 = h2,1 = 1. We will show that in
this case dimD = 4 and I is locally equivalent to the Pfaffian system{

dy − y′dx = 0,

dy′ − y′′dx = 0
(3.11)

in C4 with coordinates (x, y, y′, y′′). Since d(dy−y′dx) = −dy′∧dx = −(dy′−y′′dx)∧dx, the 1st

derived system of (3.11) has rank one. In fact, (3.11) is just the 1st prolongation of the contact
system (3.6).

Anticipating the later discussion of the period domain D for general weight n = 3 Hodge
structures with h3,0 = 1 and h2,1 = h, locally over an open set U we consider a holomorphic
frame field

e0︸︷︷︸
F 3

, e1, . . . , eh

︸ ︷︷ ︸
F 2

, e∗1, . . . , e
∗
h

︸ ︷︷ ︸
F 1

, e∗0

relative to which{
Q(e0, e∗0) = 1 = −Q(e∗0, e0),

Q(eα, e∗α) = 1 = −Q(e∗α, eα)
(3.12)

and all other pairings are zero. We observe that
The system I is equivalent to each of the following{

de0 ≡ 0 mod F 2,

Q(de0, F 2) = 0,

the equivalence resulting from F 2 = (F 2)⊥.
We set, again using summation convention,{

de0 ≡ θαeα + θαe
∗
α + θe∗0 mod F 3,

deα ≡ θαβe
∗
β + θ∗βe

∗
0 mod F 2.

(3.13)

Using these equations and the exterior derivatives of (3.12) we have{
θαβ = θβα,

θ∗α = θα.

We may then conclude

(3.14) The 1-forms θ, θα, θα, θαβ for α 5 β are semi-basic for the fibering GC → Ď, and
over U give bases for the cotangent spaces.

In terms of the Lie algebra description of the tangent space we have
θα, θαβ ↔ G−1,1,

θα ↔ G−2,2,

θ ↔ G−3,3.
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From the exterior derivatives of (3.13) we obtain{
dθ = 2θα ∧ θα,

dθβ = θα ∧ θαβ .
(3.15)

From the Lie algebra description of the tangent space, it follows that I is generated by the
Pfaffian equations{

θ = 0,

θα = 0.
(3.16)

From this we see that the 1st derived system I[1] is generated by θ, and the 2nd derived system
I[2] = 0.

When h = 1 we are on a 4-dimensional manifold with a rank 2 Pfaffian system I and where
rank I[1] = 1, I[2] = 0. It is well known (Engel’s theorem) and elementary [17] and [2, Chapter 2]
that such a system is locally equivalent to (3.11).

We now return to the general case when h3,0 = 1 and h2,1 = h. Because of their importance
in algebraic geometry, we shall be interested in integral manifolds S ⊂ D where the map

TS → Hom(H3,0,H2,1)

is an isomorphism. We shall call these integral manifolds of Calabi–Yau type.

(3.17) Proposition (cf. [3]). The EDS for integral manifolds of Calabi–Yau type is canonically
the 1st prolongation of a contact system.

Thus, locally these integral manifolds depend on one arbitrary function of h variables.

Proof. We set P = PHC ∼= P2h+1. Denoting points of P by homogeneous coordinate vectors
[z] = [z0, . . . , z2h+1], we consider on HC the 1-form

θ = Q(dz, z).

Rescaling locally by z → fz where f is a non-vanishing holomorphic function we have

θ → f2θ.

It follows that θ induces a 1-form, defined up to scaling, on P . Choosing coordinates so that

Q =



0 −1

1 0

· ·
·

0 −1

1 0


,

in the standard coordinate system on P where z0 = 1 we have

θ = dz1 +
m∑

j=1

z2jdz2j+1 − z2j+1dz2j ,

dθ = 2
m∑

j=1

dz2j ∧ dz2j+1,

from which it follows that θ induces a contact structure on P .



18 J. Carlson, M. Green and P. Griffiths

Now let S ⊂ D be an integral manifold of Calabi–Yau type and consider the diagram

S ⊂ D

π

��
P

where π(F ) = F 3 viewed as a line in HC. Choose local coordinates s1, . . . , sm on S and
write π|S as

s→ [z(s)].

Letting F p
s ⊂ HC denote the subspace corresponding to s ∈ S, the condition dF 3

s ⊂ F 2
s = (F 2

s )⊥

gives

π∗θ |S= Q(dz(s), z(s)) = 0;

i.e., π(S) is an integral manifold of the canonical contact system on P . In terms of z(s), the
integral manifold S is given by{

F 3
s = [z(s)],

F 2
s = span{z(s), ∂s1z(s), . . . , ∂snz(s)} ∈ F (1, h),

(3.18)

where F (1, h) is the manifold of flags F 3 ⊂ F 2 ⊂ HC where dimF 3 = 1, dimF 2 = h + 1, and
where we have used the obvious inclusion Ď ⊂ F (1, h).

This process may locally be reversed. Given an h-dimensional integral manifold s → [z(s)]
of the canonical Pfaffian system on P , we may define an integral manifold of I by (3.18).

Finally, referring to (3.16) we see that what we denoted by θ there corresponds to the θ just
above. From equation (3.15) we may infer that I is in fact locally just the 1st prolongation of
the canonical contact system on P . �

Remark. In terms of an arbitrary function g(s1, . . . sh) of h variables, in the standard coordinate
system the above integral manifold of the contact system is

(s1, . . . , sn) → (g(s), ∂s1g(s), s1, . . . ∂sng(s), sn).

It follows that S ⊂ D is given parametrically in terms of g(s) and its first and second derivatives.

3.2 A Cartan–Kähler example and a brief guide to some of the literature

Example. We shall now discuss how the Cartan–Kähler theory applies to the case of weight
n = 2, h2,0 = 3 and h1,1 = h. This is the first “non-elementary” case.

The following is a purely linear algebra discussion dealing with the data

• Complex vector spaces P , R of dimension 3, h respectively and where R has a non-
degenerate symmetric form giving an identification R ∼= Ř.

• In Hom(P,R) ∼= P̌ ⊗R we are looking for an abelian subspace E, that is a linear subspace
of P̌ ⊗R such that

tAB − tBA = 0

for all A,B ∈ E. Here, the transpose is relative to the identification R ∼= Ř.
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We seek h-dimensional abelian subspaces E that are in general position relative to the tensor-
product structure in the sense that for a general u ∈ P the composite map

E → Hom(u,R) → R
∩

Hom(P,R)

is an isomorphism. With this assumption we shall be able to establish that general integral
elements that satisfy it are ordinary in the EDS sense.

