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Abstract. A proposal is made for what could well be the most natural symmetrical Rie-
mannian spaces which are homogeneous but not isotropic, i.e. of what could well be the most
natural class of symmetrical spaces beyond the spaces of constant Riemannian curvature,
that is, beyond the spaces which are homogeneous and isotropic, or, still, the spaces which
satisfy the axiom of free mobility.
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1 Introduction

Let (Mn, g) be an arbitrary Riemannian manifold, i.e. let Mn be any differential manifold of
dimension n endowed with any Riemannian metric (0, 2) tensor g. On the one hand, what follows,
with the usual care, can fully be developed also for indefinite semi- or pseudo-Riemannian spaces,
and, moreover, can appropriately be extended to Cartan’s “generalized”-spaces. And, on the
other hand, when given some extra structure on Mn, e.g. like a Kaehlerian or a Sasakian
structure, what follows can accordingly be well specified too. The present presentation however
will simply be restricted to some natural symmetries occurring in intrinsic proper Riemannian
geometry.

A geometrical symmetry of a Riemannian space (Mn, g) concerns the invariance of some
geometrical quantity of (Mn, g) under the performance of some transformations defined on
(Mn, g) [69]. Various types of symmetries in Riemannian geometry can thus be considered,
essentially depending on the kind of quantities and of transformations in question. And, in
complete analogy with such intrinsic symmetries, various types of extrinsic symmetries can
be considered on submanifolds (Mn, g) in Riemannian ambient spaces (M̃n+m, g̃). By natural
geometrical symmetries, we mean symmetries in the above sense for which the quantities and the
transformations involved are the most natural indeed, at least in our opinion. As more technical
as well as more expository references for these intrinsic and for these extrinsic symmetries,
cf. [19, 23, 28, 39, 53, 68].

2 Transformations on Riemannian manifolds

The transformations on Riemannian manifolds (Mn, g) which will be considered hereafter in
our speculations about symmetry will be the parallel transports fully around all the infinitesimal
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co-ordinate parallelograms on these manifolds. A 4-fold motivation to devote some attention to
these rather than maybe to some other kinds of transformations is the following.

(i) Essentially, when studying symmetry, one is interested in the preservation of one or other
sort of measures of some geometrical “beings”, cf. the “parlant” of Élie Cartan, after these
beings have been transformed in one or other manner. Working in Riemannian geometry, these
measures do most naturally concern measures taken by the Riemannian metric tensor g. And
since this tensor may well change from point to point on a general Riemannian manifold (Mn, g),
it seems wise to restrict to transformations on these manifolds which do bring all beings living
at any point p ∈ M back to this same point p, so that their measurements done before and after
these transformations are carried through are taken by the same measure g(p). This condition
seems to be the most elementary one to impose if one is willing to show respect for the metrical
structure of the space (Mn, g).

(ii) The Riemannian metrical structure g is defined on a differential manifold Mn. So, the
transformations to consider in the purpose of studying some basic symmetries of Riemannian
manifolds (Mn, g) should fundamentally involve the essence of what is a differential structure.
An nD differential structure on a space M consists of an atlas of local co-ordinate systems
(or patches or charts) x1, . . . , xh, . . . , xk, . . . , xn around its points p, which, in case there exists
between two of such systems a non-trivial overlap, do have differential transitions of their co-
ordinates there. So, the most elementary aspect of a differential structure on a space M might
well be the existence of “xy co-ordinate parallelograms P cornered at its points p”, whereby
we have renamed xh as x and xk as y and, keeping all other co-ordinates around a point p =
(x1, . . . , xh−1, x, xh+1, . . . , xk−1, y, xk+1, . . . , xn) fixed, consider the “parallelogram” P formed by
the co-ordinate lines xh = x, xk = y, xh = x+∆x and xk = y+∆y, for arbitrary increments ∆x
and ∆y of the co-ordinates x and y. Actually, this goes back to the essence of desCartes’
systematic use of planar (oblique) xy co-ordinates in his Géométrie of 1637, based there and
then on the Euclidean parallel postulate.

In the following, the natural basic tangent vectors ∂
∂x(p) = ∂

∂xh (p) and ∂
∂y (p) = ∂

∂xk (p) at p
to the x- and y-co-ordinate lines will be denoted by ~x and ~y respectively, and the tangent 2D
plane, or, still, the 2D linear subspace of the tangent space TpM

n = Rn to Mn at p, which
is spanned by ~x and ~y will be further denoted by π: π = ~x ∧ ~y. And, combining (i) and (ii)
it seems no more than appropriate when showing respect respectively for the metrical and for
the differential structures of general Riemannian manifolds (Mn, g), and, being in the search of
basic symmetries in Riemannian geometry, to consider some kinds of transformations starting
at arbitrary points p of M and moving fully around co-ordinate parallelograms P cornered at p
and tangent there to arbitrary tangent 2-planes π = ~x ∧ ~y.

