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Abstract. The relevance of PT symmetry to quantum chromodynamics (QCD), the gauge
theory of the strong interactions, is explored in the context of finite temperature and density.
Two significant problems in QCD are studied: the sign problem of finite-density QCD, and
the problem of confinement. It is proven that the effective action for heavy quarks at finite
density is PT -symmetric. For the case of 1+1 dimensions, the PT -symmetric Hamiltonian,
although not Hermitian, has real eigenvalues for a range of values of the chemical potential µ,
solving the sign problem for this model. The effective action for heavy quarks is part of
a potentially large class of generalized sine-Gordon models which are non-Hermitian but are
PT -symmetric. Generalized sine-Gordon models also occur naturally in gauge theories in
which magnetic monopoles lead to confinement. We explore gauge theories where monopoles
cause confinement at arbitrarily high temperatures. Several different classes of monopole
gases exist, with each class leading to different string tension scaling laws. For one class
of monopole gas models, the PT -symmetric affine Toda field theory emerges naturally as
the effective theory. This in turn leads to sine-law scaling for string tensions, a behavior
consistent with lattice simulations.
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1 PT symmetry and two difficult problems of QCD

Models with PT symmetry have emerged as an interesting extension of conventional quantum
mechanics. There is a large class of models that are not Hermitian, but nevertheless have real
spectra as a consequence of PT symmetry. Bender and Boettcher have shown that single-
component quantum mechanical models with PT -symmetric potentials of the form −λ (−ix)p

have real spectra [1]. An extensive literature on PT symmetry and related matters now exists,
and there are extensive review articles available [2, 3]. Here we explore the relevance of PT
symmetry for two of the most difficult problems in quantum chromodynamics (QCD), the
gauge theory of the strong interaction.

The sign problem of QCD arises in the Euclidean space approach to QCD at finite, i.e., non-
zero, quark number density [4, 5]. There is broad interest, both theoretically and experimentally,
in the properties of QCD at finite temperature and density. Finite density QCD is particularly
important for exploring the possibility of color-superconducting quark matter in the interiors of
neutron stars [6]. Lattice gauge theory has proven to be a powerful tool for exploring QCD and
related models at finite temperature. Unfortunately, these results have been obtained largely
for zero density. Non-zero quark density is implemented by introducing a chemical potential µ
for quark number. Within the Euclidean space formalism, a non-zero temperature T is obtained
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Figure 1. The Polyakov loop in Euclidean space-time.

by making the bosonic fields periodic in Euclidean time, with period β = 1/T . This is easy
to implement in lattice simulations. Non-zero chemical potential, on the other hand, must
be implemented in a way that makes the weight function used in the Feynman path integral
complex. This is the so-called sign problem of finite density QCD. The complex weight assigned
to Euclidean field configurations spoils the probabilistic interpretation of the Euclidean path
integral, making the use of conventional importance-sampling algorithms impossible. While
there have been impressive efforts to simulate finite-density QCD by extrapolating from µ = 0,
the sign problem remains a difficult, fundamental, and important problem. We will show below
that QCD at finite density may be interpreted as a theory with PT symmetry. We will show
explicitly how a (1+1)-dimensional gauge model can be reduced to a PT -symmetric Hamiltonian
over the gauge group, with real eigenvalues for a range of values of βµ.

The other problem of modern strong-interaction physics we will consider is the origin of
quark confinement. In many ways, it is the most important problem in QCD, because the
confinement of quarks inside hadrons is the fundamental property of QCD not fully understood
theoretically. A good overview of various approaches to this problem is provided by the review of
Greensite [7]. Finite temperature gauge theories are advantageous in many aspects for the study
of confinement. This is due largely to the utility and ubiquity of the Polyakov loop operator.
Defined as a path-ordered exponential of the gauge field, in 3 + 1 dimensions the Polyakov loop
operator P is given by

P (~x) = P exp
[
i

∫ β

0
dtA4 (~x, t)