It is convenient to choose a basis ei for P and an orthonormal basis eα for R so that

eiα =: ěα ⊗ ei

gives a basis for Hom(P,R). Denote by

θα
i ∈ Hom(P,R)∨

the dual basis. The notation has been chosen to line up with the “moving frame” notations
above. Using the summation convention and setting

Ωij = θα
i ∧ θα

j = −Ωji,

abelian subspaces are given by linear subspaces E on which the restriction

Ωij |E= 0. (3.19)

We may assume without loss of generality that E is of dimension h and that the condition
of general position is satisfied for u = ei, i = 1, 2, 3. Setting Θi = ∧αθ

α
i , we have

Θi |E 6= 0. (3.20)

Then E is defined by linear equations{
θα
2 = Aα

βθ
β
1 , det ‖Aα

β‖ 6= 0,

θα
3 = Bα

β θ
β
1 , det ‖Bα

β ‖ 6= 0.

The equations (3.19) for Ω12 and Ω13 are (Cartan’s lemma){
A = tA,

B = tB.

The equation (3.19) for Ω23 is

[A,B−1] = 0. (3.21)

In fact, if θα
1 = Cα

β θ
β
3 on E, then A = CB and C = tC gives (3.21).

(3.22) Proposition. The dimension of the space of generic h-dimensional abelian subspaces is
h(h+ 3)/2.

Proof. The group operating on Hom(P,R) is GL(P ) × O(R); this group preserves the set of
equations (3.19) that define the abelian subspaces of Hom(P,R). For elements I × T in this
group, the action on the matrices A and B above is given by{

A→ tTAT,
B → tTBT.
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For A generic we may find T so that A = diag(λ1, . . . , λh) where the λα are non-zero and
distinct. The condition (3.21) then gives that B = diag(µ1, . . . , µh). We thus have as a basis
for E

vα = e1α + λαe2α + µαe3α,

where 1 5 α 5 h. �

(3.23) Proposition. The equations that define the polar space H(E) have rank 2h. Thus E is
a maximal integral element.

Proof. For v = Cαe1α+Dαe2α+Eαe3α the equations that express the condition that span{E, v}
be an integral element are

Ωij(v, vβ) = 0.

These compute out to be, with no summation on repeated indices,
Dβ = λβC

β ,

Eβ = µβC
β,

µβD
β = λβE

β .

These are compatible and have rank 2h. For any solution, we replace v by ṽ = v − Cαvα

(summation here), and then ṽ = 0 by the above equations when all Cα = 0. �

(3.24) Proposition. A general abelian subspace E that is in general position with respect to
the tensor product structure is an ordinary integral element.

Proof. In order to not have the notation obscure the basic idea, we shall illustrate the argument
in the case h = 2. A general line E1 in E is spanned by w = ραvα (summation convention). The
polar equations for v as above are Ωij(w, v) = 0 for i < j. These are

ρ1(D1 − λ1C
1) + ρ2(D2 − λ2C

2) = 0,

ρ1(E1 − µ1C
1) + ρ2(E2 − µ2C

2) = 0,

ρ1(λ1E
1 − µ1D

1) + ρ2(λ2E
2 − µ2D

2) = 0.

For a general choice of ρα, λα, µα these are independent. Hence, in the notation of Section 2.2
we have

c0 = 0, c1 = 3.

On the other hand, the 2-dimensional abelian subspaces in Hom(P,R) ∼= C6 is a smooth, 5-
dimensional subvariety in the 8-dimensional Grassmannian Gr(2, 6). Therefore the codimension
of E in Gr(2, 6) is 3 = 8− 5. Consequently, Cartan’s test is satisfied. �

In [10] it is shown how to integrate the above system, with the result

(3.25) Integral manifolds of the above system are parametrized by generating functions f1, f2

subject to the PDE system

[Hf1 ,Hf2 ] = 0,

where Hf is the Hessian matrix of f .
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A brief guide to some of the literature

Building on earlier works, in [18] a number of results are proved:

(i) Under rather general assumptions of the type

• the weight n = 2m+ 1 is odd, hm+1,m > 2 and all other hp,q > 1,
• the weight n = 2m is even, hm,m > 4, hm+2,m−2 > 2 and all other hp,q > 1

a bound on the dimension of integral elements is obtained, and it is shown that there is
a unique integral element E that attains this bound.

(ii) There is a unique germ of integral manifold whose tangent space is E.

The following interesting question arises:

Is E an ordinary integral element?

This is a question of computing the ranks of the polar equations of a generic flag in E. Setting
dimE = p and dimD = N , since E is unique we have at E

codimGp(I) = dim Grass(p,N) = p(N − p)

and Cartan’s test is whether the inequality

p(N − p) = c1 + · · ·+ cp−1

is an equality. Suppose that equality does hold, so that E is ordinary and the Cartan–Kähler
theorem applies. As explained in [17] and [2] there are Cartan characters s0, s1, . . . , sp expressed
in terms of the ci such that local integral manifolds of I depend on sp arbitrary functions of
p-variables, sp−1 arbitrary functions of (p−1)-variables, . . . , s0 arbitrary functions of 0-variables
(i.e., constants). Mayer’s result would then follow by showing that equality holds in Cartan’s
test and

sp = · · · = s1 = 0, s0 = 1.

In fact, if E is ordinary then the Cartan characters must be given in this way. Another interesting
question is

Do the Mayer integral manifolds arise from algebraic geometry?

Since there is a unique one of these through each point of D, one knows that in the non-classical
case a general Mayer integral manifold does not arise from geometry. In [9] it is shown that in
weight two with h1,1 even some maximal integral manifolds are realized geometrically.

Among the works that preceded [18], and in some cases led up to it are:

[11]: In this paper it was recognized that the weight two horizontal distribution is a generaliza-
tion of the contact distribution.

[7]: Here it is shown that most hypersurface variations are maximal, i.e. their tangent space
at a point is not contained in a larger integral element. These integral elements are not of
maximal dimension in the sense of [18].

[8]: This paper gives the results in weight two that were extended to the general case in [18].
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We conclude this section by discussing the recent work [1].
One may think of an integral element E at F ∈ D as giving an action of SymE on ⊕

p
F p/F p+1

that is compatible with Q; i.e., the action preserves the pairings Q : F p/F p+1⊗Fn−p/Fn−p+1→C.
Especially if dimE is not small, such an action will have many algebraic invariants. Experience
suggests that those that arise from geometry will have a special structure.

One such relates to the notion of symmetrizers due to Donagi (cf. [13] and [7]) and used in [1].
Given vector spaces A, B, C and a bilinear map

Φ : A⊗B → C

one defines

Sym Φ =
{
Ψ ∈ Hom(A,B) : Φ(a,Ψ(a′)) = Φ(a′,Ψ(a)) for a, a′ ∈ A

}
.