(iii) Both in Riemann’s and in Helmholtz’s pioneering studies of Riemannian spaces (Mn, g)
[40, 60], with their inspirations coming (a.o.) from philosophical thoughts primordially about
physical space-time and about human vision, respectively, the basic metrical geometrical struc-
ture, i.e. basically -in modern terminology- the metric tensor g, was essentially defined as an
infinitesimal notion: g = ghkdxhdxk,

[
whereby the components ghk of g, (h, k ∈ {1, 2, . . . , n}),

are real valued functions on (open parts of) the “underlying” differential manifold, namely,
ghk : M → R

]
. And this in itself essentially was possible since working on a manifold Mn to

which the infinitesimal calculus from Rn was extended via mutually compatible local charts.
Accordingly, after thus reflecting a bit deeper than in (i) and (ii) on the infinitesimal characters
of both the differential structure and the metrical structure of a Riemannian manifold, we will
further on consider transformations on (Mn, g) moving beings from any point fully around all
infinitesimal co-ordinate parallelograms P back to p, i.e., in the following, ∆x and ∆y will be
considered to be infinitesimal quantities.
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(iv) Finally, amongst all such transformations of beings around such parallelograms P, the
most natural ones, again with due respect for the differential structure as well as for the met-
rical structure of Riemannian manifolds (Mn, g), seem well to be the corresponding parallel
transports. These were introduced independently by Levi-Civita [50] and by Schouten [62], in
particular aiming for truly geometrical insights in the meaning of the Riemann–Christoffel cur-
vature tensor R and of the Riemann sectional curvatures K(p, π) of the 2D sections π of the
tangent spaces TpM

n at the points p of M . These parallel transports of vectors along curves
in (Mn, g) are conceptually equivalent with the Riemannian connection ∇ which, in Koszul’s
approach, and as worked out by Nomizu, according to the fundamental lemma of Riemannian
geometry, is the unique way to associate a vector field ∇XY with given vector fields X and Y
on (Mn, g) following the derivation rules of linearity and of Leibniz and being compatible with
the differential structure and with the metrical structure of (Mn, g), i.e., being symmetrical
(that is, the commutator ∇XY −∇Y X which is defined for two such vector fields X and Y in
terms of this connection coincides with the commutator, or Lie bracket,

[
X, Y

]
= X Y − Y X,

which is defined for these vector fields by the differential structure) and being metrical (that
is, Z

[
g(X, Y )

]
− g(∇ZX, Y ) − g(X,∇ZY ) = 0, or, put otherwise, ∇g = 0, or still, the scalar

product of vectors does not change under their parallel transports along curves).

As is well known, and goes back to Schouten [62], one has the following holonomy property :
after parallel transport of a vector ~z ∈ TpM

n fully around a co-ordinate parallelogram P cornered
at p and tangent there to π = ~x ∧ ~y, results the vector

~z?
π = ~z +

[
R(~x, ~y)~z

]
∆x∆y +O>2(∆x,∆y),

whereby R(X, Y ) : TM → TM is the curvature operator, i.e. R(X, Y )Z := (∇X∇Y −∇Y∇X −
∇[X,Y ])Z, or still, whereby R : TM × TM × TM → TM : (X, Y, Z) 7→ R(X, Y )Z is the (1, 3)
Riemann–Christoffel curvature tensor. Thus R(~x, ~y)~z measures the second order change of
a vector ~z ∈ TpM

n after parallel transport around an infinitesimal co-ordinate parallelogram P.
Or, by taking into account that parallel transports are isometries, and so, in particular, do not
change the lengths of vectors, one has the following.

Proposition 1 (Schouten). The curvature operators of Riemannian manifolds measure the
changes of directions at points under parallel transports fully around the infinitesimal parallelo-
grams cornered at these points.

Actually, the above holonomy property of Schouten during the last decades is often used
as the definition of the (1, 3) curvature tensor R. And, stated as the symmetry property of
preserving directions for the class of transformations under consideration, one has the following.

Theorem 1 (Schouten). The locally Euclidean (or locally flat) Riemannian manifolds (the
spaces (Mn, g) for which R ≡ 0), are precisely the Riemannian manifolds for which all di-
rections are invariant under their parallel transports fully around all infinitesimal co-ordinate
parallelograms.

Remark 1. Actually, it was Cartan who very appropriately introduced the term “holonomy”
by combining the Greek “holos” and “nomos”.

3 Geometrical meaning of the metrical endomorphism

The natural metrical endomorphism X ∧g Y : TM → TM associated with two vector fields X
and Y on a Riemannian manifold (Mn, g) is defined by (X ∧g Y )Z := g(Y, Z)X − g(X, Z)Y .
Let ~x and ~y be orthonormal vectors at p, and let ~z = ~zπ + ~zπ⊥ be the canonical orthogonal
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decomposition of any vector ~z at p in its components in π = ~x ∧ ~y and in the orthogonal
complement π⊥ of π in TpM

n = Rn. Now, we rotate ~zπ around p in the plane π over an
infinitesimal angle ∆ϕ, thus obtaining a vector (~zπ)∆ϕ, and define the vector ~z∧π := (~zπ)∆ϕ+~zπ⊥ .
The procedure going from ~z to ~z∧π is called the rotation of ~z at p with respect to the plane π over
an angle ∆ϕ, and one has the following:

~z∧π = ~z +
[
(~x ∧g ~y)~z

]
∆ϕ +O>1(∆ϕ).

Thus the vector (~x ∧g ~y)~z measures the first order change of the vector ~z after an infinitesimal
rotation of ~z at p with respect to the plane π = ~x ∧ ~y, or, formulated more loosely, we have the
following.

Proposition 2 ([39]). The natural metrical endomorphisms ∧g of Riemannian manifolds mea-
sure the changes of directions at points under infinitesimal rotations with respect to 2D planes
at these points.