]
,

and represents the insertion of a static quark into a thermal system of gauge fields at a tem-
perature T = β−1. Fig. 1 shows the Polyakov loop in this geometry. Because of the periodic
boundary conditions in the Euclidean time direction, the Polyakov loop is a closed loop, and
its trace is gauge invariant. Also known as the Wilson line, the Polyakov loop represents the
insertion of a static quark at a spatial point ~x in a gauge theory at finite temperature. In
particular, the thermal average of the trace of P in an irreducible representation R of the gauge
group is associated with the additional free energy FR required to insert a static quark in the
fundamental representation via

〈TrRP (~x)〉 = e−βFR .

Pure SU(N) gauge theories have a global Z(N) symmetry P → zP where z = e
2πi
N is the

generator of Z(N), the center of SU(N). This symmetry, if unbroken, guarantees that for the
fundamental representation F , 〈TrF P (~x)〉 = 0. This is interpreted as FF being infinite, and an
infinite free energy is required to insert a heavy quark into the system. On the other hand, if the
Z(N) symmetry is spontaneously broken, the free energy required is finite. Thus confinement
in pure gauge theories is associated with unbroken center symmetry, and broken symmetry with
a deconfined phase. The Polyakov loop is the order parameter for the deconfinement transition
in pure gauge theories 〈TrF P 〉 = 0 in the confined phase and 〈TrF P 〉 6= 0 in the deconfined
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phase. The addition of dynamical quarks in the fundamental representation explicitly breaks this
Z(N) symmetry. Nevertheless, the Polyakov loop remains important in describing the behavior
of the system, as we will see in our treatment of the sign problem.

In pure gauge theories, the Wilson loop operator is used to measure the string tension between
quarks in the confined phase where FR vanishes for representations transforming non-trivially
under Z(N). At non-zero temperature, a timelike string tension σ

(t)
k between k quarks and

k antiquarks can be measured from the behavior of the correlation function

〈TrF P k (~x) TrF

(
P+ (~y)

)k〉 ' exp

[
−

σ
(t)
k

T
|~x− ~y|

]

at sufficiently large distances. A confining phase is defined by two properties: the expectation
value 〈TrRP 〉 is zero for all representations R transforming non-trivially under Z(N), and the
string tensions σ

(t)
k must be non-zero for k = 1 to N − 1. There are two kinds of model field

theories, related to QCD, for which these two properties are known to hold. As we discuss
below, PT symmetry plays an interesting role, which may extend to QCD.

2 The chemical potential and the sign problem

Perturbation theory can be used to calculate the one-loop free energy density fq of quarks in
d+1 dimensions in the fundamental representation with spin degeneracy s moving in a Polyakov
loop background at non-zero temperature T = β−1 and chemical potential µ

fq = −sT

∫
ddk

(2π)d
TrR

[
ln
(
1 + Peβµ−βωk

)
+ ln

(
1 + P+e−βµ−βωk

)]
,

where ωk =
√

k2 + M2 is the energy of the particle as a function of k and M is the mass of the
particle [8, 9]. The expression for a bosonic field is similar. The logarithm can be expanded to
give

fq = sT

∫
ddk

(2π)d

∞∑
n=1

(−1)n

n

[
enβµ−nβωkTrRPn + e−nβµ−nβωkTrRP+n

]
.

This expression has a simple interpretation as a sum of paths winding around the timelike
direction. With standard boundary conditions, which are periodic for bosons and antiperiodic
for fermions, this one-loop free energy always favors the deconfined phase.