One may consider the Sym’s of the various maps

Symk E ⊗Hp,n−p → Hp−k,n−p+k

arising above. In [1] these are studied when dimE and the hp,n−p are the same as for smooth
hypersurfaces X ⊂ Pn+1 where n = 3 and degX = n + 3, and where the special structure
arising from Macauley’s theorem is satisfied. It is shown that a particular Sym is generically
zero, but is non-zero in the geometric case. Thus the integral elements arising from hypersurface
deformations, which are known to be maximal, satisfy non-trivial algebraic conditions and are
thus non-generic.

We shall give a brief discussion of proofs of these results, based on the paper [14], in the case
n = 2. For this we use the notations from the proof of Theorem 5.10 below. For smooth surfaces
in P3 the analogous identification to (5.13) is

H2−p,p ∼= V (p+1)d−4/J(p+1)d−4.

We also have an identification

E ∼= V d/Jd.

Using E ⊆ Hom(H2,0,H1,1) there is a map

Hom(H2,0, E) → Hom(
2
⊗H2,0,H1,1).

From the above identifications, we have

V 4/J4 ⊆ Hom(H2,0, E) ∼= Hom(V d−4, V 2d−4/J2d−4)

and under the above map V 4/J4 lands in Hom(Sym2H2,0,H1,1). Put another way

V 4/J4 ⊆ ker
{
Hom(H2,0, E) → Hom(∧2H2,0, E)

}
.

It may be seen that for d = 5 and for E a general integral element, this kernel is non-zero. This
is illustrative of the non-genericity results in [1].

If follows from [14] that for d = 5

V 4 → Ȟ2,0 ⊗ E → ∧2Ȟ2,0 ⊗H1,1

is exact at the middle term. Thus one has
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Integrability. The composition

H2,0 → Ě ⊗H1,1 → ∧2Ě ⊗H0,2

is zero.

Non-generic condition. The kernel

ker
{
Ȟ2,0 ⊗ E → ∧2Ȟ2,0 ⊗H1,1

}
is non-zero, and as a vector space is isomorphic to V 4.

One may next proceed, for d = 8, to look at

V d−8 → Hom(V 4,H2,0) → Hom(∧2V 4, E),

and by [14] this will be exact at the middle term of d = 9. This process continues and leads
to a large number of non-linear constraints on the integral element arising from variations of
a smooth surface of degree d = 5.

Additional constraints, of a different character, arise as follows. Recall that polynomials f0,
f1, f2, f3, where fi ∈ V d, form a regular sequence if Var(f0, f1, f2, f3) = ∅ in P3. A special case
is when

fi(x) = Fxi(x)

where F (x) = 0 defines a smooth surface in P3. The symmetrizer constructions and results
in [14] illustrated above work equally well for a regular sequence. Thus, for the integral element
defined by a surface variation, there is the additional constraint that the ideal generated by
a regular sequence be a Jacobian ideal.

Although we shall not give the argument (using, as usual, Macaulay’s theorem), it may be
proved that an integral element E defined by a regular sequence is maximal.

We set dimE = p and denote by

Gp(surfaces) ⊂ Gp(RS) ⊂ Gp(I)

the integral elements corresponding respectively to smooth surfaces, to regular sequences in P3,
and general integral elements of the differential ideal generated by I. As just noted, the first
inclusion is strict. The following would seem to be an interesting question:

Is an integral element E ∈ Gp(RS) ordinary (cf. (2.11) above)?

3.3 The derived flag of the EDS associated to a VHS

We shall prove the

(3.26) Theorem. Let D be a period domain for polarized Hodge structures of weight n = 2
and where all hp,q 6= 0. Denote by I ⊂ T ∗D the Pfaffian system given by the infinitesimal period
relations. Then for the derived system

I[m] = 0 for m =
log n
log 2

.

Corollary. When n = 2, I has no completely integrable subsystem.
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Remarks. (i) This corollary roughly means that there are no finite equations satisfied by integral
manifolds of I. More precisely, locally there are no non-constant functions f on open subsets U

of D such that, for a point F ∈ U, all local integral manifolds of I passing through F lie in the
level set f = const.

(ii) The theorem actually is valid on the dual classifying space Ď. Over Ď there are Pfaffian
systems I(k) defined for k = 1 by

dF p ⊆ F p−k. (3.27)

For the VHS Pfaffian system, I = I(1). We shall establish a stronger version of the theorem by
showing that:

If all hp,q 6= 0, then

I[m] ⊆ I(2m). (3.28)

Moreover, if n = 2 and all hp,q = 2 then equality holds in (3.28).
(iii) We shall also see that the above result is sharp. The first case where some hp,q = 0

but I 6= T ∗D occurs when n = 4 and h4,0 6= 0, h3,1 6= 0 but h2,2 = 0. Then I[∞] 6= 0. The
finite equations satisfied by a VHS may be described as follows: Denote by Gr(f2,HC) the
Grassmanian of f2-dimensional planes in HC. Then, since dF 3 ≡ 0 mod F 3, the connected
integral manifolds of I lie in the fibres of the obvious map

Ď → Gr(f2,HC).

(iv) The simplest interesting case where equality fails to hold in (3.28) is when n = 4 and
h4,0 = 1. We shall see below that this is reflected in the structure of the derived flag. The
conclusion will be: Among 4-folds with h4,0 6= 0, Calabi–Yau varieties are distinguished by the
behaviour of the derived flag associated to the infinitesimal period relation.

Proof. In order not to have the notational complexity obscure the basic idea, we shall give
the argument in the case n = 4. From this we hope that the pattern for the general case will
be evident. The assumption that all hp,q 6= 0 is equivalent to the positive dimensionality of all
graded quotients in the filtrations

F 4 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 = HC

corresponding to a point of Ď. We consider adapted frame fields

e0α︸︷︷︸
F 4

, e1α

︸ ︷︷ ︸
F 3

, e2α

︸ ︷︷ ︸
F 2

, e3α

︸ ︷︷ ︸
F 1

, e4α

satisfying

Q(eiα, ejβ) =

{
1 if i+ j = 4, α = β,

0 otherwise.
(3.29)

As usual we write, using summation convention,

deiα = θjβ
iα ejβ ,
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where

dθjβ
iα = θkγ

iα ∧ θjβ
kγ . (3.30)

The forms θjβ
iα for j = i + 1 are semi-basic for the fibering GC → Ď; it is only expressions in

these that will have intrinsic meaning in the final formulas. We will use the notation ≡ for
congruence modulo the θjβ

iα for j 5 i. The system I is given by

I = {θjβ
iα : j = i+ 2}, (3.31)

where the brackets are used to denote the span.
The exterior derivative of (3.29) gives

θ4−jβ
iα + θ4−iα

jβ = 0. (3.32)

For later reference we write this out in detail

θ4β
0α + θ4α

0β = 0, θ3β
1α + θ3α

1β = 0,

θ3β
0α + θ4α

1β = 0, θ2β
1α + θ3α

2β = 0,

θ2β
0α + θ4α

2β = 0,

θ1β
0α + θ4α

3β = 0.