4 The sectional curvatures of Riemann

The (0, 4) Riemann–Christoffel curvature tensor R of (Mn, g) is related to the (1, 3) tensor R by
R(X, Y, Z,W ) = g(R(X, Y )Z,W ). The simplest (0, 4) tensor which is canonically determined
on (Mn, g) and which has the same algebraic symmetry properties as R likely is the tensor
G(X, Y, Z,W ) := g((X ∧g Y )Z,W ), or, still, in terms of the Nomizu–Kulkarni product of (0, 2)
tensors: G = 1

2g∧g, i.e., basically G is the Nomizu–Kulkarni square of the metric (0, 2) tensor g.
Let ~v and ~w be any pair of linearly independent vectors to M at a point p spanning there a 2D

plane π = ~v ∧ ~w ⊂ TpM
n. Then, the sectional curvature K(p, π) := R(~v, ~w, ~w,~v)/G(~v, ~w, ~w,~v)

of Mn at p for π, (the definition is independent of the choice of basis ~v, ~w for π), i.e., cf.
Riemann, the Gauss curvature at p of the 2-dimensional surface G2

π ⊂ Mn consisting locally of
all the geodesics of (Mn, g) passing through p and whose velocity vectors at p belong to π (such
that TpG

2
π = π), can be thought of as a kind of nomalisation of the curvature operator by the

natural metrical endomorphism, or, still, of the parallel transport of directions in M at p around
co-ordinate parallelograms cornered at p by the rotations of directions in M at p with respect
to planes in TpM . For any orthonormal basis ~v, ~w of π, of course: K(p, π) = R(~v, ~w, ~w,~v).

Levi-Civita [50] gave a geometrical interpretation of the sectional curvatures K(p, π) in terms
of his parallelogramoids, of which we next consider the special case of his squaroids. Let ~v and ~w
be any orthonormal basis of a tangent 2-plane π of (Mn, g) at p. Consider the geodesic α through
p = α(0) with velocity α′(0) = ~w, and on it then localise a point q = α(ε) at an infinitesimal
distance ε from p. Then move ~v parallel along α from p to q, thus obtaining at q the vector ~v?

α.
Through p and q, further, we consider the geodesics β and γ, β(0) = p and γ(0) = q, with
respective velocities β′(0) = ~v and γ′(0) = ~v?

α. On these geodesics we then localise the points
p = β(ε) and q = γ(ε) at distances ε from p and q, respectively. Finally, a Levi-Civita squaroid
p q q p is completed by joining p and q by a geodesic δ. In general, the geodesic distance between p
and q will be different from ε and, denoting this distance by ε′, one has the following.

Theorem 2 (Levi-Civita). In first order approximation: K(p, π) =
(
ε2 − ε′2

)
/ε4.

As references, and, in some cases, as sources for more precise statements for the following
classical results, see e.g. [43, 44, 49, 71].

Theorem 3 (Cartan). The knowledge of the (0, 4) curvature tensor R is equivalent to the
knowledge of all sectional curvatures K(p, π) of Riemann.

Theorem 1 can be reformulated as follows.
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Theorem 4 (Schouten). The Riemannian manifolds with constantly vanishing sectional cur-
vature of Riemann, K(p, π) ≡ 0, are precisely the spaces for which all directions are invariant
under their parallel transports fully around all infinitesimal co-ordinate parallelograms.

A Riemannian manifold (Mn, g) is said to be a space of constant curvature K or a real space
form Mn(c) when for all points p and for all planar sections π ⊂ TpM one has K(p, π) = K =
c ∈ R.

Theorem 5. A Riemannian manifold (Mn, g), n ≥ 2, is a real space form if and only if R = cG,
c ∈ R.

Theorem 6 (Schur). A Riemannian manifold (Mn, g), n ≥ 3, for which all sectional curva-
tures K are isotropic, i.e., a Riemannian manifold for which for every one of its points p the
curvatures K(p, π) are the same for all possible planar sections π ⊂ TpM , has constant sectional
curvatures K(p, π), or, still, their sectional curvatures K further are also independent of the
points p.

Theorem 7 (Riemann). Any two nD Riemannian manifolds with the same constant sectional
curvatures are locally isometric; actually, in local co-ordinates, the metrical fundamental form

of a real space form of curvature c can be expressed as ds2 =
{

1 + c
4

∑
j(x

j)2
}−2 ∑

i(dxi)2.

Theorem 8 (Killing, Hopf). The Euclidean spaces En (c = 0) and the classical non-Euclidean
geometries, of elliptic type on the spheres Sn (c > 0) and of hyperbolic type on the spaces Hn

(c < 0), are the model spaces of the real space forms Mn(c), n ≥ 2.

Moreover, we recall that the real space forms may well be considered to be the utmost possible
symmetrical Riemannian spaces, in the sense that they are homogeneous (i.e. they “behave” the
same at all of their points p) and that they are isotropic (i.e. they “behave” the same in all
directions). Both conditions together are a way to express that the isometry groups of the real
space forms are of maximal dimension possible amongst all Riemannian manifolds of the same
dimensions, or, still, that we have the following.

Theorem 9 (Riemann, Helmholtz, Lie, Klein, Tits). A Riemannian manifold (Mn, g) is
a real space form Mn(c) if and only if it satisfies the axiom of free mobility.

Finally, we recall also the fundamental following result (for a new recent proof of which we
refer to Matveev [54]), which in some sense unifies the Euclidean and the classical non-Euclidean
geometries from a projective point of view.

Theorem 10 (Beltrami). The real space forms constitute the projective class of the locally
Euclidean spaces, or, still, by applying geodesic transformations to locally Euclidean spaces one
obtains spaces of constant curvature and the class of the spaces of constant curvature is closed
under geodesic transformations.