The effects of heavy quarks in the fundamental representation, with βM � 1, on the gauge
theory can be obtained approximately from the n = 1 term in the free energy

fq ≈ −sT

∫
ddk

(2π)d
TrF

[
Peβµ−βωk + P+e−βµ−βωk

]
,

because term with higher n are suppressed by a factor e−nβM . In this approximation, bosons
and fermions have the same effect at leading order. After integrating over k, the free energy fq

can be written as fq ≈ −hF

[
eβµTrF P + e−βµTrF P+

]
. The one-loop free energy density is the

one-loop effective potential at finite temperature. Thus the free energy for the heavy quarks
can be added to the usual gauge action to give an effective action which involves only the gauge
fields. The effective action is given by

Seff =
∫

dd+1x

[
1

4g2

(
F a

µν

)2 − hF

(
eβµTrF (P ) + e−βµTrF (P+)

)]
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Figure 2. The Polyakov loop in (1 + 1)-dimensional space-time.
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Figure 3. The Polyakov loop in a (1 + 1)-dimensional transfer matrix geometry.

and the structure and symmetries of the theory are obviously the same in any number of spatial
dimensions. Because TrF P is complex for N ≥ 3, the effective action for the gauge fields is
complex. This is a form of the so-called sign problem for gauge theories at finite density: the
Euclidean path integral involve complex weights. This problem is a fundamental barrier to
lattice simulations of QCD at finite density.

3 Heavy quarks at µ 6= 0 in 1 + 1 dimensions

In 1 + 1 dimensions, the field theory arising from the effective action can be reduced to a PT -
symmetric Hamiltonian acting on class functions of the gauge group. The effective action,
including the effects of heavy quarks, is

Seff =
∫

d2x

[
1

4g2

(
F a

µν

)2 − hF

(
eβµTrF (P ) + e−βµTrF (P+)

)]
,

where the gauge field Aµ now has two components. Fig. 2 shows the Polyakov loop in a 1 + 1-
dimensional geometry. It is convenient to work in a gauge where A1 = 0; this is turn implies
that A2 depends only on x1. After integration over x2, we are left with a Lagrangian

L =
β

2g2

(
dAa

2

dx1

)2

− hF β
[
eβµTrF (P ) + e−βµTrF (P+)

]
,

which we regard as the Lagrangian for a system evolving as a function of a time coordinate x1.
This represents a change from a Euclidean time point of view to a transfer matrix geometry, as
shown in Fig. 3. In this geometry, the Polyakov loop represents the insertion of an electric flux
line in a box with periodic boundary conditions, and the free energy density is obtained from
the lowest-lying eigenvalue of the transfer matrix.
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The physical states of the system are gauge-invariant, meaning that they are class functions of
P : Ψ [P ] = Ψ [gPg+]. The group characters form an orthonormal basis on the physical Hilbert
space: Ψ [P ] =

∑
R aRTrR (P ). The Hamiltonian H, obtained from L, acts on the physical

states as

H =
g2β

2
C2 − hF β

[
eβµTrF (P ) + e−βµTrF (P+)

]
,

where C2 is the quadratic Casimir operator for the gauge group, the Laplace–Beltrami operator
on the group manifold. We have thus reduced the problem of heavy quarks at finite density
in 1 + 1 dimensions to one of quantum mechanics on the gauge group. Unfortunately, the
Hamiltonian H is not Hermitian when µ 6= 0, and thus cannot be relied upon to have real
eigenvalues. This is a direct manifestation of the sign problem.

Although the Hamiltonian H is not Hermitian when µ 6= 0, it is PT -symmetric under the
transformations

P : x2 → −x2, A2 → −A2, T : i → −i,

which should be regarded as parity and time-reflection in the transfer matrix geometry. Together
these lead to

PT : P → P,

which leaves the Hamiltonian invariant. If this PT symmetry is unbroken, the eigenvalues of
the Hamiltonian will be real, and there is no sign problem. The PT symmetry remains even in
the high-density limit where the quark mass M and chemical potential µ are taken to infinity
in such a way that antiparticles are suppressed and P+ does not appear in H.

The simplest non-trivial gauge group is SU(3), because the cases of U(1) and SU(2) are
atypical. For the gauge group U(1), the Hamiltonian H may be written as

H = −e2β

2
d2

dθ2
− hF β

(
eβµ+iθ + e−βµ−iθ

)
,

but a simple change of variable θ → θ + iβµ eliminates µ:

H = −e2β

2
d2

dθ2
− hF β

(
e+iθ + e−iθ

)
.