(3.33)

The 1-forms θjβ
iα are all non-zero and are linearly independent modulo these relations; the first

statement uses the assumption that all hp,q 6= 0. From (3.30), for j = i+ 1

dθjβ
iα ≡

∑
{

i<l<j
γ

θlγ
iα ∧ θ

jβ
lγ (3.34)

which by (3.31) gives the inclusion

{θjβ
iα}j=i+3 ⊆ I[1].

Indeed, if j = i+ 3 then if i < l < j we must have either l − i = 2, j − l = 2 or both. Now we
use (3.31). Further, from (3.34)

dθi+2β
iα ≡

∑
γ

θi+1,γ
iα ∧ θi+2β

i+1γ .

Using (3.33) we may verify that no linear combination of the θi+2β
iα is in I[1]. Thus we have

equality in the above inclusion; i.e.{
θ3β
0α, θ

4β
0α, θ

4β
1α

}
= I[1].

We next claim that

I[2] = 0.

Indeed, denoting by == congruence modulo the algebraic ideal generated by I[1], by (3.34) we
have 

dθ3β
0α

== θ1γ
0α ∧ θ

3β
1γ + θ2γ

0α ∧ θ
3β
2γ ,

dθ4β
0α

== θ2γ
0α ∧ θ

4β
2γ ,

dθ4β
1α

== θ3γ
1α ∧ θ

4β
3γ + θ2γ

2α ∧ θ
4β
2γ ;

no linear combination of the RHS is == 0. �
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Denoting by θj
i the matrix ‖θjβ

iα‖, the general pattern is

I = {θj
i : j = i+ 1}, i.e. j − i > 1 = 20,

I[1] ⊆ {θj
i : j = i+ 3}, i.e. j − i > 2 = 21,

I[2] ⊆ {θj
i : j = i+ 5}, i.e. j − i > 4 = 22,

...

I[k] ⊆ {θj
i : j − i > 2k}.

To show that equality holds, we must analyze in general the relations such as (3.33) that arise
from Q(F p, Fn−p+1) = 0. The analysis is an extension of that given above when n = 4, the one
difference being the alteration of signs with the parity of n. We shall not write out the argument
here. Rather we shall look more closely at the n = 4 case when h4,0 = 1 and when h2,2 = 0.

Example: h4,0 = 1. In this case θ4β
0α = 0 (only β = α occurs and we have θ4α

0α = 0 by the first
equation in (3.33)), and thus

I ∩ I(4) = 0.

Conversely, if this relation holds then h4,0 = 1.

Example: h2,2 = 0. In this case

θ2β
iα = 0, θjβ

2α = 0, i = 0, 1 and j = 3, 4.

Now

dθ3β
1α ≡ θkγ

1α ∧ θ
3β
kγ

and thus

I[1] =
{
θ3β
0α, θ

4β
0α, θ

3β
1α, θ

4β
1α

}
.

We claim that

I[2] = I[1]. (3.35)

This will imply that I[∞] = I[1] and will verify the claim that leaves of the foliation given by I[∞]

are the fibres of Ď → Gr(f2,HC).
Continuing to denote by == equivalence modulo the algebraic ideal generated by I[1],

from (3.34) we have

dθ3β
0α ≡ θ1γ

0α ∧ θ
3β
1γ

== 0,

dθ4β
0α ≡ θ1γ

0α ∧ θ
4β
1γ + θ3γ

0α ∧ θ
4β
3γ

== 0,

and similarly for dθ3β
1α and dθ4β

1α.
We are not aware of a geometric example where h4,0 6= 0, h3,1 6= 0 but h2,2 = 0. There are of

course geometric examples of necessarily rigid CY 3-folds where h3,0 = 1, h2,1 = 0.
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4 Universal cohomology associated
to a homogeneous Pfaffian system

4.1 EDS aspects of homogeneous Pfaffian systems

In this section all Lie groups and Lie algebras will be real and connected. Let G be a Lie group,
V ⊂ G a closed subgroup and

M = G/V

the resulting homogeneous space. We denote by G, v the Lie algebras respecively of G,V .

Definition. A homogeneous Pfaffian system is given by a G-invariant sub-bundle I ⊂ T ∗M .

Equivalently, I⊥ =: W ⊂ TM is a G-invariant distribution. Since V is connected, this in
turn is given by an ad-v invariant subspace

w ⊂ G/v.

If w̃ ⊂ G is the inverse image of w under the projection of G → G/v, ad-v invariance is equivalent
to [v, w̃] ⊆ w̃.

For any subspace a ⊂ w, the condition

[a, a] ⊆ v (4.1)

is well-defined; the inverse image ã ⊂ G of a should satisfy [ã, ã] ⊆ v.

(4.2) Proposition. The G-invariant integral elements of a homogeneous Pfaffian system are
given by the G-translates of subspaces a ⊂ w that satisfy (4.1).

Proof. For the projection G
π→ M we have that π∗I is a G-invariant sub-bundle of T ∗G; it is

in fact given by the translates of

i = w⊥ ⊂ Ǧ.

For θ ∈ i, the Maurer–Cartan equation gives, for ζ, η ∈ G,

〈dθ, ζ ∧ η〉 = −1
2
〈θ, [ζ, η]〉 . (4.3)

For the G-invariant subspaces E ⊂ TM given by the translates of a ⊂ w, the condition for such
a subspace E to be an integral element is therefore

dθ|E = 0

for all θ ∈ I. By (4.3) this is equivalent to (4.1). �

We now suppose that M is a reductive homogeneous space so that there is an ad-v invariant
splitting

G = p⊕ v.

Suppose that a ⊂ p is a subspace that gives an abelian Lie-subalgebra; i.e.,

[a, a] = 0. (4.4)

In particular, (4.1) is satisfied. Let A = exp a be the connected subgroup of G corresponding
to a.
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(4.5) Proposition (cf. Theorem 3.15 in [18]). The orbit A · (eV ) ⊂M is an integral manifold
of I.

This is clear: The tangents to the A-orbit are the A translates of a, and by (4.3) these are
all integral elements.

The space Gp(I) of p-dimensional integral elements is acted on by GR, and by the proposition
every E ∈ Gp(I) satisfying (4.4) is tangent to at least one integral manifold. This does not imply
either that (i) Gp(I) is smooth at E, or (ii) that if Gp(I) is smooth at E, then E is an ordinary
integral element; i.e., I may not be involutive at E.