5 Geometrical meaning of semi-symmetry

The curvatures R and K of a Riemannian manifold (Mn, g) are its main metrical invariants [3, 4].
They essentially involve the second order derivatives, as those are determined by the differential
structure of the manifold Mn, of the metrical structure of the Riemannian manifold, i.e. of g.

Let ~v and ~w be any orthonormal vectors at any point p in a Riemannian manifold, and let P
be any infinitesimal co-ordinate parallelogram cornered at p as before, i.e. in particular being
tangent at p to the plane π = ~x ∧ ~y. By parallel transport of ~v and ~w around P then result the
orthonormal vectors ~v? = ~v+

[
R(~x, ~y)~v

]
∆x∆y+O>2(∆x,∆y) and ~w? = ~w+

[
R(~x, ~y)~w

]
∆x∆y+
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O>2(∆x,∆y), such that the plane π = ~v ∧ ~w at p is accordingly parallel transported around P
into the plane π? = ~v? ∧ ~w? at p. Hence, K(p, π?) = R(~v?, ~w?, ~w?, ~v?) = R(~v, ~w, ~w,~v) +[
R(R(~x, ~y)~v, ~w, ~w,~v)+R(~v, R(~x, ~y)~w, ~w,~v)+R(~v, ~w,R(~x, ~y)~w,~v)+R(~v, ~w, ~w,R(~x, ~y)~v)

]
∆x∆y+

O>2(∆x,∆y) = K(p, π) −
[
(R · R)(~v, ~w, ~w,~v; ~x, ~y)

]
∆x∆y + O>2(∆x,∆y), whereby R · R de-

notes the (0, 6) tensor which is obtained by the actions of the curvature operators R(X, Y ) as
derivations on the (0, 4) Riemann–Christoffel curvature tensor.

Proposition 3 ([39]). The curvature tensor R · R measures the changes of the sectional cur-
vatures K(p, π) of a Riemannian manifold (Mn, g) for all planes π at all points p under the
parallel transports of these planes π fully around all infinitesimal parallelograms P cornered at p
and tangent there to all planes π.

The Riemannian manifolds (Mn, g) for which R · R = 0 are called semi-symmetric or Szabó
symmetric. These spaces were classified in general by Szabó [63, 64]; for more specific informa-
tion on some particular cases, see also Boeckx [5], Kowalski [46] and Lumiste [53].

Theorem 11 ([39]). The semi-symmetric Riemannian spaces are precisely the Riemannian
manifolds for which, up to second order, all the sectional curvatures are invariant under their
parallel transports fully around all infinitesimal co-ordinate parallelograms.

Theorem 12 (Szabó). Let (Mn, g) be a semi-symmetric Riemannian manifold of dimension
n > 2. Then there is an everywhere dense open subset U ⊂ M such that around every point
p ∈ U the space M is locally isometric to a direct product of an open part of a Euclidean
space and some infinitesimally irreducible simple semi-symmetric leaves N which are: (i) locally
symmetric if νp = 0 and up > 2; (ii) locally isometric to a Euclidean, an elliptical or a hyperbolic
cone if νp = 1 and up > 2; (iii) locally isometric to a Kaehlerian cone if νp = 2 and up > 2; and
(iv) locally isometric to a space foliated by Euclidean 2-codimensional leaves if νp = n − 2 and
up = 2, whereby νp and up respectively are the indices of nullity and of conullity of (Mn, g) at p.

The curvature tensor R of a 2-dimensional Riemannian manifold (M2, g) essentially reduces
to the Gauss curvature function K : M2 → R and so, by the Theorem of Schwarz–Young, every
2D Riemannian space is automatically semi-symmetric. The curvature condition R ·R = 0 first
appeared in the studies concerning locally symmetric spaces by P.A. Shirokov and by É. Cartan,
namely as integrability condition of the curvature condition ∇R = 0. For more information
about the origins of the notions of semi- and of pseudo-symmetry, in particular concerning the
mayor influences in these contexts of the articles [56] and [11] of Nomizu and Chen, respectively,
see [53] and [68]. At this stage, we will confine to the comment that whereas the curvature
condition to be locally symmetric or Cartan symmetric (∇R ≡ 0) essentially involve the 3rd
order derivatives of the metric of a Riemannian space (Mn, g), the curvature condition to be semi-
symmetric or Szabó symmetric (R · R ≡ 0) again essentially involves the 2nd order derivatives
of the metric g.

Proposition 4 ([39]). The (0, 6) tensor

(R ·R)(X1, X2, X3, X4;X, Y ) := (R(X, Y ) ·R)(X1, X2, X3, X4)
= −R(R(X, Y )X1, X2, X3, X4)−R(X1, R(X, Y )X2, X3, X4)
−R(X1, X2, R(X, Y )X3, X4)−R(X1, X2, X3, R(X, Y )X4)

has the following algebraic symmetry properties:

a) (R ·R)(X1, X2, X3, X4;X, Y ) = −(R ·R)(X2, X1, X3, X4;X, Y )
= (R ·R)(X3, X4, X1, X2;X, Y ),
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b) (R ·R)(X1, X2, X3, X4;X, Y ) + (R ·R)(X1, X3, X4, X2;X, Y )
+ (R ·R)(X1, X4, X2, X3;X, Y ) = 0,

c) (R ·R)(X1, X2, X3, X4;X, Y ) = −(R ·R)(X1, X2, X3, X4;Y, X),
d) (R ·R)(X1, X2, X3, X4;X, Y ) + (R ·R)(X3, X4, X, Y ;X1, X2)

+ (R ·R)(X, Y,X1, X2;X3, X4) = 0.