This is very similar to the case of the two-dimensional PT -symmetric sine-Gordon model conside-
red in [10]. In the case of SU(2), all the irreducible representations are real, and the Hamiltonian
is Hermitian:

HSU(2) =
g2β

2
C2 − 2hF cosh (βµ) χj=1/2(P ).

This reality feature of SU(2) gauge theories at finite density holds in general, and has been
exploited in lattice simulations with µ 6= 0 [11, 12].

Thus N = 3 is the first non-trivial case for SU(N) gauge groups. We have calculated the
lowest eigenvalues of H using finite dimensional approximants. It is convenient to work in the
group character basis. The Casimir operator C2 is diagonal in this basis, and characters act as
raising and lowering operators. For example, in the 4×4 subspace spanned by the 1, 3, 3̄, and 8
representations of SU(3), the Hamiltonian takes the form

0 e−βµhF β eβµhF β 0
eβµhF β 4

3 ·
g2β
2 e−βµhF β eβµhF β

e−βµhF β eβµhF β 4
3 ·

g2β
2 e−βµhF β

0 e−βµhF β eβµhF β 3 · g2β
2

 .



6 M.C. Ogilvie and P.N. Meisinger

Figure 4. Spectrum for 2hF /g2 = 0.1.

Figure 5. Spectrum for 2hF /g2 = 0.2.

If hF is set to zero, we see that the eigenvalues are proportional to Casimir invariants 0, 4/3,
4/3, and 3 for the 1, 3, 3̄, and 8 representations of SU(3). We have therefore removed an overall
factor of g2β/2, so the overall strength of the potential term is controlled by the dimensionless
parameter 2hF /g2. The resulting dimensionless energy eigenvalues are thus normalized to give
the quadratic Casimir operator when 2hF /g2 = 0. The lowest eigenvalues have been calculated
numerically using a basis of dimension nine or larger, with the stability of the lowest eigenvalues
checked by changing the basis size.

When µ = 0, the Hamiltonian is Hermitian and all eigenvalues are guaranteed to be real. As
we see in Fig. 4, for 2hF /g2 � 1 and µ = 0, the eigenvalues are close to the quadratic Casimir
values. Even when µ = 0, the effect of the quarks is to split the degeneracies found in the pure
gauge theory. Thus, linear combinations of the 3 and 3̄ representations show a splitting. As µ
increases from zero, the eigenvalues remain real. Eventually, the two lowest energy eigenvalues
approach one another, forming a complex conjugate pair indicating the breaking of PT sym-
metry. As shown in Figs. 4–10, increasing the parameter 2hF /g2 decreases the value of βµ at
which the coalescence of the two lowest eigenvalues occurs. Unlike the (−ix)p models where the
lowest energy eigenvalues are the last to become complex as the parameter p decreases, here
PT symmetry breaking appears to occur in the lowest energies first. Figs. 4–10 show that the
eigenvalues above the ground state have a similar complicated behavior as a function of βµ.
However, the free energy density in the limit of infinite spatial dimension only depends on the
ground state energy in the transfer matrix geometry. It is not yet clear what, if any, is the
physical meaning of the breaking of PT symmetry in this context. Nevertheless, it is clear that
there is a range of values for βµ for which the sign problem is avoided, due to PT symmetry.
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Figure 6. Spectrum for 2hF /g2 = 0.3.

Figure 7. Spectrum for 2hF /g2 = 0.4.

Figure 8. Spectrum for 2hF /g2 = 0.5.

The partition function associated with the effective Lagrangian L can also be interpretated
as a classical statistical mechanical system. For simplicity, consider the case of the U(1) gauge
group. The partition function can be expanded as a power series in βhF , and the path integral
over A2 performed order by order. The result in the U(1) case is

Z =
∞∑

n=0

(βhF )2n

(n!)2

∫
dy1 · · · dyndz1 · · · dzn
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Figure 9. Spectrum for 2hF /g2 = 0.6.