4.2 Characteristic cohomology of the homogeneous Pfaffian system
associated to a VHS

Associated to a differential ideal I on a manifold M are its characteristic cohomology groups
H∗

I (M), defined to be the de Rham cohomology of the complex (Ω•(M)/I, d) where Ω•(M) are
the complex valued smooth forms on M . One may think of H∗

I (M) as the universal cohomology
groups induced on integral manifolds of I. We refer to [4, 5] for a general reference as well as
some examples of these groups.

In the case of a homogeneous Pfaffian system one may consider the complex ((Ω•(M)/I)G, d)
of G-invariant forms. By standard arguments one has the

(4.6) Proposition. H∗((Ω•(M)/I)G, d) ∼= H∗(G, v;w).

Here, H∗(G, v;w) is the Lie algebra cohomology of (G, v) relative to w; everything is taken
over the complex numbers. In the reductive case, which is the one we shall consider, this is
defined as follows: First, we have

i = w⊥ ⊂ p̌.

To define the complex C•(G, v;w; δ) we use the map

i → i2 ⊂ ∧2p̌

defined by θ → θ2 where, for ζ, η ∈ p

〈θ2, ζ ∧ η〉 = 〈θ, [ζ, η]〉 .

By the Maurer–Cartan equation, up to scaling these are just the 2-forms dθ where θ ∈ I, that
together with I generate the differential ideal I. Then we set

Cq(G, v;w; δ) =


0, when q = 0,

(p̌/i)v, when q = 1,

(∧qp̌/ ∧q−1 p̌ ∧ i + ∧q−2p̌ ∧ i2)v, for q = 2.

(4.7)

These are just the values at the identity coset eV of the forms in (Ωq(M)/Iq)G. The map δ is
just the exterior derivative, which when written out has the usual form of the differential in Lie
algebra cohomology.

In applications, one frequently has a discrete subgroup Γ acting properly discontinuously
on M , and one is interested in the global invariants of maps

f : S → Γ\M.

There is then an induced map

f∗ : H∗(G, v;w) → H∗(S). (4.8)
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We may think of the image of this map as giving the global topological invariants of maps
f : S → Γ\M that may be defined universally for all Γ’s.

We now turn to the case of a period domain and use the complexified Lie algebras. I will be
the differential ideal generated by I ⊂ T 1,0D and Ī ⊂ T 0,1D. In the classical case when n = 1,
w = 0 and V ⊂ GR is a maximal compact subgroup, and from what is known it may be inferred
that

(4.9) H∗(G, v; δ) ∼= (∧∗p̌)v is the space of invariants, and these are generated by the Chern
forms of the Hodge bundles.

The argument will be given in several steps, some of which will carry over to the higher
weight case.

(i) Since D is a symmetric space, the symmetry about eV is given by an element in V which
acts by −1 in the tangent space there. It follows that the invariant forms are all of even
degree. In particular δ = 0, which gives the first statement in (4.9).

(ii) Next, using the unitary trick, and averaging, one infers that the space of invariant forms
is isomorphic to the space of harmonic forms on the compact dual Ď, and this space is in
turn isomorphic to H∗(Ď). This latter is known to be generated by the Chern classes of
the universal vector bundle over Ď.

We will now show

(4.10) Theorem. For a period domain, the invariant forms that are orthogonal to the algeb-
raic ideal generated by I and Ī are all of type (p, p).

Here, orthogonal means with respect to the canonical metrics constructed from the Hodge
metrics in the Hodge bundles. Working in the orthogonal space is equivalent to working modulo
the ideal in the space of all forms.

The first statement means that for a period domain the forms[(
∧∗−1p̌ ∧ iC

)⊥]v
are all of type (p, p). This does not yet take into account the forms in ∧∗−2p̌ ∧ i2.

Proof. At a reference point F ∈ D, we have a canonical representation

ϕ : S1 → Aut(HR, Q) = GR

obtained from a representation ϕC : C∗ → Aut(HC, Q) defined by

ϕC(z)v = zpz̄qv, v ∈ Hp,q.

Restricted to S1 = {|z| = 1}, ϕC(z) = ϕ(z) is real. We observe that S1 is a subgroup of V ; the
Weil operator is just C = ϕ(

√
−1).

On the Lie algebra G, we have the induced Hodge structure

GC = ⊕
i

G−i,i.

We then have

vC = G0,0

and

pC = p+ ⊕ p−, p− = p̄+,



30 J. Carlson, M. Green and P. Griffiths

where
p+ = ⊕

i>0
G−i,i ∼= T

(1,0)
F D,

p− = ⊕
i<0

G−i,i ∼= T
(0,1)
F D.

For the canonical Pfaffian system we have

iC = i+ ⊕ i−, i− = ī+,

where{
i+ = Ǧ−1,1 ⊂ Ť 1,0

F D,

i− = Ǧ1,−1 ⊂ Ť 0,1
F D.

Thus the orthogonal complement to ∧∗−1p̌C ∧ iC are the forms of positive degree in

∧∗
(
Ǧ−1,1 ⊕ Ǧ1,−1

) ∼= ∧∗Ǧ−1,1 ⊗ ∧∗Ǧ1,−1.

On G−1,1, Adϕ(z) acts by z−1z̄ = z2; on G1,−1 it acts by zz̄−1 = z−2. Thus on ∧pǦ−1,1⊗∧qǦ1,−1,
Adϕ(z) acts by z2(p−q). Since ϕ(z) ∈ V for z ∈ S1, we see that any ad v-invariant forms must
be of type (p, p). �

As mentioned in the introduction, we expect that (4.10) may be the first step in showing that
the GR-invariant forms modulo the differential ideal generated by I are generated by the Chern
forms of the Hodge bundles7. Since, except in the classical case when I = 0, the invariant forms
modulo the algebraic ideal generated by I definitely contain more than the Chern forms, the
integrability conditions will have to enter in an essential way. In fact, they enter in the proof of
the following

(4.11) Theorem. The Chern forms of the Hodge filtration bundles satisfy

ci(F p)cj(Fn−p) = 0 if i+ j > hp,n−p.

Proof. The argument will proceed in several steps, the key one where integrability is used
being (4.17) below.

Step one. For a d× d matrix A we set

χA(t) =: det(A− tI) = td + c1(A)td−1 + · · ·+ cd(A).

Then we have

(4.12) Lemma. If A, B are d× d matrices with AB = 0, then

ci(A)cj(B) = 0 if i+ j > d.