6 The sectional curvatures of Deszcz

The simplest non-trivial (0, 6) tensor which is canonically determined on (Mn, g) and which has
the same algebraic symmetry properties as R ·R likely is the Tachibana tensor

(∧g ·R)(X1, X2, X3, X4;X, Y ) := ((X ∧g Y ) ·R)(X1, X2, X3, X4)
= −R((X ∧g Y )X1, X2, X3, X4)−R(X1, (X ∧g Y )X2, X3, X4)
−R(X1, X2, (X ∧g Y )X3, X4)−R(X1, X2, X3, (X ∧g Y )X4),

i.e. is the (0, 6) tensor resulting from the actions as derivations of the metrical endomorphisms
X ∧g Y on the (0, 4) curvature tensor R.

Theorem 13 (cf. [32]). The Tachibana tensor of a Riemannian manifold (Mn, g), n ≥ 3,
vanishes identically, ∧g ·R ≡ 0, if and only if (Mn, g) is a real space form Mn(c).

In view of the geometrical interpretation of the metrical endomorphism ~x ∧g ~y given above
in terms of infinitesimal rotations at p ∈ Mn with respect to planes π = ~x∧ ~y, in particular, for
orthonormal vectors ~v and ~w at p one has ~v∧π = ~v+

[
(~x∧g~y)~v

]
∆ϕ+O>1(∆ϕ) and ~w∧

π = ~w+
[
(~x∧g

~y)~w
]
∆ϕ+O>1(∆ϕ), such that the plane π = ~v∧ ~w at p is accordingly rotated at p with respect

to the plane π = ~x∧ ~y into the plane π∧ = ~v∧π ∧ ~w∧
π at p. And hence, completely analogously to

a previous calculation: K(p, π∧) = K(p, π) +
[
(∧g ·R)(~v, ~w, ~w,~v; ~x, ~y)

]
∆ϕ +O>1(∆ϕ).

Proposition 5 ([39]). The Tachibana tensor ∧g · R measures the changes of the sectional
curvatures K(p, π) of a Riemannian manifold (Mn, g) for all planes π at all points p under the
infinitesimal rotations of these planes π at p with respect to all planes π at p.

Theorem 14 ([39]). The real space forms are precisely the Riemannian manifolds for which,
up to first order, all the sectional curvatures are invariant under their infinitesimal rotations at
all points with respect to all planes.

Next, in analogy with the kind of normalisation of the changes of directions under parallel
transports around parallelograms P cornered at p by the changes of directions under rotations
at p with respect to planes π at p, which results in the notion of the sectional curvatures K(p, π)
of Riemann, we introduce the notion of the double sectional curvatures or the sectional curvatures
L(p, π, π) of Deszcz on Riemannian manifolds (Mn, g) by now considering the changes of the
sectional curvatures K(p, π) instead of the previous changes of directions. In order to do so, for
a trivial technical reason, we can meaningly in this respect only consider planes π = ~v ∧ ~w and
π = ~x ∧ ~y at p such that (∧g · R)(~v, ~w, ~w,~v; ~x, ~y) 6= 0, in which case π is said to be curvature
dependent on π. For such pairs of planes π and π then, their sectional curvature of Deszcz
is defined by L(p, π, π) = (R · R)(~v, ~w, ~w,~v; ~x, ~y)/(∧g · R)(~v, ~w, ~w,~v; ~x, ~y). This definition is
independent of the choices of bases for the planes π and π. Similar to Theorem 3 of Cartan, we
have the following result and its consequences.

Theorem 15 ([39]). The knowledge of the (0, 6) curvature tensor R · R is equivalent to the
knowledge of all sectional curvatures L(p, π, π) of Deszcz.
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Theorem 16 ([39]). A Riemannian manifold has constantly vanishing sectional curvatures of
Deszcz, L(p, π, π) ≡ 0, if and only if it is semi-symmetric, i.e. if, up to second order, all its
sectional curvatures K(p, π) of Riemann are invariant under the parallel transport fully around
all infinitesimal co-ordinate parallelograms cornered at p and tangent there to π.

In terms of the squaroids of Levi-Civita, a geometrical interpretation of the sectional curva-
tures L(p, π, π) of Deszcz can be given as follows. Consider a squaroid S of sides ε, ε′, which
is constructed upon orthonormal vectors ~v and ~w at a point p. Then, let ~v?, ~w? and, respec-
tively ~v∧π , ~w∧

π denote the orthonormal vectors at p which result, respectively, from the parallel
translation of ~v, ~w around an infinitesimal co-ordinate parallelogram P and from an associated
infinitesimal rotation of ~v, ~w at p with respect to a plane π = ~x ∧ ~y, whereby this association
means that the infinitesimal orders of the increments of the co-ordinates or angles concerned
do correspond, namely that ∆ϕ = ∆x∆y. The sides of the squaroids S? and S∧ constructed
respectively upon the vectors ~v?, ~w? and ~v∧π , ~w∧

π will be denoted respectively by ε, ε?′ and
by ε, ε∧′.

Theorem 17 ([41]). In first order approximation: L(p, π, π) =
[
(ε?′)2− (ε′)2

]
/
[
(ε∧′)2− (ε′)2

]
.