Figure 10. Spectrum for 2hF /g2 = 0.75.

× exp

e2β

2

∑
j 6=k

[G (yj − zk)−G (yj − yk)−G (zj − zk)]

 ,

where G(x) is the one-dimensional Green’s function G(x) = − (1/2) |x|. This is an example of
the familiar equivalence between field theories of sine-Gordon type and the classical Coulomb
gas. Although first derived in one dimension [13], the equivalence holds in all dimensions. More
complicated gauge groups result in a similar, but more complicated expansion with a non-trivial
dependence on µ. As will be discussed below, generalized non-Hermitian sine-Gordon models
are also relevant for the study of quark confinement.

4 Confinement

It is remarkable that there are two classes of Z(N)-invariant systems that are confining at ar-
bitrarily high temperatures, evading the transition to the deconfined phase found in the pure
gauge theory. Both classes obtain a high-temperature confined phase from a pure gauge theory
by the addition of fermions in the adjoint representation of SU(N), with the non-standard choice
of periodic boundary conditions for the fermions in the timelike direction. One class consists of
N = 1 supersymmetric gauge theories [14, 15], where the periodic boundary conditions on the
gauginos is necessary to preserve supersymmetry. The perturbative contribution to the effective
potential for the Polyakov loop is identically zero, because the gauge field contribution is can-
celled exactly by the gaugino contribution. However, the non-perturbative contribution to the
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effective potential can be calculated exactly, and leads to a single, Z(N)-invariant, confining
phase. These ideas have recently been extended to a second class of models where the effect
of adjoint fermions dominates the contribution of the gauge fields [16, 17, 18]. If the num-
ber of adjoint fermion flavors Nf is not too large, these systems are asymptotically free at
high temperature, and therefore the effective potential for P is calculable using perturbation
theory. The system will lie in the confining phase if the fermion mass m is sufficiently light
and Nf > 1/2. In this case, electric string tensions can be calculated perturbatively from the
effective potential. In both this case and the supersymmetric case, magnetic string tensions arise
semiclassically from non-Abelian magnetic monopoles. This provides a realization of one of the
oldest ideas about the origin of confinement. Moreover, lattice simulations [16] indicate that
this high-temperature confining region is smoothly connected to the low-temperature confining
phase of the pure gauge theory as the temperature is lowered and the fermion mass is increased.

Up to a point, both classes of models can be treated similarly, but we will largely focus on the
second, non-supersymmetric case. The one-loop effective potential for a boson in a representa-
tion R with spin degeneracy s moving in a Polyakov loop background P at non-zero temperature
and density is given by [8, 9]

Vb = sT

∫
ddk

(2π)d
TrR

[
ln
(
1− Peβµ−βωk

)
+ ln

(
1− P+e−βµ−βωk

)]
.

Periodic boundary conditions are assumed. With standard boundary conditions (periodic for
bosons, antiperiodic for fermions), 1-loop effects always favor the deconfined phase. For the
case of pure gauge theories, the one-loop effective potential can be written in the form

Vgauge (P, β,m, Nf ) =
−2

π2β4

∞∑
n=1

TrAPn

n4
.

This series is minimized, term by term if P ∈ Z(N), so Z(N) symmetry is spontaneously broken
at high temperature. The same result is obtained for any bosonic field with periodic boundary
conditions or for fermions with antiperiodic boundary conditions.

The addition of fermions with periodic boundary conditions can restore the broken Z(N)
symmetry. Consider the case of Nf flavors of Dirac fermions in the adjoint representation
of SU(N). Periodic boundary conditions in the timelike direction imply that the generating
function of the ensemble, i.e., the partition function, is given by

Z = Tr
[
(−1)F e−βH

]
,

where F is the fermion number. This ensemble, familiar from supersymmetry, can be obtained
from an ensemble at chemical potential µ by the replacement βµ → iπ. In perturbation theory,
this shifts the Matsubara frequencies from βωn = (2n + 1) π to βωn = 2nπ. The one loop
effective potential is like that of a bosonic field, but with an overall negative sign due to fermi
statistics [19]. The sum of the effective potential for the fermions plus that of the gauge bosons
gives

V1-loop (P, β,m, Nf ) =
1

π2β4

∞∑
n=1

TrAPn

n2

[
2Nfβ2m2K2 (nβm)− 2

n2

]
.