Proof. We have

χA(t)χB(u) = det(A− tI) det(B − uI) = det(−tB − uA+ utI),

and all terms in det(−tB − uA+ utI) have degree at least d in u, t. From

χA(t)χB(u) =
∑
i,j

ci(A)cj(B)td−iud−j

we have ci(A)cj(B) = 0 if (d− i) + (d− j) < d; i.e. if i+ j > d. �

7As mentioned in the introduction, this result has now been proved. The integrability conditions play the
central role in the argument, which is representation-theoretic in nature.
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Step two. We let E ⊂ G−1,1 be an integral element at a point F ∈ D. Then we have Ě-valued
maps

F p/F p+1 Ap−−→ F p−1/F p,

where we think of Ap as a matrix of size hp,n−p×hp−1,n−p+1 whose entries are Ě. The integrability
conditions are

Ap−1 ·Ap = 0, (4.13)

where we are multiplying matrices using the wedge product of their entries.
Using the dualities induced by Q and denoting the transpose of a matrix A by A∗ we have

a commutative diagram

P� P�

(F p−1/F p)
A∗

p−−−−→ (F p/F p+1)
o‖ o‖

Fn−p+1/Fn−p+2 An−p+1−−−−→ Fn−p/Fn−p+1.

On F p we have an Hermitian metric induced by (v, w) = Q(Cv, w̄).

Lemma. Up to a constant, the curvature matrix of the metric connection is given by

ΘF p =

(
Ā∗

pAp 0

0 0

)
. (4.14)

The notation means that we write the orthogonal direct sum decomposition

F p = Hp,n−p ⊕ F p+1.

A consequence of (4.14) is

ck(F p) = 0 for k > hp,n−p. (4.15)

Proof of the lemma. F p is a sub-bundle of the flat bundle F 0 = HC with the induced metric.
In this situation it is known [16] that the curvature of the metric connection in F p is up to a
constant given by

Π∗
F p/H ·ΠF p/H ,

where ΠF p/H is the 2nd fundamental form of F p in HC. In the case at hand the 2nd fundamental
form may be identified with Ap. �

Remark. There is one subtlety here. Because of the sign alternation in the Hodge metrics

(u, v) = (
√
−1)p−qQ(u, v̄) u, v ∈ Hp,q

the usual principle that “curvatures decrease on holomorphic sub-bundles” does not hold for the
Hodge bundles. For example, c1(Fn) > 0 on ΘF p . However, the signs are not an issue for us
here.

Step three. From (4.13) we have

Ā∗
pApAp+1Ā

∗
p+1 = 0, (4.16)
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where the multiplication of matrix entries is wedge product. For notational simplicity we omit
the blocks of zeroes in the ΘF p ’s, so that

ΘF p = Ā∗
pAp,

Θ∗
F n−p = −Ap+1Ā

∗
p+1.

Using (4.16) this gives the remarkable consequence

ΘF pΘ∗
F n−p = 0 (4.17)

of integrability. Since χΘ∗
Fn−p

(t) = χΘFn−p (t), by step one we see that ci(F p)cj(Fn−p) = 0 if
i+ j > hp,n−p. �

5 “Expected” dimension counts for integral manifolds
of an EDS

An important aspect in algebraic geometry is that of “expected” dimension counts. Informally
and in first approximation, this means counting the number of parameters of solutions to a sys-
tem of algebraic equations, where “expected” means assuming some sort of “general position”.
When the solution varieties are also subject to differential constraints, the problem changes
character in an interesting way. In this section we will discuss this for the EDS arising from
VHS’s.

To frame the general issue we assume given a diagram of regular mappings of complex mani-
folds

X
f→ A

∪ ∪
Y → B

(5.1)

where f is an immersion and Y = f−1(B). Then

“expected” codimX Y = codimAB = rank(TA/TB),

where it is understood that TA/TB is restricted to B. If Y is non-empty, then the actual
codimension satisfies

codimX Y 5 rank(TA/TB), (5.2)

with equality holding when f(X) meets B transversely.
Now suppose that I ⊂ T ∗A is a holomorphic Pfaffian system and f : X → A is an integral

manifold of I. Let W = I⊥ be the corresponding distribution. Then for the normal bundles we
have that

f∗ : TX/TY →W/W ∩ TB

is injective, so that the above may be refined to

codimX Y 5 rank(W/W ∩ TB) 5 rank(TA/TB). (5.3)

Informally we may say that: Subjecting f : X → A to a differential constraint decreases the
codimension of Y = f−1(A) in X. By “decreases” we mean that codimX Y is less than the
“expected” codimension in the absence of differential constraints, as explained above.
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However, when we take into account integrability a still further refinement of (5.3) may be
expected. This is because in general integral elements of I may be expected to have dimension
smaller, frequently much less, than rank W .

Rather than discuss the general aspects of this, we turn to a special case that is geometrically
motivated. Let D be a period domain for polarized Hodge structures of even weight n = 2m.
At a reference Hodge structure F ∈ D we let ζ ∈ HR ∩Hm,m be a real vector of type (m,m).

Definition. The Noether–Lefschetz locus is the subvariety Dζ ⊂ D where ζ remains of type
(m,m).

(5.4) Proposition. Let Gζ ⊂ GR be the subgroup fixing ζ up to scaling. Then Dζ = Gζ · F is
the Gζ-orbit of F . It is a homogeneous complex sub-manifold of D of codimension given by

codimD Dζ = h(2m,0) + · · ·+ h(m+1,m−1).

Proof. This is a matter of routine checking. Setting hk = h(2m−k,k), we have first{
GR ∼= O(a, b), a+ b = h0 + · · ·+ h2m,
V ∼= U(h0)× · · · × U(hm−1)×O(hm).

Next, depending on whether m is even or odd, we have Gζ
∼= O(a− 1, b) or O(a, b− 1). Finally,

the same linear algebra argument that shows that GR acts transitively on D shows that Gζ acts
transitively on Dζ and

Dζ = Gζ/Vζ ,

where

Vζ = Gζ ∩ V ∼= U(h0)× · · · × U(hm−1)×O(hm − 1).

From this we may conclude the above codimension count. �

For fixed ζ ∈ HR ∩H(m,m) and at a variable point in D we write the Hodge decomposition
of ζ as{

ζ = ζ2m,0 + · · ·+ ζm,m + · · ·+ ζ0,2m,

ζ2m−p,p = ζp,2m−p.

Then Dζ is defined by the equations

ζm−1,m+1 = · · · = ζ0,2m = 0.

The above proposition says that these equations are independent and define Dζ as a smooth
complex submanifold of D.

At a point F ∈ D we let{
E ⊂ TFD be an integral element of I,

Eζ = E ∩ TFDζ .