7 Geometrical meaning of pseudo-symmetry

A Riemannian manifold (Mn, g), (n ≥ 3), is said to be pseudo-symmetric in the sense of Deszcz
or is called Deszcz symmetric if, for some function LR : M → R, R ·R = LR ∧g ·R. We observe
that there does not hold a strict analog of the Theorem of Schur (concerning the curvature
function K : M → R in R = K G) in the case of pseudo-symmetric manifolds; see [19, 22, 37] for
examples for which the function LR is not constant. Following Kowalski and Sekizawa [47, 48],
the pseudo-symmetric spaces with constant function LR are said to be pseudo-symmetric of
constant type.

Theorem 18 ([39]). A Riemannian manifold (Mn, g), (n ≥ 3), is Deszcz symmetric if and
only if its sectional curvature of Deszcz L(p, π, π) is isotropic, i.e., if L(p, π, π) is independent
of the planes π and π, or, still, if the double sectional curvature function L(p, π, π) actually is
a function L = LR : M → R.

The condition for a Riemannian manifold to be pseudo-symmetric, a terminology which first
appeared, as far as we know, in [20], did occur in Grycak’s investigations of semi-symmetric
warped products [35], as well as in the study of geodesic mappings on semi-symmetric spaces,
amongst others by Sinyukov, Mikeš and Venzi [55, 67]. From these studies and from the artic-
le [15] of Defever and Deszcz we quote the following theorem, to be considered in some sense in
analogy with Theorem 10 of Beltrami.

Theorem 19 (Sinyukov, Mikeš, Venzi, Defever and Deszcz). If a semi-symmetric Rie-
mannian space admits a geodesic transformation onto some other Riemannian manifold, then
this latter manifold must itself be pseudo-symmetric, and, if a pseudo-symmetric Riemannian
space admits a geodesic transformation onto some other Riemannian manifold, then this latter
manifold must itself also be pseudo-symmetric.

In any case, in the late 19seventies and early 19eighties the relevance of the intrinsic pseudo-
symmetry became more clear mainly by some studies concerning the geometry of submanifolds,
notably starting with the studies, in particular by Deszcz, on extrinsic spheres in semi-symmetric
spaces, which extended studies on totally umbilical submanifolds in Cartan symmetric spaces
by Chen [11] and Olszak [57].
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8 Further types of pseudo-symmetry curvature conditions

In full analogy with the above mentioned studies concerning the parallel transport around
infinitesimal co-ordinate parallelograms of the Riemann curvatures leading to the notions of
pseudo-symmetry of Riemannian manifolds and of the sectional curvatures of Deszcz, the consi-
deration of the Weyl conformal curvatures and of the Ricci curvatures instead lead to the notions
of Weyl and Ricci pseudo-symmetry and of the Weyl and Ricci curvatures of Deszcz [41, 42]. For
some insight into the relationships between these various types of pseudo-symmetry curvature
conditions, see e.g. [23, 38].

The following seems to be a further natural curvature condition of a similar kind, C · C =
LC ∧g ·C, whereby C denotes the (0, 4) Weyl conformal curvature tensor as well as the corre-
sponding curvature operator and LC is a real function on the manifold Mn, which condition, in
contrast to the above conditions, is invariant under conformal transformations of the metric g.
Spaces (Mn, g) satisfying this condition are said to have a pseudo-symmetric Weyl tensor C.

In connection with further structures on Riemannian spaces, the above mentioned studies
can be adapted accordingly. For instance, on a Kaehlerian manifold (Mn, g, J) it seems most
natural to focus in particular on the invariance of the holomorphic sectional curvatures under
their parallel transport around infinitesimal holomorphic co-ordinate parallelograms, etc.; the
results on several of such specialisations of the above general Riemannian pseudo-symmetry
curvature conditions are being considered at present.

9 Some examples of pseudo-symmetric spaces

Of course, according to Theorem 12, starting from Szabó’s classification of the semi-symmetric
Riemannian spaces, by applying, eventually iteratively, geodesic transformations, one always
obtains Riemannian manifolds (Mn, g) which are pseudo-symmetric in the sense of Deszcz.

On the other hand, let Mn be a hypersurface in a Euclidean space En+1, n ≥ 3. Amongst the
simplest possible forms of the shape operator of Mn in En+1, one has those whereby the principal
curvatures at every point are (1): (0, 0, . . . , 0); (2): (λ, λ, . . . , λ), λ 6= 0; (3): (λ, 0, . . . , , 0),
λ 6= 0; (4): (λ, . . . , λ, 0, . . . , 0), λ 6= 0 and λ appearing more than once; (5): (λ, µ, 0, . . . , 0),
λ 6= 0 6= µ and λ 6= µ; (6): (λ, µ, . . . , µ), λ 6= 0 6= µ and λ 6= µ; (7): (λ, . . . , λ, µ, . . . , µ),
λ 6= 0 6= µ and λ 6= µ and both λ and µ appearing more than once. Then there are the following
correspondences: Mn ⊂ En+1 is totally geodesic in case (1); (non-totally geodesic) totally
umbilical in case (2); (non-totally geodesic) cylindrical in case (3); the cases (1), (2) and (3)
together cover the hypersurfaces of constant sectional curvature, i.e. the Mn in En+1 which are
real space forms (which for these hypersurfaces is equivalent to being Einstein) and cases (1)
and (3) deal with the locally flat hypersurfaces; semi-symmetric hypersurfaces which are not
real space forms concern the cases (4) and (5), so that the semi-symmetric hypersurfaces Mn

of En+1 correspond to (1), (2), (3), (4) and (5), as shown by Nomizu; conformally flat Mn, for
n > 3, which are not of constant curvature correspond to case (6); and the intrinsic pseudo-
symmetric Mn in En+1 correspond to (1), (2), (3), (4), (5), (6) and (7). So, a hypersurface Mn