Note that the first term in brackets, due to the fermions, is positive for every value of n, while
the second term, due to the gauge bosons, is negative.

The largest contribution to the effective potential at high temperatures is typically from the
n = 1 term, which can be written simply as

1
π2β4

[
2Nfβ2m2K2 (βm)− 2

][
|TrF P |2 − 1

]
,
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where the overall sign depends only on Nf and βm. If Nf > 1/2 and βm is sufficiently small,
this term will favor TrF P = 0. On the other hand, if βm is sufficiently large, a value of P from
the center, Z(N), is preferred. Note that an N = 1 super Yang–Mills theory would correspond
to Nf = 1/2 and m = 0, giving a vanishing perturbative contribution for all n [14, 15]. In
this case, it is necessary to calculate the non-perturbative contribution to the effective poten-
tial. This suggests that it should be possible to obtain a Z(N) symmetric, confining phase at
high temperatures using adjoint fermions with periodic boundary conditions or some equivalent
deformation of the theory.

This possibility has been confirmed in SU(3), where both lattice simulations and perturbative
calculations have been used to show that a gauge theory action with an extra term of the form∫

d4x a1TrAP is confining for sufficiently large a1 at arbitrarily high temperatures [16]. This
simple, one-term deformation is sufficient for SU(2) and SU(3). However, in the general case,
a deformation with at least

[
N
2

]
terms is needed to assure confinement for representations of all

possible non-zero k-alities. Thus the minimal deformation necessary is of the form

[N
2 ]∑

k=1

akTrAP k,

which is analyzed in detail in [20]. If all the coefficients ak are sufficiently large and positive,
the free energy density

V1-loop (P, β,m, Nf ) =
−2

π2β4

∞∑
n=1

TrAPn

n4
+

[N
2 ]∑

k=1

akTrAP k

will be minimized by a unique set of Polyakov loop eigenvalues corresponding to exact Z(N)
symmetry.

The unique set of eigenvalues of P invariant under Z(N) is
{
w,wz, wz2, . . . , wzN−1

}
, where

z = e2πi/N is the generator of Z(N), and w is a phase necessary to ensure unitarity [21]. A matrix
with these eigenvalues, such as P0 = w ·diag

[
1, z, z2, . . . , zN−1

]
, is gauge-equivalent to itself after

a Z(N) symmetry operation: zP0 = gP0g
+. This guarantees that TrF

[
P k

0

]
= 0 for any value

of k not divisible by N , indicating confinement for all representations transforming non-trivially
under Z(N).

To find the conditions under which P0 is a global minimum of the effective potential, we
use the high-temperature expansion for the one-loop free energy of a particle in an arbitrary
background Polyakov loop gauge equivalent to the matrix Pjk = δjke

iφj . The first two terms
have the form [19]

V1-loop ≈
N∑

j,k=1

(
1− 1

N
δjk

)
2 (2Nf − 1) T 4

π2

[
π4

90
− 1

48π2
(φj − φk)

2 (φj − φk − 2π)2
]

−
N∑

j,k=1

(1− 1
N

δjk)
Nfm2T 2

π2

[
π2

6
+

1
4

(φj − φk) (φj − φk − 2π)
]

.