For ϕ ∈ G−1,1 ⊂ ⊕Hom(H2m−p,p,H2m−p−1,p+1) we write ϕ = ϕ0 + · · · + ϕ2m−1 where ϕp ∈
Hom(H2m−p,p,H2m−p−1,p+1) and ϕp and ϕ2m−p−1 are dual. Then

Eζ = {ϕ ∈ E : ϕm(ζ) = 0 in Hm−1,m+1}.
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This is equivalent to

Eζ = {ϕ ∈ E : Q(η, ϕ(ζ)) = 0 for all η ∈ Hm+1,m−1}. (5.5)

Thus, without taking the integrability conditions into account we have

codimE Eζ 5 hm+1,m−1.

However, due to the integrability conditions the equations (5.5) may not be independent. In
order to illustrate the essential point, we begin by considering the first non-trivial case m = 2.
For any ϕ ∈ Eζ , ψ ∈ E and ω ∈ H4,0, using that E is an integral element so that ϕ and ψ
commute,

Q(ϕ(ω), ψ(ζ)) = −Q(ψϕ(ω), ζ) = −Q(ϕψ(ω), ζ) = Q(ψ(ω), ϕ(ζ)) = 0;

i.e., for each ψ ∈ E the linear equations

Q(η, ψ(ζ)) = 0, η ∈ H3,1

that define the condition that ψ ∈ Eζ are decreased in rank by

σζ =: dim Im{Eζ ⊗H4,0 → H3,1}. (5.6)

We thus have the

(5.7) Proposition. For σζ defined as above

codimE Eζ 5 h1,3 − σζ .

The general case goes as follows: With Eζ defined as above, for each p with 0 5 p 5 m − 2
we consider the maps

κp
ζ : E ⊗ Symp−m+1E ⊗H2m−p,p → Hm+1,m−1

and we set

σζ = dim
{

span(Images κp
ζ) for 0 5 p 5 m− 2

}
. (5.8)

Then the straightforward extension of the above argument gives the

(5.9) Proposition. For σζ defined by (5.8), we have

codimE Eζ 5 hm−1,m+1 − σζ .

In algebro-geometric terms, this says that the “richer” the multiplicative structure in the 1st

order variation of the Hodge structure, the smaller the codimension of Noether–Lefschetz loci.

Remark. The above is predicated on the implicit assumption that, for a variation of Hodge
structure S → Γ\D, we have that the Noether–Lefschetz locus Sζ ⊂ S is reduced, so that for
general points of a component of Sζ we have codimS(Sζ) = codimTsS(TsSζ). For far as we know,
there are not yet any examples coming from algebraic geometry where this assumption is not
satisfied, although we feel that such examples may be expected.

Example. We consider a smooth hypersurface

X ⊂ P5

of degree d = 6 and which contains a 2-plane P ∼= P2.

(5.10) Theorem. For the primitive part of the fundamental class [P ] ∈ H4(X,Z) of P , we
have equality in (5.9).
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Proof. We will denote by V ∼= C6 a vector space with coordinates x1, . . . , x6 such that X ⊂ PV̌
is given by an equation

F (x) = 0

where F ∈ V d =: Symd V is a homogeneous polynomial of degree d = 6. It is well-known, and
will be proved below, that

(5.11) At a general X containing a 2-plane P , the locus of all degree d hypersurfaces X ′

close to X and containing a 2-plane P ′ close to P is smooth and of codimension (d+1)(d+2)
2 −

dim Gr(3, 6) in the space of all degree d hypersurfaces in PV̌ .

Let P be given by x1 = x2 = x3 = 0 so that

F (x) =
3∑

i=1

xiGi(x),

where Gi ∈ V d−1. Denote by

Ft(x) = F (x) + tḞ (x), Ḟ ∈ V d,

a 1st order perturbation of F . The condition that P move to 1st order to a 2-plane Pt ⊂ Xt =
{Ft(x) = 0} is that

Ḟ =
∑

i

xiĠi +
∑

i

liGi,

where Ġi ∈ V d−1 is the tangent to a 1st order variation of Gi and the li ∈ V are linear forms.
We will use the notation (X ′, P ′) for the 1st order perturbation of (X,P ).

We will denote by (H1,. . .,Hm) the ideal generated by forms H1,. . .,Hm, and by (H1,. . .,Hm)k

the degree k part of that ideal. Thus, the subspace of V d that gives the 1st order deformations
(X ′, P ′) of (X,P ) is

(x1, x2, x3, G1, G2, G3)d.

The Jacobian ideal is

J = (∂x1F, . . . , ∂x6F ).

For references to Jacobian ideals and the polynomial description of the cohomology of hypersur-
faces we suggest [1, 7], and [13]. The tangent space to 1st order deformations of the projective
equivalence class of X is given by

T = V d/Jd.

With this identification, by what was said above the subspace TP ⊂ T giving 1st order defor-
mations of equivalence classes of pairs (X,P ) is given by

TP = (x1, x2, x3, G1, G2, G3)d/Jd. (5.12)

A basic identification is

H4−p,p(X)prim = V (p+1)d−6/J(p+1)d−6. (5.13)

Thus, for example

H4,0(X) ∼= V d−6.
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Using the identification T = V d/Jd, the differential of the period mapping

T → ⊕
p

Hom(H4−p,p(X),H4−p−1,p+1(X))

is given by multiplication in the ring V •/J•; i.e. by

V d/Jd ⊗ V (p+1)d−6/J(p+1)d−6 → V (p+2)d−6/J(p+2)d−6. (5.14)

We denote by ζ ∈ H2,2(X)prim the primitive part of the fundamental class [P ] of P .

(5.15) Proposition. If we define

Tζ = {H ∈ V d/Jd : H · ζ = 0 in V 4d−6/J4d−6}

then

Tζ = TP .

The inclusion TP ⊆ Tζ is clear geometrically: It means that if (X,P ) deforms to 1st order
to (X ′, P ′) as above, then ζ deforms to a Hodge class ζ ′ ∈ H2(X ′)prim. In fact, ζ ′ = [P ′]prim.
The proof of the reverse inclusion will come out indirectly from the argument to be given below.
The assertion (5.11) is a consequence of (5.15).

We set

VP = V |P = V/(x1, x2, x3).

The proof of the theorem and the proposition will be based on known commutative algebra
properties of the rings V •/J• and V •

P /JP,•; namely there are perfect pairings
(i) V k/Jk ⊗ V 6d−12−k/J6d−12−k → V 6d−12/J6d−12

∼= C,
(ii) V k

P /(G1, G2, G3)P,k ⊗ V 3d−6−k
P /(G1, G2, G3)P,3d−6−k

→ V 3d−6
P /(G1, G2, G3)P,3d−6

∼= C.
(5.16)

Here, we denote by (G1, G2, G3)P,k the degree k part of the ideal generated by the Gi|P . The
reason for (5.16) is that (x1, x2, x3, G1, G2, G3) is a regular sequence on P5, and this then implies
that G1|P , G2|P , G3|P is a regular sequence on P . Then in general if f1, . . . , fn is a regular
sequence on Pn where deg fi = di, there is a perfect pairing V a/(f1, . . . , fn)a⊗V b/(f1, . . . , fn)b →
V a+b/(f1, . . . , fn) where a+ b =

∑
i di − n.