in En+1 is a non semi-symmetric, intrinsically pseudo-symmetric Riemannian manifold if and
only if it has exactly two non-zero principal curvatures λ and µ, and then its double sectional
curvature is given by L = λ µ. A few further notes might be in place here. (i) A hypersurface Mn

in M̃n+1 is said to be quasi-umbilical when it has a principal curvature of multiplicity ≥ n− 1,
and, in conformally flat ambient spaces, as shown by Cartan and Schouten, this is equivalent
to Mn being itself conformally flat, whenever n > 3. (ii) We recall that a hypersurface Mn

in M̃n+1(c) is called a cyclide of Dupin if it has, at every point, exactly two distinct principal
curvatures which are both constant along the corresponding principal tangent subbundles, see
e.g. [9, 10]. (iii) A hypersurface Mn in M̃n+1 is said to be 2-quasi-umbilical when it has
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a principal curvature of multiplicity ≥ n−2, and, in particular, a hypersurface Mn in Euclidean
space En+1, with dimension n > 3, has a pseudo-symmetric Weyl tensor if and only if M is
pseudo-symmetric or its principal curvatures are given by (λ, µ, ν, . . . , ν) whereby λ 6= µ 6= ν 6= λ.

A submanifold Mn of a Riemannian manifold M̃n+m is said to be ~H-parallel if R⊥ · ~H = ~0,
i.e. if, up to second order approximation, the mean curvature vector ~H remains invariant under
the ∇⊥ parallel transport along M in M̃ completely around infinitesimal co-ordinate parallelo-
grams P in M [28]. All pseudo-parallel submanifolds M in M̃ are ~H-parallel, and, every extrin-
sically pseudo-symmetric submanifold Mn in a real space form M̃n+m(c̃) is either minimal or
pseudo-umbilical or has flat normal connection, and if the first normal spaces of Mn in M̃n+m

have maximal dimension n(n + 1)/2 then M is minimal or pseudo-umbilical in M̃ . All parallel,
semi-parallel, and respectively, pseudo-parallel submanifolds Mn in real space forms M̃n+m(c̃)
are automatically intrinsically locally symmetric, semi-symmetric, and, respectively, pseudo-
symmetric Riemannian manifolds. For classification results on these submanifolds, a.o. due to
Ferus, Dillen and Nölker, Lumiste, Asperti, Lobos, Tojeiro, Mercuri, i.p. see [1, 27, 33, 51, 53].

Recently, the conjecture on the Wintgen inequality, as formulated in [18] was completely
resolved in the affirmative by Lu [52] and by Ge and Tang [34].

Theorem 20 (Lu, Ge and Tang). The Wintgen inequality ρ ≤ H2 − ρ⊥ + c̃ holds for every
submanifold Mn in any real space form M̃n+m(c̃), whereby ρ and ρ⊥ are the normalised scalar
curvature of M and the normalised scalar normal curvature of M in M̃ , respectively, and H2

is the squared mean curvature of M in M̃ , and ρ = H2 − ρ⊥ + c̃ if and only if, with respect to
suitable tangent and normal orthonormal frames {Ei} and {ξα}, the shape operators of Mn in
M̃n+m(c̃) assume the forms

A1 =


λ + µ cos θ 0 0 · · · 0

0 λ− µ cos θ 0 · · · 0
0 0 λ · · · 0
...

...
...

. . .
...

0 0 0 · · · λ

 , A2 =


µ sin θ 0 0 · · · 0

0 −µ sin θ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 ,

A3 =


0 µ 0 · · · 0
µ 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , A4 = · · · = Am = 0.

Hereby ρ = 2
n(n−1)

∑
i<j R(Ei, Ej , Ej , Ei), and ρ⊥ = 2

n(n−1)

[∑
i<j

∑
α<β R⊥(Ei, Ej ; ξα, ξβ)2

]1/2
.

There are many submanifolds satisfying the equality ρ = H2 − ρ⊥ + c̃, and, in analogy with
Chen’s nomenclature for the submanifolds satisfying the equality in several other kinds of general
inequalities between intrinsic and extrinsic invariants of submanifolds, these submanifolds are
called Wintgen ideal submanifolds. For explicit descriptions of Wintgen ideal submanifolds and
for further discussions on this inequality, one can consult amongst others studies by Boruvka [6],
Bryant [7, 8], Choi–Lu [12], Dajczer–Tojeiro [13, 14], Dillen–Fastenakels–Van der Veken [29, 30],
Eisenhart [31], Guadalupe–Rodriguez [36], Kommerell [45], Rouxel [61] and Wintgen [70]. As
was shown in [24, 58, 59], there are close connections between Wintgen ideal submanifolds and
intrinsic pseudo-symmetry conditions. For instance, for n > 3, every Wintgen ideal submani-
fold Mn in M̃n+m(c̃) has pseudo-symmetric conformal Weyl tensor, and the minimal Wintgen
ideal submanifolds are characterised by the fact that LC = − n−3

(n−1)(n−2)Kinf ; moreover, the Deszcz
symmetric Wintgen ideal submanifolds are either totally umbilical, (in particular, then M being
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a real space form), or minimal (in which case M is pseudo-symmetric of constant type, namely
L = c̃).