The T 4 term dominates for m/T � 1, and has P0 as a minimum provided Nf > 1/2. Even
if the adjoint fermion mass is enhanced by chiral symmetry breaking, as would be expected
in a confining phase, it should be of order gT or less, and the second term in the expansion
of V1-loop can be neglected at sufficiently high temperature. It is interesting to note that for
Nf = 1/2, any m > 0 will give a perturbative term that leads to a deconfined phase.
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5 String tension scaling laws

The timelike string tension σ
(t)
k between k quarks and k antiquarks can be measured from the

behavior of the correlation function

〈TrF P k (~x) TrF

(
P+ (~y)

)k〉 ' exp

[
−

σ
(t)
k

T
|~x− ~y|

]

at sufficiently large distances. Two widely-considered scaling behaviors for string tensions are
Casimir scaling, characterized by

σk = σ1
k (N − k)

N − 1
,

and sine-law scaling, given by

σk = σ1
sin [πk/N ]
sin [π/N ]

.

For a review, see reference [7].
At non-zero temperatures, time-like and space-like string tensions may be different. Time-like

string tensions may be measured by Polyakov loop correlation functions. while spatial string
tensions are measured by space-like Wilson loops. For the supersymmetric case, both string
tensions obey sine-law scaling. This is a consequence of the close connection of this class of
models with the affine Toda field theory, which is a PT -symmetric model [22]. We will explore
the string tension scaling laws for the second class of models, with Nf > 1/2, and then return
to the affine Toda models and their possible connection to QCD.

Timelike string tensions are calculable perturbatively in the high-temperature confining re-
gion for Nf > 1/2 from small fluctuations about the confining minimum of the effective poten-
tial [23]. The scale is naturally of order gT :(

σ
(t)
k

T 2

)2

= g2N
Nfm2

π2

∞∑
j=0

[
K2 ((k + jN)βm) + K2 ((N − k + jN)βm)

− 2K2 ((j + 1)Nβm)
]
− g2N

T 2

3N2

[
3 csc2

(
πk

N

)
− 1
]

.

These string tensions are continuous functions of βm. The m = 0 limit is simple:(
σ

(t)
k

T

)2

=
(2Nf − 1) g2T 2

3N

[
3 csc2

(
πk

N

)
− 1
]

and is a good approximation for βm � 1. This scaling law is not at all like either Casimir or
sine-law scaling, because the usual hierarchy σ

(t)
k+1 ≥ σ

(t)
k is here reversed. Because we expect

on the basis of SU(3) simulations that the high-temperature confining region is continuously
connected to the conventional low-temperature region, there must be an inversion of the string
tension hierarchy between the two regions for all N ≥ 4.

The confining minimum P0 of the effective potential breaks SU(N) to U(1)N−1. This re-
maining unbroken Abelian gauge group naively seems to preclude spatial confinement, in the
sense of area law behavior for spatial Wilson loops. However, as first discussed by Polyakov
in the case of an SU(2) Higgs model in 2 + 1 dimensional gauge systems, instantons can lead
to nonperturbative confinement [24]. In the high-temperature confining region, the dynamics
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of the magnetic sector are effectively three-dimensional due to dimensional reduction. The
Polyakov loop plays a role similar to an adjoint Higgs field, with the important difference that
P lies in the gauge group, while a Higgs field would lie in the gauge algebra. The standard
topological analysis [25] is therefore slightly altered, and there are N fundamental monopoles in
the finite temperature gauge theory [26, 27, 28, 29, 30] with charges proportional to the affine
roots of SU(N), given by 2παj/g where αj = êj − êj+1 for j = 1 to N − 1 and αN = êN − ê1.
Monopole effects will be suppressed by powers of the Boltzmann factor exp [−Ej/T ] where Ej

is the energy of a monopole associated with αj .
In the high-temperature confining region, monopoles interact with each other through both

their long-ranged magnetic fields, and also via a three-dimensional scalar interaction, mediated
by A4. The scalar interaction is short-ranged, falling off with a mass of order gT . The long-range
properties of the magnetic sector may be represented in a simple form by a generalized sine-
Gordon model which generates the grand canonical ensemble for the monopole/anti-monopole
gas [18]. The action for this model represents the Abelian dual form of the magnetic sector of
the U(1)N−1 gauge theory. It is given by

Smag =
∫

d3x

T

2
(∂ρ)2 − 2ξ

N∑
j=1

cos
(

2π

g
αj · ρ

) ,

where ρ is the scalar field dual to the U(1)N−1 magnetic field. The monopole fugacity ξ is given
by exp [−Ej/T ] times functional determinantal factors [31].