The argument will proceed in five steps, the first of which is (5.13) above.

Step two. We have

TPH
4,0 = (x1, x2, x3, G1, G2, G3)2d−6/J2d−6 ⊆ V 2d−6/J2d−6.

This follows from (5.13) and (5.14) in the case p = 0.

Step three. Denoting by [P ] the fundamental class of P , the map

H2,2(X)
[P ]→ H4,4(X) ∼= C

may, using (ii) in (5.14) which gives an isomorphism V 3d−6/(G1, G2, G3)P,3d−6
∼= C, be identified

with

V 3d−6/J3d−6 → V 3d−6
P /(G1, G2, G3)P,3d−6

∼= C.
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Proof. Since X is non-singular the restrictions Gi|P have no common zeroes and hence form
a regular sequence. The corresponding Koszul resolution of OP then gives

0 → OP (−3(d− 1)) → ⊕
3

OP (−2(d− 1)) → ⊕
3

OP (−(d− 1)) → OP → 0.

Tensoring with OP (3d− 6) gives, using Ω2
P
∼= OP (−3)

0 → Ω2
P → ⊕

3
OP (d− 4) → ⊕

3
OP (2d− 5) → OP (3d− 6) → 0,

from which we infer that

V 3d−6
P /(G1, G2, G3)P,3d−6

∼= H2(P,Ω2
P ) ∼= C.

Moreover, under this isomorphism a generator of V 3d−6
P /(G1, G2, G3)P,3d−6 maps to the funda-

mental class. Since the map H2,2(X)
[P ]→ H4,4(X) is given by evaluating a class in H2,2(X) on

the fundamental class of P , by standard arguments we may infer the assertion in Step 3. �

Step four. We first observe that the map

ζ ⊗ V d/Jd ⊗ TP ⊗ V d−6 → V 4d−6/J4d−6
∼= C (5.17)

is zero. Here, we recall that ζ ∈ V 3d−6/J3d−6 is the primitive part of [P ] ∈ H2,2(X). We are
using (5.14) that the action on cohomology of tangent vectors to deformations of equivalence
classes of hypersurfaces in P5 is given by multiplication in the ring V •/J•. The fact that the
above map is zero results from the definition of Tζ as the kernel of the map

T
ζ−−→ H1,3

o‖ o‖
V d/Jd −−→ V 4d−6/J4d−6.

Then the claim is that the map (5.17) may be identified with

TP · V d−6 |P∈ V 3d−6
P /(G1, G2, G3)P,3d−6

∼= C. (5.18)

This follows from Step three above.

Step five. We now put everything together. To prove the theorem it will suffice to show that
TP is the kernel of

V d/Jd
ζ→ V 4d−6/J4d−6.

This is because for all S ∈ V d/Jd,

R · ζ = 0 in V 6d−6/J6d−6 for all R ∈ V 2d−6 (5.19)

is, by (5.16)(i), equivalent to

S · ζ = 0 in V 4d−6/J4d−6.

By step four, (5.19) is in turn equivalent to

RS |P∈ (G1, G2, G3)P,3d−6,

which by (5.16)(ii) is the same as the condition

S |P∈ (G1, G2, G3)P,d.

This last statement is easily seen to be equivalent to

S ∈ TP . �
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Reprise

We consider the case that arises in the case of a family of Calabi–Yau fourfolds. Thus, we assume
that h4,0 = 1 and denote by ω ∈ H4,0 a generator giving an isomorphism H4,0 ∼= C. Moreover,
let T ⊂ G−1,1 be an integral element and, as would be the case for Calabi–Yau’s, we assume
that the map given by (5.13)

T → Hom(H4,0,H3,1) ∼= H3,1

is an isomorphism. Using this map we may identify T with H3,1 and denote its dimension by m
(for moduli).

Each ζ ∈ H2,2 defines a quadric

Qζ ∈ Sym2 Ť

given for θ, θ′ ∈ T by〈
Qζ , θ · θ′

〉
= Q(θ · θ′ω, ζ).

The fact that this is symmetric in θ and θ′ is because T is an integral element.
Denote by Tζ ⊂ T the intersection of T with the tangent space to the Noether–Lefschetz

locus Dζ ⊂ D.

(5.20) Proposition. We have

codimTζ = rankQζ .

Moreover, in the case of the family of hypersurfaces X ⊂ P5 of degree six and where ζ is the
primitive part of the fundamental class of a plane P ⊂ X, we have TP = Tζ .

Proof. We view Qζ as a map

Qζ : T → Ť .

Then the proof of Proposition 5.7 gives

Tζ = (ImQζ)⊥;

thus

codimTζ = rankQζ

as desired. �

For the case of P ⊂ X ⊂ P5, degX = 6, we have

T = V 6/J6.

Moreover, we have seen in step three in the proof of (5.15) that

Tζ = ker
{
V 6/J6 → V 6

P /(G1, G2, G3)P,6

}
.

Thus

rankQζ = dimV 6
P /(G1, G2, G3)P,6.
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Now, from the Koszul calculation above

0 → ⊕
3
VP

(G1,G2,G3)−−−−→ V 6
P

is exact. Thus

rankQζ = dimV 6
P − 3 dimVP =

(
8
2

)
− 3 · 6 = 19.

On the other hand, the number of conditions for X to contain a 2-plane is

dimV 6
P − dim Gr(3, 6) =

(
8
2

)
− 9 = 19.

Remark. Let X be a Calabi–Yau fourfold and ζ ∈ Hg2(X)prim a Hodge class. We then have

(5.21) If the Hodge conjecture is true and rankQζ = h3,1 is maximal, then X is defined over
a number field.

This is because if Qζ is non-singular, then the Noether–Lefschetz locus for ζ will be 0-
dimensional. If ζ = [Z] is the class of an algebraic cycle, then X is defined over a field k of
transcendence degree = 1, and by standard arguments we may, after passing to a finite field
extension, assume that Z is also defined over k. The spread of (X,Z) will then give a positive
dimensional component to the Noether–Lefschetz locus of ζ.

To disprove the consequence of the Hodge conjecture that Hodge classes are absolute, it would
be sufficient to find a Calabi–Yau fourfold not defined over a number field and a Hodge class ζ
such that Qζ is non-singular.
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