Finally, we will comment on the fact that the pseudo-symmetric Riemannian manifolds
(Mn, g), n ≥ 3, could well be considered as being the most natural symmetric spaces which, in
extension of the perfect symmetry behaviour of the real space forms, do admit privileged direc-
tions at all of its points, or, still, as being the most symmetric anisotropic spaces. In particular,
for spaces of dimension n = 3, one has the following.

Theorem 21 ([26]). A 3D Riemannian manifold is Deszcz symmetric if and only if, it is
quasi-Einstein.

We recall that (Mn, g) is said to be an Einstein manifold when its Ricci tensor S is propor-
tional to the metric g, or, still, when all its Ricci curvatures at all points are equal, and (Mn, g)
is said to be quasi-Einstein when at all points it has a Ricci curvature of multiplicity ≥ n−1; in
particular, (Mn, g) is properly quasi-Einstein when at all points it has a Ricci curvature of mul-
tiplicity precisely n− 1 and the other Ricci curvature then of course has multiplicity 1. And, in
this situation, in particular, the Ricci principal direction with respect to this latter Ricci curva-
ture then determines on (Mn, g) a tangent direction which geometrically is essentially different
from all other tangent directions. We recall the following.

Theorem 22 (Schouten and Struik). A 3D Riemannian manifold is an Einstein space if
and only if it is a real space form.

The real space forms Mn(c) are semi-symmetric and thus in particular pseudo-symmetric. So
the proper 3D Deszcz symmetric spaces are the proper quasi-Einstein 3D spaces, with a Ricci
curvature λ of multiplicity 1 and a Ricci curvature µ 6= λ of multiplicity 2, and L = λ/2 :
M → R. In his approach to geometries as topological manifolds M endowed with transformation
groups G satisfying by definition just a few conditions such as to allow for the class of real space
forms to be enlarged so as to moreover incorporate certain still homogeneous, but essentially
anisotropic spaces, Thurston [65, 66] introduced his so-called model geometries which can be
seen as to determine successfully some of the most natural anisotropic geometrical manifolds
(Mn, G), n ≥ 3, beyond the projective class of the Euclidean and the classical non-Euclidean
geometries. The introduction of the pseudo-symmetric spaces, i.e. of the projective class of
the semi-symmetric spaces, is a metrical approach also to determine some of the most natural
anisotropic manifolds through the symmetry property given by the invariance of the curvature
of the connection ∇ on a differential manifold M under the parallel transport corresponding
to ∇ around the infinitesimal co-ordinate parallelograms on M . We recall that the eight 3D
Thurston model geometries are E3, S3, H3, S2 × E1, H2 × E1, the Heisenberg group H3, the
covering group of the special linear group S̃L(2, R) and the solvable Lie group Sol. A canonical
metric can be placed on each of the model spaces, which, except for H3 and Sol, can be written

as ds2 = dx2+dy2

[1+m(x2+y2)]2
+

[
dz + l

2
y dx−x dy

1+m(x2+y2)

]2
, whereby if m = l = 0, M = E3; 4m − l2 = 0,

M = S3; if m < 0 and l = 0, M = H2 × E1; if m > 0 and l = 0, M = S2 × E1; if m < 0 and
l 6= 0, M = S̃L(2, R); and if m = 0 and l 6= 0, M = H3. On the Lie group Sol, one can put the
metric ds2 = e2zdx2 +e−2zdy2 +dz2. Besides the real space forms E3, S3 and H3, the five other
geometries are proper quasi-Einstein, and so one has the following.

Theorem 23 ([2]). All 3D Thurston geometries are either spaces of constant curvature or
Deszcz symmetric of constant type; (for E3, S3 and H3, K = 0, 1 and −1 respectively; for
S2 × E1 and H2 × E1, L = 0; for H3 and S̃L(2, R), L = 1; and for Sol, L = −1).

Deleting Sol from the 3D Thurston spaces and adding instead SU(2), with the above metric
whereby m > 0 and l 6= 0, one obtains the list of the 3D so-called d’Atri spaces, i.e. the
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Riemannian manifolds for which locally all geodesic reflections are volume preserving. One has
the following.

Theorem 24 ([2]). All 3D d’Atri spaces are Deszcz symmetric of constant type (besides the
above, for SU(2), L = 1).

Basically, Theorem 21 readily follows from the fact that for every Riemannian manifold
of dimension 3 the Weyl conformal curvature tensor C automatically vanishes. In the above
respects, for higher dimensions one has the following.

Theorem 25 ([17, 21]). A conformally flat Riemannian manifold (Mn, g) of dimension n ≥ 4
is Deszcz symmetric if and only if it has at most two distinct Ricci curvatures (of arbitrary
multiplicities).

For the Einstein spaces S = λ g this again actually only concerns the real space forms, and
in case the spaces under consideration are not Einstein, the two orthogonally complementary
eigenspaces of their Ricci tensor consist of geometrically non-equivalent tangent directions, thus
realising on these pseudo-symmetric spaces a manifest, yet in some sense elementary, anisotropy.

As was already mentioned in the Introduction, the above essentially goes through for semi-
Riemannian spaces. In particular, in [37] a classification, based on the algebraic properties of
the Weyl and Ricci tensor, was obtained for the 4-dimensional pseudo-symmetric space-times. It
follows that most of the well-known space-times, such as the Schwarzschild metric, the Reissner–
Nördstrom metric, the Kottler metric and the Friedmann–Lemâıtre–Robertson–Walker metrics,
are pseudo-symmetric but not semi-symmetric. Moreover, the first three metrics are examples
of non-conformally flat, pseudo-symmetric spaces. See also [16, 25] for more details.
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