This Lagrangian is a generalization of the one considered by Polyakov for SU(2), and the
analysis of magnetic confinement follows along the same lines [24]. The Lagrangian has N
degenerate inequivalent minima ρ0k = gµk where the µk’s are the simple fundamental weights,
satisfying αj · µk = δjk. Note that e2πiµk = zk. A spatial Wilson loop

W [C] = P exp
[
i

∮
C
dxj ·Aj

]
in the x-y plane introduces a discontinuity in the z direction in the field dual to B. Moving this
discontinuity out to spatial infinity, the string tension of the spatial Wilson loop is the interfacial
energy of a one-dimensional kink interpolating between the vacua ρ0k. The calculation is similar
to that of the ’t Hooft loop in the deconfined phase, where the kinks interpolate between the N
different solutions associated with the spontaneous breaking of SU(N). The main technical
difficulty lies in finding the correct kink solutions. A straight line ansatz through the Lie
algebra [32] using ρ(z) = gµkq(z) gives

σ
(s)
k =

8
π

[
g2Tξ

N
k (N − k)

]1/2

.

This result is exact for N = 2 or 3, but may be only an upper bound for N > 3. The square-
root-Casimir scaling behavior obtained differs somewhat from both Casimir and sine-law scaling,
and is inconsistent with lattice simulation results for N ≥ 4 pure gauge theories [33]. It is not
completely surprising that the addition of additional particles, in this case adjoint fermions,
might change string tension scalings laws.

Nevertheless, the behavior of spatial string tensions in the high-temperature confining region
is similar to what we think might occur in the low-temperature confining phase of a pure gauge
theory. Therefore it is interesting to ask whether there are classes of models, corresponding
to different monopole gases and having different string tension scaling laws. The model just
discussed is an affine sine-Gordon model with a sum over the affine simple roots, both positive
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and negative. If we sum instead over the affine positive roots, we have the affine Toda model,
a non-Hermitian but PT -symmetric, model. The action is

SToda =
∫

d3x

T

2
(∂ρ)2 − ξ

N∑
j=1

exp
(

i
2π

g
αj · ρ

) .

This is an effective field theory for a gas of monopoles, but no anti-monopoles. As shown by
Hollowood [22], the kink solutions of this model have a sine-law mass spectrum:

σ
(s)
k =

2N

π

[
g2Tξ

]1/2 sin
(

πk

N

)
.

Diakonov and Petrov have shown that this effective theory may be plausibly obtained from
SU(N) gauge theories at finite temperature if anti-monopoles are excluded from the ensemble
of field configurations considered in the path integral [34]. We can also consider a sine-Gordon
model with a sum over all roots. In this case, the string tension exhibits Casimir scaling:

σ
(s)
k =

8
π

[
g2Tξ

N

]1/2

k (N − k) .

The similarity of these three sets of results, and the closeness of lattice simulation results to
both Casimir and sine-law scaling, suggest the possibility of a crossover from one string tension
scaling law to another as the character of the monopole gas changes. The details of how this
might happen, however, are not clear.

6 Conclusions

The common thread connecting PT symmetry to applications to QCD at non-zero temperature
and density is the use of generalized sine-Gordon models to represent the statistical mechanics
of objects carrying non-Abelian electric and magnetic charge. Heavy quarks at non-zero density
give rise to a PT -symmetric effective action. This is turn gives us a new way of looking at
the sign problem. In the problem of quark confinement, there are models where monopole
gases are responsible for confinement. Depending on the specific model, the effective action for
the monopole gas may be Hermitian, or non-Hermitian but PT -symmetric. In addition to the
connection of PT symmetry to QCD, these models also suggest interesting possibilities for PT
symmetry more generally in statistical physics.
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